Semi Williamson Type Matrices and the $W(2 n, n)$ Conjecture

Jennifer Seberry
and
Xian-Mo Zhang
Department of Computer Science
University College
University of New South Wales
Australian Defence Force Academy
Canberra, ACT 2600, AUSTRALIA

Abstract

Four (1, -1, 0)-matrices of order $m, X=\left(x_{i j}\right), Y=\left(y_{i j}\right), Z=\left(z_{i j}\right), U=\left(u_{i j}\right)$ satisfying (i) $X X^{T}+Y Y^{T}+Z Z^{T}+U U^{T}=2 m I_{m}$, (ii) $x_{i j}^{2}+y_{i j}^{2}+z_{i j}^{2}+u_{i j}^{2}=2, i, j=1, \ldots, m$, (iii) X, Y, Z, U mutually amicable, will be called semi Williamson type matrices of order m. In this paper we prove that if there exist Williamson type matrices of order n_{1}, \ldots, n_{k} then there exist semi Williamson type matrices of order $N=\prod_{j=1}^{k} n_{j}^{r_{j}}$, where r_{j} are non-negative integers. As an application, we obtain a $W(4 N, 2 N)$. Although the paper presents no new $W(4 n, 2 n)$ for n, odd, $n<3000$, it is a step towards proving the conjecture that there exists a $W(4 n, 2 n)$ for any positive integer n. This conjecture is a sub-conjecture of the Seberry conjecture [3, page 92] that $W(4 n, k)$ exist for all $k=0,1, \ldots, 4 n$. In addition we find infinitely many new $W(2 n, n), n$ odd and the sum of two squares.

1 Introduction and Basic Definitions

Definition 1 Let A, B, C, D be four (1,-1)-matrices of order n. If $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$ and $U V^{T}=V U^{T}$ (U and V are amicable), where $U, V \in\{A, B, C, D\}$. We call A, B, C, D Williamson type matrices of order n.

Definition 2 Let W be a ($1,-1,0$)-matrix of order of order n satisfying $W W^{T}=c I_{n}$. We call W a weighing matrix of order n with weight c, denoted by $W(n, c)$.

Definition 3 Four ($1,-1,0$)-matrices of order $m, X=\left(x_{i j}\right), Y=\left(y_{i j}\right), Z=\left(z_{i j}\right), U=\left(u_{i j}\right)$ satisfying
(i) $X X^{T}+Y Y^{T}+Z Z^{T}+U U^{T}=2 m I_{m}$,
(ii) $x_{i j}^{2}+y_{i j}^{2}+z_{i j}^{2}+u_{i j}^{2}=2, i, j=1, \ldots, m$,
(iii) X, Y, Z, U mutually amicable,
will be called semi Williamson type matrices of order m. In particular, if X, Y, Z, U are circulant and symmetric we call X, Y, Z, U semi Williamson matrices of order m.

Let $M=\left(M_{i j}\right)$ and $N=\left(N_{g h}\right)$ be orthogonal matrices with t^{2} block M-structure (see [4]) of order tm and $t n$ respectively, where $M_{i j}$ is of order $m(i, j=1, \ldots, t)$ and $N_{g h}$ is of order $n(g, h=1,2, \ldots, t)$. We now define the operation \bigcirc as the following:

$$
M \bigcirc N=\left[\begin{array}{llll}
L_{11} & L_{12} & \cdots & L_{1 t} \\
L_{21} & L_{22} & \cdots & L_{2 t} \\
& & \cdots & \\
L_{t 1} & L_{t 2} & \cdots & L_{t t}
\end{array}\right]
$$

where $M_{i j}, N_{i j}$ and $L_{i j}$ are of order of m, n and $m n$, respectively and

$$
L_{i j}=M_{i 1} \times N_{1 j}+M_{i 2} \times N_{2 j}+\cdots+M_{i t} \times N_{t j},
$$

where \times is Kronecker product, $i, j=1,2, \ldots, t$. We call this the strong Kronecker multiplication of two matrices (see [?]).

Lemma 1 Let $A=\left[A_{1}, A_{2}, A_{3}, A_{4}\right]$ be a (1,-1, 0)-matrix of order $m \times 4 m$, where A_{j} is of order m, satisfying $\sum_{j=1}^{4} A_{j} A_{j}^{T}=p I_{m}$ and $B^{T}=\left[B_{1}^{T}, B_{2}^{T}, B_{3}^{T}, B_{4}^{T}\right]$, where B_{i} is of order $n \times 4 n$, be a $W(4 n, q)$. Set $C=\sum_{j=1}^{4} A_{j} \times B_{j}$. Then $C C^{T}=p q I_{m n}$.

