Semi-regular Sets of Matrices and Applications

Xian-Mo Zhang
Department of Computer Science
The University of Wollongong
Wollongong
NSW 2500, AUSTRALIA

Abstract

The concept of semi-regular sets of matrices was introducted by J. Seberry in "A new construction for Williamson-type matrices", Graphs and Combinatorics, 2(1986), 81-87. A regular s-set of matrices of order m. was first discovered by J. Seberry and A. L. Whiteman in "New Hadamard matrices and conference matrices obtained via Mathon's construction", Graphs and Combinatorics, $4(1988), 355-377$. X. M. Zhang studied the product of these matrices and their applications in " Regular sets of matrices and applications" (to appear). In this paper, we prove that (i) if there exist a semi-regular s-set of order m and a semi-regular t-set of order n then there exists a semi-regular s-set of order $m n$ when $t=s m$, (ii) if there exist Williamson type matrices of order n and a semiregular $s(=2 n)$-set of matrices of order m then there exist Williamson type matrices of order $n m$, (iii) if there exists a complex Hadamard matrix of order $2 c$ and a semi-regular $s(=2 c)$-set of matrices of order m then there exists a complex Hadamard matrix of order 2 cm . Williamson type matrices $X_{1}, X_{2}, X_{3}, X_{4}$ will be called nice if $X_{1} X_{2}^{T}+$ $X_{3} X_{4}^{T}=0$, perfect if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=X_{1} X_{4}^{T}+X_{2} X_{3}^{T}=0$, special if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=X_{1} X_{3}^{T}+X_{2} X_{4}^{T}=X_{1} X_{4}^{T}+X_{2} X_{3}^{T}=0$. We prove that (iv) if there exist nice Williamson type matrices of order n and m then there exist Williamson type matrices of order nm, (v) if there exist nice Williamson type matrices of order n and special Williamson matrices of order m then there exist nice Williamson type matrices of order $n m$, (vi) if there exist special Williamson type matrices of order n and m then there exist special Williamson type matrices of order $n m$, (vii) if there exist nice (perfect) Williamson type matrices of order n, where n is odd and $2 n-1$ is a prime power then there exist nice (perfect) Williamson matrices of order $n(2 n-1)^{2}$.

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be type $1(1,-1)$-matrices of order n will be called tight Williamson-like matrices if $\sum_{j=1}^{4} A_{j} A_{j}^{T}=4 n I_{n}$ and $A_{1} A_{2}^{T}+$ $A_{2} A_{1}^{T}+A_{3} A_{4}^{T}+A_{4} A_{3}^{T}=0$. We prove
(viii) if there exist tight Williamson-like matrices of order n and Tmatrices of order t then there exists an Hadamard matrix of order $4 t n$,
(ix) there exist two disjoint $W(2 n, n)$ if there exist tight Williamsonlike matrices of order n,
(x) if there exist tight Williamson-like matrices of order n and special Williamson type matrices of order m then there exist tight Williamson-like matrices of order $n m$,
(xi) if there exist tight Williamson-like matrices of order n (odd) and $2 n-1$ is a prime power then there exist tight Williamson-like matrices of order $n(2 n-1)^{2}$,
(xii) if there exist tight Williamson-like matrices of order n and $4 n-1$ is a prime power then there exist tight Williamson-like matrices of order $n(4 n-1)^{2}$.

1 Introduction and Basic Definitions

Definition 1 Suppose $Q_{1}, \ldots, Q_{2 s}$ are $(1,-1)$ matrices of order m satisfying

$$
\begin{gather*}
Q_{i} Q_{j}^{T}=J, \quad i-j \neq 0, \pm s, \quad i, j \in\{1, \ldots, 2 s\} \tag{1}\\
Q_{i} Q_{i+s}^{T}=Q_{i+s} Q_{i}^{T}, \quad i, j \in\{1, \ldots, 2 s\} \tag{2}\\
\sum_{i=1}^{2 s} Q_{i} Q_{i}^{T}=2 s m I_{m} \tag{3}
\end{gather*}
$$

Call $\left\{Q_{1}, \ldots, Q_{2 s}\right\}$ a semi-regular s-set of matrices of order m.

Definition 2 Suppose A_{1}, \ldots, A_{s} are $(1,-1)$ matrices of order m satisfying

$$
\begin{gather*}
A_{i} A_{j}=J, \quad i, j \in\{1, \ldots, s\}, \tag{4}\\
A_{i}^{T} A_{j}=A_{j}^{T} A_{i}=J, \quad i \neq j, \quad i, j \in\{1, \ldots, s\}, \tag{5}\\
\sum_{i=1}^{s}\left(A_{i} A_{i}^{T}+A_{i}^{T} A_{i}\right)=2 s m I_{m} \tag{6}
\end{gather*}
$$

Call $\left\{A_{1}, \ldots, A_{s}\right\}$ a regular s-set of matrices of order m if (10), (11), (12) are satisfied (see [?], [8]).

Regular sets of matrices are special case of semi-regular sets of matrices. To show this, suppose $\left\{A_{1}, \ldots, A_{s}\right\}$ is a regular s-set of matrices and set $Q_{j}=A_{j}, Q_{j+s}=A_{j}^{T}, j=1, \ldots, s$. Hence $\left\{Q_{1}, \ldots, Q_{2 s}\right\}$ is a semi-regular s-set of matrices. J. Seberry [7] gave semi-regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2}, say S_{1}, \ldots, S_{q+1}, satisfying $Q_{i} Q_{j}^{T}=Q_{j} Q_{i}^{T}=J_{q^{2}}, i \neq j$, where $q \equiv 3(\bmod 4)$, a prime power and $(\mathrm{p}+1)$-set of matrices of order p^{2}, for $p \equiv 1(\bmod 4)$, a prime power. J. Seberry and A. L. Whiteman $[8]$ proved that if $q \equiv 3(\bmod 4)$ is a prime power there exists a regular $\frac{1}{2}(q+1)$ set of regular matrices of order q^{2}, say $A_{i}, i=1, \ldots, \frac{1}{2}(q+1)$ satisfying $A_{i} J=J A_{i}=q J$. Semi-regular sets of matrices are not as convenient as regular sets of matrices because of the equality $Q_{i} Q_{i+s}^{T}=J$ and the noncommutativity of semi-regular s-sets of matrices.

