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2 Cryptographic Criteria of Boolean FunctionsWe consider functions from Vn to GF (2) (or simply functions on Vn), Vn isthe vector space of n tuples of elements from GF (2). The truth table of afunction f on Vn is a (0; 1)-sequence de�ned by (f(�0); f(�1); : : : ; f(�2n�1)),and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f(�0) , (�1)f(�1),: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 =(1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix of order 2n de�ned by M =((�1)f(�i��j)) where � denotes the addition in GF (2). f is said to be balancedif its truth table contains an equal number of ones and zeros.Given two sequences ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their component-wise product is de�ned by ~a �~b = (a1b1; � � � ; ambm). In particular, if m = 2n and~a, ~b are the sequences of functions f and g on Vn respectively, then ~a � ~b is thesequence of f � g where � denotes the addition in GF (2).Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two sequences or vectors,the scalar product of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of thecomponent-wisemultiplications. In particular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multiplication are over GF (2), andwhen ~a and ~b are (1;�1)-sequences, h~a;~bi =Pmi=1 aibi, where the addition andmultiplication are over the reals.An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � c, where aj; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f iscalled a linear function if c = 0.A (1;�1)-matrix N of order n is called a Hadamard matrix if NNT = nIn,where NT is the transpose of N and In is the identity matrix of order n. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing recursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :Let `i, 0 � i � 2n�1, be the i row of Hn. It is known that `i is the sequenceof a linear function 'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where�i is the ith vector in Vn according to the ascending alphabetical order.The Hamming weight of a (0; 1)-sequence �, denoted by W (�), is the numberof ones in the sequence. Given two functions f and g on Vn, the Hammingdistance d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x) � g(x), where x = (x1; : : : ; xn).De�nition 1. The nonlinearity of a function f on Vn, denoted by Nf , is theminimal Hamming distance between f and all a�ne functions on Vn, i.e., Nf =mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�ne functions onVn.The following characterisations of nonlinearity will be useful (for a proof seefor instance [2]).



Lemma 1. The nonlinearity of f on Vn can be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequences of linear functions on Vn.De�nition 2. Let f be a function on Vn. For a vector � 2 Vn, denote by �(�)the sequence of f(x��). Thus �(0) is the sequence of f itself and �(0) � �(�) isthe sequence of f(x) � f(x � �). Set�f (�) = h�(0); �(�)i;the scalar product of �(0) and �(�). �(�) is called the auto-correlation of f witha shift �. Write �M = maxfj�(�)jj� 2 Vn; � 6= 0gWe omit the subscript of �f (�) if no confusion occurs.De�nition 3. Let f be a function on Vn. We say that f satis�es the propagationcriterion with respect to � if f(x) � f(x � �) is a balanced function, wherex = (x1; : : : ; xn) and � is a vector in Vn. Furthermore f is said to satisfy thepropagation criterion of degree k if it satis�es the propagation criterion withrespect to every non-zero vector � whose Hamming weight is not larger than k(see [3]).The strict avalanche criterion (SAC) [5] is the same as the propagation cri-terion of degree one.Obviously,�(�) = 0 if and only if f(x)�f(x��) is balanced, i.e., f satis�esthe propagation criterion with respect to �.De�nition 4. Let f be a function on Vn. � 2 Vn is called a linear structure off if j�(�)j = 2n (i.e., f(x) � f(x � �) is a constant).For any function f , �(�0) = 2n, where �0 is the zero vector on Vn. It iseasy to verify that the set of all linear structures of a function f form a linearsubspace of Vn, whose dimension is called the linearity of f . It is also well-knownthat if f has non-zero linear structures, then there exists a nonsingular n � nmatrix B over GF (2) such that f(xB) = g(y) � h(z), where x = (y; z), y 2 Vp,z 2 Vq , g is a function on Vp that has no non-zero linear structures, and h is ana�ne function on Vq .The following lemma is the re-statement of a relation proved in Section 2of [1].Lemma 2. For every function f on Vn, we have(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2):where � denotes the sequence of f and `i is the ith row of Hn, i = 0; 1; : : :; 2n�1.The balance and the nonlinearity are necessary in most cases. The propaga-tion or especially the SAC, is an important cryptographic criterion.



