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1 Motivation of this ResearchIn his pioneering work on the theory of secrecy systems [10], Shannon sug-gested the concept of a \product cipher" which employs a concatenation ofseveral di�erent types of basic transformations. Most modern ciphers, includ-ing the Data Encryption Standard or DES [7], have been designed by followingShannon's suggestion.A core component of these ciphers is the so-called substitution boxes orS-boxes each of which is mathematically identical to a tuple of nonlinear(Boolean) functions on GF (2). Recent progress in cryptanalysis, especiallythe discovery of linear attacks [5], has highlighted the signi�cance of researchinto nonlinear characteristics of functions. Well-known indicators that forecastnonlinear characteristics of a function include nonlinearity (or the minimumdistance to the a�ne functions), avalanche e�ect, algebraic degree, resilience,and correlation immunity to mention a few. While some indicators, such asnonlinearity and avalanche e�ect, have received extensive studies, many othersare yet to be addressed.Study of these indicators may lead to the discovery of new cryptanalytic at-tacks, and more importantly, shed light on the design of new ciphers that aresecure against an even wider range of possible cryptanalytic attacks.This paper studies nonlinear properties of functions from three di�erent butclosely related perspectives: maximal odd weighting subspaces, restrictions tocosets, and hypergraphs, all associated with a function. Main contributionsof this work include (1) by using a duality property of a function, we haveobtained several results that are related to lower bounds on nonlinear, aswell as on the number of terms, of the function, (2) we identify relationshipsbetween the nonlinearity of a function and the distribution of terms in thealgebraic normal form of the function, (3) we prove that cycles of odd lengthin the terms, as well as quadratic terms, in the algebraic normal form of afunction play an important role in determining the nonlinearity of the function.The remainder of this paper is organized as follows. Section 2 presents basicmathematical background, especially duality properties of a function, which isneeded in the understanding of results to be presented in other parts of the pa-per. Section 3 studies maximal odd weighting subspaces and their applicationsin determining the nonlinearity and the number of terms of a function. This isfollowed by Section 4 where we investigate how the restriction of a function toa coset is connected to the nonlinearity of the original function. In Section 5,we study nonlinearity properties of a function by the use of graph theory. Weshow that each function corresponds to a unique hypergraph, which allows usto prove a few bounds on the nonlinearity of the function. The paper is closed2



by a few remarks in Section 6.Part of the results presented in this paper were reported at the 1997 Interna-tional Conference on Information and Communications Security (ICICS'97),Beijing, and the 1998 IEEE International Symposium on Information Theory(ISIT'98), Boston.2 PreliminariesWe consider functions from Vn to GF (2) (or simply functions on Vn), Vn isthe vector space of n tuples of elements from GF (2). The truth table of afunction f on Vn is a (0; 1)-sequence de�ned by (f(�0); f(�1); : : : ; f(�2n�1)),and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f(�0), (�1)f(�1),: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 =(1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix of order 2n de�ned by M =((�1)f(�i��j)) where � denotes the addition in GF (2). f is said to be balancedif its truth table contains an equal number of ones and zeros.Given two sequences ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their component-wise product is de�ned by ~a � ~b = (a1b1; � � � ; ambm). In particular, if m = 2nand ~a, ~b are the sequences of functions on Vn respectively, then ~a � ~b is thesequence of f � g.Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two vectors (or sequences), thescalar product of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of thecomponent-wise multiplications. In particular, when ~a and ~b are from Vm,h~a;~bi = a1b1 � � � � � ambm, where the addition and multiplication are overGF (2), and when ~a and ~b are (1;�1)-sequences, h~a;~bi = Pmi=1 aibi, where theaddition and multiplication are over the reals.A (1;�1)-matrix H of order m is called a Hadamard matrix if HH t = mIm,where H t is the transpose of H and Im is the identity matrix of order m. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing recursive relationH0 = 1; Hn = 264Hn�1 Hn�1Hn�1 �Hn�1 375 ; n = 1; 2; : : : :Let `i, 0 � i � 2n�1, be the i row of Hn. By Lemma 2 of [9], `i is the sequenceof a linear function 'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where�i is the ith vector in Vn according to the ascending alphabetical order.3