Definition 3 Four ($1,-1$) matrices $X_{1}, X_{2}, X_{3}, X_{4}$ of order n satisfying

$$
X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}=4 n I_{n}
$$

and

$$
U V^{T}=V U^{T}
$$

where $U, V \in\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ will be called Williamson type matrices of order n [?]. Circulant and symmetric Williamson matrices will be called Williamson matrices.

Williamson and Williamson type matrices are discussed extensively by Baumert, Miyamoto, Seberry, Whiteman, Yamada and Yamamoto ([?], [1], [20], [21], [7], [12], [6], [14], [15], [5], [19], [9]).

Definition 4 Williamson type matrices (Williamson matrices) $X_{1}, X_{2}, X_{3}, X_{4}$ will be called nice if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=0$, perfect if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=$ $X_{1} X_{4}^{T}+X_{2} X_{3}^{T}=0$, special if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=X_{1} X_{3}^{T}+X_{2} X_{4}^{T}=$ $X_{1} X_{4}^{T}+X_{2} X_{3}^{T}=0$.

The concept of special Williamson matrices was introduced by Turyn [11], who found special Williamson matrices of order 9^{j}, for j a non-negative integer. Recently Xia [?] gave special Williamson type matrices of order $N=9^{i} \prod_{j=1}^{t} q_{j}^{4 r_{j}}$, where $q_{j} \equiv 3(\bmod 4)$, is a prime power, i, r_{j} are nonnegative integers [?].

Definition 5 Type $1(1,-1)$ matrices of order $n A_{1}, A_{2}, A_{3}, A_{4}$ will be called tight Williamson-like matrices if $\sum_{j=1}^{4} A_{j} A_{j}^{T}=4 n I_{n}$ and $A_{1} A_{2}^{T}+$ $A_{2} A_{1}^{T}+A_{3} A_{4}^{T}+A_{4} A_{3}^{T}=0$.

Definition 6 Let C be a $(1,-1, i,-i)$ matrix of order c satisfying $C C^{*}=$ $c I_{c}$, where C^{*} is the Hermitian onjugate of C. We call C a complex Hadamard matrix of order c.

From [13], any complex Hadamard matrix has order 1 or order divisible by 2. Let $C=X+i Y$, where X, Y consist of $1,-1,0$ and $X \wedge Y=0$ where \wedge is the Hadamard product. Clearly, if C is a complex Hadamard matrix then $X X^{T}+Y Y^{T}=c I_{c}, X Y^{T}=Y X^{T}$.

Definition 7 Four type 1 (1,-1)-matrices, say $T_{1}, T_{2}, T_{3}, T_{4}$ of order t will be called T-matrices if $T_{i} \wedge T_{j}=0$ for $i \neq j$, where \wedge is the Hadamard product, and $\sum_{j=1}^{4} T_{j} T_{j}^{T}=t I_{t}$.

Notation 1 For convenience, in this paper we write $N=9^{i} \prod_{j=1}^{t} q_{j}^{4 r_{j}}$, where $q_{j} \equiv 3(\bmod 4)$ is a prime power, i, r_{j} are non-negative integers.

Let $M=\left(M_{i j}\right)$ and $N=\left(N_{g h}\right)$ be orthogonal matrices with t^{2} block Mstructure (see [9]) of order $t m$ and $t n$ respectively, where $M_{i j}$ is of order m $(i, j=1, \ldots, t)$ and $N_{g h}$ is of order $n(i, j=1,2, \ldots, t)$. We now define the the operation \bigcirc as the following:

$$
M \bigcirc N=\left[\begin{array}{llll}
L_{11} & L_{12} & \cdots & L_{1 t} \\
L_{21} & L_{22} & \cdots & L_{2 t} \\
& & \cdots & \\
L_{t 1} & L_{t 2} & \cdots & L_{t t}
\end{array}\right]
$$

where $M_{i j}, N_{i j}$ and $L_{i j}$ are of order of m, n and $m n$, respectively and

$$
L_{i j}=M_{i 1} \times N_{1 j}+M_{i 2} \times N_{2 j}+\cdots+M_{i t} \times N_{t j}
$$

where \times is Kronecker product, $i, j=1,2, \ldots, t$. We call this the strong Kronecker multiplication of two matrices (see [?]).

2 Existence of Semi-Regular Sets of Matrices

The following results are known:

Theorem 1 Let both $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$ be prime powers. Then
(i) there exists a semi-regular ($p+1$)-set of matrices of order p^{2} (J. Seberry [7]),
(ii) there exists a semi-regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2}, say S_{1}, \ldots, S_{q+1}, satisfying $S_{i} S_{j}^{T}=J, i \neq j, i, j=1, \ldots, q+1$ (J. Seberry [7], here we have changed the subscripts j to $j+1$),
(iii) there exists a regular $\frac{1}{2}(q+1)$-set of matrices of order $q^{2}(J$. Seberry and A. L. Whiteman [8]).

Theorem 2 If there exist a semi-regular s-set of matrices of order m and a semi-regular $t(=$ sm)-set of matrices of order n then there exists a semiregular s-set of matrices of order mn.

