Strong Linear Dependence and Unbiased Distribution of Non-propagative Vectors

Yuliang Zheng ${ }^{1}$ and Xian-Mo Zhang ${ }^{2}$
${ }^{1}$ School of Comp \& Info Tech, Monash University, McMahons Road, Frankston, Melbourne, VIC 3199, Australia. E-mail: yuliang@pscit.monash.edu.au
URL: http://www.pscit.monash.edu.au/links/
${ }^{2}$ School of Info Tech \& Comp Sci, the University of Wollongong, Wollongong
NSW 2522, Australia. E-mail: xianmo@cs.uov.edu.au

Abstract

This paper proves (i) in any ($n-1$)-dimensional linear subspace, the non-propagative vectors of a function with n variables are linearly dependent, (ii) for this function, there exists a non-propagative vector in any ($n-2$)-dimensional linear subspace and there exist three non-propagative vectors in any ($n-1$)-dimensional linear subspace, except for those functions whose nonlinearity takes special values.

Key Words:

Cryptography, Boolean Function, Propagation, Nonlinearity.

1 Introduction

In examining the nonlinearity properties of a function f with n variables, it is important to understand \Re_{f}, the set of so-called non-propagative vectors where f does not satisfy the propagation criterion. In this work, we are concerned with both $\# \Re_{f}$ (the number of non-propagative vectors in \Re_{f}) and the distribution of \Re_{f}. More specifically, we prove two properties of \Re. One is called the strong linear dependence and the other the unbiased distribution, of \Re.

The strong linear dependence property states that if W is a $(n-1)$-dimensional linear subspace satisfying $\#(\Re \cap W) \geq 4$, then the non-zero vectors in $\Re \cap W$ are linearly dependent. This improves a previously known result. The unbiased distribution property says that any function f with n variables, except for those whose nonlinearity takes the special value of $2^{n-1}-2^{\frac{1}{2}(n-1)}, 2^{n-1}-2^{\frac{1}{2} n}$ or $2^{n-1}-2^{\frac{1}{2} n-1}$, fulfills the condition that every $(n-2)$-dimensional linear subspace contains a non-zero vector in \Re_{f} and every ($n-1$)-dimensional linear subspace contains at least three non-zero vectors in \Re_{f}. In special cases, \# ($\left.\because \cap W\right)$ may significantly effect other cryptographic properties of a function. The strong linear dependence and the unbiased distribution are helpful for the design of cryptographic functions as these conclusions provide more information on the number and the status of non-propagative vectors in any ($n-1$)-dimensional linear subspace.

2 Cryptographic Criteria of Boolean Functions

We consider functions from V_{n} to $G F(2)$ (or simply functions on V_{n}), V_{n} is the vector space of n tuples of elements from $G F(2)$. The truth table of a function f on V_{n} is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)$, and the sequence of f is a $(1,-1)$-sequence defined by $\left((-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}\right.$, $\left.\ldots,(-1)^{f\left(\alpha_{2^{n}-1}\right)}\right)$, where $\alpha_{0}=(0, \ldots, 0,0), \alpha_{1}=(0, \ldots, 0,1), \ldots, \alpha_{2^{n-1}-1}=$ $(1, \ldots, 1,1)$. The matrix of f is a $(1,-1)$-matrix of order 2^{n} defined by $M=$ $\left((-1)^{f\left(\alpha_{i} \oplus \alpha_{j}\right)}\right)$ where \oplus denotes the addition in $G F(2) . f$ is said to be balanced if its truth table contains an equal number of ones and zeros.

Given two sequences $\tilde{a}=\left(a_{1}, \cdots, a_{m}\right)$ and $\tilde{b}=\left(b_{1}, \cdots, b_{m}\right)$, their componentwise product is defined by $\tilde{a} * \tilde{b}=\left(a_{1} b_{1}, \cdots, a_{m} b_{m}\right)$. In particular, if $m=2^{n}$ and \tilde{a}, \tilde{b} are the sequences of functions f and g on V_{n} respectively, then $\tilde{a} * \tilde{b}$ is the sequence of $f \oplus g$ where \oplus denotes the addition in $G F(2)$.

Let $\tilde{a}=\left(a_{1}, \cdots, a_{m}\right)$ and $\tilde{b}=\left(b_{1}, \cdots, b_{m}\right)$ be two sequences or vectors, the scalar product of \tilde{a} and \tilde{b}, denoted by $\langle\tilde{a}, \tilde{b}\rangle$, is defined as the sum of the component-wise multiplications. In particular, when \tilde{a} and \tilde{b} are from $V_{m},\langle\tilde{a}, \tilde{b}\rangle=$ $a_{1} b_{1} \oplus \cdots \oplus a_{m} b_{m}$, where the addition and multiplication are over $G F(2)$, and when \tilde{a} and \tilde{b} are $(1,-1)$-sequences, $\langle\tilde{a}, \tilde{b}\rangle=\sum_{i=1}^{m} a_{i} b_{i}$, where the addition and multiplication are over the reals.

An affine function f on V_{n} is a function that takes the form of $f\left(x_{1}, \ldots, x_{n}\right)=$ $a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n} \oplus c$, where $a_{j}, c \in G F(2), j=1,2, \ldots, n$. Furthermore f is called a linear function if $c=0$.

A $(1,-1)$-matrix N of order n is called a Hadamard matrix if $N N^{T}=n I_{n}$, where N^{T} is the transpose of N and I_{n} is the identity matrix of order n. A Sylvester-Hadamard matrix of order 2^{n}, denoted by H_{n}, is generated by the following recursive relation

$$
H_{0}=1, H_{n}=\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right], n=1,2, \ldots
$$

Let $\ell_{i}, 0 \leq i \leq 2^{n}-1$, be the i row of H_{n}. It is known that ℓ_{i} is the sequence of a linear function $\varphi_{i}(x)$ defined by the scalar product $\varphi_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$, where α_{i} is the i th vector in V_{n} according to the ascending alphabetical order.

The Hamming weight of a $(0,1)$-sequence ξ, denoted by $W(\xi)$, is the number of ones in the sequence. Given two functions f and g on V_{n}, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$.

