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tables of S-boxes. A core topic in the endeavor is to �nd out relationships between di�erential distributiontables and other properties of S-boxes. In this paper we �rst introduce two additional tables associatedwith an S-box, these being the auto-correlation and correlation immunity distribution tables. Then weestablish a precise relationship among the three tables of an S-box (i.e., the di�erence, auto-correlationand correlation immunity distribution tables). With this relationship as a basis, we show that an S-box isregular (or balanced) if and only if the sum of the values in the leftmost column of its di�erent distributiontable is 22n�m. In a sense, this result complements a well-known fact about the regularity of an S-boxwhich states that an S-box is regular if and only if the non-zero linear combinations of its componentfunctions are all balanced.Our next concern is on the di�erential uniformity of an S-box. In order to resist against di�erentialcryptanalysis, researchers started to search for S-boxes whose di�erence distribution tables are relativelyat. As S-boxes with a completely at di�erence distribution table have been known to be weak in resistingagainst di�erential attacks, naturally one of the research focuses has been on designing S-boxes with a uni-formly half-occupied di�erence distribution table (UHODDT), i.e., S-boxes whose di�erential distributiontables contain an equal number of zero and identical non-zero entries in each of their rows (not taking intoaccount the top row). Previous works directly or indirectly related to this line of research include, but notlimited to, [1, 3, 15, 16, 17, 18, 19].Defying e�orts by a number of researchers, no n �m S-box with a UHODDT has emerged. This hasled to a conjecture which states thatfor all n > m, there exists no n�m S-box with a UHODDT.Some progress in proving the conjecture was made in [29] where it was shown that when n or m is even,there exists no quadratic n�m S-box with a UHODDT (see Theorem 1 of [29]). This paper reports furtherprogress in proving the conjecture. In particular, we show that when n >= 2m� 1, there exists no quadraticn � m S-box with a UHODDT. We hope that this new piece of evidence can be of some contribution tothe eventual success in proving the conjecture.The next issue addressed in this paper is on the lower bound of di�erential uniformity. The di�erentialuniformity of an S-box is de�ned as the largest non-zero value in the di�erential distribution table of theS-box, not taking into account the �rst entry in the top row. For an n�m S-box, it is easy to see that itsdi�erential uniformity is at least 2n�m. As another contribution of this paper, we will show a new tightlower bound that considerably improves the \trivial" bound of 2n�m.The �nal issue addressed in this work relates more speci�cally the nonlinearity of an S-box to itsdi�erence distribution table. In particular, it shows two upper bounds on the nonlinearity of the S-box,one for the case when the S-box is an arbitrary mapping and the other when it is regular. These twobounds are expressed in terms of three parameters: the number of input bits, the number of output bitsand the number of nonzero entries in the entire di�erence distribution table or in the leftmost column ofthe di�erence distribution table of the S-box, respectively. We also compare the second new upper boundwith previous works in the same area.The remainder of this paper is organized as follows: Section 2 introduces formal notations and de�nitionsused in this paper. The di�erence, auto-correlation and correlation immunity distribution tables of an S-box are de�ned in Section 3 where a precise relationship among the three tables is also established. Aninteresting connection between the regularity of an S-box and columns of its di�erential distribution tableis presented in Section 4. This is followed by Section 5 where it is proved that for n >= 2m� 1, there existsno quadratic n�m S-box with a UHODDT. A tight lower bound on the di�erential uniformity of an S-boxis presented in Section 6, and then two upper bounds on the nonlinearity of an S-box and its di�erencedistribution table are proved in Section 7. Section 8 closes the paper with some concluding remarks.2