Proof. Let $\left\{A_{1}=\left(a_{i j}^{1}\right), A_{2}=\left(a_{i j}^{2}\right), \ldots, A_{2 s}=\left(a_{i j}^{2 s}\right)\right\}$ be the semi-regular s-set of matrices of order m and $\left\{B_{1}, B_{2}, \ldots, B_{2 t}\right\}$ be the semi-regular t-set of matrices of order of n.
Define $C_{i}=\left(c_{k j}^{i}\right)=\left(a_{k j}^{i} B_{(i-1) m+j+k-1)}\right), i=1, \ldots, 2 s$ so that

$$
C_{i}=\left[\begin{array}{cccc}
a_{11}^{i} B_{(i-1) m+1} & a_{12}^{i} B_{(i-1) m+2} & \cdots & a_{1 m}^{i} B_{i m} \\
a_{21}^{i} B_{(i-1) m+2} & a_{22}^{i} B_{(i-1) m+3} & \cdots & a_{2 m}^{i} B_{(i-1) m+1} \\
& & \vdots & \\
a_{m 1}^{i} B_{i m} & a_{m 2}^{i} B_{(i-1) m+1} & \cdots & a_{m m}^{i} B_{i m-1}
\end{array}\right]
$$

For any $i, j, i-j \neq 0, \pm s$, there exist no B_{u}, B_{v} such that $u-v= \pm t$, B_{u} in C_{i}, B_{v} in C_{j}. Thus $C_{i} C_{j}=J_{m} \times J_{n}=J_{m n}$, for $i, j, i-j \neq 0, \pm s$. On the other hand, for a fixed i, write $C_{i} C_{i+s}^{T}=\left(D_{u v}\right)$, where $D_{u v}$ is of order $n, u, v=1, \ldots, m$. Obviously, $D_{u v}=J_{n}$, for $u \neq v$. Note $D_{u u}=$ $\sum_{k=1}^{m} a_{u k}^{i} a_{v k}^{i+s} B_{(i-1) m+k} B_{(i+s-1) m+k}^{T}$. Since $B_{k} B_{k+s}^{T}=B_{k+s} B_{k}^{T}, D_{u u}^{T}=D_{u u}$. Thus $C_{i} C_{i+s}^{T}$ is symmetric i.e. $C_{i} C_{i+s}^{T}=C_{i+s} C_{i}^{T}$.
To show

$$
\begin{equation*}
\sum_{i=1}^{2 s} C_{i} C_{i}^{T}=2 s m n I_{m n} \tag{7}
\end{equation*}
$$

note that $\left(a_{k j}^{i}\right)^{2}=1$ so the diagonal element of $C_{i} C_{i}^{T}$ is $\sum_{j=1}^{m} B_{(i-1) m+j} B_{(i-1) m+j}^{T}$ and hence the diagonal element of $\sum_{i=1}^{2 s} C_{i} C_{i}^{T}$ is

$$
\sum_{j=1}^{2 s m} B_{j} B_{j}^{T}=\sum_{j=1}^{2 t} B_{j} B_{j}^{T}=2 t n I_{n}=2 s m n I_{n}
$$

The off-diagonal elements of $C_{i} C_{i}^{T}$ are given by

$$
\begin{gathered}
\sum_{j=1}^{m}\left(a_{h j}^{i} a_{k j}^{i} B_{(i-1) m+j+h-1} B_{(i-1) m+j+k-1}^{T}\right), h \neq k \\
=\sum_{j=1}^{m} a_{h j}^{i} a_{k j}^{i} J .
\end{gathered}
$$

So the off-diagonal element of $\sum_{i=1}^{s} C_{i} C_{i}^{T}$ is zero, using

$$
\sum_{i=1}^{s} \sum_{j=1}^{m} a_{h j}^{i} a_{k j}^{i} J=0
$$

Corollary 1 Let both $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$ be prime powers.
(i) if $(p+1) p^{2}-1$ is a prime power then there exists a semi-regular $(p+1)$ set of matrices of $p^{2}\left((p+1) p^{2}-1\right)^{2}$,
(ii) if $2(p+1) p^{2}-1$ is a prime power then there exists a semi-regular $(p+1)$-set of matrices of $p^{2}\left(2(p+1) p^{2}-1\right)^{2}$,
(iii) if $(q+1) q^{2}-1$ is a prime power then there exists a regular $\frac{1}{2}(q+1)$-set of matrices of $q^{2}\left((q+1) q^{2}-1\right)^{2}$,
(iv) if $\frac{1}{2}(q+1) q^{2}-1$ is a prime power then there exists a semi-regular $\frac{1}{2}(q+1)$-set of matrices of $q^{2}\left(\frac{1}{2}(q+1) q^{2}-1\right)^{2}$.

Proof. (i) By Theorem 1 there exists a semi-regular ($\mathrm{p}+1$)-set of matrices of order p^{2}. Since $(p+1) p^{2}-1 \equiv 1(\bmod 4)$, by Theorem 1 , there exists a semi-regular $(p+1) p^{2}$-set of matrices of $\left((p+1) p^{2}-1\right)^{2}$. Using Theorem 2, there exists a $(p+1)$-set of matrices of $p^{2}\left((p+1) p^{2}-1\right)^{2}$.
(ii) By Theorem 1 there exists a semi-regular $(p+1)$-set of matrices of order p^{2}. Since $2(p+1) p^{2}-1 \equiv 3(\bmod 4)$, By Theorem 1 there exists a semiregular $(p+1) p^{2}$-set of matrices of $\left(2(p+1) p^{2}-1\right)^{2}$. Using Theorem 2 , there exists a $(p+1)$-set of matrices of $p^{2}\left(2(p+1) p^{2}-1\right)^{2}$.
(iii) This is Corollary 2, [?].
(iv) By Theorem 1 there exists a semi-regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2}. Case $1, q \equiv 3(\bmod 8)$. Then $\frac{1}{2}(q+1) q^{2}-1 \equiv 1(\bmod 4)$. By Theorem 1 there exists a semi-regular $\frac{1}{2}(q+1) q^{2}$-set of $\left(\frac{1}{2}(q+1) q^{2}-1\right)^{2}$. By Theorem 2 there exists a semi-regular $\frac{1}{2}(q+1)$-set of matrices of $q^{2}\left(\frac{1}{2}(q+1) q^{2}-1\right)^{2}$. Case $2, q \equiv 7(\bmod 8)$. This is Corollary 5 [?], we still have a semi-regular $\frac{1}{2}(q+1)$-set of matrices of $q^{2}\left(\frac{1}{2}(q+1) q^{2}-1\right)^{2}$.

3 Williamson Type Matrices and Complex Hadamard Matrices

We find new constructions for Williamson type matrices not given by Miyamoto [5] or Seberry and Yamada [?], [9]. This theorem differs from that of Seberry [7] as it does not need regular sets of regular matrices.

