
Constructions of Bent Functions from Two Known BentFunctionsJennifer SeberryandXian-Mo ZhangDepartment of Computer ScienceThe University of WollongongWollongongNSW 2522, AUSTRALIAAbstractA (1, -1)-matrix will be called a bent type matrix if each row and each column arebent sequences. A similar description can be found in Carlisle M. Adams and Sta�ordE. Tavares, Generating and counting binary sequences, IEEE Trans. Inform. Theory,vol. 36, no. 5, pp. 1170-1173, 1990, in which the authors use the properties of benttype matrices to construct a class of bent functions. In this paper we give a generalmethod to construct bent type matrices and show that the bent sequence obtained froma bent type matrix is a generalized result of the Kronecker product of two known bentsequences.Also using two known bent sequences of length 22k�2 we can construct 2k � 2 bentsequences of length 22k, more than in the ordinary construction, which gives construct10 bent sequences of length 22k from two known bent sequences of length length 22k�2.Let Vn be the vector space of n tuples of elements from GF (2). Let �; � 2 Vn. Write� = (a1; � � � ; an), � = (b1; � � � ; bn), where ai; bi 2 GF (2). Write h�;�i = Pnj=1 ajbj for thescalar product of � and �.De�nition 1 We call the function h(x) = a1x1 + � � �+ anxn + c, aj ; c 2 GF (2), an a�nefunction, in particular, h(x) will be called a linear function if c = 0.De�nition 2 Let f(x) be a function from Vn to GF (2) (simply, a function on Vn). If2�n2 Xx2Vn(�1)f(x)+h�;xi = �1;for every � 2 Vn. We call f(x) a bent function on Vn.From De�nition 2, bent functions on Vn only exist for even n. Bent functions were �rstintroduced and studied by Rothaus [13]. Further properties, constructions and equivalencebounds for bent functions can be found in [2], [5], [7], [12], [16]. Kumar, Scholtz andWelch [6] de�ned and studied the bent functions from Znq to Zq . Bent functions are usefulfor digital communications, coding theory and cryptography [3], [1], [4], [7], [8], [10],[9], [11], [12]. 1



We say � = (a1; � � � ; an) < � = (b1; � � � ; bn) if there exists k, 1 <= k <= 2n, such thata1 = b1, : : : , ak�1 = bk�1 and ak = 0, bk = 1. Hence we can order all vectors in Vn by therelation < �0 < �1 < � � � < �2n�1;where �0 = (0; � � � ; 0);�1 = (0; � � � ; 1);...�2n�1�1 = (0; 1; � � � ; 1);�2n�1 = (1; 0; � � � ; 0);...�2n�1 = (1; 1; � � � ; 1):De�nition 3 Let f(x) be a function from Vn to GF (2). We call (�1)f(�0); (�1)f(�1);: : : ; (�1)f(�2n) the sequence of f(x). We call the sequence of f(x) a bent sequence if f(x)is bent. A (1 , -1)-sequence will be called an a�ne sequence a (linear sequence) if it is thesequence of an a�ne function (a linear function).De�nition 4 A (1, -1)-matrix H of order h will be called an Hadamard matrix if HHT =hIh.If h is the order of an Hadamard matrix then h is 1, 2 or divisible by 4 [15]. A special kindof Hadamard matrices de�ned as following will be relevantDe�nition 5 The Sylvester-Hadamard matrix ( or Walsh-Hadamard matrix) of order 2n,denoted by Hn, is generated by the recursive relationHn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : ; H0 = 1:Let f(x) be a function from Vn to GF (2), � be the sequence (regarded as a row vector) off(x). Then the following three conditions are equivalent(i) f(x) is bent,(ii) 2� 12nHn�T is a (1, -1)-row vector,(iii) for any a�ne sequence l h�; li = �2 12n.The equivalence of (i) and (ii) can be found in many references, for example, [2], [16].Note that any a�ne sequence of length 2n is a row of �Hn (see subsection 2.3) thus (ii)and (iii) are equivalent.De�nition 6 We call a (1, -1)-matrix of order 2m � 2n a bent type matrix if each row is abent sequence of length of 2n and each column is a bent sequence of length of 2m.2