2 Basic Notations and De�nitionsThis section is intended as a summary of the minimum amount of mathematical knowledge required inrigorously treating issues on S-boxes to be discussed in this paper.The vector space of n tuples of elements from GF (2) is denoted by Vn. These vectors, in ascendingalphabetical order, are denoted by �0, �1, : : :, �2n�1. As vectors in Vn and integers in [0; 2n � 1] have anatural one-to-one correspondence, it allows us to switch from a vector in Vn to its corresponding integerin [0; 2n � 1], and vice versa.Let f be a function from Vn to GF (2) (or simply, a function on Vn). The sequence of f is de�nedas ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1)), while the truth table of f is de�ned as (f(�0), f(�1), : : :,f(�2n�1)). f is said to be balanced if its truth table assumes an equal number of zeros and ones. We callh(x) = a1x1� � � �� anxn� c an a�ne function, where x = (x1; : : : ; xn) and aj ; c 2 GF (2). In particular, hwill be called a linear function if c = 0. The sequence of an a�ne (linear) function will be called an a�ne(linear) sequence.The Hamming weight of a vector v, denoted by W (v), is the number of ones in v. Let f and gbe functions on Vn. Then d(f; g) = Pf(x) 6=g(x) 1, where the addition is over the reals, is called theHamming distance between f and g. Let '0; : : : ; '2n+1�1 be the a�ne functions on Vn. Then Nf =mini=0;:::;2n+1�1 d(f;'i) is called the nonlinearity of f . It is well-known that the nonlinearity of f on Vnsatis�es Nf <= 2n�1 � 2 12n�1. The equality holds if and only if f is bent (see P. 426 of [13]).Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise product is denotedby a � b, while the scalar product (sum of component-wise products) is denoted by ha; bi.De�nition 1 Let f be a function on Vn. For a vector � 2 Vn, denote by �(�) the sequence of f(x� �).Thus �(0) is the sequence of f itself and �(0) � �(�) is the sequence of f(x) � f(x � �). De�ne theauto-correlation of f with a shift � by �(�) = h�(0); �(�)i:The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n, denoted by Hn, is generatedby the recursive relation Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : ; H0 = 1:Each row (column) of Hn is a linear sequence of length 2n.The following two formulas are well known to the researchers.Let � be the sequence of a function f on Vn. Then the nonlinearity of f , Nf can be calculated byNf = 2n�1 � 12 maxfjh�; `iij;0 <= i <= 2n � 1g (1)where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.Let � be the sequence of a function f on Vn. Then(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2) (2)where �i is the binary representation of an integer i and `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.An n �m S-box or substitution box is a mapping from Vn to Vm, i.e., F = (f1; : : : ; fm), where n andm are integers with n >= m >= 1 and each component function fj is a function on Vn. In this paper, we usethe terms of mapping and S-box interchangeably. 3