Theorem 3 If there exist Williamson type matrices of order n and a semiregular $s(=2 n)$-set of matrices of order m then there exist Williamson type matrices of order $n \mathrm{~m}$.

Proof. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right), D=\left(d_{i j}\right)$ be the Williamson type matrices of order n and $R_{1}, \ldots, R_{2 s}$ be the semi-regular s-set of matrices
of order m. Set $E=\left(a_{i j} R_{j+i-1}\right), F=\left(b_{i j} R_{n+j+i-1}\right), G=\left(c_{i j} R_{2 n+j+i-1}\right)$, $H=\left(d_{i j} R_{3 n+j+i-1}\right)$, where $i, j=1, \ldots, n$ and the subscripts $j+i-1$ are reduced modulo n. By the same reasoning as in the proof for Theorem 4 [7], E, F, G, H are Williamson type matrices of order $n m$.

Corollary 2 If n is the odd order of Williamson type matrices and $2 n-1$ is a prime power then there exist Williamson type matrices of order $n(2 n-1)^{2}$.

Proof. Since n is odd, $2 n-1 \equiv 1(\bmod 4)$. By Theorem 1 there exists a semiregular $2 n$-set of matrices of $(2 n-1)^{2}$. By Theorem 3 we have Williamson type matrices of order $n(2 n-1)^{2}$.

Corollary 3 (i) There exist Williamson type matrices of order $9^{k}\left(2 \cdot 9^{k}\right.$ 1) ${ }^{2}$ if $2 \cdot 9^{k}-1$ is a prime power, where k is a non-negative interger,
(ii) there exist Williamson type matrices of order $7 \cdot 3^{k}\left(14 \cdot 3^{k}-1\right)^{2}$ if $14 \cdot 3^{k}-1$ is a prime power, where k is a non-negative interger.

Proof. From the Index of [?], there exist Williamson type matrices of order of 9^{k} and $7 \cdot 3^{k}$, where $k=0,1, \ldots$ Using Corollary 2 , the corollary is established.

Theorem 4 If there exist a complex Hadamard matrix of order $2 c$ and a semi-regular $s(=2 c)$-set of matrices of order m then there exists a complex Hadamard matrix of order 2 cm .

Proof. Let $\left\{A_{1}, \ldots, A_{2 s}\right\}$ be the semi-regular $s(=2 c)$-set of matrices of order m and $C=X+i Y$ be the complex Hadamard matrix of order $2 c$, where both X and Y are $(1,-1)$ matrices satisfying $X \wedge Y=0, X X^{T}+Y Y^{T}=$ $2 c I_{2 c}, X Y^{T}=Y X^{T}$. Let $P=X+Y$ and $Q=X-Y$. Then both P and Q are $(1,-1)$ matrices of order $2 c$ and $P P^{T}+Q Q^{T}=4 c I_{2 c}, P Q^{T}=Q P^{T}$. Let $P=\left(p_{i j}\right)$ and $Q=\left(q_{i j}\right), i, j=1, \ldots, 2 c$. Set $E=\left(p_{i j} A_{i+j-1}\right)$ and $F=\left(q_{i j} A_{s+i+j-1}\right)$, where $i, j=1, \ldots, s$ and the subscripts $i+j-1$ are reduced modulo $s, 1, \ldots, s=2 c$. Clearly, both E and F are $(1,-1)$ matrices of order 2 cm , since both P and Q are $(1,-1)$ matrices of order $2 c$. We now prove $E E^{T}+F F^{T}=4 c m I_{2 c m}$. Write $E=\left[\begin{array}{c}E_{1} \\ E_{2} \\ \vdots \\ E_{n}\end{array}\right]$ and $F=\left[\begin{array}{c}F_{1} \\ F_{2} \\ \vdots \\ F_{n}\end{array}\right]$, where E_{i} and F_{i} are matrices of order $m \times s m$. Note

$$
E_{i} E_{i}^{T}+F_{i} F_{i}^{T}=\sum_{j=1}^{s}\left(p_{i j} p_{i j} A_{i+j-1} A_{i+j-1}^{T}+q_{i j} q_{i j} A_{s+i+j-1} A_{s+i+j-1}^{T}\right)
$$

$$
=\sum_{j=1}^{s}\left(A_{j} A_{j}^{T}+A_{j} A_{j}^{T}\right)=\sum_{j=1}^{2 s} A_{j} A_{j}^{T}=2 s m I_{m} .
$$

On the other hand, if $i \neq k$,

$$
\begin{gathered}
E_{i} E_{k}^{T}+F_{i} F_{k}^{T}=\sum_{j=1}^{s}\left(p_{i j} p_{k j} A_{i+j-1} A_{k+j-1}^{T}+q_{i j} q_{k j} A_{s+i+j-1} A_{s+k+j-1}^{T}\right) \\
=\sum_{j=1}^{s}\left(p_{i j} p_{k j}+q_{i j} q_{k j}\right) J_{m}=0 .
\end{gathered}
$$

Thus

$$
E E^{T}+F F^{T}=2 s m I_{s m}=4 c m I_{2 c m}
$$

We now prove $E F^{T}=F E^{T}$. Write $E F^{T}=\left(D_{i j}\right)$, where $D_{i j}$ is of order $m, i, j=1, \ldots, 2 c$. Note $D_{i j}=\sum_{k=1}^{2 c} p_{i k} q_{j k} A_{i+k-1} A_{s+j+k-1}^{T}$. For $i \neq j$, $D_{i j}=\sum_{k=1}^{2 c} p_{i k} q_{j k} J_{m}$. Since $P Q^{T}=Q P^{T}, D_{i j}^{T}=D_{j i}, i \neq j$. Note $D_{i i}=$ $\sum_{k=1}^{2 c} p_{i k} q_{i k} A_{i+k-1} A_{s+i+k-1}^{T}$. From (8), Definition 1, $D_{i i}^{T}=D_{i i}$. Thus $E F^{T}$ is symmetric i.e. $E F^{T}=F E^{T}$. Finally, Set $U=\frac{1}{2}(E+F)$ and $V=$ $\frac{1}{2}(E-F)$. Note both E and F are $(1,-1)$ matrices of order 2 cm then both U and V are $(1,-1,0)$ matrices of order 2 cm satisfying $U \wedge V=0$, $U U^{T}+V V^{T}=\frac{1}{2}\left(E E^{T}+F F^{T}\right)=2 c m I_{2 c m}$. Since $E F^{T}=F E^{T}, U V^{T}=$ $V U^{T}$. Thus $U+i V$ is a complex Hadamard matrix of order 2 cm .