3 Introduction to <Notation 1. Let f be a function on Vn. Set <f = f� j �(�) 6= 0; � 2 Vng,�M = maxfj�(�)jj� 2 Vn; � 6= 0g.We simply write <f as < if no confusion occurs. It is easy to verify that#< and �M are invariant under any nonsingular linear transformation on thevariables, where # denotes the cardinal number of a set.#< and the distribution of < reects the propagation characteristics, while�M forecasts the avalanche property of the function. Therefore information on< and �M is useful in determining important cryptographic characteristics off . Usually, small #< and �M are desirable.De�nition 5. A function f on Vn is called a bent function [4] if h�; `ii2 = 2nfor every i = 0; 1; : : : ; 2n � 1, where `i is the ith row of Hn.A bent function on Vn exists only when n is even, and it achieves the highestpossible nonlinearity 2n�1 � 2 12n�1. The algebraic degree of bent functions onVn is at most 12n [4]. From [4] and Parseval's equation, we have the following:Theorem 1. Let f be a function on Vn. Then the following statements areequivalent: (i) f is bent, (ii) #< = 1, (iii) �M = 0, (iv) the nonlinearity of f ,Nf , satis�es Nf = 2n�1 � 2 12n�1, (v) the matrix of f is an Hadamard matrix.The following result is called the linear dependence theorem that can be foundin [7]Theorem 2. Let f be a function on Vn that satis�es the propagation criterionwith respect to all but k + 1 vectors 0, �1; : : : ; �k in Vn, where k � 2. Then�1; : : : ; �k are linearly dependent, namely, there exist k constants c1; : : : ; ck 2GF (2), not all of which are zeros, such that c1�1 � � � � � ck�k = 0.Note that n+ 1 non-zero vectors in Vn must be linearly dependent. Hence if#< � n+2 (i.e., #(<�f0g) � n+1) then Theorem 2 is trivial. For this reason,we improve Theorem 2 in this paper. We prove two properties of <: the stronglinear dependence and the unbiased distribution of <.4 The Strong Linear Dependence TheoremNote the ith (i.e., the �ith) row ofHn, where �i 2 Vn is the binary representationof integer j, j = 0; 1; : : : ; 2n�1, is the sequence of linear function 'i(x) = h�i; xi.Lemma 4 of [7] can be restated as follows:Lemma 3. Let Q be the 2n � q that consists of the �j1th, : : : , the �jqth rowsof Hn, where each �j 2 Vn is the binary representation of integer j, 0 � j �2n � 1. If �j1 ; : : : ; �jq are linearly independent then each (a1; : : : ; aq)T , whereeach aj = �1, appears as a column in Q precisely 2n�q times.