Proof. $C C^{T}=\left(\sum_{j=1}^{4} A_{j} \times B_{j}\right)\left(\sum_{j=1}^{4} A_{j}^{T} \times B_{j}^{T}\right)=\sum_{j=1}^{4} A_{j} A_{j}^{T} \times B_{j} B_{j}^{T}=\left(\sum_{j=1}^{4} A_{j} A_{j}^{T}\right) \times q I_{n}=p I_{m} \times q I_{n}=$ $p q I_{m n}$.

Notation 1 Write $O D(A, B, C, D)=\left[\begin{array}{cccc}A & B & C & D \\ D & C & -B & -A \\ B & -A & D & -C \\ C & -D & -A & B\end{array}\right]$.

2 Preliminaries

Lemma 2 Let $a, b, c, d \in\{1,-1,0\}, a^{2}+b^{2}+c^{2}+d^{2}=2$ and $k, m, l, q \in\{1,-1\}$. Set $[x, y, z, u]=$ $\frac{1}{2}[a, b, c, d] O D(k, m, l, q)$. Then $x, y, z, u \in\{1,-1,0\}, x^{2}+y^{2}+z^{2}+u^{2}=2$.

Proof. By Lemma 1, $x^{2}+y^{2}+z^{2}+z^{2}=\frac{1}{4} \cdot 2 \cdot 4=2$. Each of x, y, z, u is half the sum of four numbers, two of which are zero, and the other two of which are units. It follows that $x, y, z, u \in\{1,-1,0\}$. We note that the operation of Lemma 2 is norm preserving.

Lemma 3 If there exist Williamson type matrices of order m then there exist semi Williamson type matrices of order m.

Proof. Let A, B, C, D be the Williamson type matrices of order m then $\frac{1}{2}(A+B), \frac{1}{2}(A-B), \frac{1}{2}(C+D)$, $\frac{1}{2}(C-D)$ are semi Williamson type matrices.

Lemma 4 If there exist semi Williamson type matrices of order m and Williamson type matrices of order n then there exist semi Williamson type matrices of order mn.

Proof. Let $X=\left(x_{i j}\right), Y=\left(y_{i j}\right), Z=\left(z_{i j}\right), U=\left(u_{i j}\right)$ be the semi Williamson type matrices of order m and $K=\left(k_{s t}\right), L=\left(l_{s t}\right), M=\left(m_{s t}\right), Q=\left(q_{s t}\right)$ be the Williamson type matrices of order n. We now construct four matrices, say $R=\left(r_{\mu \nu}\right), S=\left(s_{\mu \nu}\right), V=\left(v_{\mu \nu}\right), W=\left(w_{\mu \nu}\right), i, j=1, \ldots, m n$, of order $m n$, where

$$
\left[r_{\mu \nu}, s_{\mu \nu}, v_{\mu \nu}, w_{\mu \nu}\right]=\frac{1}{2}\left[x_{i j}, y_{i j}, z_{i j}, u_{i j}\right] O D\left(k_{s t}, m_{s t}, q_{s t}, l_{s t}\right) .
$$

By Lemma 2, $r_{\mu \nu}, s_{\mu \nu}, v_{\mu \nu}, w_{\mu \nu} \in\{1,-1,0\}$ and $r_{\mu \nu}^{2}+s_{\mu \nu}^{2}+v_{\mu \nu}^{2}+w_{\mu \nu}^{2}=2, \mu, \nu=1, \ldots, m n$. By Lemma $1, R R^{T}+S S^{T}+V V^{T}+W W^{T}=\frac{1}{4} 8 m n I_{m n}=2 m n I_{m n}$. Since X, Y, Z, U are mutually amicable and K, L, M, Q are mutually amicable, R, S, V, W are also mutually amicable.

3 Main Results

Throughout this section we write $N=\prod_{j=1}^{k} n_{j}^{r_{j}}$, where r_{j} are non-regative integers.

Theorem 1 If there exist Williamson type matrices of order n_{1}, \ldots, n_{k} then there exist semi Williamson type matrices of order N.

Proof. By Lemma 3, there exist semi Williamson type matrices of order n_{1}. By Lemma 4, there exist semi Williamson type matrices of order $n_{1} n_{2}$. Using Lemma 4 repeatedly, we prove the Theorem.

Corollary 1 If there exist Williamson type matrices of order n_{1}, \ldots, n_{k} then there exists a $W(4 N, 2 N)$.
Proof. By Theorem 1, there exist semi Williamson type matrices of order N, say E, F, G, H. Then $A=O D(E, F, G, F)$ is a $W(4 N, 2 N)$.

Corollary 2 If there exist Williamson type matrices of order n_{1}, \ldots, n_{k} and an Hadamard matrix of order $4 h$ then there exists a $W(4 N h, 2 N h)$.