Corollary 4 If both $p \equiv 1(\bmod 4)$ and $p^{j}(p+1)-1$ are prime powers then there exists a complex Hadamard matrix of order $p^{j}(p+1)\left(p^{j}(p+1)-1\right)^{2}$, where j is a positive integer.

Proof. Obviously, $p^{j}(p+1)-1 \equiv 1(\bmod 4)$. By Theorem 1 there exists a regular $p^{j}(p+1)$-set of matrices of order $\left(p^{j}(p+1)-1\right)^{2}$. From Corollary 18, [4], there exists a complex Hadamard matrix of order $p^{j}(p+1)$. Using Theorem 3 , we have a $p^{i}(p+1)\left(p^{j}(p+1)-1\right)^{2}$.

4 Product and New Construction of Williamson type Matrices with Additional Properties

Part (iii) of the next theorem was known to Turyn [11] but we put here for completeness.

Theorem 5 (i) If there exist nice Williamson type matrices of order n and m then there exist Williamson type matrices of order $n m$,
(ii) if there exist nice Williamson type matrices of order n and special Williamson matrices of order m then there exist nice Williamson type matrices of order $n m$,
(iii) if there exist special Williamson type matrices of order n and m then there exist special Williamson type matrices of order nm.

Proof. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be nice Williamson type matrices of order n and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be nice Williamson type matrices of order m. Set

$$
\begin{aligned}
& Z_{1}=\frac{1}{2}\left(X_{1}+X_{2}\right) \times Y_{1}+\frac{1}{2}\left(X_{1}-X_{2}\right) \times Y_{2}, Z_{2}=\frac{1}{2}\left(X_{1}+X_{2}\right) \times Y_{3}+\frac{1}{2}\left(X_{1}-X_{2}\right) \times Y_{4} \\
& Z_{3}=\frac{1}{2}\left(X_{3}+X_{4}\right) \times Y_{1}+\frac{1}{2}\left(X_{3}-X_{4}\right) \times Y_{2}, Z_{4}=\frac{1}{2}\left(X_{3}+X_{4}\right) \times Y_{3}+\frac{1}{2}\left(X_{3}-X_{4}\right) \times Y_{4}
\end{aligned}
$$

Then $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are $(1,-1)$ matrices of order $n m$. Note

$$
\begin{aligned}
Z_{1} Z_{1}^{T} & =\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{1} Y_{1}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{2} Y_{2}^{T} \\
& +\frac{1}{2}\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{1} Y_{2}^{T} \\
Z_{2} Z_{2}^{T} & =\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{3} Y_{3}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{4} Y_{4}^{T} \\
& +\frac{1}{2}\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{3} Y_{4}^{T} \\
Z_{3} Z_{3}^{T} & =\frac{1}{4}\left(X_{3}+X_{4}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{1} Y_{1}^{T}+\frac{1}{4}\left(X_{3}-X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{2} Y_{2}^{T} \\
& +\frac{1}{2}\left(X_{3}+X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{2}^{T} \\
Z_{4} Z_{4}^{T} & =\frac{1}{4}\left(X_{3}+X_{4}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{3} Y_{3}^{T}+\frac{1}{4}\left(X_{3}-X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{4} Y_{4}^{T} \\
& +\frac{1}{2}\left(X_{3}+X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{3} Y_{4}^{T}
\end{aligned}
$$

It is easy to check that

$$
\begin{gathered}
Z_{1} Z_{1}^{T}+Z_{2} Z_{2}^{T}+Z_{3} Z_{3}^{T}+Z_{4} Z_{4}^{T} \\
=\frac{1}{4}\left(X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}\right) \times\left(Y_{1} Y_{1}^{T}+Y_{2} Y_{2}^{T}+Y_{3} Y_{3}^{T}+Y_{4} Y_{4}^{T}\right)=4 n m I_{n m}
\end{gathered}
$$

Obviously, $Z_{i} Z_{j}^{T}=Z_{j} Z_{i}^{T}$, for $i, j=1,2,3,4$. Thus, $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are Williamson type matrices of order $n \mathrm{~m}$.
In particular, let $X_{1}, X_{2}, X_{3}, X_{4}$ be nice Williamson type matrices of order n and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be special Williamson type matrices of order m. Note

$$
\begin{aligned}
& Z_{1} Z_{2}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{1} Y_{3}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{2} Y_{4}^{T} \\
& \quad+\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{1} Y_{4}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{2} Y_{3}^{T}
\end{aligned}
$$

where

$$
\begin{gathered}
\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{1} Y_{4}^{T}+\left(X_{1}-X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{2} Y_{3}^{T} \\
=\left(X_{1} X_{1}^{T}-X_{2} X_{2}^{T}\right) \times\left(Y_{1} Y_{4}^{T}+Y_{2} Y_{3}^{T}\right)=0 .
\end{gathered}
$$

Then
$Z_{1} Z_{2}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{1} Y_{3}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{2} Y_{4}^{T}$.
Similarly,
$Z_{3} Z_{4}^{T}=\frac{1}{4}\left(X_{3}+X_{4}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{1} Y_{3}^{T}+\frac{1}{4}\left(X_{3}-X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{2} Y_{4}^{T}$.
Hence
$Z_{1} Z_{2}^{T}+Z_{3} Z_{4}^{T}=\frac{1}{4}\left(X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}\right) \times\left(Y_{1} Y_{3}^{T}+Y_{2} Y_{4}^{T}\right)=0$.
We have now proved $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are nice Williamson type matrices of order $n m$.
Further suppose $X_{1}, X_{2}, X_{3}, X_{4}$ are special Williamson type matrices of order n and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are special Williamson type matrices of order m.