For example, 26664 + + + �+ + � +� � � ++ + � + 37775 ;where + and � denote 1 and �1 respectively, is a bent type matrix of order 4. A similardescription can be found in [2, p. 1171].De�nition 7 A (1, -1)-matrix of order 2m� 2n will be called an a�ne type matrix if eachrow is an a�ne sequence of length of 2n and each column is an a�ne sequence of length of2m.For example, 26664 + + � � � � + ++ + � � + + � �+ + + + + + + ++ + + + � � � � 37775is an a�ne type matrix of order 4�8. Any Walsh-Hadamard matrix is an a�ne type matrix(see subsection 2.3).De�nition 8 Let A1 and A2 be a�ne type matrices of order 2m�2n. If A2 = QA1P whereQ and P are diagonal matrices of order 2m and 2n whose diagonals consist of �1 we say A1and A2 are equivalent.For example 26664 � + + �� + + �+ � � ++ � � + 37775 and 26664 + + + ++ + + ++ + + ++ + + + 37775 are equivalent a�ne type matrices.De�nition 9 We call each of the four (1, -1)-sequences of length 2 ++; +�; ��; �+E1-constructed. Recursively, suppose En-constructed has been de�ned for n = 1; : : : ; k�1.The (1, -1)-sequence l will be said to be Ek-constructed if l = (l0; �l0) where l0 is Ek�1-constructed.1 Bent Type Matrices1.1 Bent Type Matrices Constructed from A�ne Type MatricesLemma 1 Let b0; b1; : : : ; b2n�1 be a bent sequence and c0; c1; : : : ; c2n�1 be an a�ne sequencethen b0c0; b1c1; : : : ; b2n�1c2n�1 is a bent sequence.Proof. Let b0; b1; : : : ; b2n�1 be the sequence of a bent function f from Vn to GF (2)and c0; c1; : : : ; c2n�1 be the sequence of an a�ne function from Vn to GF (2). Note that3



b0c0; b1c1; : : : ; b2n�1c2n�1 is the sequence of f + g. From Property 1 [6, p. 95] f + g isbent. This proves the lemma. 2Bent type matrices can be used to construct bent sequences. For convenience, we quote apart of the Theorem found in [2]Theorem 1 Let B = (bij) be a bent type matrix of order 2m�2n. Write �j = (b1j; : : : ; b2mj),j = 1; : : : ; 2n and �i = (bi1 : : : bi2n), j = 1; : : : ; 2m. Then both(2� 12m�1Hm; � � � ; 2� 12m�2nHm)and (2� 12n�1Hn; � � � ; 2� 12n�2mHn)are bent sequences of length 2m+n.Proof. The proof can be found in [2, p. 1171]. 2Using the three equivalent conditions of bent functions in Section 1, both 2� 12m�jHm and2� 12n�iHn are bent sequences of length 2m and 2n. Hence Theorem 1 gives an example thatthe concatenation of some bent sequences is also bent. In general this is not true if someextra conditions are not satis�ed. For example, each of + + +�, + + �+, + � ++,�+++ is bent but the concatenation of the four sequences is not bent. The conditions forbent type matrices are restrictive. In this section we use a�ne type matrices to constructbent type matrices.Theorem 2 Let A be an a�ne type matrix of order 2m�2n, P be a diagonal matrix of order2n whose diagonal is a bent sequence of length 2n, say a0; a1; : : : ; a2n�1 and Q be a diagonalmatrix of order 2m whose diagonal is a bent sequence of length 2m, say b0; b1; : : : ; b2m�1.Then QAP is a bent type matrix of order 2m � 2n.Proof. Since each row of A is an a�ne sequence, by Lemma 1, each row of AP is a bentsequence. Note each column of AP is still an a�ne sequence. By Lemma 1, each column ofQAP is a bent sequence. Note each row of QAP is still a bent sequence. This proves thetheorem. 2To �nd the bent sequences using the special construction mentioned in Theorem 1, we �rstconstruct bent type matrices using Theorem 2. In particular, when the a�ne matrix A inTheorem 2 consists of only ones, the bent type matrix mentioned in Theorem 2 yields abent sequence which is the Kronecker product (see [15]) of two bent sequences: 2� 12m�jHmand 2� 12n�iHn. Thus we have reproved Theorem 1 [16] using a di�erent method.Corollary 1 Let �n denote the number of di�erent bent sequences on Vn with �rst entries+ and �m�n denote the number of inequivalent a�ne type matrices of order 2m� 2n. Thenthere exist at least �m�n�m�n di�erent bent type matrices of order 2m � 2n.4