Definition 1. The nonlinearity of a function f on V_{n}, denoted by N_{f}, is the minimal Hamming distance between f and all affine functions on V_{n}, i.e., $N_{f}=$ $\min _{i=1,2, \ldots, 2^{n+1}} d\left(f, \varphi_{i}\right)$ where $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{2^{n+1}}$ are all the affine functions on V_{n}.

The following characterisations of nonlinearity will be useful (for a proof see for instance [2]).

Lemma 1. The nonlinearity of f on V_{n} can be expressed by

$$
N_{f}=2^{n-1}-\frac{1}{2} \max \left\{\left|\left\langle\xi, \ell_{i}\right\rangle\right|, 0 \leq i \leq 2^{n}-1\right\}
$$

where ξ is the sequence of f and $\ell_{0}, \ldots, \ell_{2^{n}-1}$ are the rows of H_{n}, namely, the sequences of linear functions on V_{n}.

Definition 2. Let f be a function on V_{n}. For a vector $\alpha \in V_{n}$, denote by $\xi(\alpha)$ the sequence of $f(x \oplus \alpha)$. Thus $\xi(0)$ is the sequence of f itself and $\xi(0) * \xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$. Set

$$
\Delta_{f}(\alpha)=\langle\xi(0), \xi(\alpha)\rangle
$$

the scalar product of $\xi(0)$ and $\xi(\alpha) . \Delta(\alpha)$ is called the auto-correlation of f with a shift α. Write

$$
\Delta_{M}=\max \left\{\mid \Delta(\alpha) \| \alpha \in V_{n}, \alpha \neq 0\right\}
$$

We omit the subscript of $\Delta_{f}(\alpha)$ if no confusion occurs.
Definition 3. Let f be a function on V_{n}. We say that f satisfies the propagation criterion with respect to α if $f(x) \oplus f(x \oplus \alpha)$ is a balanced function, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and α is a vector in V_{n}. Furthermore f is said to satisfy the propagation criterion of degree k if it satisfies the propagation criterion with respect to every non-zero vector α whose Hamming weight is not larger than k (see [3]).

The strict avalanche criterion (SAC) [5] is the same as the propagation criterion of degree one.

Obviously, $\Delta(\alpha)=0$ if and only if $f(x) \oplus f(x \oplus \alpha)$ is balanced, i.e., f satisfies the propagation criterion with respect to α.
Definition 4. Let f be a function on $V_{n} . \alpha \in V_{n}$ is called a linear structure of f if $|\Delta(\alpha)|=2^{n}$ (i.e., $f(x) \oplus f(x \oplus \alpha)$ is a constant).

For any function $f, \Delta\left(\alpha_{0}\right)=2^{n}$, where α_{0} is the zero vector on V_{n}. It is easy to verify that the set of all linear structures of a function f form a linear subspace of V_{n}, whose dimension is called the linearity of f. It is also well-known that if f has non-zero linear structures, then there exists a nonsingular $n \times n$ matrix B over $G F(2)$ such that $f(x B)=g(y) \oplus h(z)$, where $x=(y, z), y \in V_{p}$, $z \in V_{q}, g$ is a function on V_{p} that has no non-zero linear structures, and h is an affine function on V_{q}.

The following lemma is the re-statement of a relation proved in Section 2 of [1].
Lemma 2. For every function f on V_{n}, we have

$$
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right) H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2},\left\langle\xi, \ell_{1}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)
$$

where ξ denotes the sequence of f and ℓ_{i} is the th row of $H_{n}, i=0,1, \ldots, 2^{n}-1$.
The balance and the nonlinearity are necessary in most cases. The propagation or especially the SAC, is an important cryptographic criterion.

3 Introduction to \Re

Notation 1. Let f be a function on V_{n}. Set $\Re_{f}=\left\{\alpha \mid \Delta(\alpha) \neq 0, \alpha \in V_{n}\right\}$, $\Delta_{M}=\max \left\{|\Delta(\alpha)| \mid \alpha \in V_{n}, \alpha \neq 0\right\}$.

We simply write \Re_{f} as \Re if no confusion occurs. It is easy to verify that $\# \Re$ and Δ_{M} are invariant under any nonsingular linear transformation on the variables, where \# denotes the cardinal number of a set.
$\# \Re$ and the distribution of \Re reflects the propagation characteristics, while Δ_{M} forecasts the avalanche property of the function. Therefore information on \Re and Δ_{M} is useful in determining important cryptographic characteristics of f. Usually, small \# \because and Δ_{M} are desirable.

Definition 5. A function f on V_{n} is called a bent function [4] if $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n}$ for every $i=0,1, \ldots, 2^{n}-1$, where ℓ_{i} is the i th row of H_{n}.

A bent function on V_{n} exists only when n is even, and it achieves the highest possible nonlinearity $2^{n-1}-2^{\frac{1}{2} n-1}$. The algebraic degree of bent functions on V_{n} is at most $\frac{1}{2} n$ [4]. From [4] and Parseval's equation, we have the following:

Theorem 1. Let f be a function on V_{n}. Then the following statements are equivalent: (i) f is bent, (ii) $\# \Re=1$, (iii) $\Delta_{M}=0$, (iv) the nonlinearity of f, N_{f}, satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2} n-1}$, (v) the matrix of f is an Hadamard matrix.

The following result is called the linear dependence theorem that can be found in [7]

Theorem 2. Let f be a function on V_{n} that satisfies the propagation criterion with respect to all but $k+1$ vectors $0, \beta_{1}, \ldots, \beta_{k}$ in V_{n}, where $k \geq 2$. Then $\beta_{1}, \ldots, \beta_{k}$ are linearly dependent, namely, there exist k constants $c_{1}, \ldots, c_{k} \in$ $G F(2)$, not all of which are zeros, such that $c_{1} \beta_{1} \oplus \cdots \oplus c_{k} \beta_{k}=0$.

Note that $n+1$ non-zero vectors in V_{n} must be linearly dependent. Hence if $\# \Re \geq n+2$ (i.e., $\#(\Re-\{0\}) \geq n+1$) then Theorem 2 is trivial. For this reason, we improve Theorem 2 in this paper. We prove two properties of \Re : the strong linear dependence and the unbiased distribution of \Re.

