Restriction, Terms and Nonlinearity of Boolean Functions

Yuliang Zheng ${ }^{\text {a }}$, Xian-Mo Zhang ${ }^{\mathrm{b}}$ and Hideki Imai ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Computing and Information Technology
Monash University
Frankston, Melbourne, VIC 3199, AUSTRALIA
Email: yuliang@pscit.monash.edu.au
${ }^{\mathrm{b}}$ School of Information Technology \& Computer Science
The University of Wollongong
Wollongong, NSW 2522, AUSTRALIA
xianmo@cs.uow.edu.au
${ }^{\mathrm{c}}$ Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, JAPAN
Email: imai@iis.u-tokyo.ac.jp

Abstract

Nonlinear characteristics of (Boolean) functions is one of the important issues both in the design and cryptanalysis of (private key) ciphers or encryption algorithms. This paper studies nonlinear properties of functions from three different but closely related perspectives: maximal odd weighting subspaces, restrictions to cosets, and hypergraphs, all associated with a function. Main contributions of this work include (1) by using a duality property of a function, we have obtained several results that are related to lower bounds on nonlinearity as well as on the number of terms, of the function, (2) we show that the restriction of a function on a coset has a significant impact on cryptographic properties of the function, (3) we identify relationships between the nonlinearity of a function and the distribution of terms in the algebraic normal form of the function, (4) we prove that cycles of odd length in the terms, as well as quadratic terms, in the algebraic normal form of a function play an important role in determining the nonlinearity of the function. We hope that these results contribute to the study of new cryptanalytic attacks on ciphers, and more importantly, of counter-measures against such attacks.

Key words: Boolean Function, Cryptography, Hypergraph, Nonlinearity, Algebraic Normal Form.

1 Motivation of this Research

In his pioneering work on the theory of secrecy systems [10], Shannon suggested the concept of a "product cipher" which employs a concatenation of several different types of basic transformations. Most modern ciphers, including the Data Encryption Standard or DES [7], have been designed by following Shannon's suggestion.

A core component of these ciphers is the so-called substitution boxes or S-boxes each of which is mathematically identical to a tuple of nonlinear (Boolean) functions on $G F(2)$. Recent progress in cryptanalysis, especially the discovery of linear attacks [5], has highlighted the significance of research into nonlinear characteristics of functions. Well-known indicators that forecast nonlinear characteristics of a function include nonlinearity (or the minimum distance to the affine functions), avalanche effect, algebraic degree, resilience, and correlation immunity to mention a few. While some indicators, such as nonlinearity and avalanche effect, have received extensive studies, many others are yet to be addressed.

Study of these indicators may lead to the discovery of new cryptanalytic attacks, and more importantly, shed light on the design of new ciphers that are secure against an even wider range of possible cryptanalytic attacks.

This paper studies nonlinear properties of functions from three different but closely related perspectives: maximal odd weighting subspaces, restrictions to cosets, and hypergraphs, all associated with a function. Main contributions of this work include (1) by using a duality property of a function, we have obtained several results that are related to lower bounds on nonlinear, as well as on the number of terms, of the function, (2) we identify relationships between the nonlinearity of a function and the distribution of terms in the algebraic normal form of the function, (3) we prove that cycles of odd length in the terms, as well as quadratic terms, in the algebraic normal form of a function play an important role in determining the nonlinearity of the function.

The remainder of this paper is organized as follows. Section 2 presents basic mathematical background, especially duality properties of a function, which is needed in the understanding of results to be presented in other parts of the paper. Section 3 studies maximal odd weighting subspaces and their applications in determining the nonlinearity and the number of terms of a function. This is followed by Section 4 where we investigate how the restriction of a function to a coset is connected to the nonlinearity of the original function. In Section 5, we study nonlinearity properties of a function by the use of graph theory. We show that each function corresponds to a unique hypergraph, which allows us to prove a few bounds on the nonlinearity of the function. The paper is closed
by a few remarks in Section 6 .
Part of the results presented in this paper were reported at the 1997 International Conference on Information and Communications Security (ICICS'97), Beijing, and the 1998 IEEE International Symposium on Information Theory (ISIT 98), Boston.

2 Preliminaries

We consider functions from V_{n} to $G F(2)$ (or simply functions on V_{n}), V_{n} is the vector space of n tuples of elements from $G F(2)$. The truth table of a function f on V_{n} is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)$, and the sequence of f is a $(1,-1)$-sequence defined by $\left((-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}\right.$, $\left.\ldots,(-1)^{f\left(\alpha_{2^{n}-1}\right)}\right)$, where $\alpha_{0}=(0, \ldots, 0,0), \alpha_{1}=(0, \ldots, 0,1), \ldots, \alpha_{2^{n-1}-1}=$ $(1, \ldots, 1,1)$. The matrix of f is a $(1,-1)$-matrix of order 2^{n} defined by $M=$ $\left((-1)^{f\left(\alpha_{i} \oplus \alpha_{j}\right)}\right)$ where \oplus denotes the addition in $G F(2) . f$ is said to be balanced if its truth table contains an equal number of ones and zeros.

Given two sequences $\tilde{a}=\left(a_{1}, \cdots, a_{m}\right)$ and $\tilde{b}=\left(b_{1}, \cdots, b_{m}\right)$, their componentwise product is defined by $\tilde{a} * \tilde{b}=\left(a_{1} b_{1}, \cdots, a_{m} b_{m}\right)$. In particular, if $m=2^{n}$ and \tilde{a}, \tilde{b} are the sequences of functions on V_{n} respectively, then $\tilde{a} * \tilde{b}$ is the sequence of $f \oplus g$.

Let $\tilde{a}=\left(a_{1}, \cdots, a_{m}\right)$ and $\tilde{b}=\left(b_{1}, \cdots, b_{m}\right)$ be two vectors (or sequences), the scalar product of \tilde{a} and \tilde{b}, denoted by $\langle\tilde{a}, \tilde{b}\rangle$, is defined as the sum of the component-wise multiplications. In particular, when \tilde{a} and \tilde{b} are from V_{m}, $\langle\tilde{a}, \tilde{b}\rangle=a_{1} b_{1} \oplus \cdots \oplus a_{m} b_{m}$, where the addition and multiplication are over $G F(2)$, and when \tilde{a} and \tilde{b} are $(1,-1)$-sequences, $\langle\tilde{a}, \tilde{b}\rangle=\sum_{i=1}^{m} a_{i} b_{i}$, where the addition and multiplication are over the reals.