As can be seen from the design of many practical block ciphers, researchers are mainly concerned withregular S-boxes only. A mapping F = (f1; : : : ; fm) is said to be regular if F (x) runs through each vectorin Vm 2n�m times while x runs through Vn once.The following lemma states a useful result on the regularity of an S-box. This result has appeared inmany di�erent forms in the literature. Our description can be viewed as the binary version of Corollary7.39 of [12].Lemma 1 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers with n >= m >= 1and each fj(x) is a function on Vn. Then F is regular if and only if every non-zero linear combination off1; : : : ; fm is balanced.The concept of nonlinearity can be extended to the case of an S-box.De�nition 2 The standard de�nition of the nonlinearity of F = (f1; : : : ; fm) isNF = mingfNg jg = mMj=1 cjfj ; cj 2 GF (2); g 6= 0g:Now we consider an S-box in terms of its usefulness in designing a block cipher secure against di�erentialcryptanalysis [4, 5]. The essence of a di�erential attack is that it exploits particular entries in the di�erencedistribution tables of S-boxes employed by a block cipher. The di�erence distribution table of an n � mS-box is a 2n � 2m matrix. The rows of the matrix, indexed by the vectors in Vn, represent the changesin the inputs, while the columns, indexed by the vectors in Vm, represent the change in the output of theS-box. An entry in the table indexed by (�;�) indicates the number of input vectors which, when changedby � (in the sense of bit-wise XOR), result in a change in the output by � (also in the sense of bit-wiseXOR).Note that an entry in a di�erence distribution table can only take an even value, the sum of the valuesin a row is always 2n, and the top row is always (2n; 0; : : : ; 0). As entries with higher values in the tableare particularly useful to di�erential cryptanalysis, a necessary condition for an S-box to be immune todi�erential cryptanalysis is that it does not have large values in its di�erential distribution table (not takinginto account the leftmost entry in the top row).In measuring the strength of an S-box (in terms of the security of a block cipher that employs the S-box) against di�erential attacks, a useful indicator commonly used is di�erential uniformity whose formalde�nition follows [17].De�nition 3 Let F be an n � m S-box, where n >= m. Let � be the largest value in the di�erentialdistribution table of the S-box (not taking into account the leftmost entry in the top row), namely,� = max�2Vn;�6=0max�2Vs jfxjF(x)� F (x� �) = �gjThen F is said to be di�erentially �-uniform, and accordingly, � is called the di�erential uniformity of F .An important ingredient in designing cryptographic Boolean functions is bent functions whose formalde�nition follows.De�nition 4 Let f be a function on Vn and � denote the sequence of f . f is called a bent function ifjh�; `iij = 2n2 ;i = 0; 1; : : : ; 2n � 1, where `i denotes the ith row of Hn.Bent functions can be characterized in various ways [2, 9, 21, 24, 27]. A characterization of particularinterest can be found in [9, 21] which states that bent functions on Vn exist only when n is even, and thatthey achieve the highest possible nonlinearity on Vn, namely, 2n�1 � 2n2�1.4



3 Relationships among Three TablesNow we introduce three more notations, kj(�), �j(�) and �j, associated with an S-box F = (f1; : : : ; fm).De�nition 5 Let F = (f1; : : : ; fm) be an n �m S-box, � 2 Vn, j = 0; 1; : : : ; 2m � 1 and �j = (b1; : : : ; bm)be the vector in Vm that corresponds to the binary representation of j. In addition, set gj =Lmu=1 bufu bethe jth linear combination of the component functions of F . Then we de�ne1. kj(�) as the number of times F (x)� F (x� �) runs through �j 2 Vm while x runs through Vn once,2. �j(�) as the auto-correlation of gj with a shift �,3. �j as the sequence of gj.Using the three notations, we formally de�ne three tables/matrices related to F = (f1; : : : ; fm).De�nition 6 For an S-box F = (f1; : : : ; fm), setK = 266664 k0(�0) k1(�0) : : : k2m�1(�0)k0(�1) k1(�1) : : : k2m�1(�1)...k0(�2n�1) k1(�2n�1) : : : k2m�1(�2n�1) 377775D = 266664 �0(�0) �1(�0) : : : �2m�1(�0)�0(�1) �1(�1) : : : �2m�1(�1)...