The following Lemma can be found in [7].Lemma 4. Let n � 3 be a positive integer and 2n =P4j=1 a2j where a1 � a2 �a3 � a4 � 0 and each aj is an integer. We have the following statements:(i) if n is add, then a21 = a22 = 2n�1, a3 = a4 = 0,(ii) if n is even, then a21 = 2n, a2 = a3 = a4 = 0 or a21 = a22 = a23 = a24 = 2n�2.Lemma 5. For every function f on Vn, we have2(�(�0);�(�2); : : : ;�(�2n�2))Hn�1= (h�; `0i2 + h�; `1i2; h�; `2i2 + h�; `3i2; : : : ; h�; `2n�2i2 + h�; `2n�1i2)where � denotes the sequence of f and `i is the ith row of Hn, i = 0; 1; : : :; 2n�1.Proof. From Lemma 2,2n(�(�0);�(�1); : : : ;�(�2n�1)) = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2)Hn (1)Comparing the 0th, the 2nd, : : :, the (2n�2)th terms in the two sides of equality(1), we obtain2n(�(�0);�(�2); : : : ;�(�2n�2))= (h�; `0i2 + h�; `1i2; (h�; `2i2 + h�; `3i2; : : : ; h�; `2n�2i2 + h�; `2n�1i2)Hn�1This proves the lemma. utThe following theorem is called the strong linearly dependence theorem whichis an improvement on Theorem 2 (the linearly dependence theorem).Theorem 3. Let f be a function on Vn, and W be a (n� 1)-dimensional linearsubspace satisfying <\W = f0; �1; : : : ; �kg (k � 3). Then �1; : : : ; �k are linearlydependent, namely, there exist k constants c1; : : : ; ck 2 GF (2) with (c1; : : : ; ck) 6=(0; : : : ; 0), such that c1�1 � � � � � ck�k = 0.Proof. The theorem is obviously true if k > n. Now we prove the theoremfor k � n. We only need to prove the lemma in the special case when W iscomposed of �0; �2; : : : ; �2n�2, where �2j 2 Vn is the binary representation ofan even number 2j, j = 0; 1; : : :; 2n�1� 1. In other words, W is composed of allthe vectors in Vn, that can be expressed in the form (a1; : : : ; an�1; 0), where eachaj 2 GF (2). In the general case, we can use a nonsingular linear transformationon the variables so as to change W into the special case. Let � be the sequenceof f .Since �j 2 W , j = 1; : : : ; k, �j can be expressed as �j = (j ; 0) wherej 2 Vn�1, j = 1; : : : ; k, and 0 2 GF (2).



Let P be a (k + 1) � 2n�1 matrix composed of the 0th, the 1th, : : :, thekth rows of Hn�1. Set a2j = h�; `ji2, j = 0; 1; : : : ; 2n� 1. Note that �(�) = 0 if� 62 f0; �1; : : : ; �kg. Hence the equality in Lemma 5 can be specialized as2(�(0);�(�1); : : : ;�(�k))P = (a20 + a21; a22 + a23; : : : ; a22n�2 + a22n�1) (2)where �(0) is identical to �(�0) where �0 = 0.Write P = (pij), i = 0; 1; : : :k, j = 0; 1; : : : ; 2n�1� 1. As the top row of P is(1; 1; : : :; 1), from (2),2(�(0) + kXi=1 pij�(�i)) = a22j + a22j+1 (3)j = 0; 1; : : :; 2n�1 � 1. Let P � be the submatrix of P obtained by removing thetop row from P .We now prove the theorem by contradiction. Suppose k vectors in Vn, �1,: : : , �k, are linearly independent. Hence k vectors in Vn�1, 1; : : : ; k, are alsolinearly independent and hence k � n� 1.Applying Lemma 3 to matrix P �, we conclude that each k-dimensional(1;�1)-vector appears in P �, as a column vector of P � precisely 2n�1�k times.Thus for each �xed j there exists a number j0, 0 � j0 � 2n�1 � 1, such that(p1j0; : : : ; pkj0) = �(p1j; : : : ; pkj) and hence2(�(0)� kXi=1 pij0�(�i)) = a2j0 + a22j0+1 (4)Adding (3) and (4) together, we have 4�(0) = a2j + a22j+1 + a2j0 + a22j0+1.Hence a2j + a22j+1 + a2j0 + a22j0+1 = 2n+2. There are two cases to be considered:even n and odd n.Case 1: n is odd. By using Lemma 4,fa2j ; a22j+1; a2j0 ; a22j0+1g = f2n+1; 2n+1; 0; 0g; j = 0; 1; : : : ; 2n�1 (5)Hence from (3), we have �(0) +Pki=1 pij�(�i) = 2n+1; 2n; 0 and hencekXi=1 pij�(�i) = 2n; 0;�2n; j = 0; 1; : : : ; 2n � 1 (6)For each �xed j, rewrite (6) asp1j�(�1) + kXi=2 pij�(�i) = 2n; 0;�2n (7)By using Lemma 3, there exists a number j1, 0 � j1 � 2n�1 � 1, such that(p1j1; p2j1; : : : ; pkji) = (p1j;�p2j; : : : ;�pkj).