A $(1,-1)$-matrix H of order m is called a Hadamard matrix if $H H^{t}=m I_{m}$, where H^{t} is the transpose of H and I_{m} is the identity matrix of order m. A Sylvester-Hadamard matrix of order 2^{n}, denoted by H_{n}, is generated by the following recursive relation

$$
H_{0}=1, H_{n}=\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right], n=1,2, \ldots
$$

Let $\ell_{i}, 0 \leq i \leq 2^{n}-1$, be the i row of H_{n}. By Lemma 2 of [9], ℓ_{i} is the sequence of a linear function $\varphi_{i}(x)$ defined by the scalar product $\varphi_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$, where α_{i} is the i th vector in V_{n} according to the ascending alphabetical order.

An affine function f on V_{n} is a function that takes the form of $f\left(x_{1}, \ldots, x_{n}\right)=$ $a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n} \oplus c$, where $a_{j}, c \in G F(2), j=1,2, \ldots, n$. Furthermore f is called a linear function if $c=0$.

Definition 1 The Hamming weight of a $(0,1)$-sequence ξ is the number of ones in the sequence. Given two functions f and g on V_{n}, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. The nonlinearity of f, denoted by N_{f}, is the minimal Hamming distance between f and all affine functions on V_{n}, i.e., $N_{f}=\min _{i=1,2, \ldots, 2^{n+1}} d\left(f, \varphi_{i}\right)$ where $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{2^{n+1}}$ are all the affine functions on V_{n}.

The following characterization of nonlinearity will be used in this paper (for a proof see for instance [6,9].)

$$
\begin{equation*}
N_{f}=2^{n-1}-\frac{1}{2} \max \left\{\left|\left\langle\xi, \ell_{i}\right\rangle\right|, 0 \leq i \leq 2^{n}-1\right\} \tag{1}
\end{equation*}
$$

where ξ is the sequence of f and $\ell_{0}, \ldots, \ell_{2^{n}-1}$ are the rows of H_{n}, namely, the sequences of linear functions on V_{n}.

Notation $2\left(b_{1}, \ldots, b_{n}\right) \preceq\left(a_{1}, \ldots, a_{n}\right)$ means that $\left(b_{1}, \ldots, b_{n}\right)$ is covered by $\left(a_{1}, \ldots, a_{n}\right)$, namely if $b_{j}=1$ then $a_{j}=1$. In addition, $\left(b_{1}, \ldots, b_{n}\right) \prec\left(a_{1}, \ldots, a_{n}\right)$ means that $\left(b_{1}, \ldots, b_{n}\right)$ is properly covered by $\left(a_{1}, \ldots, a_{n}\right)$, namely $\left(b_{1}, \ldots, b_{n}\right) \preceq$ $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right) \neq\left(a_{1}, \ldots, a_{n}\right)$.

Definition 3 A function f on V_{n} can be uniquely represented by a polynomial on $G F(2)$ whose degree is at most n. Namely,

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{\alpha \in V_{n}} g\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \tag{2}
\end{equation*}
$$

where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$, and g is also a function on V_{n}. The polynomial representation of f is called the algebraic normal form of the function and each $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ is called a term in the algebraic normal form of f. The algebraic degree, or simply degree, of f, denoted by deg (f), is defined as the number of variables in the longest term of f, i.e.,

$$
\operatorname{deg}(f)=\max \left\{\text { the Hamming weight of }\left(a_{1}, \ldots, a_{n}\right) \mid g\left(a_{1}, \ldots, a_{n}\right)=1\right\} .
$$

The function g defined in the algebraic normal form (2) is called the Möbius transform of f.

Notation 4 Let W be a subspace of V_{n}. Denote the dimension of W by $\operatorname{dim}(W)$.

Notation 5 Let X be a set. The cardinal number of X, i.e., the number of elements in X, is denoted by $\# X$.

A proof for the following result is provided, as we feel that understanding the proof would be helpful in studying other issues that are more directly related to cryptography.

Theorem 6 Let f be a function on V_{n}. Let $\alpha, \beta \in V_{n} \alpha=(1, \ldots, 1,0, \ldots, 0)$ where only the first s components are one, and $\beta=(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$ where only the $(s+1)$ th, \ldots, the $(s+t)$ th components are one. Then the number of terms of the form $x_{1} \cdots x_{s} x_{i_{1}} \cdots x_{i_{t^{\prime}}}$ where $s+1 \leq i_{1}<\cdots<i_{t^{\prime}} \leq s+t$, that appear in the algebraic normal form of f, is even if $\oplus_{\gamma \preceq \alpha} f(\gamma \oplus \beta)=0$, and the number is odd if $\oplus_{\gamma \preceq \alpha} f(\gamma \oplus \beta)=1$.

PROOF. Consider a term

$$
\begin{equation*}
\chi(x)=x_{j_{1}} \cdots x_{j_{s}} x_{i_{1}} \cdots x_{i_{t^{\prime}}} \tag{3}
\end{equation*}
$$

in f, where $x=\left(x_{1}, \ldots, x_{n}\right), 1 \leq j_{1}<\cdots<j_{s^{\prime}} \leq s$ and $s+1 \leq i_{1}<\cdots<$ $i_{t^{\prime}} \leq s+t$. For $s^{\prime}<s$, there are an even number of vectors γ in V_{n} such that $\gamma \preceq \alpha$ and $\chi(\gamma \oplus \beta)=1$. Hence

$$
\begin{equation*}
\bigoplus_{\gamma \preceq \alpha} \chi(\gamma \oplus \beta)=0 . \tag{4}
\end{equation*}
$$

For $s^{\prime}=s$, there is only one vector in $V_{n}, \gamma=\alpha$, such that $\chi(\gamma \oplus \beta)=1$. Hence

$$
\begin{equation*}
\bigoplus_{\gamma \leq \alpha} \chi(\gamma \oplus \beta)=1 \tag{5}
\end{equation*}
$$

Now consider a term

$$
\begin{equation*}
\omega(x)=x_{j_{1}} \cdots x_{j_{k}} \tag{6}
\end{equation*}
$$

in f, where $x=\left(x_{1}, \ldots, x_{n}\right), 1 \leq j_{1}<\cdots<j_{k}$, and $j_{k}>s+t$. From (6) with $j_{k}>s+t$, and the structures of α and β,

$$
\begin{equation*}
\omega(\gamma \oplus \beta)=0 \tag{7}
\end{equation*}
$$

for each $\gamma \preceq \alpha$. Denote the set of terms given in (3) by Γ_{1} if $s^{\prime}<s$, and by Γ_{2} if $s^{\prime}=s$. And denote the set of terms given in (6) by Ω. Then we can write f

$$
f=\bigoplus_{\chi \in \Gamma_{1}} \chi \oplus \underset{\chi \in \Gamma_{2}}{\bigoplus} \chi \oplus \bigoplus_{\omega \in \Omega} \omega
$$

From (4), (5) and (7), we have

$$
\begin{equation*}
\bigoplus_{\gamma \leq \alpha} f(\gamma \oplus \beta)=\bigoplus_{\gamma \leq \alpha} \bigoplus_{\chi \in \Gamma_{2}} \chi(\gamma \oplus \beta) . \tag{8}
\end{equation*}
$$

The proof is completed by noting that $\oplus_{\gamma \preceq \alpha} f(\gamma \oplus \beta)=0$ implies that $\# \Gamma_{2}$ is even, while $\oplus_{\gamma \preceq \alpha} f(\gamma \oplus \beta)=1$ implies that $\# \Gamma_{2}$ is odd.