4 The Strong Linear Dependence Theorem

Note the i th (i.e., the α_{i} th) row of H_{n}, where $\alpha_{i} \in V_{n}$ is the binary representation of integer $j, j=0,1, \ldots, 2^{n}-1$, is the sequence of linear function $\varphi_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$. Lemma 4 of [7] can be restated as follows:

Lemma 3. Let Q be the $2^{n} \times q$ that consists of the $\alpha_{j_{1}}$ th, \ldots, the $\alpha_{j_{q}}$ th rows of H_{n}, where each $\alpha_{j} \in V_{n}$ is the binary representation of integer $j, 0 \leq j \leq$ $2^{n}-1$. If $\alpha_{j_{1}}, \ldots, \alpha_{j_{q}}$ are linearly independent then each $\left(a_{1}, \ldots, a_{q}\right)^{T}$, where each $a_{j}= \pm 1$, appears as a column in Q precisely 2^{n-q} times.

The following Lemma can be found in [7].
Lemma 4. Let $n \geq 3$ be a positive integer and $2^{n}=\sum_{j=1}^{4} a_{j}^{2}$ where $a_{1} \geq a_{2} \geq$ $a_{3} \geq a_{4} \geq 0$ and each a_{j} is an integer. We have the following statements:
(i) if n is add, then $a_{1}^{2}=a_{2}^{2}=2^{n-1}, a_{3}=a_{4}=0$,
(ii) if n is even, then $a_{1}^{2}=2^{n}, a_{2}=a_{3}=a_{4}=0$ or $a_{1}^{2}=a_{2}^{2}=a_{3}^{2}=a_{4}^{2}=2^{n-2}$.

Lemma 5. For every function f on V_{n}, we have

$$
\begin{aligned}
& 2\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{2}\right), \ldots, \Delta\left(\alpha_{2^{n}-2}\right)\right) H_{n-1} \\
& =\left(\left\langle\xi, \ell_{0}\right\rangle^{2}+\left\langle\xi, \ell_{1}\right\rangle^{2},\left\langle\xi, \ell_{2}\right\rangle^{2}+\left\langle\xi, \ell_{3}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-2}\right\rangle^{2}+\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)
\end{aligned}
$$

where ξ denotes the sequence of f and ℓ_{i} is the ith row of $H_{n}, i=0,1, \ldots, 2^{n}-1$.

Proof. From Lemma 2,

$$
\begin{equation*}
2^{n}\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right)=\left(\left\langle\xi, \ell_{0}\right\rangle^{2},\left\langle\xi, \ell_{1}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n} \tag{1}
\end{equation*}
$$

Comparing the 0th, the $2 \mathrm{nd}, \ldots$, the $\left(2^{n}-2\right)$ th terms in the two sides of equality (1), we obtain

$$
\begin{aligned}
& 2^{n}\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{2}\right), \ldots, \Delta\left(\alpha_{2^{n}-2}\right)\right) \\
& =\left(\left\langle\xi, \ell_{0}\right\rangle^{2}+\left\langle\xi, \ell_{1}\right\rangle^{2},\left(\left\langle\xi, \ell_{2}\right\rangle^{2}+\left\langle\xi, \ell_{3}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-2}\right\rangle^{2}+\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n-1}\right.
\end{aligned}
$$

This proves the lemma.
The following theorem is called the strong linearly dependence theorem which is an improvement on Theorem 2 (the linearly dependence theorem).

Theorem 3. Let f be a function on V_{n}, and W be a $(n-1)$-dimensional linear subspace satisfying $\Re \cap W=\left\{0, \beta_{1}, \ldots, \beta_{k}\right\}(k \geq 3)$. Then $\beta_{1}, \ldots, \beta_{k}$ are linearly dependent, namely, there exist k constants $c_{1}, \ldots, c_{k} \in G F(2)$ with $\left(c_{1}, \ldots, c_{k}\right) \neq$ $(0, \ldots, 0)$, such that $c_{1} \beta_{1} \oplus \cdots \oplus c_{k} \beta_{k}=0$.

Proof. The theorem is obviously true if $k>n$. Now we prove the theorem for $k \leq n$. We only need to prove the lemma in the special case when W is composed of $\alpha_{0}, \alpha_{2}, \ldots, \alpha_{2^{n}-2}$, where $\alpha_{2 j} \in V_{n}$ is the binary representation of an even number $2 j, j=0,1, \ldots, 2^{n-1}-1$. In other words, W is composed of all the vectors in V_{n}, that can be expressed in the form $\left(a_{1}, \ldots, a_{n-1}, 0\right)$, where each $a_{j} \in G F(2)$. In the general case, we can use a nonsingular linear transformation on the variables so as to change W into the special case. Let ξ be the sequence of f.

Since $\beta_{j} \in W, j=1, \ldots, k, \beta_{j}$ can be expressed as $\beta_{j}=\left(\gamma_{j}, 0\right)$ where $\gamma_{j} \in V_{n-1}, j=1, \ldots, k$, and $0 \in G F(2)$.

Let P be a $(k+1) \times 2^{n-1}$ matrix composed of the 0 th, the γ_{1} th, \ldots, the γ_{k} th rows of H_{n-1}. Set $a_{j}^{2}=\left\langle\xi, \ell_{j}\right\rangle^{2}, j=0,1, \ldots, 2^{n}-1$. Note that $\Delta(\alpha)=0$ if $\alpha \notin\left\{0, \beta_{1}, \ldots, \beta_{k}\right\}$. Hence the equality in Lemma 5 can be specialized as

$$
\begin{equation*}
2\left(\Delta(0), \Delta\left(\beta_{1}\right), \ldots, \Delta\left(\beta_{k}\right)\right) P=\left(a_{0}^{2}+a_{1}^{2}, a_{2}^{2}+a_{3}^{2}, \ldots, a_{2^{n}-2}^{2}+a_{2^{n}-1}^{2}\right) \tag{2}
\end{equation*}
$$

where $\Delta(0)$ is identical to $\Delta\left(\alpha_{0}\right)$ where $\alpha_{0}=0$.
Write $P=\left(p_{i j}\right), i=0,1, \ldots k, j=0,1, \ldots, 2^{n-1}-1$. As the top row of P is $(1,1, \ldots, 1)$, from (2),

$$
\begin{equation*}
2\left(\Delta(0)+\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)\right)=a_{2 j}^{2}+a_{2 j+1}^{2} \tag{3}
\end{equation*}
$$

$j=0,1, \ldots, 2^{n-1}-1$. Let P^{*} be the submatrix of P obtained by removing the top row from P.