An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � c, where aj; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f iscalled a linear function if c = 0.De�nition 1 The Hamming weight of a (0; 1)-sequence � is the number ofones in the sequence. Given two functions f and g on Vn, the Hamming dis-tance d(f; g) between them is de�ned as the Hamming weight of the truth tableof f(x)� g(x), where x = (x1; : : : ; xn). The nonlinearity of f , denoted by Nf ,is the minimal Hamming distance between f and all a�ne functions on Vn,i.e., Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�nefunctions on Vn.The following characterization of nonlinearity will be used in this paper (fora proof see for instance [6,9].)Nf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1g (1)where � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequences of linear functions on Vn.Notation 2 (b1; : : : ; bn) � (a1; : : : ; an) means that (b1; : : : ; bn) is covered by(a1; : : : ; an), namely if bj = 1 then aj = 1. In addition, (b1; : : : ; bn) � (a1; : : : ; an)means that (b1; : : : ; bn) is properly covered by (a1; : : : ; an), namely (b1; : : : ; bn) �(a1; : : : ; an) and (b1; : : : ; bn) 6= (a1; : : : ; an).De�nition 3 A function f on Vn can be uniquely represented by a polynomialon GF (2) whose degree is at most n. Namely,f(x1; : : : ; xn) = M�2Vn g(a1; : : : ; an)xa11 � � �xann (2)where � = (a1; : : : ; an), and g is also a function on Vn. The polynomial rep-resentation of f is called the algebraic normal form of the function and eachxa11 � � � xann is called a term in the algebraic normal form of f . The algebraicdegree, or simply degree, of f , denoted by deg(f), is de�ned as the number ofvariables in the longest term of f , i.e.,deg(f) = maxfthe Hamming weight of (a1; : : : ; an) j g(a1; : : : ; an) = 1g:The function g de�ned in the algebraic normal form (2) is called the M�obiustransform of f .Notation 4 Let W be a subspace of Vn. Denote the dimension of W bydim(W ). 4



Notation 5 Let X be a set. The cardinal number of X, i.e., the number ofelements in X, is denoted by #X.A proof for the following result is provided, as we feel that understanding theproof would be helpful in studying other issues that are more directly relatedto cryptography.Theorem 6 Let f be a function on Vn. Let �; � 2 Vn � = (1; : : : ; 1; 0; : : : ; 0)where only the �rst s components are one, and � = (0; : : : ; 0; 1; : : : ; 1; 0; : : : ; 0)where only the (s+1)th, : : :, the (s+t)th components are one. Then the numberof terms of the form x1 � � �xsxi1 � � �xit0 where s + 1 � i1 < � � � < it0 � s + t,that appear in the algebraic normal form of f , is even if L�� f( � �) = 0,and the number is odd if L�� f( � �) = 1.PROOF. Consider a term�(x) = xj1 � � �xjs0xi1 � � �xit0 (3)in f , where x = (x1; : : : ; xn), 1 � j1 < � � � < js0 � s and s + 1 � i1 < � � � <it0 � s+ t. For s0 < s, there are an even number of vectors  in Vn such that � � and �( � �) = 1. HenceM���( � �) = 0: (4)For s0 = s, there is only one vector in Vn,  = �, such that �( � �) = 1.HenceM���( � �) = 1: (5)Now consider a term!(x) = xj1 � � �xjk (6)in f , where x = (x1; : : : ; xn), 1 � j1 < � � � < jk, and jk > s+ t. From (6) withjk > s+ t, and the structures of � and �,!( � �) = 0 (7)for each  � �. Denote the set of terms given in (3) by �1 if s0 < s, and by �2if s0 = s. And denote the set of terms given in (6) by 
. Then we can write f5



as f = M�2�1 �� M�2�2 ��M!2
!:From (4), (5) and (7), we haveM�� f( � �) = M�� M�2�2 �( � �): (8)The proof is completed by noting that L�� f( � �) = 0 implies that #�2is even, while L�� f( � �) = 1 implies that #�2 is odd.Set � = 0 in Theorem 6 and reorder the variables, we obtain a result wellknown to coding theorists (see p.372 of [4]):Corollary 7 Let f be a function on Vn and � = (a1; : : : ; an) be a vector inVn. Then the term xa11 � � �xann appears in f if and only if L�� f() = 1.With the above two results, it is not hard to verify the correctness of thefollowing lemma:Lemma 8 Let f and g be function on Vn. Then the following four statementsare equivalent(i) f(�) = L��� g(�) for every vector � 2 Vn,(ii) g(�) = L��� f(�) for every vector � 2 Vn,(iii) f(x1; : : : ; xn) = L�2Vn g(a1; : : : ; an)xa11 � � � xann where � = (a1; : : : ; an),(iv) g(x1; : : : ; xn) = L�2Vn f(a1; : : : ; an)xa11 � � � xann where � = (a1; : : : ; an).3 Maximal Odd Weighting Subspaces with ApplicationsThe focus of this section is on maximal odd weighting subspace to be de�nedin the following. We show the usefulness of this simple concept by proving twointeresting results, one is on a lower bound on the nonlinearity of a function,and the other is on a lower bound on the number of terms in the algebraicnormal form of a function.De�nition 9 Let f be a function on Vn and W be an s-dimensional subspaceof Vn. The restriction of f to W , denoted by fW , is a function on W de�nedby fW (�) = f(�) for every � 2 W: 6