Set $\beta=0$ in Theorem 6 and reorder the variables, we obtain a result well known to coding theorists (see p. 372 of [4]):

Corollary 7 Let f be a function on V_{n} and $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ be a vector in V_{n}. Then the term $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ appears in f if and only if $\oplus_{\gamma \preceq \alpha} f(\gamma)=1$.

With the above two results, it is not hard to verify the correctness of the following lemma:

Lemma 8 Let f and g be function on V_{n}. Then the following four statements are equivalent
(i) $f(\alpha)=\oplus_{\beta \prec \alpha} g(\beta)$ for every vector $\alpha \in V_{n}$,
(ii) $g(\alpha)=\oplus_{\beta \preceq \alpha} f(\beta)$ for every vector $\alpha \in V_{n}$,
(iii) $f\left(x_{1}, \ldots, x_{n}\right)=\oplus_{\alpha \in V_{n}} g\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$,
(iv) $g\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{\alpha \in V_{n}} f\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$.

3 Maximal Odd Weighting Subspaces with Applications

The focus of this section is on maximal odd weighting subspace to be defined in the following. We show the usefulness of this simple concept by proving two interesting results, one is on a lower bound on the nonlinearity of a function, and the other is on a lower bound on the number of terms in the algebraic normal form of a function.

Definition 9 Let f be a function on V_{n} and W be an s-dimensional subspace of V_{n}. The restriction of f to W, denoted by f_{W}, is a function on W defined by $f_{W}(\alpha)=f(\alpha)$ for every $\alpha \in W$.

Definition 10 Let f be a function on V_{n}. A subspace U of V_{n} is called a maximal odd weighting subspace of f if the Hamming weight of f_{U} is odd, while the Hamming weight of $f_{U^{\prime}}$ is even for every subspace U^{\prime} of V_{n} with $U^{\prime} \supset U$.

A maximal odd weighting subspace of a function is not necessarily a subspace with the maximum dimension, even if the Hamming weight of the restrictions of f to the subspace is odd. This is best explained with the following example.

Example 11 Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} x_{3} \oplus x_{1} x_{2} x_{4} \oplus x_{3} x_{4} \oplus x_{3}$ be a function on V_{4}, whose truth table is 0010001000100100 . The eight vectors (0000), (0001), (0100), (0101), (1000), (1001), (1100) and (1101) form a 3-dimensional subspace, say W, such that the Hamming weight of f_{W}, is one (odd), where f_{W} is defined in Definition 9. Since f has an even Hamming weight, the 3dimensional subspace W is a maximal odd weighting subspace of f. However, the four vectors $(0000),(0001),(0010)$ and (0011) form a 2-dimensional subspace, say U, such that the Hamming weight of f_{W} is one (odd). There are three 3-dimensional subspaces containing U :

$$
\begin{aligned}
U^{\prime} & =\{(0000),(0001),(0010),(0011),(0100),(0101),(0110),(0111)\} \\
U^{\prime \prime} & =\{(0000),(0001),(0010),(0011),(1000),(1001),(1010),(1011)\} \\
U^{\prime \prime \prime} & =\{(0000),(0001),(0010),(0011),(1100),(1101),(1110),(1111)\}
\end{aligned}
$$

We note that the Hamming weights of $f_{U^{\prime}}, f_{U^{\prime \prime}}$ and $f_{U^{\prime \prime \prime}}$ are all two (even). We also note that the 4-dimensional subspace containing U is V_{4} itself and the Hamming weight of f is four (even). Hence both W and U are maximal odd weighting subspaces of f.

As will be shown in the forthcoming subsections, the concept of maximal odd weighting subspace of a function plays an important role, primarily due to the fact that the dimension of a subspace is relevant to the structure of the function.

3.1 A Lower Bound on Nonlinearity

In this subsection we show how the dimension of a maximal odd weighting subspace of a function is connected to the lower bound on the nonlinearity of the function.

Definition 12 Let f be a function on $V_{n}, x_{j_{1}} \cdots x_{j_{t}}$ and $x_{i_{1}} \cdots x_{i_{s}}$ be two terms in the algebra normal form of function $f . x_{j_{1}} \cdots x_{j_{t}}$ is said to be covered by $x_{i_{1}} \cdots x_{i_{s}}$ if $\left\{j_{1}, \ldots, j_{t}\right\}$ is a subset of $\left\{i_{1}, \ldots i_{s}\right\}$, and $x_{j_{1}} \cdots x_{j_{t}}$ is said to be properly covered by $x_{i_{1}} \cdots x_{i_{s}}$ if $\left\{j_{1}, \ldots, j_{t}\right\}$ is a proper subset of $\left\{i_{1}, \ldots i_{s}\right\}$.

Theorem 13 Let f be a function on V_{n} and U be a maximal odd weighting subspace of f. If $\operatorname{dim}(U)=s$ then the Hamming weight of f is at least 2^{n-s}.

PROOF. Let U be an s-dimensional subspace of V_{n}. Then V_{n} is the union of 2^{n-s} disjoint cosets of U

$$
\begin{equation*}
V_{n}=\Pi_{0} \cup \Pi_{1} \cup \cdots \cup \Pi_{2^{n-s}-1} \tag{9}
\end{equation*}
$$

where
(i) $\Pi_{0}=U$,
(ii) for any $\alpha, \beta \in V_{n}, \alpha, \beta$ belong to the same class, say Π_{j}, if and only if $\alpha \oplus \beta \in \Pi_{0}=U$. From (i) and (ii), it follows that
(iii) $\Pi_{j} \cap \Pi_{i}=\emptyset$ for $j \neq i$, where \emptyset denotes the empty set.

Note that each Π_{j} can be expressed as $\Pi_{j}=\beta_{j} \oplus U$ for a $\beta_{j} \in V_{n}$, where $\beta_{j} \oplus U=\left\{\beta_{j} \oplus \alpha \mid \alpha \in U\right\}$. And let $N_{j}=\#\left\{\alpha \mid \alpha \in \Pi_{j}, f(\alpha)=1\right\}$, where Π_{j} is defined in (9), $j=0,1, \ldots, 2^{s-1}$. Since $\Pi_{0}=U, N_{0}$ is odd. Note that $\Pi_{0} \cup \Pi_{j}$ is a $(s+1)$-dimensional subspace of $V_{n}, j=1, \ldots, 2^{n-s}-1$.