We now prove the theorem by contradiction. Suppose k vectors in V_{n}, β_{1}, \ldots, β_{k}, are linearly independent. Hence k vectors in $V_{n-1}, \gamma_{1}, \ldots, \gamma_{k}$, are also linearly independent and hence $k \leq n-1$.

Applying Lemma 3 to matrix P^{*}, we conclude that each k-dimensional $(1,-1)$-vector appears in P^{*}, as a column vector of P^{*} precisely 2^{n-1-k} times. Thus for each fixed j there exists a number $j_{0}, 0 \leq j_{0} \leq 2^{n-1}-1$, such that $\left(p_{1 j_{0}}, \ldots, p_{k j_{0}}\right)=-\left(p_{1 j}, \ldots, p_{k j}\right)$ and hence

$$
\begin{equation*}
2\left(\Delta(0)-\sum_{i=1}^{k} p_{i j_{0}} \Delta\left(\beta_{i}\right)\right)=a_{j_{0}}^{2}+a_{2 j_{0}+1}^{2} \tag{4}
\end{equation*}
$$

Adding (3) and (4) together, we have $4 \Delta(0)=a_{j}^{2}+a_{2 j+1}^{2}+a_{j_{0}}^{2}+a_{2 j_{0}+1}^{2}$. Hence $a_{j}^{2}+a_{2 j+1}^{2}+a_{j_{0}}^{2}+a_{2 j_{0}+1}^{2}=2^{n+2}$. There are two cases to be considered: even n and odd n.

Case 1: n is odd. By using Lemma 4,

$$
\begin{equation*}
\left\{a_{j}^{2}, a_{2 j+1}^{2}, a_{j_{0}}^{2}, a_{2 j_{0}+1}^{2}\right\}=\left\{2^{n+1}, 2^{n+1}, 0,0\right\}, j=0,1, \ldots, 2^{n-1} \tag{5}
\end{equation*}
$$

Hence from (3), we have $\Delta(0)+\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=2^{n+1}, 2^{n}, 0$ and hence

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=2^{n}, 0,-2^{n}, j=0,1, \ldots, 2^{n}-1 \tag{6}
\end{equation*}
$$

For each fixed j, rewrite (6) as

$$
\begin{equation*}
p_{1 j} \Delta\left(\beta_{1}\right)+\sum_{i=2}^{k} p_{i j} \Delta\left(\beta_{i}\right)=2^{n}, 0,-2^{n} \tag{7}
\end{equation*}
$$

By using Lemma 3, there exists a number $j_{1}, 0 \leq j_{1} \leq 2^{n-1}-1$, such that $\left(p_{1 j_{1}}, p_{2 j_{1}}, \ldots, p_{k j_{i}}\right)=\left(p_{1 j},-p_{2 j}, \ldots,-p_{k j}\right)$.

Hence

$$
\begin{equation*}
p_{1 j_{1}} \Delta\left(\beta_{1}\right)-\sum_{i=2}^{k} p_{i j_{1}} \Delta\left(\beta_{i}\right)=2^{n}, 0,-2^{n} \tag{8}
\end{equation*}
$$

Adding (7) and (8) together, we have

$$
p_{1 j} \Delta\left(\beta_{1}\right)= \pm 2^{n}, \pm 2^{n-1}, 0
$$

Since $\Delta\left(\beta_{1}\right) \neq 0$, we conclude $\Delta\left(\beta_{1}\right)= \pm 2^{n}, \pm 2^{n-1}$. By the same reasoning we can prove

$$
\begin{equation*}
\Delta\left(\beta_{j}\right)= \pm 2^{n}, \pm 2^{n-1}, j=1,2, \ldots, k \tag{9}
\end{equation*}
$$

Thus we can write

$$
\begin{equation*}
\left(\Delta\left(\beta_{1}\right), \ldots, \Delta\left(\beta_{k}\right)\right)=2^{n-1}\left(b_{1}, \ldots, b_{k}\right) \tag{10}
\end{equation*}
$$

where each $b_{j}= \pm 1, \pm 2$. By using Lemma 3 , there exists a number $s, 0 \leq s \leq$ $2^{n-1}-1$, such that

$$
\begin{equation*}
\left(p_{1 s}, \ldots, p_{k s}\right)=\left(\frac{b_{1}}{\left|b_{1}\right|}, \ldots, \frac{b_{k}}{\left|b_{j}\right|}\right) . \tag{11}
\end{equation*}
$$

Due to (10) and (11),

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i s} \Delta\left(\beta_{i}\right)=\sum_{i=1}^{k} \frac{b_{i}}{\left|b_{i}\right|} \Delta\left(\beta_{i}\right)=\sum_{i=1}^{k} \frac{b_{i}^{2}}{\left|b_{i}\right|} 2^{n-1}=2^{n-1} \sum_{i=1}^{k}\left|b_{i}\right| \geq k 2^{n-1} \tag{12}
\end{equation*}
$$

Since $k \geq 3$, (12) contradicts (6).
Case 2: n is even. By using Lemma 4,

$$
\begin{align*}
& \left\{a_{j}^{2}, a_{2 j+1}^{2}, a_{j_{0}}^{2}, a_{2 j_{0}+1}^{2}\right\}=\left\{2^{n+2}, 0,0,0\right\} \text { or } \\
& \left\{a_{j}^{2}, a_{2 j+1}^{2}, a_{j_{0}}^{2}, a_{2 j_{0}+1}^{2}\right\}=\left\{2^{n}, 2^{n}, 2^{n}, 2^{n}\right\}, j=0,1, \ldots, 2^{n-1} \tag{13}
\end{align*}
$$

Hence from (3), we have $\Delta(0)+\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=2^{n+1}, 2^{n}, 0$, and hence

$$
\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=2^{n}, 0,-2^{n}
$$

Repeating the same deduction as in Case 1, we obtain a contradiction in Case 2.