De�nition 10 Let f be a function on Vn. A subspace U of Vn is called amaximal odd weighting subspace of f if the Hamming weight of fU is odd,while the Hamming weight of fU 0 is even for every subspace U 0 of Vn withU 0 � U .A maximal odd weighting subspace of a function is not necessarily a subspacewith the maximum dimension, even if the Hamming weight of the restrictionsof f to the subspace is odd. This is best explained with the following example.Example 11 Let f(x1; x2; x3; x4) = x1x2x3 � x1x2x4 � x3x4 � x3 be a func-tion on V4, whose truth table is 0010001000100100. The eight vectors (0000),(0001), (0100), (0101), (1000), (1001), (1100) and (1101) form a 3-dimensionalsubspace, say W , such that the Hamming weight of fW , is one (odd), wherefW is de�ned in De�nition 9. Since f has an even Hamming weight, the 3-dimensional subspace W is a maximal odd weighting subspace of f . However,the four vectors (0000), (0001), (0010) and (0011) form a 2-dimensional sub-space, say U , such that the Hamming weight of fW is one (odd). There arethree 3-dimensional subspaces containing U :U 0= f(0000); (0001); (0010); (0011); (0100); (0101); (0110); (0111)gU 00= f(0000); (0001); (0010); (0011); (1000); (1001); (1010); (1011)gU 000= f(0000); (0001); (0010); (0011); (1100); (1101); (1110); (1111)gWe note that the Hamming weights of fU 0, fU 00 and fU 000 are all two (even).We also note that the 4-dimensional subspace containing U is V4 itself and theHamming weight of f is four (even). Hence both W and U are maximal oddweighting subspaces of f .As will be shown in the forthcoming subsections, the concept of maximal oddweighting subspace of a function plays an important role, primarily due tothe fact that the dimension of a subspace is relevant to the structure of thefunction.3.1 A Lower Bound on NonlinearityIn this subsection we show how the dimension of a maximal odd weightingsubspace of a function is connected to the lower bound on the nonlinearity ofthe function.De�nition 12 Let f be a function on Vn, xj1 � � �xjt and xi1 � � �xis be twoterms in the algebra normal form of function f . xj1 � � �xjt is said to be coveredby xi1 � � �xis if fj1; : : : ; jtg is a subset of fi1; : : : isg, and xj1 � � � xjt is said to beproperly covered by xi1 � � �xis if fj1; : : : ; jtg is a proper subset of fi1; : : : isg.7



Theorem 13 Let f be a function on Vn and U be a maximal odd weightingsubspace of f . If dim(U) = s then the Hamming weight of f is at least 2n�s.PROOF. Let U be an s-dimensional subspace of Vn. Then Vn is the union of2n�s disjoint cosets of UVn = �0 [ �1 [ � � � [�2n�s�1 (9)where(i) �0 = U ,(ii) for any �; � 2 Vn, �; � belong to the same class, say �j, if and only if�� � 2 �0 = U . From (i) and (ii), it follows that(iii) �j \�i = ; for j 6= i, where ; denotes the empty set.Note that each �j can be expressed as �j = �j � U for a �j 2 Vn, where�j � U = f�j ��j� 2 Ug. And let Nj = #f�j� 2 �j; f(�) = 1g, where �j isde�ned in (9), j = 0; 1; : : : ; 2s�1. Since �0 = U , N0 is odd. Note that �0 [�jis a (s+ 1)-dimensional subspace of Vn, j = 1; : : : ; 2n�s � 1.Since �0 = U is a maximal odd weighting subspace of f , the Hamming weightof the restriction of f to �0[�j is even. In other words, N0+Nj is even. Thisproves that each Nj is odd, j = 1; : : : ; 2n�s�1. HenceN0+N1+� � �+N2n�s�1 �2n�s, namely, the Hamming weight of f is at least 2n�s.Theorem 14 Let f be a function on Vn and U be a maximal odd weightingsubspace of f . Let dim(U) = s (s � 2). Then the nonlinearity Nf of f satis�esNf � 2n�s.PROOF. Let ' be any a�ne function on Vn. Let W be any subspace ofdimension at least two. Note that the Hamming weight of 'W is even. Hencethe Hamming weight of (f � ')W is odd if and only if the Hamming weightof fW is odd. This proves that U is also a maximal odd weighting subspace off�'. According to Theorem 13, the Hamming weight of f�' is at least 2n�s.As the Hamming weight of f � ' determines d(f; '), the theorem is proved.Theorem 15 Let t � 2. If xj1 � � �xjt is a term in a function f on Vn andit is not properly covered (see De�nition 12) by any other term in the samefunction, then the nonlinearity Nf of f satis�es Nf � 2n�t.8