Since $\Pi_{0}=U$ is a maximal odd weighting subspace of f, the Hamming weight of the restriction of f to $\Pi_{0} \cup \Pi_{j}$ is even. In other words, $N_{0}+N_{j}$ is even. This proves that each N_{j} is odd, $j=1, \ldots, 2^{n-s}-1$. Hence $N_{0}+N_{1}+\cdots+N_{2^{n-s}-1} \geq$ 2^{n-s}, namely, the Hamming weight of f is at least 2^{n-s}.

Theorem 14 Let f be a function on V_{n} and U be a maximal odd weighting subspace of f. Let $\operatorname{dim}(U)=s(s \geq 2)$. Then the nonlinearity N_{f} of f satisfies $N_{f} \geq 2^{n-s}$.

PROOF. Let φ be any affine function on V_{n}. Let W be any subspace of dimension at least two. Note that the Hamming weight of φ_{W} is even. Hence the Hamming weight of $(f \oplus \varphi)_{W}$ is odd if and only if the Hamming weight of f_{W} is odd. This proves that U is also a maximal odd weighting subspace of $f \oplus \varphi$. According to Theorem 13, the Hamming weight of $f \oplus \varphi$ is at least 2^{n-s}. As the Hamming weight of $f \oplus \varphi$ determines $d(f, \varphi)$, the theorem is proved.

Theorem 15 Let $t \geq 2$. If $x_{j_{1}} \cdots x_{j_{t}}$ is a term in a function f on V_{n} and it is not properly covered (see Definition 12) by any other term in the same function, then the nonlinearity N_{f} of f satisfies $N_{f} \geq 2^{n-t}$.

PROOF. Write $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ where $a_{j}=1$ for $j \in\left\{j_{1}, \ldots, j_{t}\right\}$ and $a_{j}=0$ for $j \notin\left\{j_{1}, \ldots, j_{t}\right\}$. Set

$$
U=\{\gamma \mid \gamma \preceq \alpha\} .
$$

Obviously U is a t-dimensional subspace of V_{n}. Since $x_{j_{1}} \cdots x_{j_{t}}$ is a term in f on V_{n}, by using Corollary $7, \oplus_{\gamma \preceq \alpha} f(\gamma)=1$ or $\oplus_{\gamma \in U} f(\gamma)=1$, i.e., the Hamming weight of f_{U} is odd.

We now prove that U is a maximal odd weighting subspace of f. Assume that U is not a maximal odd weighting subspace of f. Then there is an s dimensional subspace of V_{n}, say W, such that U is a proper subset of W, i.e., $s>t$ and the Hamming weight of f_{W} is odd $\left(\oplus_{\gamma \in W} f(\gamma)=1\right)$. Since U is a proper subspace of W, we can express W as a union of 2^{s-t} disjoint cosets of U

$$
\begin{equation*}
W=U \cup\left(\beta_{1} \oplus U\right) \cup \cdots \cup\left(\beta_{2^{s-t}-1} \oplus U\right) \tag{10}
\end{equation*}
$$

where each $\beta \preceq \bar{\alpha}$, and $\bar{\alpha} \oplus \alpha=(1, \ldots, 1)$. Since both the Hamming weights of f_{U} and f_{W} are odd, there is a coset, say $\beta_{k} \oplus U, 1 \leq k \leq 2^{s-t}-1$, such that the Hamming weight of $f_{\beta_{k} \oplus U}$ is even, i.e.,

$$
\begin{equation*}
\bigoplus_{\gamma \preceq \alpha} f\left(\beta_{k} \oplus \gamma\right)=0 . \tag{11}
\end{equation*}
$$

Applying Theorem 6 to (11), there are an even number of terms covering $x_{j_{1}} \cdots x_{j_{t}}$. Since the term $x_{j_{1}} \cdots x_{j_{t}}$ itself appears in f, there is another term properly covering $x_{j_{1}} \cdots x_{j_{t}}$. This contradicts the condition in the theorem, namely the term $x_{j_{1}} \cdots x_{j_{t}}$ is not properly covered by any other term in f. The contradiction indicates that U is a maximal odd weighting subspace of f. By noting Theorem 14, the proof is completed.

Example 16 Let

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{10}\right)= & x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \oplus x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} \oplus x_{7} x_{8} x_{9} x_{10} \oplus \\
& x_{4} x_{6} x_{8} x_{10} \oplus x_{1} x_{5} x_{9} \oplus x_{2} x_{4} \oplus x_{6}
\end{aligned}
$$

be a function on V_{10}. The term $x_{1} x_{5} x_{9}$ is not properly covered by any other term in f. By using Corollary 15, the nonlinearity N_{f} of f satisfies $N_{f} \geq 2^{10-3}=2^{7}$.

Example 17 Let

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{10}\right)= & x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \oplus x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} \oplus x_{7} x_{8} x_{9} x_{10} \oplus \\
& x_{4} x_{6} x_{8} x_{10} \oplus x_{1} x_{3} x_{5} \oplus x_{2} x_{8} \oplus x_{1} \oplus x_{2}
\end{aligned}
$$

be a function on V_{10}. The term $x_{2} x_{8}$ is not properly covered by any other term in f. Thus, the nonlinearity N_{f} of f satisfies $N_{f} \geq 2^{10-2}=2^{8}$.

We note that the lower bound in Theorem 14 is tight:
Corollary 18 For any n and any s with $2 \leq s \leq n$, there is a function on V_{n}, say f, together with an s-dimensional subspace, say U, such that U is a maximal odd weighting subspace of f and the nonlinearity N_{f} of f satisfies $N_{f}=2^{n-s}$.

PROOF. Let g be a function on V_{s}, defined as $g(\beta)=1$ if and only if $\beta=0$. Set $f(z, y)=g(y)$, a function on V_{n}, where $z \in V_{n-s}$ and $y \in V_{s}$. Since the Hamming weight of f is $2^{n-s}(s \geq 2), d(f, h) \geq 2^{n-s}$ where h is any affine function on V_{n} and the equality holds if h is the zero function on V_{n}. Hence the nonlinearity N_{f} of f satisfies $N_{f}=2^{n-s}$. On the other hand, set

$$
U=\left\{\left(0, \ldots, 0, b_{1}, \ldots, b_{s}\right) \mid b_{j} \in G F(2)\right\}
$$

where the number of zeros is $n-s$.
We now verify that the s-dimensional subspace U is a maximal odd weighting subspace of f. Let W be a k-dimensional subspace of V_{n} such that U is a prefer subspace of W. We can express W as a union of 2^{k-s} disjoint cosets of U

$$
W=U \cup\left(\beta_{1} \oplus U\right) \cup \cdots \cup\left(\beta_{2^{k-s}-1} \oplus U\right)
$$

Since U is a subspace, we can choose each β_{j} as a vector of the form $\left(c_{1}, \ldots, c_{n-s}, 0, \ldots, 0\right)$. From the construction of f, the Hamming weight of $f_{\beta_{j} \oplus U}$ is odd (one). Hence the Hamming weight of f_{W} is even. This proves that U is a maximal odd weighting subspace of f.