Proof. We �rst note that for a �xed a�ne type matrix of order 2m � 2n, we can constructat least �m�n di�erent bent type matrices of order 2m� 2n by using Theorem 2. Otherwisesuppose B is an a�ne type matrix of order 2m � 2n, Q1 6= Q2 or P1 6= P2 but Q1BP1 =Q2BP2 where each Qj and each Pj are the matrices mentioned in the proof of Theorem 2whose �rst entries on the diagonals are +. ThusQ2Q1BP1P2 = B: (1)Note that both Q2Q1 and P1P2 are diagonal matrices whose diagonals consist of �1. LetQ2Q1 = diag(q1; � � � ; q2k), P1P2 = diag(p1; � � � ; p2k). Let B1 = (b1; � � � ; b2k)T be the �rstcolumn of B. Compare the �rst columns on each side of (1) then we have qjbjp1 = bj ,j = 1; : : : ; 2k thus qj = p1, j = 1; : : : ; 2k and thus Q2Q1 = �I2k according as p1 = �1.Hence Q2Q1 = eI2m and P1P2 = eI2n where e = �1. Since the �rst entries on the diagonalsof Q1, Q2, P1, P2 are +, Q1 = Q2 and P1 = P2. This contradicts to the assumption thatQ1 6= Q2 or P1 6= P2.Secondly we note that if B1 and B2 are inequivalent a�ne type matrices of order 2m � 2n,there exist no Q1, Q2, P1, P2 as mentioned in Theorem 2 such that Q1B1P1 = Q2B2P2.Otherwise we would have Q2Q1B1P1P2 = B2. This contradicts the assumption that B1and B2 are inequivalent. Hence we have established the corollary. 21.2 Constructing A�ne Type MatricesLemma 2 Write Hn = 266664 l0l1...l2n�1 377775 where li is a row of Hn. Then li is the sequence of alinear function on Vn.Proof. The proof can be found in [14]. 2We can now establishedTheorem 3 An (1, -1)-matrix of order 2m� 2n is an a�ne type matrix if and only if eachrow is En-constructed and each column is Em-constructed.Proof. Note that Hn has 2n rows and there exist 2n linear sequences of length 2n. ByLemma 2 each linear sequence is a row of Hn and thus each a�ne sequence is a row of �Hn.By the De�nition of Hn each row of Hn and is En-constructed. Hence each a�ne sequenceis En-constructed. On the other hand, there exist 2n+1 En-constructed (1 -1)-sequencesand 2n+1 a�ne sequences. Thus each En-constructed (1 -1)-sequences is a�ne. 2Theorem 4 Let A1 be an a�ne type matrix of order 2m1 � 2n1 with rank r1 and A2 be ana�ne type matrix of order 2m2 � 2n2 with rank r2. Then A1 �A2 is an a�ne type matrixof order 2m1+m2 � 2n1+n2 with rank r1r2, where � is the Kronecker product.5



Proof. Note that each row of A1 �A2 is En1+n2 -constructed and each column of A1 �A2is Em1+m2 -constructed. Hence by Theorem 3, A1 �A2 is an a�ne type matrix.Let C1 be the invertible submatrix of order r1 and C2 be the invertible submatrix of orderr2. Hence by (25) of [16, p. 114], C1 � C2 is invertible and thus the rank of A1 � A2 is atleast r1r2.On the other hand, since the ranks of A1 and A2 are r1 and r2 respectively, write suppose�1; : : : ; �r1 for the linearly independent row vectors of A1, and �1; : : : ; �r2 for the linearlyindependent column vectors of A2. Note that any row vector of A1 is a linear combinationof �1; : : : ; �r1 and any row vector of A2 is a linear combination of �1; : : : ; �r2 . Any rowvector of A1 � A2 can be written as � � �, where � is a row vector of A1 and � is a rowvector of A1. Write � = Pr1j=1 aj�j and � = Pr2j=1 bj�j , where each aj and bj 2 GF (2).Hence �� � = r1Xi=1 r2Xj=1 aibj(�i � �j):This proves that the rank of A1 �A2 is at most r1r2 and hence it is exactly r1r2. 