�0(�2n�1) �1(�2n�1) : : : �2m�1(�2n�1) 377775and P = 266664 h�0; `0i2 h�1; `0i2 � � � h�2m�1; `0i2h�0; `1i2 h�1; `1i2 � � � h�2m�1; `1i2...h�0; `2n�1i2 h�1; `2n�1i2 � � � h�2m�1; `2n�1i2 377775where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1. The three tables matrices K, D and P share the samesize of 2n � 2m. Clearly K is the di�erence distribution table of F that has already been (informally)introduced in Section 2. The other two tables are called auto-correlation distribution table and correlationimmunity distribution table of the S-box F , respectively.Since both �0 and `0 are the all-one sequence of length 2n and `j is (1;�1) balanced for j > 0, we haveh�0; `0i = 2n; h�0; `ji = 0; j = 1; : : : ; 2n � 1: (3)>From the de�nition of kj(�i), one can see that the sum of the entries in each row of K is 2n, and that the�rst row has the form of (2n; 0; : : : ; 0). Namely,2m�1Xj=0 kj(�i) = 2n; i = 0; 1; : : : ; 2n � 1; (4)and k0(�0) = 2n; kj(�0) = 0; j = 1; : : : ; 2m � 1: (5)5



In designing a strong S-box, many cryptographic criteria should be examined not only against compo-nent functions, but also against their linear combinations. Such criteria include those related to nonlin-earity, propagation characteristics [20] and di�erence distribution tables. The matrix K characterizes thedi�erential characteristics of an S-box. The matrix D indicates the auto-correlation of all linear combina-tions of the component functions. While the matrix P represents the inner product between the sequenceof each linear combination of the component functions and each linear sequence. P is helpful in studyingthe correlation immunity, as well as the nonlinearity, of each linear combination of the component functions(see [23]).To explore relationships between the di�erence distribution table and other cryptographic charac-teristics of an S-box, �rst we examine a relationship between the di�erence distribution table and theauto-correlations of the component functions of the S-box.The following lemma shows an intimate relationship between the three tables K, D and P de�nedabove. The lemma can be easily shown to be correct by the use of a connection between the Hammingdistance between rows and the distribution of ones in the columns in a (0; 1) matrix. For completeness,a full proof for the lemma is provided in the appendix. It turns out that the lemma is very useful inexamining cryptographic properties of an S-box, and it will be used in proving many of the main resultsin this paper.Lemma 2 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers with n >= m >= 1and each fj(x) is a function on Vn. Set gj =Lmu=1 cufu where (c1; : : : ; cm) is the binary representation ofan integer j, j = 0; 1; : : : ; 2m � 1. Then(i) (k0(�i); k1(�i); : : : ; k2m�1(�i))Hm = (�0(�i);�1(�i); : : : ;�2m�1(�i))where �i is the binary representation of an integer i,(i) D = KHm,(ii) P = HnD,(iii) P = HnKHm.Permutations are a special type of S-boxes that are used in many cryptographic algorithms. Of partic-ular interest is to look into how the three tables of a permutation are connected to the three correspondingtables of the inverse of the permutation. The following result is easy to verify.Corollary 1 Let F be a permutation on Vn and F�1 denote the inverse of F . Let K = (ki(�j)), D =(�i(�j)) and P = (h�i; `ji) be the di�erence distribution, auto-correlation distribution and correlationimmunity distribution tables of F . Similarly, let K� = (k�i (�j)), D� = (��i (�j)) and P � = (h��i ; `ji) be thedi�erence distribution, auto-correlation distribution and correlation immunity distribution tables of F�1.Then(i) K� = KT ,(ii) P � = P T ,(iii) D� = H�1n DTHn. 6