Proof. By Theorem 1, there exist semi Williamson type matrices of order N, say P, Q, R, S. Write $H=\left(H_{i j}\right), i, j=1,2,3,4$ for the Hadamard matrix of order $4 h$, where $H_{i j}$ is of order h. Set

$$
B=\frac{1}{2} O D(P, Q, R, S) \bigcirc\left(H_{i j}\right) .
$$

From (ii) of Definition $3, B$ is a $(1,-1,0)$-matrix of order $4 N h$. By Theorem 1, [?],

$$
B B^{T}=2 N h I_{4 N h}
$$

Hence B is the required $W(4 N h, 2 N h)$.

4 Numerical Results

To construct $W(4 n, 2 n)$ we can use the known result that if there exist Hadamard matrices of order $4 h_{1}$ and $4 h_{2}$ then there exist two amicable and disjoint $W\left(4 h_{1} h_{2}, 2 h_{1} h_{2}\right)$ (see [?], [?]). Thus we obtain many $W(4 n, 2 n)$ whenever $n=h_{1} h_{2}$, where $4 h_{1}$ and $4 h_{2}$ are the order of Hadamard matrices. In particular, let $h_{2}=1$, we give the simple result that $W(4 h, 2 h)$ exists whenever an Hadamard matrix of order $4 h$ exists (see [?], [?]). However Corollary 1 is new result. To show the advantages of Corollary 1 and Corollary 2, we now give new $W(4 n, 2 n)$. Let $a=71 \cdot 79 \cdot 97, b=71 \cdot 79, c=71 \cdot 97, d=79 \cdot 97$. Note Hadamard matrices of order $4 b, 4 c, 4 d$ and $4 a$ are not yet known and hence the method in [?] and [?] cannot be used. Since there exist Williamson type matrices of order 79,97 and an Hadamard matrix of order 71 , by Corollary 2, there exists a $W(4 a, 2 a)$. Similarly, we obtain new $W(4 n, 2 n)$, which cannot be obtained by using the method given in [?] or [?], for $n=73 \cdot 83 \cdot 89$ and $83 \cdot 89 \cdot 103$. Also Corollary 1 and Corollary 2 give infinitely new $W(4 h, 2 h)$ directly for example $h=5^{j}$ or $3^{i} 5^{j} 7^{k}$, where i, j, k are non-negative integers. Corollary 1 has many uses. First, this is a step towards proving the conjecture that there exists a $W(4 n, 2 n)$ for any positive integer n. This conjecture is a sub-conjecture of the Seberry conjecture [3, page 92] that $W(4 n, k)$ exist for all $k=0,1, \ldots, 4 n$. In addition we find infinitely many new $W(2 n, n), n$ odd and the sum of two squares. It is interesting that unlike the product of Hadamard matrices (see [1], [?]), where the number of 2 -factors will increase when the number of Hadamard matrices used to form the product increases, the factor 4 in the order $4 N=4 \prod_{j=1}^{k} n_{j}^{r_{j}}$ of $W(4 N, 2 N)$ will be invariant no matter how large k and r_{j} become.
Furthermore, let W_{1} be the $W(4 N, 2 N)$ for $N=\prod_{j=1}^{k} n_{j}^{r_{j}}$, where r_{j} are non-negative integers, mentioned in Corollary 1. Suppose we have another $W(4 N, 2 N)$, say W_{2}, disjoint with W_{1}. Using Craigen's [2] orthogonal pairs, we would obtain a powerful result: there exists an Hadamard matrix of order $h N$ whenever there exists an Hadamard matrix of order h. In particular there exists an Hadamard matrix of order $8 N$, $N=\prod_{j=1}^{k} n_{j}^{r_{j}}$, where r_{j} are non-negative integers. $H=W_{1} \times\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]+W_{2} \times\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$ is the required Hadamard matrix.
The state of the $W(4 n, 2 n)$ conjecture, for small n, can be summarized by noting that a $W\left(2^{t} q, 2^{t-1} q\right)$ exists for q, odd, $q<3000$ for precisely those q and t for which an Hadamard matrix exists in the Appendix of Seberry and Yamada [?].
The conjecture that a $W(2 n, n)$ for every odd n where n is the sum of two squares has previously been resolved in the affirmative for $n=5,9,13$ and 17 (see [3]).