Finally we note that Theorem 14 cannot be further improved by extending s to $s=1$, as the condition of $s \geq 2$ in the proof of the theorem cannot be removed. For example, let f be a function on V_{n}, whose truth table is given as follows
0110011010011001.

It is easy to verify that (0000) and (0001) form a maximal 1-dimensional subspace, denoted by U. Theorem 14 is not applicable due to the fact that
$\operatorname{dim}(U)=1$. In fact, f is a linear function, hence its nonlinearity is 0 . Nevertheless, Theorem 13 can be applied, which tells us that the Hamming weight of f must be at least $2^{4-1}=8$.

3.2 A Lower Bound on the Number of Terms

In the design of a cipher, a designer generally prefers a function that has a large number of terms in its algebraic normal form to one that has few, although the former may require more circuitry than the latter in hardware implementation. A good example is S-boxes employed in DES all of which appear to contain a large number of terms. In what follows we show that maximal odd weighting subspaces can be used in bounding from below the number of terms of a function.

Theorem 19 Let f be a function on V_{n} such that $f(\alpha)=1$ for a vector $\alpha \in V_{n}$, and $f(\beta)=0$ for every vector β with $\alpha \prec \beta$, where \prec is defined as in Notation 2. Then f has at least 2^{n-t} terms, where t denotes the Hamming weight of α.

PROOF. First we note that Theorem 13 can be equivalently stated as follows:

Let f be a function on V_{n} and g be the Möbius transform of f defined in (2). Let $g(\alpha)=1$ for a vector $\alpha \in V_{n}$, and $g(\beta)=0$ for every vector β with $\alpha \prec \beta$, where \prec is defined in Notation 2. Then the Hamming weight of f is at least 2^{n-t}.

The equivalence between (iii) and (iv) in Lemma 8 allows us to interchange f and g in the above statement. Thus we have:

Let f be a function on V_{n} and g be defined in (2). Let $f(\alpha)=1$ for a vector $\alpha \in V_{n}$, and $f(\beta)=0$ for every vector β with $\alpha \prec \beta$. Then the Hamming weight of g is at least 2^{n-t}. This completes the proof.

Applying Theorem 19, it is not hard to verify
Corollary 20 Let f be a function on V_{n} such that $f(\alpha)=0$ for a vector $\alpha \in V_{n}$, and $f(\beta)=1$ for every vector β with $\alpha \prec \beta$, where \prec is defined as in Notation 2. Then f has at least
(i) $2^{n-s}-1$ terms if $f(0)=0$,
(ii) $2^{n-s}+1$ terms if $f(0)=1$,
where s denotes the Hamming weight of α.
Example 21 Let f be a function on V_{6}, whose truth table is given as follows
1000110111110010001101001100100001111100011001101001011010001010

Note that the value of $f(001011)$ is one, while the values of $f(001111), f(011011)$, $f(011111), f(101011), f(101111), f(111011)$ and $f(111111)$ are all zero. Applying Theorem 19 to the vector (001011), we conclude that f has at least $2^{6-3}=8$ terms.

Example 22 Let f be a function on V_{6}, whose truth table is given as follows 1000110111110011001101011101100101111101011101111001011110011010

Note that $f(000011)$ assumes the value zero, while $f(000111), f(001011)$, $f(001111), f(010011), f(010111), f(011011), f(011111), f(100011), f(100111)$, $f(101011), f(101111), f(110011), f(110111), f(111011)$ and $f(111111)$ all assume the value one. Applying (ii) of Corollary 20 to the vector (000011), we can see that f has at least $2^{6-2}+1=17$ terms.

The lower bounds on the number of terms given by Theorem 19 and Corollary 20 are tight, due to Corollary 18 and Lemma 8.

4 Restrictions of a Function

Restricting a function is another approach that can be used in studying the properties of the function. In this section we investigate restriction of a function to a coset which is a set of vectors induced by a subspace. We show a relationship between the nonlinearity of a function and that of the restriction of the function to a coset. Using this relationship we further obtain a number of results that relate nonlinearity to the number of terms in the algebraic normal form of the function. First we introduce the following lemma which is a special case of Lemma 3 in [1] with $G=V_{n}, r=2$ and $k=n$.

Lemma 23 Let f be a function on $V_{n}(n \geq 2)$. If f satisfies the property that for every $(n-1)$-dimensional subspace, say W, the Hamming weight of f_{W} is even, where f_{W} is defined in Definition 9, then the Hamming weight of f is also even.

The next definition is more general than Definition 9

Definition 24 Let f be a function on V_{n} and U be an s-dimensional subspace of V_{n}. The restriction of f to a coset $\Pi_{j}=\beta_{j} \oplus U, j=0,1, \ldots, 2^{n-s}-1$, denoted by $f_{\Pi_{j}}$, is a function on U, and it is defined by $f_{\Pi_{j}}(\alpha)=f\left(\beta_{j} \oplus\right.$ $\alpha)$ for every $\alpha \in U$.

4.1 Nonlinearity of the Restriction of a Function to a Coset

Theorem 25 Let f be a function on V_{n}, W be a p-dimensional subspace of V_{n} and Π be a coset of W. Then

$$
\max \left\{\left|\left\langle\gamma, e_{j}\right\rangle\right|, 0 \leq j \leq 2^{p}-1\right\} \leq \max \left\{\left|\left\langle\xi, \ell_{j}\right\rangle\right|, 0 \leq j \leq 2^{n}-1\right\}
$$

where γ is the sequence of f_{Π}, ξ is the sequence of f, e_{j} is the j th row of the 2^{p} th order Sylvester-Hadamard matrix H_{p}, ℓ_{i} is the ith row of the 2^{n} th order Sylvester-Hadamard matrix H_{n}, and ξ_{i} is the sequence of f.

PROOF. We first prove the theorem for the case of $\Pi=W$. Set $q=n-p$. We now prove the theorem by induction on q. When $q=0$, the theorem is obviously true. Now assume that the theorem is true for $0 \leq q \leq k-1$. Consider the case when $q=k$. Let U be an $(n-1)$-dimensional subspace of V_{n} such that W is a subspace of U. Let l_{i} denote the i th row of the 2^{n-1} th order Sylvester-Hadamard matrix H_{n-1}. Also let η to denote the sequence of f_{U}. Now applying the same assumption to W and U, we have

$$
\max \left\{\left|\left\langle\gamma, e_{j}\right\rangle\right|, 0 \leq j \leq 2^{p}-1\right\} \leq \max \left\{\left|\left\langle\eta, l_{j}\right\rangle\right|, 0 \leq j \leq 2^{n-1}-1\right\}
$$

Again, by using the assumption,

$$
\max \left\{\left|\left\langle\eta, l_{j}\right\rangle\right|, 0 \leq j \leq 2^{n-1}-1\right\} \leq \max \left\{\left|\left\langle\xi, \ell_{j}\right\rangle\right|, 0 \leq j \leq 2^{n}-1\right\}
$$

The proof for the particular case of $\Pi=W$ is done. To complete the proof for the theorem, we note that the above discussions also hold for a function g satisfying $f(x)=g(x \oplus \alpha)$, where α is any fixed vector in V_{n}.