PROOF. Write � = (a1; : : : ; an) where aj = 1 for j 2 fj1; : : : ; jtg and aj = 0for j 62 fj1; : : : ; jtg. Set U = fj  � �g:Obviously U is a t-dimensional subspace of Vn. Since xj1 � � � xjt is a term inf on Vn, by using Corollary 7, L�� f() = 1 or L2U f() = 1, i.e., theHamming weight of fU is odd.We now prove that U is a maximal odd weighting subspace of f . Assumethat U is not a maximal odd weighting subspace of f . Then there is an s-dimensional subspace of Vn, say W , such that U is a proper subset of W , i.e.,s > t and the Hamming weight of fW is odd (L2W f() = 1). Since U is aproper subspace of W , we can express W as a union of 2s�t disjoint cosets ofU W = U [ (�1 � U) [ � � � [ (�2s�t�1 � U) (10)where each � � � , and � � � = (1; : : : ; 1). Since both the Hamming weightsof fU and fW are odd, there is a coset, say �k�U , 1 � k � 2s�t�1, such thatthe Hamming weight of f�k�U is even, i.e.,M�� f(�k � ) = 0: (11)Applying Theorem 6 to (11), there are an even number of terms coveringxj1 � � �xjt. Since the term xj1 � � � xjt itself appears in f , there is another termproperly covering xj1 � � �xjt. This contradicts the condition in the theorem,namely the term xj1 � � � xjt is not properly covered by any other term in f .The contradiction indicates that U is a maximal odd weighting subspace of f .By noting Theorem 14, the proof is completed.Example 16 Letf(x1; : : : ; x10)=x1x2x3x4x5x6x7 � x3x4x5x6x7x8x9 � x7x8x9x10 �x4x6x8x10 � x1x5x9 � x2x4 � x6be a function on V10. The term x1x5x9 is not properly covered by any other termin f . By using Corollary 15, the nonlinearity Nf of f satis�es Nf � 210�3 = 27.Example 17 Letf(x1; : : : ; x10)=x1x2x3x4x5x6x7 � x3x4x5x6x7x8x9 � x7x8x9x10 �x4x6x8x10 � x1x3x5 � x2x8 � x1 � x29



be a function on V10. The term x2x8 is not properly covered by any other termin f . Thus, the nonlinearity Nf of f satis�es Nf � 210�2 = 28.We note that the lower bound in Theorem 14 is tight:Corollary 18 For any n and any s with 2 � s � n, there is a function onVn, say f , together with an s-dimensional subspace, say U , such that U is amaximal odd weighting subspace of f and the nonlinearity Nf of f satis�esNf = 2n�s.PROOF. Let g be a function on Vs, de�ned as g(�) = 1 if and only if � = 0.Set f(z; y) = g(y), a function on Vn, where z 2 Vn�s and y 2 Vs. Since theHamming weight of f is 2n�s (s � 2), d(f; h) � 2n�s where h is any a�nefunction on Vn and the equality holds if h is the zero function on Vn. Hencethe nonlinearity Nf of f satis�es Nf = 2n�s. On the other hand, setU = f(0; : : : ; 0; b1; : : : ; bs)jbj 2 GF (2)gwhere the number of zeros is n� s.We now verify that the s-dimensional subspace U is a maximal odd weightingsubspace of f . Let W be a k-dimensional subspace of Vn such that U is aprefer subspace of W . We can express W as a union of 2k�s disjoint cosets ofU W = U [ (�1 � U) [ � � � [ (�2k�s�1 � U)Since U is a subspace, we can choose each �j as a vector of the form(c1; : : : ; cn�s; 0; : : : ; 0). From the construction of f , the Hamming weight off�j�U is odd (one). Hence the Hamming weight of fW is even. This provesthat U is a maximal odd weighting subspace of f .Finally we note that Theorem 14 cannot be further improved by extendings to s = 1, as the condition of s � 2 in the proof of the theorem cannot beremoved. For example, let f be a function on Vn, whose truth table is givenas follows 0110011010011001:It is easy to verify that (0000) and (0001) form a maximal 1-dimensionalsubspace, denoted by U . Theorem 14 is not applicable due to the fact that10