Lemma 5 Let $A_{1}, A_{2}, A_{3}, A_{4}$ be type $1(1,-1)$-matrices of order n satisfying

$$
\begin{equation*}
\sum_{i=1}^{4} A_{i} A_{i}^{T}=4 n I_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1} A_{2}^{T}+A_{2} A_{1}^{T}+A_{3} A_{4}^{T}+A_{4} A_{3}^{T}=0 \tag{2}
\end{equation*}
$$

Then there exists a $W(2 n, n)$.
Proof. Set $W=\frac{1}{2}\left[\begin{array}{cc}A_{1}+A_{2} & A_{3}+A_{4} \\ A_{3}^{T}+A_{4}^{T} & -A_{1}^{T}-A_{2}^{T}\end{array}\right]$ is a $W(2 n, n)$. Then W is a $W(2 n, n)$.
We note that if n is odd in Lemma 5 then by Corollary 2.11 [3] n is the sum of two squares. We call four $(1,-1)$ type 1 matrices that satisfy (1) and (2) tight Williamson-like matrices.

Corollary 3 Let $M=\prod_{j=1}^{k} p_{j}^{4 r_{j}}$, where $p_{j} \equiv 3(\bmod 4)$, a prime and r_{j} is a non-negative integer, $j=$ $1, \ldots, k$. Then there exists a $W(2 n, n)$, where $n=5 \cdot 9^{t} M, 13 \cdot 9^{t} M, 25 \cdot 9^{t} M$.

Proof. By Theorem 2, [6], there exist four type $1(1,-1)$-matrices of order $5 \cdot 9^{t}, 13 \cdot 9^{t}, 25 \cdot 9^{t}$, satisfying (1) and (2). From [?], There exist four symmetric, mutually commutative type 1 (1, -1)-matrices of order M, say $B_{1}, B_{2}, B_{3}, B_{4}$, satisfying $\sum_{i=1}^{4} B_{i} B_{i}^{T}=4 n I_{n}, B_{1} B_{2}^{T}+B_{3} B_{4}^{T}=0, B_{1} B_{3}^{T}+B_{2} B_{4}^{T}=0$, $B_{1} B_{4}^{T}+B_{2} B_{3}^{T}=0$. By Theorem 1, [6], there exist four type 1 matrices of order $5 \cdot 9^{t} M, 13 \cdot 9^{t} M, 25 \cdot 9^{t} M$, satisfying (1) and (2). By Lemma 5, we have a $W(2 n, n)$, where $n=5 \cdot 9^{t} M, 13 \cdot 9^{t} M, 25 \cdot 9^{t} M$.

We now give tight Williamson-like matrices of order 5, 13 and 25. By the method given by Xia [5], we construct cyclic (1, -1) tight Williamson-like matrices of order 5 and 13 with first rows

$$
\begin{aligned}
& +-++-,++-++,--++-,++++- \text { and } \\
& ++---+--++-++,--+++-+++++-+, \\
& +--+-+++---+-,+-++++++--++- \text { respectively. }
\end{aligned}
$$

From [5] we also construct type 1 tight Williamson-like matrices of order 25. Any element in the abelian group $Z_{5} \oplus Z_{5}$ can be expressed as (a, b), where $a, b \in Z_{5}$, and the additive addition in $Z_{5} \oplus Z_{5}$ can be defined as $(a, b)+(c, d)=(a+b, c+d)$. Set

$$
\begin{aligned}
& S_{1}=\{(0,0),(0,1),(1,2),(3,3),(0,3),(4,4),(3,4),(2,0),(2,2),(1,0),(1,4),(0,2),(3,0)\}, \\
& S_{2}=\{(0,1),(4,0),(3,1),(4,4),(0,4),(4,2),(1,0),(1,1),(3,2)\}, \\
& S_{3}=\{(1,2),(3,3),(1,3),(4,1),(3,4),(2,0),(2,3),(4,3),(1,4),(0,2),(2,4),(2,1)\}, \\
& S_{4}=\{(3,3),(4,1),(0,3),(2,0),(4,3),(2,2),(0,2),(2,1),(3,0)\} .
\end{aligned}
$$

Hence the type $1(1,-1)$ incidence matrices of $S_{1}, S_{2}, S_{3}, S_{4}$ form the tight Williamson-like matrices of order 25.
Finally we note that if $N+I$ is a symmetric conference matrix of order $n \equiv 2(\bmod 4)$ then $N+I, N-I$, $N+I,-N+I$ are tight Williamson-like matrices of order n.

References

[1] Agayan, S. S. Hadamard Matrices and Their Applications, vol. 1168 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 1985.
[2] Craigen, R. Constructing Hadamard matrices with orthogonal pairs. Ars Combinatoria 33 (1992), 57-64.
[3] Geramita, A. V., and Seberry, J. Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel, 1979.
[4] Seberry, J., and Yamada, M. On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures. JCMCC 7 (1990), 97-137.
[5] Xia, M. Y. Some supplementary difference sets and hadamard matrices. Acta. Math. Sci. \& (1) (1984), 81-92.
[6] Xia, M. Y. Hadamard matrices. Combinatorial designs and applications, Lecture Notes in Pure and Appl. Math., Dekker, New York 126 (1990), 179-181.