4 Regularity of S-boxes and Di�erence Distribution TablesUsing Lemma 2, we now show that a regular S-box can be completely characterized by its di�erencedistribution table. This characterization nicely complements Lemma 1 which is stated in terms of thebalance of non-zero linear combinations of component functions of an S-box.Corollary 2 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers with n >= m >=1 and each fj is a function on Vn. Then F is regular if and only if the sum of a column in the di�erencedistribution table is 22n�m, i.e., P�2Vn ki(�) = 22n�m, i = 0; 1; : : : ; 2m � 1.Proof. Compare the �rst rows in both sides of the formula in Part (iv) of Lemma 2,(X�2Vn k0(�); X�2Vn k1(�); : : : ; X�2Vn k2m�1(�))Hm = (h�0; `0i2; h�1; `0i2; : : : ; h�2m�1; `0i2): (6)Obviously, if P�2Vn ki(�) = 22n�m, i = 0; 1; : : : ; 2m � 1. then h�1; `0i2 = � � � = h�2m�1; `0i2 = 0. Notethat `0 is the all-one sequence of length 2n. Hence g1; : : : ; g2m�1 are balanced, where g1; : : : ; g2m�1 arede�ned in Lemma 2. By Lemma 1, F is regular.Conversely, suppose F is regular. By Lemma 1, g1; : : : ; g2m�1 are balanced. Hence h�1; `0i2 = � � � =h�2m�1; `0i2 = 0. Note that h�0; `0i2 = 22n. Rewrite (6) as2m(X�2Vn k0(�); X�2Vn k1(�); � � � ; X�2Vn k2m�1(�)) = (22n; 0; : : : ; 0)Hm:This proves that P�2Vn ki(�) = 22n�m, i = 0; 1; : : : ; 2m � 1. utCorollary 2 has also been obtained independently by Tapia-Recillas, Daltabuit and Vega [26].The following corollary shows the uniqueness of the leftmost column of the di�erence distribution tableof a regular mapping.Theorem 1 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers with n >= m >= 1and each fj is a function on Vn. Then(i) P�2Vn k0(�) >= 22n�m,(ii) the equality in (i) holds if and only if F is regular.Proof. (i) Right-multiplying both sides of the equality in Part (iv) of Lemma 2 by eT where, e denotesthe all-one sequence of length 2m. Hence we haveHn 266664 k0(�0) k1(�0) : : : k2m�1(�0)k0(�1) k1(�1) : : : k2m�1(�1)...k0(�2n�1) k1(�2n�1) : : : k2m�1(�2n�1) 377775266664 2m0...0 377775 = 266664 P2m�1j=0 h�j; `0i2P2m�1j=0 h�j; `1i2...P2m�1j=0 h�j; `2n�1i2 377775and hence 2mHn 266664 k0(�0)k0(�1)...k0(�2n�1) 377775 = 266664 P2m�1j=0 h�j ; `0i2P2m�1j=0 h�j ; `1i2...P2m�1j=0 h�j; `2n�1i2 377775 : (7)7



Compare the two sides of equality (7), obtaining2m 2n�1Xi=0 k0(�i) = 2m�1Xj=0 h�j; `0i2: (8)Recall (3), h�0; `0i2 = 22n. From (8), we have proved Part (i) of the theorem.(ii) Suppose P�2Vn k0(�) = 22n�m, then from (8), h�1; `0i2 = � � � = h�2m�1; `0i2 = 0. Note that `0 isthe all-one sequence of length 2n. Hence g1; : : : ; g2m�1 are balanced, where g1; : : : ; g2m�1 are de�ned inLemma 2. By Lemma 1, F is regular.Conversely, if F is regular, then by Corollary 2, P�2Vn k0(�) = 22n�m. The proof of the theorem iscompleted. ut5 Nonexistence of Certain Quadratic S-boxesRecall that the di�erential uniformity � of an S-box is de�ned as the largest value in the di�erentialdistribution table of the S-box (not taking into account the top row). Clearly � is constrained by 2n�m <=� <= 2n. Extensive research has been carried out to construct di�erentially �-uniform S-boxes with low� [1, 3, 15, 16, 17, 18, 19]. Some constructions, in particular those based on permutation polynomials on�nite �elds, are simple and elegant. However, caution must be taken with De�nition 3. In particular, itshould be noted that low di�erential uniformity (a small �) is only a necessary, but not a su�cient conditionfor immunity to di�erential attacks. This is shown by the fact that S-boxes constructed in [1, 15], whichhave a at di�erence distribution table, are extremely weak to di�erential attacks, despite the fact thatthey achieve the lowest possible di�erential uniformity � = 2n�m [5, 6, 22].We are particularly interested in n � m S-boxes that have the following property: for each nonzerovector � 2 Vn, F (x)� F (x� �) runs through 2m�t, 1 <= t <= m, of the vectors in Vm, each 2n�m+t times,but not through the other 2m � 2m�t vectors in Vn. With each row in the di�erence distribution table ofsuch an S-box, 2m�t of its entries contain a value 2n�m+t while the remaining entries contain a value zero.For simplicity, we say such a di�erence distribution table to be uniformly 2m�t-occupied .For n odd, n = m (i.e., permutation