Hence p1j1�(�1) � kXi=2 pij1�(�i) = 2n; 0;�2n (8)Adding (7) and (8) together, we havep1j�(�1) = �2n;�2n�1; 0Since �(�1) 6= 0, we conclude �(�1) = �2n;�2n�1. By the same reasoning wecan prove �(�j) = �2n;�2n�1; j = 1; 2; : : : ; k (9)Thus we can write(�(�1); : : : ;�(�k)) = 2n�1(b1; : : : ; bk) (10)where each bj = �1;�2. By using Lemma 3, there exists a number s, 0 � s �2n�1 � 1, such that (p1s; : : : ; pks) = ( b1jb1j ; : : : ; bkjbjj ): (11)Due to (10) and (11),kXi=1 pis�(�i) = kXi=1 bijbij�(�i) = kXi=1 b2ijbij2n�1 = 2n�1 kXi=1 jbij � k2n�1: (12)Since k � 3, (12) contradicts (6).Case 2: n is even. By using Lemma 4,fa2j ; a22j+1; a2j0 ; a22j0+1g = f2n+2; 0; 0; 0g orfa2j ; a22j+1; a2j0 ; a22j0+1g = f2n; 2n; 2n; 2ng; j = 0; 1; : : : ; 2n�1 (13)Hence from (3), we have �(0) +Pki=1 pij�(�i) = 2n+1; 2n; 0, and hencekXi=1 pij�(�i) = 2n; 0;�2nRepeating the same deduction as in Case 1, we obtain a contradiction inCase 2.SummarizingCases 1 and 2, we conclude that the assumption that �1; : : : ; �kare linearly independent is wrong. This proves the theorem. utTheorem 3 shows that < is subject to crucial restrictions. We now compareTheorem 3 with Theorem 2. Since n+ 1 non-zero vectors in Vn must be linearlydependent, Theorem 2 is trivial when #< � n + 2 (i.e., #(< � f0g) � n + 1).In contrast, in Theorem 3 the linear dependence of vectors takes place in each< \W not only in <.We notice that there exist n� 1 (n� 1)-dimensional linear subspaces. HenceTheorem 3 is more profound than Theorem 2.



5 The Unbiased Distribution of <In this section we focus on the distribution of < for the functions on Vn, whosenonlinearity does not take the special value 2n�1 � 2 12 (n�1) or 2n�1 � 2 12n or2n�1 � 2 12n�1.The next result is from [6] (Theorem 18).Lemma 6. Let f be a function on Vn (n � 2), � be the sequence of f , and p isan integer, 2 � p � n. If h�; `ji � 0 (mod 2n�p+2), where `j is the jth row ofHn, j = 0; 1; : : : ; 2n � 1, then the algebraic degree of f is at most p� 1.Lemma 7. For every function f on Vn, we have4(�(�0);�(�4); : : : ;�(�2n�4))Hn�2= ( 3Xj=0h�; `ji2; 7Xj=4h�; `ji2; : : : ; 2n�1Xj=2n�4h�; `ji2)Where � denotes the sequence of f and `i is the ith row of Hn, i = 0; 1; : : :; 2n�1.Proof. Comparing the 4jth terms, j = 0; 1; : : : ; 2n�2 � 1, in the two sides ofequality (1), we obtain2n(�(�0);�(�4); : : : ;�(�2n�4))= ( 3Xj=0h�; `ji2; 7Xj=4h�; `ji2; : : : ; 2n�1Xj=2n�4h�; `ji2)Hn�2This proves the lemma. utTheorem 4. Let f be a function on Vn, and U be a (n� 2)-dimensional linearsubspace satisfying #(< \U ) = 1 (i.e., < \U = f0g). Then we have(i) if n is odd, then the nonlinearity of f satis�es Nf = 2n�1� 2 12 (n�1) and thealgebraic degree of f is at most 2 12 (n+1),(ii) if n is even, then f is bent or the nonlinearity of f satis�es