Summarizing Cases 1 and 2, we conclude that the assumption that $\beta_{1}, \ldots, \beta_{k}$ are linearly independent is wrong. This proves the theorem.

Theorem 3 shows that \Re is subject to crucial restrictions. We now compare Theorem 3 with Theorem 2. Since $n+1$ non-zero vectors in V_{n} must be linearly dependent, Theorem 2 is trivial when $\# \Re \geq n+2$ (i.e., $\#(\Re-\{0\}) \geq n+1$). In contrast, in Theorem 3 the linear dependence of vectors takes place in each $\Re \cap W$ not only in \Re.

We notice that there exist $n-1(n-1)$-dimensional linear subspaces. Hence Theorem 3 is more profound than Theorem 2.

5 The Unbiased Distribution of \Re

In this section we focus on the distribution of \Re for the functions on V_{n}, whose nonlinearity does not take the special value $2^{n-1}-2^{\frac{1}{2}(n-1)}$ or $2^{n-1}-2^{\frac{1}{2} n}$ or $2^{n-1}-2^{\frac{1}{2} n-1}$.

The next result is from [6] (Theorem 18).
Lemma 6. Let f be a function on $V_{n}(n \geq 2), \xi$ be the sequence of f, and p is an integer, $2 \leq p \leq n$. If $\left\langle\xi, \ell_{j}\right\rangle \equiv 0\left(\bmod 2^{n-p+2}\right)$, where ℓ_{j} is the j th row of $H_{n}, j=0,1, \ldots, 2^{n}-1$, then the algebraic degree of f is at most $p-1$.

Lemma 7. For every function f on V_{n}, we have

$$
\begin{aligned}
& 4\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{4}\right), \ldots, \Delta\left(\alpha_{2^{n}-4}\right)\right) H_{n-2} \\
& =\left(\sum_{j=0}^{3}\left\langle\xi, \ell_{j}\right\rangle^{2}, \sum_{j=4}^{7}\left\langle\xi, \ell_{j}\right\rangle^{2}, \ldots, \sum_{j=2^{n}-4}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}\right)
\end{aligned}
$$

Where ξ denotes the sequence of f and ℓ_{i} is the ith row of $H_{n}, i=0,1, \ldots, 2^{n}-1$.

Proof. Comparing the $4 j$ th terms, $j=0,1, \ldots, 2^{n-2}-1$, in the two sides of equality (1), we obtain

$$
\begin{aligned}
& 2^{n}\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{4}\right), \ldots, \Delta\left(\alpha_{2^{n}-4}\right)\right) \\
& =\left(\sum_{j=0}^{3}\left\langle\xi, \ell_{j}\right\rangle^{2}, \sum_{j=4}^{7}\left\langle\xi, \ell_{j}\right\rangle^{2}, \ldots, \sum_{j=2^{n}-4}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}\right) H_{n-2}
\end{aligned}
$$

This proves the lemma.

Theorem 4. Let f be a function on V_{n}, and U be a ($n-2$)-dimensional linear subspace satisfying $\#(\Re \cap U)=1$ (i.e., $\Re \cap U=\{0\}$). Then we have
(i) if n is odd, then the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2(n-1)}}$ and the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$,
(ii) if n is even, then f is bent or the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$ and the algebraic degree of f is at most $2^{\frac{1}{2} n+1}$.

Proof. We only need to prove the theorem in the special case when U is composed of $\alpha_{0}, \alpha_{4}, \alpha_{8}, \ldots, \alpha_{2^{n}-4}$, where $\alpha_{4 j} \in V_{n}$ is the binary representation of even number $4 j, j=0,1,2, \ldots, 2^{n-2}-1$. In other words, U is composed of all the vectors in V_{n}, that can be expressed in the form $\left(a_{1}, \ldots, a_{n-2}, 0,0\right)$, where each $a_{j} \in G F(2)$. For U in general case, we can use a nonsingular linear transformation on the variables so as to change U into the special case. Let ξ be the sequence of f. Set $a_{j}^{2}=\left\langle\xi, \ell_{j}\right\rangle^{2}, j=0,1, \ldots, 2^{n}-1$.

Since $\Delta(0)=2^{n}$ and $\Delta\left(\alpha_{4 j}\right)=0, j=1,2, \ldots, 2^{n-2}-1$, the equality in Lemma 7 is specialized as

$$
\begin{equation*}
2^{n+2}(1, \ldots, 1)=\left(\sum_{j=0}^{3} a_{j}^{2}, \sum_{j=4}^{7} a_{j}^{2}, \ldots, \sum_{j=2^{n}-4}^{2^{n}-1} a_{j}^{2}\right) \tag{14}
\end{equation*}
$$

$j=0,1, \ldots, 2^{n-2}-1$.
(i) When n is odd, by using Lemma 4,

$$
\left\{a_{4 j}^{2}, a_{4 j+1}^{2}, a_{4 j+3}^{2}, a_{4 j+3}^{2}\right\}=\left\{2^{n+1}, 2^{n+1}, 0,0\right\}, j=0,1, \ldots, 2^{n-2}
$$

By using Lemma 1, we have proved the nonlinearity of f satisfies $N_{f}=$ $2^{n-1}-2^{\frac{1}{2}(n-1)}$, and by using Lemma 6, we have proved that the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$.
(ii) When n is even. By using Lemma 4,

$$
\left\{a_{4 j}^{2}, a_{4 j+1}^{2}, a_{4 j+3}^{2}, a_{4 j+3}^{2}\right\}=\left\{2^{n}, 2^{n}, 2^{n}, 2^{n}\right\} \text { or }\left\{2^{n+2}, 0,0,0\right\}
$$

$j=0,1, \ldots, 2^{n-2}-1$.
If there exists a number $j_{0}, 0 \leq j_{0} \leq 2^{n-2}-1$, such that

$$
\left\{a_{4 j_{0}}^{2}, a_{4 j_{0}+1}^{2}, a_{4 j_{0}+2}^{2}, a_{4 j_{0}+3}^{2}\right\}=\left\{2^{n+2}, 0,0,0\right\}
$$

then by using Lemma 1, we have proved that the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$, and by using Lemma 6, we have proved that the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$.