S-boxes) and t = 1, there has been a large body of research (seefor instance [3, 15, 16, 17, 18, 19]). One of the properties of these permutations is that their di�erentialdistribution tables are all 2-uniform, namely, half of the entries in a row contain a value zero while theother half contain a value 2. For this reason, it is believed that these permutations achieve the highestpossible robustness against the di�erential attack.As an extension of the above observation to a n � m S-box with n >= m, one would expect that theS-box would be highly useful in resisting di�erential attacks if its di�erence distribution table is uniformly2m�1-occupied , i.e., each row in the di�erence distribution table contains an equal number of zero andnon-zero entries with all the non-zero values being identical to 2n�m+1. For simplicity, we say that suchan n �m S-box has a uniformly half-occupied di�erence distribution table (UHODDT).Intuitively, an n � m S-box with a UHODDT is expected to be useful as it seems to sit nicely inthe middle of two undesirable extremes: S-boxes whose di�erential distribution tables contain too fewnon-zero entries and S-boxes whose di�erential distribution tables contain too many non-zero entries. Atone extreme, the di�erential distribution tables contain high-valued entries which may be exploited bydi�erential attacks, while at the other extreme, the di�erential distribution tables may be so close to a atone that the S-box is again exploitable by di�erential attacks.As we mentioned earlier, despite e�orts by a number of researchers around the world, we have notwitnessed the appearance of an n�m S-box with a UHODDT, except for the case of n = m with n odd.This has led us to a conjecture: 8



Conjecture 1 For all n > m, there exists no n�m S-box with a UHODDT.The �rst major step towards proving the conjecture was made in Theorem 1 of [29] for a special class ofS-boxes called quadratic S-boxes whose algebraic degrees are two. In particular, it has been proved in [29]that for n >= 4, there exists no quadratic n�m S-box with a UHODDT if n or m is even.There are a few directions one can follow to improve the result in [29]. These directions may include(1) proving the conjecture for higher-degree (say cubic) S-boxes, (2) proving the conjecture for quadraticS-boxes, but with di�erent parameters. In what follows we report our progress in the second direction.Theorem 2 There exists no quadratic n�m S-box with a UHODDT when n >= 2m� 1.Proof. Assume for contradiction that there exists a quadratic n � m S-box with a UHODDT, sayF = (f1; : : : ; fm), for n >= 2m� 1. Write all the nonzero linear combination of f1; : : : ; fm as g1; : : : ; g2m�1.From the proof of Theorem 1 of [29], each nonzero vector in Vn is a linear structure of a unique gj , i.e., thereis a unique gj such that gj(x)� gj(x� �) is a constant. It is easy to verify that for each j = 1; : : : ; 2m�1,the nonzero linear structures of gj , together with the zero vector, form a tj -dimensional subspace of Vn foran integer tj . We denote the subspace by Wj .Note that Vn = W1 [ � � � [W2m�1 (9)where Wj \Wi = f0g if j 6= i: (10)Thus 2t1 + � � �+ 2t2m�1 = 2n + 2m � 2 and thus there is a j0, 1 <= j0 <= 2m � 1, such that2tj0 >= 2n + 2m � 22m � 1 >= 2n�m + 1From this it follows that 2tj0 >= 2n�m+1:Now consider Wj0 . From linear algebra, Vn can be expressed as a partitionVn = U0 [ U1 [ � � � [ U2n�tj0 (11)satisfying(i) U0 = Wj0 ,(ii) jUj j = 2tJ0 ,(iii) Uj \ Ui = � where � denotes the empty set,(iv) two vectors �0; �00 belong the same class Uj (also called a coset) if and only if �0 � �00 2 U0.Now we focus on U1. Since U1 \ U0 = �, from (9), we haveU1 � (W1 [ � � � [Wj0�1 [Wj0+1 [ � � � [W2m�1): (12)Note that jU1j = 2tj0 >= 2n�m+1. By the assumption, we have n �m + 1 >= m. Thus jU1j > 2m � 1. (12)implies that there is i0, i0 2 f1; � � � ; j0�1; j0+1; � � � ; 2m�1g, such that jWi0\U1j >= 2. Let �0; �00 2 Wi0\U1.9