Nf = 2n�1�2 12nand the algebraic degree of f is at most 2 12n+1.Proof. We only need to prove the theorem in the special case when U is com-posed of �0; �4; �8; : : : ; �2n�4, where �4j 2 Vn is the binary representation ofeven number 4j, j = 0; 1; 2; : : : ; 2n�2 � 1. In other words, U is composed of allthe vectors in Vn, that can be expressed in the form (a1; : : : ; an�2; 0; 0), whereeach aj 2 GF (2). For U in general case, we can use a nonsingular linear trans-formation on the variables so as to change U into the special case. Let � be thesequence of f . Set a2j = h�; `ji2, j = 0; 1; : : : ; 2n � 1.Since �(0) = 2n and �(�4j) = 0, j = 1; 2; : : : ; 2n�2 � 1, the equality inLemma 7 is specialized as



2n+2(1; : : : ; 1) = ( 3Xj=0 a2j ; 7Xj=4 a2j ; : : : ; 2n�1Xj=2n�4 a2j) (14)j = 0; 1; : : : ; 2n�2 � 1.(i) When n is odd, by using Lemma 4,fa24j; a24j+1; a24j+3; a24j+3g = f2n+1; 2n+1; 0; 0g; j = 0; 1; : : :; 2n�2By using Lemma 1, we have proved the nonlinearity of f satis�es Nf =2n�1�2 12 (n�1), and by using Lemma 6, we have proved that the algebraic degreeof f is at most 2 12 (n+1).(ii) When n is even. By using Lemma 4,fa24j; a24j+1; a24j+3; a24j+3g = f2n; 2n; 2n; 2ng or f2n+2; 0; 0; 0g;j = 0; 1; : : : ; 2n�2 � 1.If there exists a number j0, 0 � j0 � 2n�2 � 1, such thatfa24j0; a24j0+1; a24j0+2; a24j0+3g = f2n+2; 0; 0; 0gthen by using Lemma 1, we have proved that the nonlinearity of f satis�esNf = 2n�1 � 2 12n, and by using Lemma 6, we have proved that the algebraicdegree of f is at most 2 12 (n+1).If there exists no such j0, mentioned as above, i.e., fa24j; a24j+1; a24j+3; a24j+3g =f2n; 2n; 2n; 2ng, j = 0; 1; : : : ; 2n�2� 1. Then f is bent. utTo emphasise the distribution of < we modify Theorem 4 as follows:Theorem 5. Let f be a function on Vn. If the nonlinearity of f does not take thespecial value 2n�1� 2 12 (n�1) or 2n�1� 2 12n or 2n�1� 2 12n�1, then #(<\U ) � 2where U is any (n�2)-dimensional linear subspace, in other words, every (n�2)-dimensional linear subspace U contains a non-zero vector in <.There exist many methods to locate all the (n � 1)-dimensional linear sub-spaces and all the (n � 2)-dimensional linear subspaces in Vn. For example, let'� denote the linear function on Vn, where � 2 Vn, such that '�(x) = h�; xi.Hence W = fj� 2 Vn; '�() = 0g is a (n� 1)-dimensional linear subspace andeach (n� 1)-dimensional linear subspace can be expressed in this form.Also for any �; �0 2 Vn with � 6= �0, U = fj� 2 Vn; '�() = 0; '�0 () = 0gis a (n � 2)-dimensional linear subspace and each (n � 2)-dimensional linearsubspace can be expressed in this form.Lemma 8. Let 
 be a subset of Vk with 0 62 
. If there exists a positive integerp such that #(
 \ U ) � p holds for every (k � 1)-dimensional linear subspaceU , then #
 � 2p+ 1.