If there exists no such j_{0}, mentioned as above, i.e., $\left\{a_{4 j}^{2}, a_{4 j+1}^{2}, a_{4 j+3}^{2}, a_{4 j+3}^{2}\right\}=$ $\left\{2^{n}, 2^{n}, 2^{n}, 2^{n}\right\}, j=0,1, \ldots, 2^{n-2}-1$. Then f is bent.

To emphasise the distribution of \Re we modify Theorem 4 as follows:
Theorem 5. Let f be a function on V_{n}. If the nonlinearity of f does not take the special value $2^{n-1}-2^{\frac{1}{2}(n-1)}$ or $2^{n-1}-2^{\frac{1}{2} n}$ or $2^{n-1}-2^{\frac{1}{2} n-1}$, then $\#(\Re \cap U) \geq 2$ where U is any ($n-2$)-dimensional linear subspace, in other words, every $(n-2)$ dimensional linear subspace U contains a non-zero vector in \Re.

There exist many methods to locate all the ($n-1$)-dimensional linear subspaces and all the $(n-2)$-dimensional linear subspaces in V_{n}. For example, let φ_{α} denote the linear function on V_{n}, where $\alpha \in V_{n}$, such that $\varphi_{\alpha}(x)=\langle\alpha, x\rangle$. Hence $W=\left\{\gamma \mid \alpha \in V_{n}, \varphi_{\alpha}(\gamma)=0\right\}$ is a $(n-1)$-dimensional linear subspace and each ($n-1$)-dimensional linear subspace can be expressed in this form.

Also for any $\alpha, \alpha^{\prime} \in V_{n}$ with $\alpha \neq \alpha^{\prime}, U=\left\{\gamma \mid \alpha \in V_{n}, \varphi_{\alpha}(\gamma)=0, \varphi_{\alpha^{\prime}}(\gamma)=0\right\}$ is a $(n-2)$-dimensional linear subspace and each ($n-2$)-dimensional linear subspace can be expressed in this form.

Lemma 8. Let Ω be a subset of V_{k} with $0 \notin \Omega$. If there exists a positive integer p such that $\#(\Omega \cap U) \geq p$ holds for every $(k-1)$-dimensional linear subspace U, then $\# \Omega \geq 2 p+1$.

Proof. Note that each non-zero vector is included in precisely $2^{k-1}-1(k-1)$ dimensional linear subspaces, on the other hand, there exist exactly $2^{k}-1(k-$ 1)-dimensional linear subspaces. Hence $\left(2^{k-1}-1\right) \# \Omega=\sum_{U} \#(\Omega \cap U)$. From $\#(\Omega \cap U) \geq p$, we conclude that $\left(2^{k-1}-1\right) \# \Omega \geq\left(2^{k}-1\right) p$. Since $\frac{2^{k}-1}{2^{k-1}-1}>2$, $\# \Omega>2 p$ or $\# \Omega \geq 2 p+1$.

Theorem 6. Let f be a function on V_{n}. If the nonlinearity of f does not take the special values $2^{n-1}-2^{\frac{1}{2}(n-1)}$ or $2^{n-1}-2^{\frac{1}{2} n}$ or $2^{n-1}-2^{\frac{1}{2} n-1}$, then $\#(\Re \cap W) \geq 4$ for every ($n-1$)-dimensional linear subspace W, in other words, every $(n-1)$ dimensional linear subspace W contains at least three non-zero vectors in \Re.

Proof. Let W be an arbitrary ($n-1$)-dimensional linear subspace and U be an arbitrary $(n-2)$-dimensional linear subspace with $U \subset W$. Note that the inequality in Theorem 5 can be rewritten as

$$
\begin{equation*}
\#((\Re-\{0\}) \cap U) \geq 1 \tag{15}
\end{equation*}
$$

and $((\Re-\{0\}) \cap W) \cap U=(\Re-\{0\}) \cap U$. Applying Lemma 8 , we have proved $\#((\Re-\{0\}) \cap W) \geq 3$. Since $0 \in \Re \cap W, \#(\Re \cap W) \geq 4$.

Theorems 5 and 6 are helpful to locate the non-propagative vectors.
The properties mentioned together in Theorems 5 and 6 are called the unbiased distribution of \Re, with respect to every ($n-2$)-dimensional linear subspace and every ($n-1$)-dimensional linear subspace.

6 Distribution of \Re in Special Cases

We now turn to the case $\#\left(\Re_{f} \cap W\right) \leq 3$ where W is an ($n-1$)-dimensional linear subspace. The following Lemma can be found in [7]:

Lemma 9. Let $n \geq 2$ be a positive integer and $2^{n}=a^{2}+b^{2}$ where $a \geq b \geq 0$ and both a and b are integers. Then $a^{2}=2^{n}$ and $b=0$ when n is even, and $a^{2}=b^{2}=2^{n-1}$ when n is odd.

Theorem 7. Let f be a function on V_{n}, and W be an $(n-1)$-dimensional linear subspace satisfying $\#(\Re \cap W)=1$ (i.e., $\Re \cap W=\{0\})$. We have
(i) f has at most one non-zero linear structure,
(ii) if n is odd, then the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2(n-1)}}$ and the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$,
(iii) if n is even, then f is bent.