2Corollary 2 (i) let A be an a�ne type matrix of order 2m � 2n with rank r and � bethe row vector of an a�ne sequence of length 2s then both ��A and A�� are a�netype matrix of order 2m � 2n+s with rank r,(ii) let � be the row vector of an a�ne sequence of length 2s then both ��Hn and Hn�� area�ne type matrices of order 2n � 2n+s with rank 2n, where Hn is a Walsh-Hadamardmatrix,(iii) let � be the row vector of an a�ne sequence of length 2s and � be the row vector ofan a�ne sequence of length 2t then � � �T is an a�ne type matrix of order 2t � 2swith rank 1.Theorem 5 For any integers k; n; m, 0 <= k <= n <= m, there exists at least (2k � 1)!inequivalent (under the meaning in De�nition 8) a�ne type matrices of order 2m� 2n withrank 2k.Proof. Write Walsh-Hadamard matrix Hk = [h1 � � �h2k ] where each hj is the column vectorof Hk. We �rst prove that any two [h1 hj2 � � � hj2k ] and [h1 hi2 � � � hi2k ] are inequivalentif j2; � � � ; j2k and i2; � � � ; i2k are two di�erent rearrangements of 2; : : : ; 2k. Otherwise ifthere exist diagonal matrices as mentioned in De�nition 8, say Q = diag(q1; � � � ; q2k),P = diag(p1; � � � ; p2k), then Q = �I2k , P = �I2k , sinceQ[h1 hj2 : : : hj2k ]P = [h1 hi2 : : : hi2k ]; (2)and comparing the �rst columns on each side of (2), we have qjajp1 = aj where (a1; � � � ; a2k)T =h1, thus qj = p1, j = 1; : : : ; 2k and thus Q = �I2k according as p1 = �1. By the samereasoning we can prove that P = �I2k , according as q1 = �1. On the other hand, thereexists an integer t, 2 <= t <= 2k such as jt 6= it and thus hjt 6= hit . We note that (2) cannothold by comparing hjt and hit . This proves the above statement.Let R be the matrix of order 2m�k � 2n�k with elements ones. By Theorem 46



[h1 hj2 � � � hj2k ] � R is an a�ne type matrix of order 2m � 2n with rank 2k. Permutingj2; : : : ; j2k we obtain (2k � 1)! inequivalent matrices of this kind. 2Note that 0! = 1 in Theorem 5.Corollary 3 For any positive integers n and m, n <= m, there exist at least Pnk=0(2k � 1)!inequivalent (within the meaning of De�nition 8) a�ne type matrix of order 2m � 2n.Proof. We note that if two matrices have di�erent ranks they are inequivalent within themeaning of De�nition 8. 2Corollary 4 For any positive integers n <= m there exists at least �n�mPnk=0(2k � 1)!di�erent bent type matrices of order 2m � 2n.Proof. By Corollary 3 �m�n >= Pnk=1(2k � 1)!. Using Corollary 1 we have proved thecorollary. 22 Combination of Two Known Bent Sequences2.1 Enumeration of Nondegenerate Linear TransformationsWe replace the real numbers 1; 2; : : : ; 2n by the vectors�0 = (0; � � � ; 0); �1 = (0; � � � ; 0; 1); : : : ; �2n�1 = (1; 1; � � � 1) 2 Vnrespectively. Let ' be nondegenerate linear transformation on Vn. Set �j = '(�j), j =0; 1; : : : ; 2n � 1.Lemma 3 If e1; e2; � � � ; e2n i.e. e�0 ; e�1 ; � � � ; e�2n�1 is an a�ne sequence then e�0 ; e�1 ;� � � ; e�2n�1 is also an a�ne sequence.Proof. Let e�0 ; e�1 ; � � � ; e�2n�1 be the sequence of the a�ne function h(x1; : : : ; xn) on Vn.Set h('(x1; : : : ; xn)) = g(x1; : : : ; xn) thus h('(�j)) = g(�j) i.e. h(�j) = g(�j) and thuse�j = (�1)h(�j) = (�1)g(�j). Since g(x1; : : : ; xn) is an a�ne function the sequence of g i.e.e�0 ; e�1 ; � � � ; e�2n�1 is an a�ne sequence. 2Lemma 4 There exist exactly �n�1j=0 (2n � 2j) nondegenerate linear transformations on Vn.Proof. An equivalent statement is that there exist exactly �n�1j=0 (2n � 2j) non-degeneratematrices of order n over GF (2). Write D = 264 D1...D2n 375 ; a non-degenerate matrix of order7