$$
\begin{aligned}
& Z_{1} Z_{3}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{1} Y_{1}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{2} Y_{2}^{T} \\
& \quad+\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{2}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{2} Y_{1}^{T}
\end{aligned}
$$

Note

$$
\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)^{T}=\left(X_{1}-X_{2}\right)\left(X_{3}-X_{4}\right)^{T}=0
$$

then
$Z_{1} Z_{3}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{2}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{2} Y_{1}^{T}$.
Similarly,

$$
Z_{2} Z_{4}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{3} Y_{4}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{4} Y_{3}^{T} .
$$

Clearly, $Z_{1} Z_{3}^{T}+Z_{2} Z_{4}^{T}=0$. Finally, by the same reasoning for $Z_{1} Z_{3}^{T}$ and $Z_{2} Z_{4}^{T}$, we have
$Z_{1} Z_{4}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{4}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{2} Y_{3}^{T}$
and

$$
Z_{2} Z_{3}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{3} Y_{2}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{4} Y_{1}^{T}
$$

Clearly $Z_{1} Z_{4}^{T}+Z_{2} Z_{3}^{T}=0$. Thus $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are special Williamson type matrices of order $n m$.

Let $q \equiv 1(\bmod 4)$ be a prime power and $n=\frac{1}{2}(1+q)$. By Theorem 1 there exists a semi-regular $2 n=(p+1)$-set of matrices of order p^{2}, i.e. $4 n(1$, -1)-matrices $Q_{1}, \ldots, Q_{4 n}$ satisfying

$$
Q_{i} Q_{j}^{T}=J_{p^{2}}, \text { if } i-j \neq \pm 2 n, 0, Q_{i} Q_{i+2 n}^{T}=Q_{i+2 n} Q_{i}^{T}
$$

and

$$
\sum_{j=1}^{4 n} Q_{j} Q_{j}^{T}=4 q^{2}(1+p) I_{p^{2}}
$$

Suppose there exist Williamson type matrices of order n, say $A=\left(a_{i j}\right)$, $B=\left(b_{i j}\right), C=\left(b_{i j}\right), D=\left(d_{i j}\right)$. Set
$E=\left(a_{i j} Q_{1+j-i}\right), F=\left(b_{i j} Q_{n+1+j-i}\right), G=\left(c_{i j} Q_{2 n+1+j-i}\right), H=\left(d_{i j} Q_{3 n+1+j-i}\right)$,
where $1+j-i$ is the reduced modulo n to the residue class $\{1, \ldots, n\}$. By the same reasoning as in the proof of Theorem 4 [7], E, F, G, H are Williamson type matrices of order $n q^{2}$. Further suppose $A B^{T}+C D^{T}=0$ i.e. A, B, C, D are nice Williamson matrices of order n. Write $E F^{T}=\left(X_{i j}\right)$, $G H^{T}=\left(Y_{i j}\right)$, where $X_{i j}, Y_{i j}$ are of order $q^{2}, i, j=1, \ldots n$. Note

$$
X_{i j}=\sum_{k=1}^{n} a_{i k} Q_{1+k-i} b_{j k} Q_{n+1+k-j}^{T}=\sum_{k=1}^{n} a_{i k} b_{j k} J_{q^{2}},
$$

since $(n+1+k-j)-(1+k-i) \neq 0,2 n$. Similarly,

$$
Y_{i j}=\sum_{k=1}^{n} c_{i k} Q_{2 n+1+k-i} b_{j k} Q_{3 n+1+k-j}^{T}=\sum_{k=1}^{n} c_{i k} d_{j k} J_{q_{2}},
$$

since $(3 n+1+k-j)-(2 n+1+k-i) \neq 0,2 n$. Note $A B^{T}+C D^{T}=0$, then $X_{i j}+Y_{i j}=0$. Thus $E F^{T}+G H^{T}=0$. Similarly, if $A D^{T}+B C^{T}=0$ then $E H^{T}+F G^{T}=0$. Note if n is odd, then $2 n-1 \equiv 1(\bmod 4)$. Hence we have proved

Theorem 6 If there exist nice (perfect) Williamson type matrices of order n, where n is odd and $2 n-1$ is a prime power then there exist nice (perfect) Williamson type matrices of order $n(2 n-1)^{2}$.

Corollary 5 If there exist nice Williamson type matrices of order n and m then there exist Williamson type matrices of order $n m N$, where N was defined in Notation 1.

Proof. From [?], there exist special Williamson type matrices of order N. By Theorem 5 there exist nice Williamson type matrices of order $m N$ hence Williamson type matrices of order $n m N$.

Corollary 6 Let N, N_{1} and N_{2} be three products of the kind defined by Notation 1. If $2 N-1$ is a prime power then there exist
(i) perfect Williamson type matrices of order $N(2 N-1)^{2}$,
(ii) nice Williamson type matrices of order $N(2 N-1)^{2} N_{1}$,
(iii) Williamson type matrices of order $N N_{1} N_{2}(2 N-1)^{2}\left(2 N_{2}-1\right)^{2}$, if $2 N_{1}-$ 1 is a prime power.

Proof. (i), (ii) and (iii) hold by Theorem 6, Theorem 5 and Corollary 5 respectively.

By Corollary 6 there exist perfect Williamson type matrices of order $9 \cdot 17^{2}$, nice Williamson type matrices of order $9 \cdot 17^{2} N$ and Williamson type matrices of order $9^{2} \cdot 17^{4} N$.