Proof. (i) Let $\alpha^{*} \in V_{n}$ and $\alpha^{*} \notin W$, From linear algebra, $V_{n}=W \cup\left(\alpha^{*} \oplus W\right)$, where $\alpha^{*} \oplus W=\left\{\alpha^{*} \oplus \alpha \mid \alpha \in W\right\}, W$ and $\alpha^{*} \oplus W$ are disjoint. We now prove that f has at most one non-zero linear structure by contradiction. Suppose f has two
non-zero linear structures, β_{1} and β_{2} with $\beta_{1} \neq \beta_{2}$. Since all linear structures of f form a linear subspace of $V_{n}, \beta_{1} \oplus \beta_{2}$ is also a non-zero linear structures of f and hence $\beta_{1} \oplus \beta_{2} \in \Re$. Since $\Re \cap W=\{0\}, \beta_{1}, \beta_{2} \in \alpha^{*} \oplus W$. Obviously $\beta_{1} \oplus \beta_{2} \in W$ and hence $\beta_{1} \oplus \beta_{2} \in \Re \cap W$. This contradicts the condition $\Re \cap W=\{0\}$. The contradiction proves that f has at most one non-zero linear structure.

Recall the proof of Theorem 3, (3) can be specialized as $2 \Delta(0)=a_{2 j}^{2}+a_{2 j+1}^{2}$ and hence $a_{2 j}^{2}+a_{2 j+1}^{2}=2^{n+1}$, where $j=0,1, \ldots, 2^{n-1}-1$.
(ii) If n be odd, from Lemma $9,\left\{a_{2 j}^{2}, a_{2 j+1}^{2}\right\}=\left\{2^{n+1}, 0\right\}$, where $j=0,1, \ldots$, $2^{n-1}-1$. From Lemma 1 , the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$. By using Lemma 6 we conclude that the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$.
(iii) If n is even, due to Lemma $9, a_{2 j}^{2}=a_{2 j+1}^{2}=2^{n}$, where $j=0,1, \ldots, 2^{n-1}-$ 1. This proves that f is bent.

Example 1. Let n be a positive odd number and $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus g\left(x_{2}, \ldots, x_{n}\right)$ where g is a bent function in V_{n-1}. Let W be an ($n-1$)-dimensional linear subspace of V_{n}, composed of all the vectors in V_{n}, that can be expressed in the form $\left(0, a_{2}, \ldots, a_{n}\right)$, where each $a_{j} \in G F(2)$. It is easy to see $\alpha^{*}=(1,0, \ldots, 0) \in V_{n}$ is a non-zero linear structure of f and $\Re \cap W=\{0\}$. Due to (ii) of Theorem 7 , $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

We can restate (iii) of Theorem 7 as follows:
Proposition 1. Let f be a function on V_{n} where n is even. If there exists an ($n-1$)-dimensional linear subspace W_{0} satisfying $\#\left(\Re \cap W_{0}\right)=1$ (i.e., $\Re \cap W_{0}=$ $\{0\}$), then f satisfies $\Re \cap W=\{0\}$, for every $(n-1)$-dimensional linear subspace W.

Next we examine the case of $\#(\Re \cap W)=2$.
Theorem 8. Let f be a function on V_{n}. If there exists a $(n-1)$-dimensional linear subspace W satisfying $\Re \cap W=\left\{0, \beta_{1}\right\}$, then we have
(i) β_{1} is a non-zero linear structure of f,
(ii) if n is odd, then the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$ and the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$,
(iii) if n is even, then $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$ and the algebraic degree of f is at most $2^{\frac{1}{2} n+1}$.

Proof. Since any single non-zero vector is linearly independent, we can keep the deduction in the proof of Theorem 3 until inequality (12) where we need the condition $k \geq 3$.
(i) Recall the proof of Theorem 3, (6) can be specialized as $p_{1 j} \Delta\left(\beta_{1}\right)=$ $2^{n}, 0,-2^{n}, j=0,1, \ldots, 2^{n}-1$. Since $\beta_{1} \in \Re, \Delta\left(\beta_{1}\right) \neq 0$. Hence $\Delta\left(\beta_{1}\right)= \pm 2^{n}$. This proves that β_{1} is a non-zero linear structure.
(ii) If n is odd, from (5) we conclude that $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n+1}, 0, i=0,1, \ldots, 2^{n}-1$, and hence by using Lemma 1 , we have proved $N_{f}=2^{n-1}-2^{\frac{1}{2(n-1)}}$. By using Lemma 6 we conclude that the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$.
(iii) If n is even, from (13), $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n+2}, 0,2^{n}$. Since \# $>1, f$ is not bent. Hence $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n}$ cannot hold for all i and hence there exists a number $i_{0}, 0 \leq i_{0} \leq 2^{n}-1$, such that $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n+2}$. By using Lemma 1 , we have proved $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$, if n is even. By using Lemma 6 we conclude that the algebraic degree of f is at most $2^{\frac{1}{2} n+1}$.

Example 2. Let n be a positive odd number and $f\left(x_{1}, \ldots, x_{n}\right)$ be the same with that in Example 1. Let W be an $(n-1)$-dimensional linear subspace of V_{n}, composed of all the vectors in V_{n}, that can be expressed in the form ($a_{1}, \ldots, a_{n-1}, 0$), where each $a_{j} \in G F(2)$. It is easy to see $\alpha^{*}=(1,0, \ldots, 0) \in V_{n}$ is a nonzero linear structure of f and $\Re \cap W=\left\{0, \alpha^{*}\right\}$. Due to (ii) of Theorem 8 , $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

Let k be a positive even number with $k \geq 4$ and $h\left(x_{1}, \ldots, x_{k}\right)=x_{1} \oplus$ $x_{2} \oplus q\left(x_{3}, \ldots, x_{k}\right)$ where q is a bent function on V_{k-2}. Let U be an $(n-1)$ dimensional linear subspace of V_{n}, composed of all the vectors in V_{n}, that can be expressed in the form $\left(0, a_{2}, \ldots, a_{k}\right)$, where each $a_{j} \in G F(2)$. It is easy to see $\alpha_{1}^{*}=(0,1,0, \ldots, 0)$ is a non-zero linear structures of h and $\Re \cap U=\left\{0, \alpha_{1}^{*}\right\}$. Due to (iii) of Theorem $8, N_{h}=2^{k-1}-2^{\frac{1}{2} k}$.

It is interesting that by using Theorem 8 , we have determined N_{h} only from the condition $\#(\Re \cap U)=2$ for an $(n-1)$-dimensional linear subspace U although we do not search other vectors in \Re.