dim(U) = 1. In fact, f is a linear function, hence its nonlinearity is 0. Never-theless, Theorem 13 can be applied, which tells us that the Hamming weightof f must be at least 24�1 = 8.3.2 A Lower Bound on the Number of TermsIn the design of a cipher, a designer generally prefers a function that hasa large number of terms in its algebraic normal form to one that has few,although the former may require more circuitry than the latter in hardwareimplementation. A good example is S-boxes employed in DES all of whichappear to contain a large number of terms. In what follows we show thatmaximal odd weighting subspaces can be used in bounding from below thenumber of terms of a function.Theorem 19 Let f be a function on Vn such that f(�) = 1 for a vector� 2 Vn, and f(�) = 0 for every vector � with � � �, where � is de�ned asin Notation 2. Then f has at least 2n�t terms, where t denotes the Hammingweight of �.PROOF. First we note that Theorem 13 can be equivalently stated as fol-lows:Let f be a function on Vn and g be the M�obius transform of f de�ned in (2).Let g(�) = 1 for a vector � 2 Vn, and g(�) = 0 for every vector � with � � �,where � is de�ned in Notation 2. Then the Hamming weight of f is at least2n�t.The equivalence between (iii) and (iv) in Lemma 8 allows us to interchange fand g in the above statement. Thus we have:Let f be a function on Vn and g be de�ned in (2). Let f(�) = 1 for a vector� 2 Vn, and f(�) = 0 for every vector � with � � �. Then the Hammingweight of g is at least 2n�t. This completes the proof.Applying Theorem 19, it is not hard to verifyCorollary 20 Let f be a function on Vn such that f(�) = 0 for a vector� 2 Vn, and f(�) = 1 for every vector � with � � �, where � is de�ned as inNotation 2. Then f has at least(i) 2n�s � 1 terms if f(0) = 0,(ii) 2n�s + 1 terms if f(0) = 1, 11



where s denotes the Hamming weight of �.Example 21 Let f be a function on V6, whose truth table is given as follows1000110111110010001101001100100001111100011001101001011010001010Note that the value of f(001011) is one, while the values of f(001111), f(011011),f(011111), f(101011), f(101111), f(111011) and f(111111) are all zero. Ap-plying Theorem 19 to the vector (001011), we conclude that f has at least26�3 = 8 terms.Example 22 Let f be a function on V6, whose truth table is given as follows1000110111110011001101011101100101111101011101111001011110011010Note that f(000011) assumes the value zero, while f(000111), f(001011),f(001111), f(010011), f(010111), f(011011), f(011111), f(100011), f(100111),f(101011), f(101111), f(110011), f(110111), f(111011) and f(111111) all as-sume the value one. Applying (ii) of Corollary 20 to the vector (000011), wecan see that f has at least 26�2 + 1 = 17 terms.The lower bounds on the number of terms given by Theorem 19 and Corollary20 are tight, due to Corollary 18 and Lemma 8.4 Restrictions of a FunctionRestricting a function is another approach that can be used in studying theproperties of the function. In this section we investigate restriction of a func-tion to a coset which is a set of vectors induced by a subspace. We show arelationship between the nonlinearity of a function and that of the restrictionof the function to a coset. Using this relationship we further obtain a numberof results that relate nonlinearity to the number of terms in the algebraic nor-mal form of the function. First we introduce the following lemma which is aspecial case of Lemma 3 in [1] with G = Vn, r = 2 and k = n.Lemma 23 Let f be a function on Vn (n � 2). If f satis�es the property thatfor every (n� 1)-dimensional subspace, say W , the Hamming weight of fW iseven, where fW is de�ned in De�nition 9, then the Hamming weight of f isalso even.The next de�nition is more general than De�nition 912