5 Tight Williamson-like Matrices and Application

Some tight Williamson-like matrices were found by Xia [18]. For example, from [16], we construct cyclic tight Williamson-like matrices of order 5 and 13 with first rows

$$
\begin{aligned}
& +-++-,++-++,--++-,++++- \text { and } \\
& ++---+--++-++,--+++-+++++-+, \\
& +--+-+++---+-,+-++++++--++- \text { respectively. }
\end{aligned}
$$

From [16] we construct type 1 tight Williamson-like matrices of order 25. Any element in the abelian group $Z_{5} \oplus Z_{5}$ can be expressed as (a, b), where $a, b \in Z_{5}$, and the additive addition in $Z_{5} \oplus Z_{5}$ can be defined as $(a, b)+(c, d)=(a+b, c+d)$. Set

$$
\begin{aligned}
& S_{1}=\{(0,0),(0,1),(1,2),(3,3),(0,3),(4,4),(3,4),(2,0),(2,2),(1,0),(1,4),(0,2),(3,0)\}, \\
& S_{2}=\{(0,1),(4,0),(3,1),(4,4),(0,4),(4,2),(1,0),(1,1),(3,2)\}, \\
& S_{3}=\{(1,2),(3,3),(1,3),(4,1),(3,4),(2,0),(2,3),(4,3),(1,4),(0,2),(2,4),(2,1)\}, \\
& S_{4}=\{(3,3),(4,1),(0,3),(2,0),(4,3),(2,2),(0,2),(2,1),(3,0)\} .
\end{aligned}
$$

Hence the type $1(1,-1)$ incidence matrices of $S_{1}, S_{2}, S_{3}, S_{4}$ form the tight Williamson-like matrices of order 25.
Tight Williamson-like matrices are not Williamson type matrices but they are Goethals-Seidel or Wallis-Whiteman matrices (see [10]) with cross correlation types of properties (see Definition 4). Besides forming Hadamard matrices of Goethals-Seidel or Wallis-Whiteman type (see [10]), tight Williamsonlike matrices can be used to form Hadamard matrices in the special array given in the next lemma.

Lemma 1 If there exist tight Williamson-like matrices of order n then there exists an Hadamard matrix of order $4 n$.

Proof. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the tight Williamson-like matrices of order n. Set

$$
H=\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & A_{4} \\
A_{2} & A_{1} & A_{4} & A_{3} \\
A_{3}^{T} & A_{4}^{T} & -A_{1}^{T} & -A_{2}^{T} \\
A_{4}^{T} & A_{3}^{T} & -A_{2}^{T} & -A_{1}^{T}
\end{array}\right]
$$

Hence H is an Hadamard matrices with 4×4 type 1 blocks.

Lemma 2 If there exist tight Williamson-like matrices of order n and T matrices of order then there exists an Hadamard matrix of order 4tn.

Proof. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the tight Williamson-like matrices of order n. Let $T_{1}, T_{2}, T_{3}, T_{4}$ be the T-matrices of order t. Write

$$
\begin{aligned}
& E_{1}=T_{1} \times A_{1}+T_{2} \times A_{2}+T_{3} \times A_{3}^{T}+T_{4} \times A_{4}^{T}, \\
& E_{2}=T_{1} \times A_{2}+T_{2} \times A_{1}+T_{3} \times A_{4}^{T}+T_{4} \times A_{3}^{T}, \\
& E_{3}=T_{1} \times A_{3}+T_{2} \times A_{4}-T_{3} \times A_{1}^{T}-T_{2} \times A_{2}^{T}, \\
& E_{4}=T_{1} \times A_{4}+T_{2} \times A_{3}-T_{3} \times A_{2}^{T}-T_{1} \times A_{2}^{T} .
\end{aligned}
$$

Clearly, each E_{j} is a $(1,-1)$-matrix. It is easy to check that $\sum_{j=1}^{4} E_{j} E_{j}^{T}=$ $4 t n I_{t n}$. Note the E_{j} are of type 1, hence we can construct an Hadamard matrix of order $4 t n$ by using Theorem 3 [10].

Lemma 3 There exist two disjoint $W(2 n, n)$ if there exist tight Williamsonlike matrices of order n.

Proof. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the tight Williamson-like matrices of order n. Set $P=\left[\begin{array}{cc}A+B & C+D \\ C^{T}+D^{T} & -A^{T}-B^{T}\end{array}\right]$ and $Q=\left[\begin{array}{cc}A-B & C-D \\ C^{T}-D^{T} & -A^{T}+B^{T}\end{array}\right]$.
Then P and Q are the required two disjoint $W(2 n, n)$.
By Corollary 2.11 [3], a $W(2 n, n)$, where n is odd, only exists when n is a sum of two squares. Hence, as poimted out in [17] we have

Lemma 4 If there exist tight Williamson-like matrices of order n, odd, then n is a sum of two squares.

Two disjoint $W(2 n, n)$ are often used for constructing Hadamard matrices (see Craigen [2], [?]). We now construct new tight Williamson-like matrices from those known.

Lemma 5 (Xia [18]) If there exist tight Williamson-like matrices of order n and special Williamson matrices of order m then there exist tight Williamson-like matrices of order nm.

Lemma 6 If there exist tight Williamson-like matrices of order n (odd) and $2 n-1$ is a prime power then there exist tight Williamson-like matrices of order $n(2 n-1)^{2}$.

Proof. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right), D=\left(d_{i j}\right)$ be the tight Williamson-like matrices of order n. Note $2 n-1 \equiv 1(\bmod 4)$, since n is odd. By Theorem 1 there exists a semi-regular $(2 n)$-set of matrices of order $(2 n-1)^{2}$, say $R_{1}, \ldots, R_{4 n}$. Set $E=\left(a_{i j} R_{j+i-1}\right), F=\left(b_{i j} R_{n+j+i-1}\right)$, $G=\left(c_{i j} R_{2 n+j+i-1}\right), H=\left(d_{i j} R_{3 n+j+i-1}\right)$, where $i, j=1, \ldots, n$ and the subscripts $j+i-1$ are reduced modulo n. By the same reasoning as in the proof for Theorem 4 [7], E, F, G, H satisfy

$$
E E^{T}+F F^{T}+G G^{T}+H H^{T}=4 n(2 n-1)^{2} I_{n(2 n-1)^{2}} .
$$

On the other hand,
$E F^{T}+F E^{T}+G H^{T}+H G^{T}=\left(A B^{T}+B A^{T}+C D^{T}+D C^{T}\right) \times J_{(2 n-1)^{2}}=0$.
Thus E, F, G, H are tight Williamson-like matrices of order $n(2 n-1)^{2}$.