n over GF(2), where Di is the i-th row of D. Note that D1 has 2n � 1 choices (excludingthe case that D1 is the zero vector). After D1 is �xed D2 has 2n � 2 choices (excludingD2 = d1D1 where d1 = 0; 1). After D1 and D2 are �xed D3 has 2n � 22 choices (excludingD3 = d1D1+d2D2, where d1; d2 = 0; 1). Continuing this reasoning, afterD1; : : : ;Dn�1 havebeen �xed Dn has 2n� 2n�1 choices (excluding Dn =Pn�1j=1 djDj, where each dj = 0; 1). Intotal D has �n�1j=0 (2n � 2j) di�erent choices. 2Lemma 5 (i) All nondegenerate linear transformations on Vn can be divided into 2n� 1disjoint classes 
1; : : : ;
2n�1 such that '1 and '2 are in the same class if and onlyif f'1(�0); : : : ; '1(�2n�1�1)g = f'2(�0); : : : ; '2(�2n�1�1)g,(ii) j
j j = 2n�1�n�2j=0 (2n�1 � 2j), j = 1; : : : ; 2n � 1.Proof. Fix a nondegenerate linear transformation on Vn, say '0. Write '0(�j) = �0j ,j = 1; : : : ; 2n � 1.We now count ' such that ' and '0 are in the same class i.e. f'(�0); : : : ; '(�2n�1�1g =f'0(�0); : : : ; '0(�2n�1�1)g = f�0; : : : ; �2n�1�1g. This counting is equivalent to counting thenondegenerate linear transformations on Vn , say  , such that f (�0); : : : ; (�2n�1�1)g = f�0; : : : ; �2n�1�1g because if we set ' =  '0 then f'(�0); : : : ; '1(�2n�1�1)g= f '0(�0); : : : ;  '0(�2n�1�1)= f (�0); : : : ;  (�2n�1�1)g= f�0; : : : ; �2n�1�1g= f'0(�0);: : : ; '0(�2n�1�1)g. Since f�0; : : : ; �2n�1�1g contains �1; �2; �22 ; : : : ; �2n�2 but containsno �j , j = 2n�1; : : : ; �2n�1, the rank of f�0; : : : ; �2n�1�1g is n � 1. Note that any non-degenerate linear transformation preserves the rank of any set of vectors thus the rank off�0; : : : ; �2n�1�1g is also n � 1. Suppose �j1 ; : : : ; �jn�1 2 f�0; : : : ; �2n�1�1g is a basis forf�0; : : : ; �2n�1�1g. Add an appropriate vector in Vn, say , such that �j1 ; : : : ; �jn�1 ;  forma basis of Vn.We now determine  such that f (�0); : : : ;  (�2n�1�1)g = f�0; : : : ; �2n�1�1g. For this pur-pose a necessary and su�cient condition is (�j1) = c11�j1 + c12�j2 + � � �+ c1n�1�jn�1 (�j2) = c21�j1 + c22�j2 + � � �+ c2n�1�jn�1... (�jn�1) = cn�11�j1 + cn�12�j2 + � � �+ cn�1n�1�jn�1 () = d1�j1 + d2�j2 + � � �+ dn�1�jn�1 + ewhere (cij) is a nondegenerate matrix of order n � 1 on Vn�1 and e = 1 since  is anondegenerate linear transformation. By Lemma 4 (cij) has �n�2j=0 (2n�1 � 2j) choices. Onthe other hand (d1; � � � ; dn�1) has 2n�1 choices. In total  has 2n�1�n�2j=0 (2n�1�2j) choices.This proves that j
j j = 2n�1�n�2j=0 (2n�1 � 2j), j = 1; : : : ; 2n � 1. By Lemma 4 thereexists �n�1j=0 (2n� 2j) nondegenerate linear transformations on Vn. Thus we have �n�1j=0 (2n�2j)=2n�1�n�2j=0 (2n�1 � 2j) = 2n � 1 disjoint classes. 22.2 Combination of Two Known Bent FunctionsIn this section we replace 1; 2; : : : ; 22k�1 by vectors in V2k�1: �0 = (0; � � � ; 0), �1 =(0; � � � ; 0; 1), : : : ; �22k�1�1 = (1; 1; � � � ; 1) respectively.8



Let ' be nondegenerate linear transformation on V2k�1. Set �j = '(�j), j = 0; 1; : : : ;22k�1 � 1. Suppose �1 = (a1; � � � ; a22k�2) and �2 = (b1; � � � ; b22k�2) are two bent sequences oflength 22k�2. We now construct a (1 -1)-sequence of length 22k, denoted by � = (�1; �2)where each �j is of length 22k�1, by using �1, �2 and '.Construction 1 Let the �0-th, the �1-th, : : : , and the �22k�2�1-th entries of �1 be a1; a2; : : : ; a22k�1respectively and let the �22k�2-th, the �22k�2+1-th, : : : , and the �22k�1�1-th entries of �1 beb1; b2; : : : ; b22k�1 respectively.Next let the �0-th, the �1-th, : : : , and the �22k�2�1-th entries of �2 be a1; a2; : : : ; a22k�1respectively and let the �22k�2-th, the �22k�2+1-th, : : : , and