De�nition 24 Let f be a function on Vn and U be an s-dimensional subspaceof Vn. The restriction of f to a coset �j = �j � U , j = 0; 1; : : : ; 2n�s � 1,denoted by f�j , is a function on U , and it is de�ned by f�j (�) = f(�j ��) for every � 2 U:4.1 Nonlinearity of the Restriction of a Function to a CosetTheorem 25 Let f be a function on Vn, W be a p-dimensional subspace ofVn and � be a coset of W . Thenmaxfjh; ejij; 0 � j � 2p � 1g � maxfjh�; `jij; 0 � j � 2n � 1gwhere  is the sequence of f�, � is the sequence of f , ej is the jth row of the2pth order Sylvester-Hadamard matrix Hp, `i is the ith row of the 2nth orderSylvester-Hadamard matrix Hn, and �i is the sequence of f .PROOF. We �rst prove the theorem for the case of � = W . Set q = n � p.We now prove the theorem by induction on q. When q = 0, the theorem isobviously true. Now assume that the theorem is true for 0 � q � k � 1.Consider the case when q = k. Let U be an (n � 1)-dimensional subspace ofVn such that W is a subspace of U . Let li denote the ith row of the 2n�1thorder Sylvester-Hadamard matrix Hn�1. Also let � to denote the sequence offU . Now applying the same assumption to W and U , we havemaxfjh; ejij; 0 � j � 2p � 1g � maxfjh�; ljij; 0 � j � 2n�1 � 1gAgain, by using the assumption,maxfjh�; ljij; 0 � j � 2n�1 � 1g � maxfjh�; `j ij; 0 � j � 2n � 1gThe proof for the particular case of � = W is done. To complete the prooffor the theorem, we note that the above discussions also hold for a function gsatisfying f(x) = g(x� �), where � is any �xed vector in Vn.Applying the above theorem, we obtain the following two interesting results:Corollary 26 Let f be a function on Vn, W be a p-dimensional subspaceof Vn, � be a coset of W , and f� be the restriction of f to �. Then thenonlinearity of f and the nonlinearity of f� are related byNf �Nf� � 2n�1 � 2p�1:13



Corollary 27 Let f be a function on Vn, W be a p-dimensional subspaceof Vn, and � be a coset of W . If the restriction of f to �, f�, is an a�nefunction, then the nonlinearity Nf of f satis�esNf � 2n�1 � 2p�1:4.2 Relating Nonlinearity to Terms in Algebraic Normal FormThe following result is an application of Corollary 27.Theorem 28 Let f be a function on Vn and J be a subset of f1; : : : ; ng suchthat f does not contain any term xj1 � � �xjt where j1; : : : ; jt 2 J . Then thenonlinearity Nf of f satis�es Nf � 2n�1 � 2s�1where s = #J .PROOF. Let U = f(a1; : : : ; an)jaj = 0 if j 62 Jg. Note that U is an s-dimensionalsubspace of Vn. Writef(x1; : : : ; xn) = M�2Vn g(a1; : : : ; an)xa11 � � �xannwhere � = (a1; : : : ; an) and g is also a function on Vn. From the property of fand J , we have g(�) = 0 for all � 2 U . By using Lemma 8, f(�) = L��� g(�).Hence f(�) = 0 for all � 2 U . That is, fU = 0. By using Corollary 27, wehave proved that Nf � 2n�1 � 2s�1.Example 29 Consider a function on V6, f = x1� x3x4� x1x2x3� x2x3x4�x3x4x5�x4x5x6. J = f2; 3; 5; 6g satis�es the condition mentioned in Theorem28. Hence Nf � 25 � 23 = 24. Note that the nonlinearity of a function on V6is upper bounded by 25 � 22 = 28.The following statement can be viewed as an improvement on Theorem 28.Theorem 30 Let f be a function on Vn and J be a subset of f1; : : : ; ng suchthat f does not contain any term xj1 � � � xjt where t > 1 and j1; : : : ; jt 2 J .Then the nonlinearity Nf of f satis�esNf � 2n�1 � 2s�1where s = #J . 14