Proof. Note that each non-zero vector is included in precisely 2k�1� 1 (k� 1)-dimensional linear subspaces, on the other hand, there exist exactly 2k � 1 (k�1)-dimensional linear subspaces. Hence (2k�1 � 1)#
 = PU #(
 \ U ). From#(
 \ U ) � p, we conclude that (2k�1 � 1)#
 � (2k � 1)p. Since 2k�12k�1�1 > 2,#
 > 2p or #
 � 2p+ 1. utTheorem 6. Let f be a function on Vn. If the nonlinearity of f does not take thespecial values 2n�1�2 12 (n�1) or 2n�1�2 12n or 2n�1�2 12n�1, then #(<\W ) � 4for every (n� 1)-dimensional linear subspace W , in other words, every (n� 1)-dimensional linear subspace W contains at least three non-zero vectors in <.Proof. Let W be an arbitrary (n � 1)-dimensional linear subspace and U bean arbitrary (n � 2)-dimensional linear subspace with U � W . Note that theinequality in Theorem 5 can be rewritten as#((<� f0g) \ U ) � 1 (15)and ((<� f0g) \W ) \ U = (<� f0g)\ U . Applying Lemma 8, we have proved#((<� f0g) \W ) � 3. Since 0 2 < \W , #(<\W ) � 4. utTheorems 5 and 6 are helpful to locate the non-propagative vectors.The properties mentioned together in Theorems 5 and 6 are called the unbi-ased distribution of <, with respect to every (n�2)-dimensional linear subspaceand every (n� 1)-dimensional linear subspace.6 Distribution of < in Special CasesWe now turn to the case #(<f \W ) � 3 where W is an (n � 1)-dimensionallinear subspace. The following Lemma can be found in [7]:Lemma 9. Let n � 2 be a positive integer and 2n = a2 + b2 where a � b � 0and both a and b are integers. Then a2 = 2n and b = 0 when n is even, anda2 = b2 = 2n�1 when n is odd.Theorem 7. Let f be a function on Vn, and W be an (n�1)-dimensional linearsubspace satisfying #(< \W ) = 1 (i.e., < \W = f0g). We have(i) f has at most one non-zero linear structure,(ii) if n is odd, then the nonlinearity of f satis�es Nf = 2n�1� 2 12 (n�1) and thealgebraic degree of f is at most 2 12 (n+1),(iii) if n is even, then f is bent.Proof. (i) Let �� 2 Vn and �� 62 W , From linear algebra, Vn = W [ (�� �W ),where ���W = f����j� 2Wg,W and ���W are disjoint. We now prove thatf has at most one non-zero linear structure by contradiction. Suppose f has two



non-zero linear structures, �1 and �2 with �1 6= �2. Since all linear structures of fform a linear subspace of Vn, �1��2 is also a non-zero linear structures of f andhence �1��2 2 <. Since <\W = f0g, �1; �2 2 ���W . Obviously �1��2 2Wand hence �1 � �2 2 < \W . This contradicts the condition < \W = f0g. Thecontradiction proves that f has at most one non-zero linear structure.Recall the proof of Theorem 3, (3) can be specialized as 2�(0) = a22j +a22j+1and hence a22j + a22j+1 = 2n+1, where j = 0; 1; : : : ; 2n�1� 1.(ii) If n be odd, from Lemma 9, fa22j; a22j+1g = f2n+1; 0g, where j = 0; 1, : : :,2n�1�1. From Lemma 1, the nonlinearity of f satis�es Nf = 2n�1�2 12 (n�1). Byusing Lemma 6 we conclude that the algebraic degree of f is at most 2 12 (n+1).