the �22k�1�1-th entries of �2 be�b1;�b2; : : : ;�b22k�1 respectively.Set � = (�1; �2).Lemma 6 �, in Construction 1, is a bent sequence of length 22k.Proof. Let L be an a�ne sequence of length 22k. By Theorem 3 L = (l; �l) where l is ana�ne sequence of length 22k�1. Write l = (e1; e2; � � � ; e22k�1) i.e. l = (e�0 ; e�1 ; � � � ; e�22k�1�1).Write l = (l1; l2) where each lj is of length 22k�2. By Theorem 3 each lj is an a�ne se-quence of length 22k�2 and l2 = �l1.We now consider h�;Li = h�1; l1i+ h�2; l2i.Case 1: L = (l; l). By Construction 1h�; Li = h�1; li+ h�2; liwhere h�1; li = 22k�2Xj=1 aje�j�1 + 22k�2Xj=1 bje�22k�2+j�1and h�2; li = 22k�2Xj=1 aje�j�1 � 22k�2Xj=1 bje�22k�2+j�1 :Thus h�;Li = 2 22k�2Xj=1 aje�j�1 : (3)Write l� = (e�0 ; e�1 ; � � � ; e�22k�1 ), by Lemma 3, it is an a�ne sequence of length 22k�1. Writel� = (l�1; l�2) where each l�j is of length 22k�2. By Theorem 3 each l�j is an a�ne sequence oflength 22k�2.Thus (3) becomes h�; Li = 2h�1; l�1i. Note that �1 is a bent sequence of length 22k�2 and l�1is an a�ne sequence of length 22k�2. Thus h�1; l�1i = �2k�1 and hence h�;Li = �2k.Case 2: L = (l; �l). By Construction 1h�; Li = h�1; li � h�2; li9



where h�1; li = 22k�2Xj=1 aje�j�1 + 22k�2Xj=1 bje�22k�2+j�1and h�2; li = 22k�2Xj=1 aje�j�1 � 22k�2Xj=1 bje�22k�2+j�1 :Thus h�;Li = 2 22k�2Xj=1 bje�22k�2+j�1 = 2h�2; l�2i: (4)Note that �2 is a bent sequence of length 22k�2 and l�2 is an a�ne sequence of length 22k�2.Thus h�2; l�2i = �2k�1 and hence (4) becomes h�;Li = �2k.Since L is arbitrary, by the three equivalent conditions of bent functions, � is a bent se-quence. 2Construction 2 let the �0-th, the �1-th, : : : , and the �22k�2�1-th entries of �1 be a1; a2; : : : ; a22k�1respectively and let the �22k�2-th, the �22k�2+1-th, : : : , and the �22k�1�1-th entries of �1 beb1; b2; : : : ; b22k�1 respectively.Next let the �0-th, the �1-th, : : : , and the �22k�2�1-th entries of �2 be �a1;�a2; : : : ;�a22k�1 respectively and let the �22k�2 -th, the �22k�2+1-th, : : : , and the �22k�1�1-th entriesof �2 be b1; b2; : : : ; b22k�1 respectively.Set � = (�1 �2).Lemma 7 �, in Construction 2, is a bent sequence of length 22k.Proof. The proof is similar to the proof of Lemma 6. 22.3 Enumeration of Bent Sequences by Construction 1 and 2Lemma 8 Let �12k denote the set of bent sequences of length 22k obtained via Construction1 and �22k denote the set of bent sequences of length 22k obtained via Construction 2. Then�12k \ �22k = � where � denotes the empty set.Proof. Suppose we construct the bent sequence of length 22k, say � = (�1; �2), by usingthe bent sequences �1 = (a1; � � � ; a22k�2), �2 = (b1; � � � ; b22k�2) and the nondegenerate lineartransformation on V2k�1, denoted by ', in Construction 1. Similarly we suppose in Con-struction 2 we construct a bent sequence of length 22k, say �0 = (�01; �02), by using bentsequences �1 = (a01; � � � ; a022k�2), �2 = (b01; � � � ; b022k�2) and a nondegenerate linear transfor-mation on V2k�1, denoted by '0. 10



Set �j = '(�j), �0j = '0(�j) where j = 0; 1; : : : ; 22k�1�1. Note that �0 = '(�0), �00 = '0(�0)and �0 = (0; 0; � � � ; 0) thus �0 = �00 = (0;0; � � � ; 0) since both ' and '0 are linear transfor-mations.In Construction 1 a1 occurs in the �0-th place of �1 also a1 occurs in the �0-th place of �2.Thus the �rst entries in �1 and �2 are the same.In Construction 2 a01 occurs in the �0-th place of �01 also �a01 occurs in the �0-th place of�02. Thus the �rst entries in �01 and �02 are negatives each other. This proves that � 6= �0.Since both � and �0 are arbitrary �12k \ �22k = �. 2By Lemma 5 we divide all nondegenerate linear transformations on V2k�1 into 22k�1 � 1disjoint classes: 