PROOF. Write f = f�� where  is an a�ne function and f� has no a�neterm. Note that Nf� = Nf . By Theorem 28, we have Nf� � 2n�1 � 2s�1.Example 31 Consider a function on V10,f(x1; : : : ; x10)=x1x2x3x4x5x6x7 � x2x3x4x5x6x7x8 � x6x7x8x9 � x7x8x9x10�x2x3x10 � x4x8 � x1 � x3:J = f1; 3; 4; 5; 6; 7; 9; 10g satis�es the condition mentioned in Theorem 30.Hence Nf � 29 � 27 = 384. Note that the nonlinearity of a function on V10 isupper bounded by 29 � 24 = 496.The next two statements can be obtained from Theorems 28 and 30 respec-tively, by setting J = f1; : : : ; ng � P .� Statement 1: Let f be a function on Vn and P be a subset of f1; : : : ; ngsuch that for any term xj1 � � � xjt in f , fj1; : : : ; jtg \ P 6= ; holds, where ;denotes the empty set. Then the nonlinearity Nf of f satis�esNf � 2n�1 � 2n�p�1where p = #P .� Statement 2: Let f be a function on Vn and P be a subset of f1; : : : ; ngsuch that for any term xj1 � � � xjt with t > 1 in f , fj1; : : : ; jtg\P 6= ; holds,where ; denotes the empty set. Then the nonlinearity Nf of f satis�esNf � 2n�1 � 2n�p�1where p = #P .Note that bent functions on Vn have nonlinearity 2n�1 � 2 12n�1. By usingTheorem 30 we concludeCorollary 32 Let f be a function on Vn satisfying Nf � 2n�1 � 2s�1. Thenf contains at least n � s non-a�ne terms. In particular, if f is bent, then itcontains at least 12n non-a�ne terms.PROOF. Let f contain exactly q non-a�ne terms. Suppose that q < n� s.From each non-a�ne term, we choose arbitrarily a single variable and collectthose single variables together to form a set P . Obviously P satis�es thecondition in Statement 2 and #P � q. Hence we have Nf � 2n�1�2n�#P�1 �2n�1� 2n�q�1 < 2n�1 � 2s�1. This contradicts the condition that Nf � 2n�1�2s�1. 15



5 Hypergraph of a Boolean Function5.1 K�onig PropertyLet X = fx1; : : : ; xng be a �nite set. Set = = fE1; : : : ; Emg, where each Ej isa subset of X. The hypergraph, denoted by �, is the pair � = (X;=).Each xj is called a vertex, each Ej is called an edge, n and m are called theorder and the size of � respectively. If #Ej = 1 for a j then the vertex in Ejis called an isolated vertex.A sequence x1E1x2E2 � � � xpEpx1 is called a cycle of length p, where p > 1, allthe Ej and xj, 1 � j � p, are distinct, and xj; xj+1 2 Ej, j = 1; : : : ; p.A subset ofX, say S, is a stable set of �, ifEj 6� S, j = 1; : : : ;m. The maximumcardinality of a stable set is called the stability number of �, denoted by �(�).A subset of X, say Y , is a transversal of �, if Y \ Ej 6= ;, j = 1; : : : ;m. Theminimum cardinality of a transversal is called the transversal number of �,denoted by � (�).A subset of =, say B = fEj1 ; : : : ; Ejqg, is a matching of �, if Ejt \Ejs = ;, fort 6= s. The maximum number of edges in a matching is called the matchingnumber of �, denoted by �(�).The following equality and inequality can be found on Page 405 of [3]:� (�) + �(�) = n (12)and �(�) � � (�): (13)� is said to satisfy the K�onig Property if the equality in (13) holds. Thefollowing lemma can be deduced from Theorem 3.5 of [3], established by Bergeand Las Vergnas in 1970.Lemma 33 If a hypergraph � has no cycle with odd length, then � satis�esthe K�onig Property.De�nition 34 For any function on Vn, say f , we can de�ne the hypergraphof f , denoted by �(f), by the following rule: Let X = fx1; : : : ; xng. A subset ofX, Ej = fxj1; : : : ; xjtg is referred to as an edge of �(f) if and only if xj1 � � � xjt16



is a term of f . Denote the stability number of �(f) by �(f), transversal numberof �(f) by � (f) and matching number of �(f) by �(f).5.2 Applications to NonlinearityCorollary 35 Let f be a function on Vn. Write f = f� �  , where  isan a�ne function and f� has no a�ne term. Let �(f�) denote the stabilitynumber of �(f�). Then Nf � 2n�1 � 2�(f�)�1or equivalently �(f�) � 1 + log2(2n�1 �Nf ):In particular, if f is a bent function, then �(f�) � 12n and � (f�) � 12n.To prove the corollary, we note that Nf� = Nf . Then applying Theorem 30,we have Nf� � 2n�1 � 2�(f�)�1.Next we introduce a key result of this section.Theorem 36 Let f be a bent function on Vn. Then (the algebraic normalform of) f contains precisely 12n disjoint quadratic terms if �(f) contains nocycle of odd length. Equivalently, �(f) must contain a cycle of odd length if fcontains less than 12n disjoint quadratic terms.PROOF. Write f = f� �  where  is an a�ne function and f� has noa�ne term. If �(f) contains no cycle of odd length, then �(f�) too containsno cycle of odd length. By using Lemma 33, we have � (f�) = �(f�). FromCorollary 35, �(f�) � 12n. Hence there exists a matching B of �(f�). Withoutloss of generality, let B = fE1; : : : ; E�g, where each Ej is an edge of �(f�),� = �(f�) = � (f�) � 12n and Ej \ Ei = ;, for j 6= i. Note that#E1 + � � �+#E� = #(E1 [ � � � [ E�) � n: (14)On the other hand, since �(f�) has no isolated vertex, each Ej has at leasttwo elements. Hence#E1 + � � �+#E� � 2� � n: (15)17