(iii) If n is even, due to Lemma9, a22j = a22j+1 = 2n, where j = 0; 1; : : :; 2n�1�1. This proves that f is bent. utExample 1. Let n be a positive odd number and f(x1; : : : ; xn) = x1�g(x2; : : : ; xn)where g is a bent function in Vn�1. Let W be an (n� 1)-dimensional linear sub-space of Vn, composed of all the vectors in Vn, that can be expressed in the form(0; a2; : : : ; an), where each aj 2 GF (2). It is easy to see �� = (1; 0; : : : ; 0) 2 Vnis a non-zero linear structure of f and < \W = f0g. Due to (ii) of Theorem 7,Nf = 2n�1 � 2 12 (n�1).We can restate (iii) of Theorem 7 as follows:Proposition 1. Let f be a function on Vn where n is even. If there exists an(n�1)-dimensional linear subspace W0 satisfying #(<\W0) = 1 (i.e., <\W0 =f0g), then f satis�es <\W = f0g, for every (n�1)-dimensional linear subspaceW .Next we examine the case of #(< \W ) = 2.Theorem 8. Let f be a function on Vn. If there exists a (n � 1)-dimensionallinear subspace W satisfying < \W = f0; �1g, then we have(i) �1 is a non-zero linear structure of f ,(ii) if n is odd, then the nonlinearity of f satis�es Nf = 2n�1� 2 12 (n�1) and thealgebraic degree of f is at most 2 12 (n+1),(iii) if n is even, then Nf = 2n�1 � 2 12n and the algebraic degree of f is at most2 12n+1.Proof. Since any single non-zero vector is linearly independent, we can keep thededuction in the proof of Theorem 3 until inequality (12) where we need thecondition k � 3.(i) Recall the proof of Theorem 3, (6) can be specialized as p1j�(�1) =2n; 0;�2n, j = 0; 1; : : :; 2n � 1. Since �1 2 <, �(�1) 6= 0. Hence �(�1) = �2n.This proves that �1 is a non-zero linear structure.



(ii) If n is odd, from (5) we conclude that h�; `ii2 = 2n+1; 0, i = 0; 1; : : :; 2n�1,and hence by using Lemma 1, we have proved Nf = 2n�1 � 2 12 (n�1). By usingLemma 6 we conclude that the algebraic degree of f is at most 2 12 (n+1).(iii) If n is even, from (13), h�; `ii2 = 2n+2; 0; 2n. Since #< > 1, f is notbent. Hence h�; `ii2 = 2n cannot hold for all i and hence there exists a numberi0, 0 � i0 � 2n�1, such that h�; `ii2 = 2n+2. By using Lemma 1, we have provedNf = 2n�1�2 12n, if n is even. By using Lemma 6 we conclude that the algebraicdegree of f is at most 2 12n+1. utExample 2. Let n be a positive odd number and f(x1; : : : ; xn) be the same withthat in Example 1. Let W be an (n�1)-dimensional linear subspace of Vn, com-posed of all the vectors in Vn, that can be expressed in the form (a1; : : : ; an�1; 0),where each aj 2 GF (2). It is easy to see �� = (1; 0; : : : ; 0) 2 Vn is a non-zero linear structure of f and < \ W = f0; ��g. Due to (ii) of Theorem 8,Nf = 2n�1 � 2 12 (n�1).Let k be a positive even number with k � 4 and h(x1; : : : ; xk) = x1 �x2 � q(x3; : : : ; xk) where q is a bent function on Vk�2. Let U be an (n � 1)-dimensional linear subspace of Vn, composed of all the vectors in Vn, that canbe expressed in the form (0; a2; : : : ; ak), where each aj 2 GF (2). It is easy tosee ��1 = (0; 1; 0; : : :; 0) is a non-zero linear structures of h and < \U = f0; ��1g.Due to (iii) of Theorem 8, Nh = 2k�1 � 2 12k.It is interesting that by using Theorem 8, we have determined Nh only fromthe condition #(<\U ) = 2 for an (n�1)-dimensional linear subspace U althoughwe do not search other vectors in <.Finally, we consider the case when #(< \W ) = 3.Theorem 9. Let f be a function on Vn. If there exists a (n � 1)-dimensionallinear