Finally, we consider the case when $\#(\Re \cap W)=3$.
Theorem 9. Let f be a function on V_{n}. If there exists a $(n-1)$-dimensional linear subspace W satisfying $\Re \cap W=\left\{0, \beta_{1}, \beta_{2}\right\}$, then the following statements hold:
(i) $\Delta\left(\beta_{j}\right)= \pm 2^{n-1}, j=1,2$,
(ii) if n is odd, then the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$ and the algebraic degree of f is at most $2^{\frac{1}{2}(n+1)}$,
(iii) if n is even, then $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$ and the algebraic degree of f is at most $2^{\frac{1}{2} n+1}$.

Proof. Since any two non-zero vectors are linearly independent, we can keep the deduction in the proof of Theorem 3 until inequality (12) where we need the condition $k \geq 3$.

Recall the proof of Theorem 3, (9) can be specialized as $\Delta\left(\beta_{j}\right)= \pm 2^{n}, \pm 2^{n-1}$, $j=1,2$.

On the other hand, (10), (11) and (12) can be rewritten as $\left(\Delta\left(\beta_{1}\right), \Delta\left(\beta_{2}\right)\right)=$ $2^{n-1}\left(b_{1}, b_{2}\right)$ where each $b_{j}= \pm 1, \pm 2,\left(p_{1 s}, p_{2 s}\right)=\left(\frac{b_{1}}{\left|b_{1}\right|}, \frac{b_{2}}{\left|b_{2}\right|}\right)$. and

$$
\begin{equation*}
p_{1 s} \Delta\left(\beta_{1}\right)+p_{2 s} \Delta\left(\beta_{2}\right)=\left(\left|b_{1}\right|+\left|b_{2}\right|\right) 2^{n-1} \tag{16}
\end{equation*}
$$

respectively. It is easy to prove $b_{1}, b_{2}= \pm 1$. Otherwise, for example, $b_{1}= \pm 2$, from (16), $p_{1 s} \Delta\left(\beta_{1}\right)+p_{2 s} \Delta\left(\beta_{2}\right) \geq 3 \cdot 2^{n-1}$. This contradicts (6). Since $b_{1}, b_{2}= \pm 1$, $\Delta\left(\beta_{1}\right), \Delta\left(\beta_{2}\right)= \pm 2^{n-1}$. This proves (i).

The rest proof is the same with the proof of Theorem 8 .

Example 3. Let n be a positive odd number with $n \geq 7, h\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ $\left(x_{1} \oplus x_{2} \oplus x_{3}\right) x_{4} x_{5} \oplus x_{1} x_{5} \oplus x_{2} x_{4} \oplus x_{1} \oplus x_{2} \oplus x_{3}$ and $g\left(x_{6}, \ldots, x_{n}\right)$ be a bent function on V_{n-5}. Set $f\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \oplus g\left(x_{6}, \ldots, x_{n}\right)$.

Let W be an $(n-1)$-dimensional linear subspace of V_{n}, composed of all the vectors in V_{n}, that can be expressed in the form $\left(0, a_{2}, \ldots, a_{n}\right)$, where each $a_{j} \in G F(2)$. Write $\alpha_{1}^{*}=(0,0,1,0, \ldots, 0), \alpha_{2}^{*}=(0,1,0, \ldots, 0) \in V_{n}$, It is easy to verify $\alpha_{1}^{*}, \alpha_{2}^{*} \in \Re$ and $\Re \cap W=\left\{0, \alpha_{1}^{*}, \alpha_{2}^{*}\right\}$. Due to (i) and (ii) of Theorem 9 , we conclude $\Delta\left(\alpha_{1}^{*}\right)= \pm 2^{n-1}, \Delta\left(\alpha_{2}^{*}\right)= \pm 2^{n-1}$ and $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

We notice that by using Theorem 9 , we have determined $N_{h}, \Delta\left(\alpha_{1}^{*}\right)$ and $\Delta\left(\alpha_{2}^{*}\right)$ only from the information about $\#(\Re \cap W)$ for an ($n-1$)-dimensional linear subspace W although we do not search other the vectors in \Re.

We can also find an example corresponding to (iii) of Theorem 9. All Theorems 7,8 and 9 and Examples 1, 2 and 3 show that we can determine the nonlinearity of a function only from some information about \#($\because \cap W)$, where W is an ($n-1$)-dimensional linear subspace. It is interesting that [7] has proved that there exists no a function with $\# \Re=3$ while Example 3 gives a function satisfying $\#(\Re \cap W)=3$ for an $(n-1)$-dimensional linear subspace W.

7 Conclusions

The strong linear dependence is an improvement on a previously known result. The unbiased distribution of non-propagation vectors is valid for most functions. These results provide more information on the non-propagative vectors in any ($n-1$)-dimensional linear subspace of V_{n}, and hence they are helpful for designing cryptographic functions.

8 Acknowledgement

The second author was supported by a Queen Elizabeth II Fellowship (227 23 1002).

References

1. Claude Carlet. Partially-bent functions. Designs, Codes and Cryptography, 3:135145, 1993.
2. W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology - EUROCRYPT'89, volume 434, Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, Berlin, Heidelberg, New York, 1990.
3. B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle. Propagation characteristics of boolean functions. In Advances in Cryptology - EUROCRYPT'90, volume 437, Lecture Notes in Computer Science, pages 155-165. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
4. O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory, Ser. A, 20:300-305, 1976.
5. A. F. Webster and S. E. Tavares. On the design of S-boxes. In Advances in Cryptol-ogy-CRYPTO'85, volume 219, Lecture Notes in Computer Science, pages 523-534. Springer-Verlag, Berlin, Heidelberg, New York, 1986.
6. Y. Zheng X. M. Zhang and Hideki Imai. Duality of boolean functions and its cryptographic significance. In Advances in Cryptology - ICICS'97, volume 1334, Lecture Notes in Computer Science, pages 159-169. Springer-Verlag, Berlin, Heidelberg, New York, 1997.
7. X. M. Zhang and Y. Zheng. Characterizing the structures of cryptographic functions satisfying the propagation criterion for almost all vectors. Design, Codes and Cryptography, $7(1 / 2): 111-134,1996$. special issue dedicated to Gus Simmons.