Since �0; �00 2 U1, from the above property (iv), we have �0 � �00 2 U0 = Wj0 . On the other hand, since�0; �00 2 Wi0 and Wi0 is a subspace, we must have �0 � �00 2 Wi0 . This proves that�0 � �00 2 Wi0 \Wj0 : (13)Since i0 2 f1; � � � ; j0 � 1; j0 + 1; � � � ; 2m � 1g, we have i0 6= j0. This contradicts (10). utWe note that both Theorem 2 in this paper and Theorem 1 in [29] can be extended to S-boxes withpartially bent component functions introduced in [7].6 A Lower Bound on Di�erential UniformityWe turn our attention back to the di�erential uniformity, denoted by �, of an n �m S-box. Recall that� is de�ned as the largest value in the di�erential distribution table of the S-box (not taking into accountthe leftmost entry in the top row), namely,� = max�2Vn;�6=0max�2Vs jfxjF(x)� F (x� �) = �gj(See De�nition 3). As discussed earlier, � is bounded by 2n�m <= � <= 2n, and generally speaking S-boxeswith a smaller � are desirable in designing a block cipher secure against di�erential attacks. This motivatesus to improve the \trivial" lower bound 2n�m on the di�erential uniformity �.The following lemma will be used in our discussions. It is identical to Lemma 2 of [28].Lemma 3 Let real valued sequences a0; : : : ; a2n�1 and b0; : : : ; b2n�1 satisfy(a0; : : : ; a2n�1)Hn = (b0; : : : ; b2n�1):For any integer p and q, p + q = n, 1 <= p; q <= n � 1, set �j = P2q�1s=0 bj2q+s, where j = 0; 1; : : : ; 2p � 1.Then 2q(a0; a2q ; a2�2q ; : : : ; a(2p�1)2q)Hp = (�0; �1; : : : ; �2p�1): (14)Now we prove another main result of this paper.Theorem 3 Let F = (f1; : : : ; fm) be an n � m S-box, where n and m are integers with n >= m >= 1 andeach fj(x) is a function on Vn. Set gj = Lmu=1 cufu where (c1; : : : ; cm) is the binary representation ofan integer j, j = 0; 1; : : : ; 2m � 1. Denote by �j(�) the auto-correlation of gj with a shift �, and set�M = maxfj�j(�)j j j = 1; : : : ; 2m � 1; � 2 Vn; � 6= 0g. Then we have� >= 2n�m + 2�m�M :Proof. Let �j0(�i0) = �M . By Part (i) of Lemma 2, we have2�m(�0(�i0);�1(�i0); : : : ;�2m�1(�i0))Hm = (k0(�0i); k1(�0i); : : : ; k2m�1(�0i)) (15)Applying Lemma 3 to (15), we get2m�12�m(�0(�i0);�2m�1(�i0))H1 = (�0; �1)where �j =P2m�1�1s=0 kj2m�1+s, j = 0;1. Hence2�1(�0(�i0) + �2m�1(�i0)) = �010



and 2�1(�0(�i0)��2m�1(�i0)) = �1Thus there is a j02q + s0 for 0 <= s0 <= 2m�1 � 1 and j0 = 0 or 1, such thatkj02q+s0 >= 2�m(�0(�i0) + �2m�1(�i0)):Recall that �0(�) = 2n for all � 2 Vn. So we havekj02q+s0 >= 2�m(2n +�2m�1(�i0)):According to Section 5.3 of [22], the di�erential uniformity of F is invariant under a nonsingular lineartransformation on the variables of F . Thus by choosing an appropriate nonsingular linear transformationon the variables of F , we have kj02q+s0 >= 2n�m + 2�m�Mand hence � >= 2n�m + 2�m�M : utWhen �M = 0, every nonzero linear combination of the components of F is a bent function. (SuchS-boxes do exist [1, 15], but are not regular.) In this case we have � = 2n�m. This indicates that the boundin Theorem 3 is tight.7 Upper Bounds on Nonlinearity of S-boxesAfter the discovery of di�erential attacks in [5], an equally notable cryptanalysis method, the linear crypt-analytic attack, was subsequently introduced in [14]. Identifying relationships between these two types ofattacks has been an interesting research area, both from the view point of cryptanalysis and the design ofsecure ciphers. We will �rst show a tight upper bound on the nonlinearity of a general S-box. This will befollowed by another upper bound on the nonlinearity of a regular S-box. The usefulness of such an explicitrelationship is obvious: the nonlinearity of an S-box represents a key indicator for the strength of a blockcipher that employs the S-box. We also compare our result on the relationship with a related theoremin [8].In studying a n�m S-box, the two parameters n and m alone are not adequate in �nding out