Applying the above theorem, we obtain the following two interesting results:
Corollary 26 Let f be a function on V_{n}, W be a p-dimensional subspace of V_{n}, Π be a coset of W, and f_{Π} be the restriction of f to Π. Then the nonlinearity of f and the nonlinearity of f_{Π} are related by

$$
N_{f}-N_{f_{\mathrm{I}}} \leq 2^{n-1}-2^{p-1} .
$$

Corollary 27 Let f be a function on V_{n}, W be a p-dimensional subspace of V_{n}, and Π be a coset of W. If the restriction of f to Π, f_{Π}, is an affine function, then the nonlinearity N_{f} of f satisfies

$$
N_{f} \leq 2^{n-1}-2^{p-1} .
$$

4.2 Relating Nonlinearity to Terms in Algebraic Normal Form

The following result is an application of Corollary 27.
Theorem 28 Let f be a function on V_{n} and J be a subset of $\{1, \ldots, n\}$ such that f does not contain any term $x_{j_{1}} \cdots x_{j_{t}}$ where $j_{1}, \ldots, j_{t} \in J$. Then the nonlinearity N_{f} of f satisfies

$$
N_{f} \leq 2^{n-1}-2^{s-1}
$$

where $s=\# J$.

PROOF. Let $U=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{j}=0\right.$ if $\left.j \notin J\right\}$. Note that U is an s-dimensional subspace of V_{n}. Write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{\alpha \in V_{n}} g\left(a_{1}, \ldots, a_{n}\right) x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}
$$

where $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ and g is also a function on V_{n}. From the property of f and J, we have $g(\alpha)=0$ for all $\alpha \in U$. By using Lemma $8, f(\alpha)=\oplus_{\beta \prec \alpha} g(\beta)$. Hence $f(\alpha)=0$ for all $\alpha \in U$. That is, $f_{U}=0$. By using Corollary 27 , we have proved that $N_{f} \leq 2^{n-1}-2^{s-1}$.

Example 29 Consider a function on $V_{6}, f=x_{1} \oplus x_{3} x_{4} \oplus x_{1} x_{2} x_{3} \oplus x_{2} x_{3} x_{4} \oplus$ $x_{3} x_{4} x_{5} \oplus x_{4} x_{5} x_{6} . J=\{2,3,5,6\}$ satisfies the condition mentioned in Theorem 28. Hence $N_{f} \leq 2^{5}-2^{3}=24$. Note that the nonlinearity of a function on V_{6} is upper bounded by $2^{5}-2^{2}=28$.

The following statement can be viewed as an improvement on Theorem 28.
Theorem 30 Let f be a function on V_{n} and J be a subset of $\{1, \ldots, n\}$ such that f does not contain any term $x_{j_{1}} \cdots x_{j_{t}}$ where $t>1$ and $j_{1}, \ldots, j_{t} \in J$. Then the nonlinearity N_{f} of f satisfies

$$
N_{f} \leq 2^{n-1}-2^{s-1}
$$

where $s=\# J$.

PROOF. Write $f=f^{*} \oplus \psi$ where ψ is an affine function and f^{*} has no affine term. Note that $N_{f^{*}}=N_{f}$. By Theorem 28, we have $N_{f^{*}} \leq 2^{n-1}-2^{s-1}$.

Example 31 Consider a function on V_{10},

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{10}\right)= & x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \oplus x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \oplus x_{6} x_{7} x_{8} x_{9} \oplus x_{7} x_{8} x_{9} x_{10} \\
& \oplus x_{2} x_{3} x_{10} \oplus x_{4} x_{8} \oplus x_{1} \oplus x_{3} .
\end{aligned}
$$

$J=\{1,3,4,5,6,7,9,10\}$ satisfies the condition mentioned in Theorem 30. Hence $N_{f} \leq 2^{9}-2^{7}=384$. Note that the nonlinearity of a function on V_{10} is upper bounded by $2^{9}-2^{4}=496$.

The next two statements can be obtained from Theorems 28 and 30 respectively, by setting $J=\{1, \ldots, n\}-P$.

- Statement 1: Let f be a function on V_{n} and P be a subset of $\{1, \ldots, n\}$ such that for any term $x_{j_{1}} \cdots x_{j_{t}}$ in $f,\left\{j_{1}, \ldots, j_{t}\right\} \cap P \neq \emptyset$ holds, where \emptyset denotes the empty set. Then the nonlinearity N_{f} of f satisfies

$$
N_{f} \leq 2^{n-1}-2^{n-p-1}
$$

where $p=\# P$.

- Statement 2: Let f be a function on V_{n} and P be a subset of $\{1, \ldots, n\}$ such that for any term $x_{j_{1}} \cdots x_{j_{t}}$ with $t>1$ in $f,\left\{j_{1}, \ldots, j_{t}\right\} \cap P \neq \emptyset$ holds, where \emptyset denotes the empty set. Then the nonlinearity N_{f} of f satisfies

$$
N_{f} \leq 2^{n-1}-2^{n-p-1}
$$

where $p=\# P$.
Note that bent functions on V_{n} have nonlinearity $2^{n-1}-2^{\frac{1}{2} n-1}$. By using Theorem 30 we conclude

Corollary 32 Let f be a function on V_{n} satisfying $N_{f} \geq 2^{n-1}-2^{s-1}$. Then f contains at least $n-s$ non-affine terms. In particular, if f is bent, then it contains at least $\frac{1}{2} n$ non-affine terms.

PROOF. Let f contain exactly q non-affine terms. Suppose that $q<n-s$. From each non-affine term, we choose arbitrarily a single variable and collect those single variables together to form a set P. Obviously P satisfies the condition in Statement 2 and $\# P \leq q$. Hence we have $N_{f} \leq 2^{n-1}-2^{n-\# P-1} \leq$ $2^{n-1}-2^{n-q-1}<2^{n-1}-2^{s-1}$. This contradicts the condition that $N_{f} \geq 2^{n-1}-$ 2^{s-1}.

5 Hypergraph of a Boolean Function

5.1 König Property

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set. Set $\Im=\left\{E_{1}, \ldots, E_{m}\right\}$, where each E_{j} is a subset of X. The hypergraph, denoted by Γ, is the pair $\Gamma=(X, \Im)$.