subspace W satisfying < \W = f0; �1; �2g, then the following statementshold:(i) �(�j) = �2n�1, j = 1; 2,(ii) if n is odd, then the nonlinearity of f satis�es Nf = 2n�1� 2 12 (n�1) and thealgebraic degree of f is at most 2 12 (n+1),(iii) if n is even, then Nf = 2n�1 � 2 12n and the algebraic degree of f is at most2 12n+1.Proof. Since any two non-zero vectors are linearly independent, we can keepthe deduction in the proof of Theorem 3 until inequality (12) where we need thecondition k � 3.Recall the proof of Theorem 3, (9) can be specialized as �(�j) = �2n;�2n�1,j = 1; 2.On the other hand, (10), (11) and (12) can be rewritten as (�(�1);�(�2)) =2n�1(b1; b2) where each bj = �1;�2, (p1s; p2s) = ( b1jb1j ; b2jb2j ): andp1s�(�1) + p2s�(�2) = (jb1j+ jb2j)2n�1 (16)



respectively. It is easy to prove b1; b2 = �1. Otherwise, for example, b1 = �2,from (16), p1s�(�1)+p2s�(�2) � 3�2n�1. This contradicts (6). Since b1; b2 = �1,�(�1);�(�2) = �2n�1. This proves (i).The rest proof is the same with the proof of Theorem 8. utExample 3. Let n be a positive odd number with n � 7, h(x1; x2; x3; x4; x5) =(x1 � x2 � x3)x4x5 �x1x5 � x2x4 � x1 � x2 � x3 and g(x6; : : : ; xn) be a bentfunction on Vn�5. Set f(x1; : : : ; xn) = h(x1; x2; x3; x4; x5)� g(x6; : : : ; xn).Let W be an (n � 1)-dimensional linear subspace of Vn, composed of allthe vectors in Vn, that can be expressed in the form (0; a2; : : : ; an), where eachaj 2 GF (2). Write ��1 = (0; 0; 1; 0; : : : ; 0), ��2 = (0; 1; 0; : : :; 0) 2 Vn, It is easy toverify ��1; ��2 2 < and <\W = f0; ��1; ��2g. Due to (i) and (ii) of Theorem 9, weconclude �(��1) = �2n�1, �(��2) = �2n�1 and Nf = 2n�1 � 2 12 (n�1).We notice that by using Theorem 9, we have determined Nh, �(��1) and�(��2) only from the information about #(< \W ) for an (n � 1)-dimensionallinear subspace W although we do not search other the vectors in <.We can also �nd an example corresponding to (iii) of Theorem 9. All The-orems 7, 8 and 9 and Examples 1, 2 and 3 show that we can determine thenonlinearity of a function only from some information about #(< \W ), whereW is an (n�1)-dimensional linear subspace. It is interesting that [7] has provedthat there exists no a function with #< = 3 while Example 3 gives a functionsatisfying #(< \W ) = 3 for an (n� 1)-dimensional linear subspace W .7 ConclusionsThe strong linear dependence is an improvement on a previously known result.The unbiased distribution of non-propagation vectors is valid for most functions.These results provide more information on the non-propagative vectors in any(n�1)-dimensional linear subspace of Vn, and hence they are helpful for designingcryptographic functions.8 AcknowledgementThe second author was supported by a Queen Elizabeth II Fellowship (227 231002).References1. Claude Carlet. Partially-bent functions. Designs, Codes and Cryptography, 3:135{145, 1993.2. W. Meier and O. Sta�elbach. Nonlinearity criteria for cryptographic functions. InAdvances in Cryptology - EUROCRYPT'89, volume 434, Lecture Notes in ComputerScience, pages 549{562. Springer-Verlag, Berlin, Heidelberg, New York, 1990.
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