Lemma 7 If there exist tight Williamson-like matrices of order n and $4 n-1$ is a prime power then there exist tight Williamson-like matrices of order $n(4 n-1)^{2}$.

Proof. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right), D=\left(d_{i j}\right)$ be the tight Williamson-like matrices of order n. Note $4 n-1 \equiv 3(\bmod 4)$. By Theorem 1 there exists a regular $(2 n)$-set of matrices of order $(4 n-1)^{2}$, say $A_{1}, \ldots, A_{4 n}$. Set $E=\left(a_{i j} A_{j+i-1}\right), F=\left(b_{i j} A_{n+j+i-1}\right), G=\left(c_{i j} A_{j+i-1}^{T}\right)$, $H=\left(d_{i j} A_{n+j+i-1}^{T}\right)$, where $i, j=1, \ldots, n$ and the subscripts $j+i-1$ are reduced modulo n. By the same reasoning as in the proof for Theorem 4 [7], E, F, G, H satisfy

$$
E E^{T}+F F^{T}+G G^{T}+H H^{T}=4 n(4 n-1)^{2} I_{n(4 n-1)^{2}} .
$$

On the other hand,
$E F^{T}+F E^{T}+G H^{T}+H G^{T}=\left(A B^{T}+B A^{T}+C D^{T}+D C^{T}\right) \times J_{(4 n-1)^{2}}=0$.
Thus E, F, G, H are tight Williamson-like matrices of order $n(4 n-1)^{2}$.

Corollary 7 There exist tight Williamson-like matrices of order $5 N, 13 N$, $25 N, 13 \cdot 5^{4} N, 5 \cdot 19^{2} N$.

Proof. As the above, there exist tight Williamson-like matrices of order $5,13,25$. By Lemma 6 there exist tight Williamson-like matrices of order $13 \cdot 5^{4}$. By Lemma 7 there exist tight Williamson-like matrices of order $5 \cdot 19^{2}$. Using Lemma 5 , we have established the corollary.

Corollary 8 There exist Hadamard matrices of orders $4 n$, where $n=5 t N$, $13 t N, 25 t N, 13 \cdot 5^{4} t N, 5 \cdot 19^{2} t N$, where t is the order of T-matrices.

Proof. Using Corollary 7 and Lemma 2.

Corollary 9 There exist two disjoint $W(2 n, n)$, where $n=5 N, 13 N, 25 N$, $13 \cdot 5^{4} N, 5 \cdot 19^{2} N$.

Proof. Using Corollary 7 and Lemma 3.
The following table shows the existence of tight Williamson-like matrices of odd order <60. Tight Williamson-like matrices for odd orders, n, can only exist for $n \equiv 1(\bmod 4)$, where the decomposition of n into prime powers contains no factor $p \equiv 3(\bmod 4)$ raised to an odd power. Hence the following list contains only those n which exist or could possibly exist.

```
order construction
    [18], see Section 5
9t [11], since special Williamson type are tight Williamson-like matrices
13 [18], see Section 5
17 unknown
5 3
```

Acknowlegement: I wish to thank Professor Jennifer Seberry for her help and encouragement.

References

[1] Baumert, L. D., and Hall, Jr., M. Hadamard matrices of Williamson type. Math. Comp. 19 (1965), 442-447.
[2] Craigen, R. Constructing Hadamard matrices with orthogonal pairs. Ars Combinatoria 33 (1992), 57-64.
[3] Geramita, A. V., and Seberry, J. Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel, 1979.
[4] Kharaghani, H., and Seberry, J. Regular complex Hadamard matrices. Congress. Num. 24 (1990), 149-151.
[5] Miyamoto, M. A construction for Hadamard matrices. Journal of Combinatorial Theory Ser. A, 57 (1991), 86-108.
[6] Seberry, J. Some matrices of Williamson-type. Utilitas Math. 4 (1973), 147-154.
[7] Seberry, J. A new construction for Williamson-type matrices. Graphs and Combinatorics $2(1986), 81-87$.
[8] Seberry, J., and Whiteman, A. L. New Hadamard matrices and conference matrices obtained via Mathon's construction. Graphs and Combinatorics 4 (1988), 355-377.
[9] Seberry, J., and Yamada, M. On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using Mstructures. JCMCC 7 (1990), 97-137.
[10] Seberry-Wallis, J. On Hadamard matrices. Journal of Combinatorial Theory Ser. A, 18 (1975), 149-164.
[11] Turyn, R. J. A special class of Williamson matrices and difference sets. Journal of Combinatorial Theory Ser. A, 36 (1984), 111-115.
[12] Wallis, J. S. Construction of Williamson type matrices. Linear and Multilinear Algebra 3 (1975), 197-207.
[13] Wallis, W. D., Street, A. P., and Wallis, J. S. Combinatorics: Room Squares, sum-free sets, Hadamard Matrices, vol. 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[14] Whiteman, A. L. An infinite family of Hadamard matrices of Williamson type. Journal of Combinatorial Theory Ser. A. 14 (1973), 334-340.
[15] Whiteman, A. L. Hadamard matrices of Williamson type. J. Austral. Math. Soc. 21 (1976), 481-486.
[16] XIA, M. Y. Some supplementary difference sets and hadamard matrices. Acta. Math. Sci. 4 (1) (1984), 81-92.
[17] XIA, M. Y. On construction of some supplementary difference sets and others. Journal of Central China Normal University (Natural Sciences), Monograph of Mathematics No. 1 (1989), 204-208.
[18] Xia, M. Y. Hadamard matrices. Combinatorial designs and applications, Lecture Notes in Pure and Appl. Math., Dekker, New York 126 (1990), 179-181.
[19] Yamada, M. On the Williamson matrices of Turyn's type and and type j. Comment. Math. Univ. San Pauli 31 (1982), 71-73.
[20] Yamamoto, K. On a generalized Williamson equation. Colloq. Math. Janos Bolyai 37 (1981), 839-850.
[21] Yamamoto, K., and Yamada, M. Williamson matrices of Turyn's type and Gauss sums. J. Math. Soc. Japan 37 (1985), 703-717.