Each x_{j} is called a vertex, each E_{j} is called an $e d g e, n$ and m are called the order and the size of Γ respectively. If $\# E_{j}=1$ for a j then the vertex in E_{j} is called an isolated vertex.

A sequence $x_{1} E_{1} x_{2} E_{2} \cdots x_{p} E_{p} x_{1}$ is called a cycle of length p, where $p>1$, all the E_{j} and $x_{j}, 1 \leq j \leq p$, are distinct, and $x_{j}, x_{j+1} \in E_{j}, j=1, \ldots, p$.

A subset of X, say S, is a stable set of Γ, if $E_{j} \nsubseteq S, j=1, \ldots, m$. The maximum cardinality of a stable set is called the stability number of Γ, denoted by $\kappa(\Gamma)$.

A subset of X, say Y, is a transversal of Γ, if $Y \cap E_{j} \neq \emptyset, j=1, \ldots, m$. The minimum cardinality of a transversal is called the transversal number of Γ, denoted by $\tau(\Gamma)$.

A subset of \Im, say $B=\left\{E_{j_{1}}, \ldots, E_{j_{q}}\right\}$, is a matching of Γ, if $E_{j_{t}} \cap E_{j_{s}}=\emptyset$, for $t \neq s$. The maximum number of edges in a matching is called the matching number of Γ, denoted by $\nu(\Gamma)$.

The following equality and inequality can be found on Page 405 of [3]:

$$
\begin{equation*}
\tau(\Gamma)+\kappa(\Gamma)=n \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu(\Gamma) \leq \tau(\Gamma) \tag{13}
\end{equation*}
$$

Γ is said to satisfy the König Property if the equality in (13) holds. The following lemma can be deduced from Theorem 3.5 of [3], established by Berge and Las Vergnas in 1970.

Lemma 33 If a hypergraph Γ has no cycle with odd length, then Γ satisfies the König Property.

Definition 34 For any function on V_{n}, say f, we can define the hypergraph of f, denoted by $\Gamma(f)$, by the following rule: Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$. A subset of $X, E_{j}=\left\{x_{j_{1}}, \ldots, x_{j_{t}}\right\}$ is referred to as an edge of $\Gamma(f)$ if and only if $x_{j_{1}} \cdots x_{j_{t}}$
is a term of f. Denote the stability number of $\Gamma(f)$ by $\kappa(f)$, transversal number of $\Gamma(f)$ by $\tau(f)$ and matching number of $\Gamma(f)$ by $\nu(f)$.

5.2 Applications to Nonlinearity

Corollary 35 Let f be a function on V_{n}. Write $f=f^{*} \oplus \psi$, where ψ is an affine function and f^{*} has no affine term. Let $\kappa\left(f^{*}\right)$ denote the stability number of $\Gamma\left(f^{*}\right)$. Then

$$
N_{f} \leq 2^{n-1}-2^{\kappa\left(f^{*}\right)-1}
$$

or equivalently

$$
\kappa\left(f^{*}\right) \leq 1+\log _{2}\left(2^{n-1}-N_{f}\right) .
$$

In particular, if f is a bent function, then $\kappa\left(f^{*}\right) \leq \frac{1}{2} n$ and $\tau\left(f^{*}\right) \geq \frac{1}{2} n$.
To prove the corollary, we note that $N_{f^{*}}=N_{f}$. Then applying Theorem 30, we have $N_{f^{*}} \leq 2^{n-1}-2^{\kappa\left(f^{*}\right)-1}$.

Next we introduce a key result of this section.
Theorem 36 Let f be a bent function on V_{n}. Then (the algebraic normal form of) f contains precisely $\frac{1}{2} n$ disjoint quadratic terms if $\Gamma(f)$ contains no cycle of odd length. Equivalently, $\Gamma(f)$ must contain a cycle of odd length if f contains less than $\frac{1}{2} n$ disjoint quadratic terms.

PROOF. Write $f=f^{*} \oplus \psi$ where ψ is an affine function and f^{*} has no affine term. If $\Gamma(f)$ contains no cycle of odd length, then $\Gamma\left(f^{*}\right)$ too contains no cycle of odd length. By using Lemma 33, we have $\tau\left(f^{*}\right)=\nu\left(f^{*}\right)$. From Corollary $35, \nu\left(f^{*}\right) \geq \frac{1}{2} n$. Hence there exists a matching B of $\Gamma\left(f^{*}\right)$. Without loss of generality, let $B=\left\{E_{1}, \ldots, E_{\nu}\right\}$, where each E_{j} is an edge of $\Gamma\left(f^{*}\right)$, $\nu=\nu\left(f^{*}\right)=\tau\left(f^{*}\right) \geq \frac{1}{2} n$ and $E_{j} \cap E_{i}=\emptyset$, for $j \neq i$. Note that

$$
\begin{equation*}
\# E_{1}+\cdots+\# E_{\nu}=\#\left(E_{1} \cup \cdots \cup E_{\nu}\right) \leq n \tag{14}
\end{equation*}
$$

On the other hand, since $\Gamma\left(f^{*}\right)$ has no isolated vertex, each E_{j} has at least two elements. Hence

$$
\begin{equation*}
\# E_{1}+\cdots+\# E_{\nu} \geq 2 \nu \geq n \tag{15}
\end{equation*}
$$

Comparing (15) with (14), we have

$$
\begin{equation*}
\# E_{1}+\cdots+\# E_{\nu}=n \tag{16}
\end{equation*}
$$

Note that (16) with $\nu \geq \frac{1}{2} n$ holds if and only if $\nu=\frac{1}{2} n$ and $\# E_{j}=2$, $j=1, \ldots, \nu=\frac{1}{2} n$. This proves that f^{*} contains $\frac{1}{2} n$ disjoint quadratic terms, and so does f.

Theorem 37 Let f be a function on V_{n}, whose nonlinearity N_{f} satisfies

$$
N_{f} \geq 2^{n-1}-2^{\frac{2}{3} n-t-1}
$$

where t is real with $1 \leq t \leq \frac{1}{6} n$. Then f contains at least $3 t$ disjoint quadratic terms if $\Gamma(f)$ contains no cycle of odd length. Equivalently, $\Gamma(f)$ contains at least one cycle of odd length if f contains less than $3 t$ disjoint quadratic terms.

PROOF. Write $f=f^{*} \oplus \psi$ where ψ is an affine function and f^{*} has no affine term. If $\Gamma(f)$ contains no cycle of odd length, then $\Gamma\left(f^{*}\right)$ too contains no cycle of odd length. Recall that $N_{f}=N_{f^{*}}$. By using Lemma 33, $\tau\left(f^{*}\right)=\nu\left(f^{*}\right)$. From Corollary $35, \nu\left(f^{*}\right) \geq n-\left(\frac{2}{3} n-t\right)=\frac{1}{3} n+t$. Hence there exists a matching B of $\Gamma\left(f^{*}\right)$. Again, without loss of generality, we can assume that $B=\left\{E_{1}, \ldots, E_{\nu}\right\}$, where each E_{j} is an edge of $\Gamma\left(f^{*}\right), \nu=\nu\left(f^{*}\right)=\tau\left(f^{*}\right) \geq \frac{1}{3} n+t$ and $E_{j} \cap E_{i}=\emptyset$, for $j \neq i$.