Comparing (15) with (14), we have#E1 + � � �+#E� = n: (16)Note that (16) with � � 12n holds if and only if � = 12n and #Ej = 2,j = 1; : : : ; � = 12n. This proves that f� contains 12n disjoint quadratic terms,and so does f .Theorem 37 Let f be a function on Vn, whose nonlinearity Nf satis�esNf � 2n�1 � 2 23n�t�1where t is real with 1 � t � 16n. Then f contains at least 3t disjoint quadraticterms if �(f) contains no cycle of odd length. Equivalently, �(f) contains atleast one cycle of odd length if f contains less than 3t disjoint quadratic terms.PROOF. Write f = f�� where  is an a�ne function and f� has no a�neterm. If �(f) contains no cycle of odd length, then �(f�) too contains no cycleof odd length. Recall that Nf = Nf�. By using Lemma 33, � (f�) = �(f�). FromCorollary 35, �(f�) � n�(23n�t) = 13n+t. Hence there exists a matchingB of�(f�). Again, without loss of generality, we can assume that B = fE1; : : : ; E�g,where each Ej is an edge of �(f�), � = �(f�) = � (f�) � 13n+t and Ej\Ei = ;,for j 6= i.Note that#E1 + � � �+#E� = #(E1 [ � � � [ E�) � n: (17)Let there be k sets Ej, where Ej � B with #Ej = 2. Then#(E1 + � � �+ E�) � 2k + 3(� � k) � 2k + 3(13n+ t� k): (18)Comparing (17) and (18), we have k � 3t.Corollary 38 Let f be a function on Vn, whose nonlinearity Nf satis�esNf > 2n�1 � 2 23n�1:Then f contains at least one quadratic term if �(f) contains no cycle of oddlength. That is, �(f) must contain a cycle of odd length if f contains noquadratic term. 18



PROOF. Since Nf > 2n�1 � 2 23n�1, there exists a real number t, 0 < t � 16n,such that Nf � 2n�1 � 2 23n�t�1 > 2n�1 � 2 23n�1. By using Theorem 37, theproof is completed.Theorems 36, 37 and Corollary 38 show that the existence of a cycle of oddlength in � or of quadratic terms in f plays an important role in highlynonlinear functions.It should be pointed out that the existence of 12n disjoint quadratic terms andthe existence of a cycle of odd length in �(f) are not mutually exclusive. Thiscan be demonstrated by the following example.Example 39 It is known that there exist four types of bent functions on V6each of which is not equivalent to other three by any linear transformation onthe variables [8]:(i) f1(x1; : : : ; x6) = x1x4 � x2x5 � x3x6,(ii) f2(x1; : : : ; x6) = x1x2x3 � x1x4 � x2x5 � x3x6,(iii) f3(x1; : : : ; x6) = x1x2x3 � x2x4x5 � x1x2 � x1x4 � x2x6 � x3x5 � x4x5,(iv) f4(x1; : : : ; x6) = x1x2x3� x2x4x5�x3x4x6�x1x4�x2x6� x3x4� x3x5�x3x6 � x4x5 � x4x6.f1 and f2: Obviously, neither �(f1) nor �(f2) contains a cycle of odd length.Both f1 and f2 contain three disjoint quadratic terms: x1x4; x2x5; x3x6.f3: Let Ej be the jth term, j = 1; : : : ; 7, where the order is from left toright in the algebraic normal form of f3. �(f3) contains a cycle of length 5:x4E7x5E6x3E1x2E3x1E4x4. In addition, f3 contains three disjoint quadraticterms: x1x4; x2x6; x3x5.f4: Let Ej be the jth term, j = 1; : : : ; 10, where the order is from the leftto the right in the algebraic normal form of f4. �(f4) contains a cycle oflength 3: x3E1x2E2x4E3x3. It also contains three disjoint quadratic terms:x1x4; x2x6; x3x5.6 Future WorkResults in this paper show that maximal odd weight subspaces, restrictions toa coset, terms in the algebraic normal form and hypergraphs of a function areuseful tools in the study of cryptographic properties, especially the nonlinear-ity, of the function. A possible future research topic is to investigate whetherthese tools can be used in the study of the algebraic degree of a function. An-19
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