1; : : : ;
22k�1�1 such that '1 and '2 are in the same class if and only iff'1(�0); : : : ; '1(�22k�2�1)g = f'2(�0); : : : ; '2(�22k�2�1)g.We �x a 's 2 
s, s = 1; : : : ; 22k�1 � 1.Lemma 9 Suppose we construct the bent sequence of length 22k, say � = (�1; �2), byusing the bent sequences �1 = (a1; � � � ; a22k�2), �2 = (b1; � � � ; b22k�2) and the nondegeneratelinear transformation on V2k�1, denoted by 's where 's 2 
s, in Construction 1 (2). Alsoin Construction 1 (2) we construct a bent sequence of length 22k, say �0 = (�01; �02), byusing bent sequences �1 = (a01; � � � ; a022k�2), �2 = (b01; � � � ; b022k�2) and a nondegenerate lineartransformation on V2k�1, denoted by 't where 't 2 
t. If t 6= s then � 6= �0.Proof. Set �j = 's(�j), �0j = 't(�j) where j = 0; 1; : : : ; 22k�1 � 1. Since f's(�0); : : : ;'1(�22k�2�1)g 6= f't(�0); : : : ; '2(�22k�2�1)g i.e. f�0; : : : ; �22k�2�1g 6= f�00; : : : ; �022k�2�1gthere exists a � such that � 2 f�0; : : : ; �22k�2�1g but � 62 f�00; : : : ; �022k�2�1g.In Construction 1 we note that � 2 f�0; : : : ; �22k�2�1g and we can suppose ai0 occurs in the�-th place of �1 and ai0 also occurs in the �-th place of �2 thus the entry in the �-th placeof �1 and the entry in the �-th place of �2 are the same.For �0, in Construction 1, we note that � 62 f�00; : : : ; �022k�2�1g thus � 2 f�022k�2 ; : : : ;�022k�1�1g and we can suppose bj0 occurs in the �-th place of �01 and �b0j0 occurs in the�-th place of �02 thus the entry in the �-th place of �01 and the entry in the �-th place of�02 are negatives of each other. This proves � 6= �0. Similarly we can prove the lemma forConstruction 2. 2Lemma 10 We �x a 's 2 
s. Suppose we construct the bent sequence of length 22k, say� = (�1; �2), by using the bent sequences �1 = (a1; � � � ; a22k�2), �2 = (b1; � � � ; b22k�2) andthe nondegenerate linear transformation on V2k�1, say 's, in Construction 1 (2). Also inConstruction 1 (2) we construct a bent sequence of length 22k, say �0 = (�01; �02), by usingbent sequences �1 = (a01; � � � ; a022k�2), �2 = (b01; � � � ; b022k�2) and the same nondegenerate lineartransformation 's. If (�01; �02) 6= (�1; �2) then � 6= �0.Proof. Without any loss of generality suppose aj0 6= a0j0 for some j0. By Construction 1aj0 occurs in the �j0�1-th place of �1.On the other hand, by Construction 1, a0j0 occurs in the �j0�1-th place of �01. Thus �1 6= �01and thus � 6= �0. Similarly we can prove the lemma for Construction 2. 211



Theorem 6 (i) Using two bent sequences of length 22k�2, say �1 and �2, we can construct22k � 2 di�erent bent sequences of length 22k,(ii) let �2k denote the number of the bent sequences of length 22k then �2k >= (22k� 2)�22k�2for k >= 2.Proof. (i) For the two bent sequences of length of 22k�2 in Construction 1 (2), ' has22k�1 � 1 choices. By Lemma 9 we can construct 22k�1 � 1 di�erent bent sequences fromthe two known bent sequences of length of 22k�2. By Lemma 8 we have 22k � 2 di�erentbent sequences of length of 22k in Construction 1 and 2 in total.(ii) Two bent sequences of length 22k � 2 have �22k�2 choices. By Lemma 10 and (i) of thetheorem �2k >= (22k � 2)�22k�2 for k >= 2. 