Note that

$$
\begin{equation*}
\# E_{1}+\cdots+\# E_{\nu}=\#\left(E_{1} \cup \cdots \cup E_{\nu}\right) \leq n \tag{17}
\end{equation*}
$$

Let there be k sets E_{j}, where $E_{j} \subseteq B$ with $\# E_{j}=2$. Then

$$
\begin{equation*}
\#\left(E_{1}+\cdots+E_{\nu}\right) \geq 2 k+3(\nu-k) \geq 2 k+3\left(\frac{1}{3} n+t-k\right) \tag{18}
\end{equation*}
$$

Comparing (17) and (18), we have $k \geq 3 t$.
Corollary 38 Let f be a function on V_{n}, whose nonlinearity N_{f} satisfies

$$
N_{f}>2^{n-1}-2^{\frac{2}{3} n-1} .
$$

Then f contains at least one quadratic term if $\Gamma(f)$ contains no cycle of odd length. That is, $\Gamma(f)$ must contain a cycle of odd length if f contains no quadratic term.

PROOF. Since $N_{f}>2^{n-1}-2^{\frac{2}{3} n-1}$, there exists a real number $t, 0<t \leq \frac{1}{6} n$, such that $N_{f} \geq 2^{n-1}-2^{\frac{2}{3} n-t-1}>2^{n-1}-2^{\frac{2}{3} n-1}$. By using Theorem 37 , the proof is completed.

Theorems 36, 37 and Corollary 38 show that the existence of a cycle of odd length in Γ or of quadratic terms in f plays an important role in highly nonlinear functions.

It should be pointed out that the existence of $\frac{1}{2} n$ disjoint quadratic terms and the existence of a cycle of odd length in $\Gamma(f)$ are not mutually exclusive. This can be demonstrated by the following example.

Example 39 It is known that there exist four types of bent functions on V_{6} each of which is not equivalent to other three by any linear transformation on the variables [8]:
(i) $f_{1}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{4} \oplus x_{2} x_{5} \oplus x_{3} x_{6}$,
(ii) $f_{2}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2} x_{3} \oplus x_{1} x_{4} \oplus x_{2} x_{5} \oplus x_{3} x_{6}$,
(iii) $f_{3}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2} x_{3} \oplus x_{2} x_{4} x_{5} \oplus x_{1} x_{2} \oplus x_{1} x_{4} \oplus x_{2} x_{6} \oplus x_{3} x_{5} \oplus x_{4} x_{5}$,
(iv) $f_{4}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2} x_{3} \oplus x_{2} x_{4} x_{5} \oplus x_{3} x_{4} x_{6} \oplus x_{1} x_{4} \oplus x_{2} x_{6} \oplus x_{3} x_{4} \oplus x_{3} x_{5} \oplus$ $x_{3} x_{6} \oplus x_{4} x_{5} \oplus x_{4} x_{6}$.
f_{1} and f_{2} : Obviously, neither $\Gamma\left(f_{1}\right)$ nor $\Gamma\left(f_{2}\right)$ contains a cycle of odd length. Both f_{1} and f_{2} contain three disjoint quadratic terms: $x_{1} x_{4}, x_{2} x_{5}, x_{3} x_{6}$.
f_{3} : Let E_{j} be the j th term, $j=1, \ldots, 7$, where the order is from left to right in the algebraic normal form of $f_{3} . \Gamma\left(f_{3}\right)$ contains a cycle of length 5 : $x_{4} E_{7} x_{5} E_{6} x_{3} E_{1} x_{2} E_{3} x_{1} E_{4} x_{4}$. In addition, f_{3} contains three disjoint quadratic terms: $x_{1} x_{4}, x_{2} x_{6}, x_{3} x_{5}$.
f_{4} : Let E_{j} be the j th term, $j=1, \ldots, 10$, where the order is from the left to the right in the algebraic normal form of $f_{4} . \Gamma\left(f_{4}\right)$ contains a cycle of length 3: $x_{3} E_{1} x_{2} E_{2} x_{4} E_{3} x_{3}$. It also contains three disjoint quadratic terms: $x_{1} x_{4}, x_{2} x_{6}, x_{3} x_{5}$.

6 Future Work

Results in this paper show that maximal odd weight subspaces, restrictions to a coset, terms in the algebraic normal form and hypergraphs of a function are useful tools in the study of cryptographic properties, especially the nonlinearity, of the function. A possible future research topic is to investigate whether these tools can be used in the study of the algebraic degree of a function. An-
other topic is to explore these indicators in analyzing the security of ciphers used in the real world, and the design of functions that would strengthen a cipher against various attacks.

Acknowledgement

We would like to thank Claude Carlet for his many insightful comments that have helped improve the presentation of the paper.

References

[1] Claude Carlet, Two New Classes of Bent Functions, Advances in Cryptology - EUROCRYPT'93, (Springer-Verlag, Berlin, Heidelberg, New York, 765, Lecture Notes in Computer Science, 1994), 77-101.
[2], J. F. Dillon, A Survey of Bent Functions, The NSA Technical Journal (unclassified), (1972), 191-215.
[3] R. L. Graham and M. Grötschel and L. Lovász, Handbook of Combinatorics I, (Elsevier Science B. V., 1995).
[4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, (North-Holland, Amsterdam, New York, Oxford, 1978).
[5] M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology - EUROCRYPT’93, (Springer-Verlag, Berlin, Heidelberg, New York, 765, Lecture Notes in Computer Science, 1994), 386-397.
[6] W. Meier and O. Staffelbach, Nonlinearity Criteria For Cryptographic Functions, Advances in Cryptology - EUROCRYPT'89, (Springer-Verlag, Berlin, Heidelberg, New York, 434, Lecture Notes in Computer Science, 1990), 549-562.
[7] National Bureau Standards, Data Encryption Standard, Federal Information Processing Standards Publication FIPS PUB 46, (U.S. Department of Commerce, 1977).
[8] O. S. Rothaus, On "Bent" Functions, Journal of Combinatorial Theory, Ser. A, 20, (1976), 300-305.
[9] J. Seberry and X. M. Zhang and Y. Zheng, Nonlinearity and Propagation Characteristics of Balanced Boolean Functions, Information and Computation, 119 (1) (1995), 1-13.
[10] C. E. Shannon, Communications Theory of Secrecy System, Bell Sys. Tech. Journal, 28 (1949), 656-751.