2We note that (i) of Theorem 6 gives many more bent sequences of length 22k from twoknown bent sequences of length 22k�2 than the ordinary construction, which gives 10 bentsequences of length 22k from two known bent sequences of length 22k�2 (see [2]).2.4 ExamplesExample 1 Since �2 = 8, by Theorem 1, �4 >= (24 � 2)82 = 896 and �6 >= (26 � 2)�24 =62 � 8962 = 62 � 802816 = 49774592.Previously Adams and Tavares [2] estimated 48201728 as the number of bent sequencesof length 26 including linear-based bent sequences and those constructed from four bentsequences of length 24.Example 2 Let k = 3 in Construction. Let ' be a nondegenerate linear transformationon V5. Write �0 = (0;0; 0; 0; 0); �1 = (0; 0; 0; 0; 1); : : : ; �25�1 = (1;1; 1; 1; 1): De�ne ', anondegenerate linear transformation on V5 as follows'(�1) = (0; 0; 0; 1;1); '(�2) = (0; 0; 1; 1; 0); '(�4) = (0;1; 1; 0; 0);'(�8) = (1; 1; 0; 0;0); '(�16) = (1; 0; 0; 0; 0):Obviously, f�1; �2; �4; �8; �16g is a basis of V5.Write '(�j) = �j where j = 0; 1; : : : ; 31. Hence we have�0 = (0;0; 0; 0; 0); �1 = (0; 0; 0; 1; 1); �2 = (0;0; 1; 1; 0); �3 = (0; 0; 1; 0; 1);�4 = (0;1; 1; 0; 0); �5 = (0; 1; 1; 1; 1); �6 = (0;1; 0; 1; 0); �7 = (0; 1; 0; 0; 1);�8 = (1;1; 0; 0; 0); �9 = (1; 1; 0; 1; 1); �10 = (1;1; 1; 1; 0); �11 = (1; 1; 1; 0; 1);�12 = (1; 0; 1; 0; 0); �13 = (1; 0; 1; 1;1); �14 = (1; 0; 0;1; 0) �15 = (1; 0; 0; 0; 1);�16 = (1; 0; 0; 0; 0); �17 = (1; 0; 0; 1;1); �18 = (1;0; 1; 1; 0); �19 = (1; 0; 1; 0; 1);�20 = (1; 1; 1; 0; 0); �21 = (1; 1; 1; 1;1); �22 = (1;1; 0; 1; 0); �23 = (1; 1; 0; 0; 1);�24 = (0; 1; 0; 0; 0); �25 = (0; 1; 0; 1;1); �26 = (0;1; 1; 1; 0); �27 = (0; 1; 1; 0; 1);�28 = (0; 0; 1; 0; 0); �29 = (0; 0; 1; 1;1); �30 = (0; 0; 0;1; 0) �31 = (0; 0; 0; 0; 1):Choose two bent sequences of length 24:�1 = (+ + ++ ++ ��+ �+ �+ ��+) = (a1; � � � ; a16)12



and �2 = (+ + +� ++ +� ++ +�� ��+) = (b1; � � � ; b16):Let the �0-th, the �1-th, : : :, the �15-th entries of �1 be a1; a2; : : : ; a16 respectively and the�16-th, the �17-th, : : :, the �31-th entries of �1 be b1; b2; : : : ; b16 respectively. We have nowconstructed �1:�1 = (+ +� +� ++� +� �+ +� ++ ++� ++ �+ �+ �+ �+� ++):Also let the �0-th, the �1-th, : : :, the �15-th entries of �2 be a1; a2; : : : ; a16 respectively andthe �16-th, the �17-th, : : :, the �31-th entries of �2 be �b1; �b2; : : : ;�b16 respectively. Wehave now constructed �2:�2 = (+�+ ++ +++ �� �� ++ �+ �+� �+ +� �+ +� ��� +�):Finally set � = (�1; �2), by Lemma 6, this is a bent sequence of length of 26 by using �1, �2and ' in Construction 1.Similarly we can construct another bent sequence by using �1, �2 and ' in Construction 2.To do this set �01 = �1 and �02 = ��2. �0 = (�01; �02), by Lemma 7, this is a bent sequence oflength of 26 by using �1, �2 and ' in Construction 2.References[1] C. M. Adams. On immunity against Biham and Shamir's \di�erential cryptanalysis".Information Processing Letters, 41:77{80, 1992.[2] C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEETransactions on Information Theory, IT-36 No. 5:1170{1173, 1990.[3] C. M. Adams and S. E. Tavares. The use of bent sequences to achieve higher-orderstrict avalanche criterion. Technical Report, TR 90-013, Department of ElectricalEngineering, Queen's University, 1990.[4] J. Detombe and S. Tavares. Constructing large cryptographically strong S-boxes. InAdvances in Cryptology - AUSCRYPT'92. Springer-Verlag, Berlin, Heidelberg, NewYork, 1993. to appear.[5] P. V. Kumar and R. A. Scholtz. Bounds on the linear span of bent sequences. IEEETransactions on Information Theory, IT-29 No. 6:854{862, 1983.[6] P. V. Kumar, R. A. Scholtz, and L. R. Welch. Generalized bent functions and theirproperties. Journal of Combinatorial Theory, Ser. A, 40:90{107, 1985.[7] A. Lempel and M. Cohn. Maximal families of bent sequences. IEEE Transactions onInformation Theory, IT-28 No. 6:865{868, 1982.[8] V. V. Losev. Decoding of sequences of bent functions by means of a fast Hadamardtransform. Radiotechnika i elektronika, 7:1479{1492, 1987.13
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