detailedinformation on the S-box, except that when m >= n�1, an upper bound on nonlinearity was obtained in [8](but see discussions in the closing paragraph of this section.)On the other hand, it will be too complex to take into account all the kj(�), �j(�), or h�j ; `ii2, forj = 0; 1; : : : ; 2m � 1, i = 0; 1; : : : ; 2n � 1 and � 2 Vn (see De�nition 5). The two theorems to be proved inthis section can be viewed as a compromise between the two approaches. These two theorems relate thenonlinearity of an n�m S-box to three parameters, namely n, m and the number of nonzero entries in itsdi�erence distribution table K.7.1 General CaseHere we consider n�m S-box that is not necessarily regular. In addition, the restriction of n >= m is notimposed on the S-box. We �rst introduce H�older's Inequality which can be found in [10].11



Lemma 4 Let cj >= 0 and dj >= 0 be real numbers, where j = 1; : : : ; s, and let p and q satisfy 1p + 1q = 1and p > 1. Then ( sXj=1 cpj)1=p( sXj=1 dqj)1=q >= sXj=1 cjdjwhere the quality holds if and only if cj = �dj, j = 1; : : : ; s for a constant � >= 0.When cj , dj, p and q satisfy the condition that cj >= 0, dj = ( 1 if cj = 10 if cj = 0 , and p = q = 12 , H�older'sInequality gives sXj=1 c2j >= s�1( sXj=1 cj)2 (16)where the quality holds if and only if c1, : : :, cs are all identical. The inequality (16) will be used in theproof of the following two theorems regarding the upper bound on the nonlinearity of an S-box.Theorem 4 Let F be an n � m S-box (F is not necessarily regular, and the restriction of n >= m is notimposed on it). Denote by Tnz the total number of all nonzero entries, except for k0(�0), in the di�erencedistribution table K of the S-box (see De�nition 6). Then(i) the nonlinearity of F satis�esNF <= 2n�1 � 12(22n+m � 23n + T�1nz 22n+m(2n � 1)22m � 1 )14 ;(ii) the equality in (i) holds if and only if every nonzero linear combination of the component functionsof F is a bent function.Proof. We �rst prove Part (i) of the theorem. Using Part (iv) of Lemma 2, we haveP TP = HmKTHTnHnKHm = 2nHmKTKHm = 2n+mH�1m KTKHm:Note that the sum of entries on the diagonal of P TP is equal to the sum of entries on the diagonal of2n+mKTK. Hence 2m�1Xj=0 2n�1Xi=0 h�j ; `ii4 = 2n+m 2m�1Xj=0 2n�1Xi=0 k2j (�i):From (3), (4) and (5) in Section 3, we have24n + 2m�1Xj=1 2n�1Xi=0 h�j ; `ii4 = 2n+m(22n + 2m�1Xj=0 2n�1Xi=1 k2j (�i)):Now combining (4) with (16), a special form of H�older's Inequality, we have2m�1Xj=0 2n�1Xi=1 k2j (�i) >= T�1nz (2m�1Xj=0 2n�1Xi=1 kj(�i))2 = T�1nz 22n(2n � 1)2: (17)Hence there is a certain j0, 1 <= j0 <= 2m � 1, and a certain i0, 0 <= i0 <= 2n � 1, such thath�j0; `i0i4 >= 2n+m(22n + T�1nz 22n(2n � 1)2)� 24n(2m � 1)2n12



which implies jh�j0; `i0ij >= (22n+m � 23n + T�1nz 22n+m(2n � 1)22m � 1 )14 :Now applying (1) we obtain Part (i) of the theorem.Note that since Tnz <= 2m(2n � 1), we have T�1nz 22n+m(2n � 1)2 >= 22n(2n � 1). That is, the expressionunder the fourth root is always positive.Now we prove Part (ii). First assume that the equality in Part (i) holds. From the de�nition of NF , aswell as (1), we have jh�j; `iij <= (22n+m � 23n + T�1nz 22n+m(2n � 1)22m � 1 ) 14 (18)for all j = 1; : : : ; 2m � 1 and i = 0; 1; : : : ; 2n � 1. Returning to the proof of Part (i), we can see that (18)implies that the equality on the left hand side of (17) must hold. Namely,2m�1Xj=0 2n�1Xi=1 k2j (�i) = T�1nz (2m�1Xj=0 2n�1Xi=1 kj(�i))2:Again using (16), the special form of H�older's Inequality, there exists a constant k such that kj(�i) = k,for all j = 0;1; : : : ; 2m � 1 and i = 1; : : : ; 2n � 1. From (4), the constant k must satisfy the condition ofk = 2n�m. Note also that in this case, Tnz = 2m(2n � 1). Thus due to Theorem 3.1 in [15], we concludethat every nonzero linear combination of the component functions of F is a bent function. A consequenceof this conclusion is that in this case, n must be even and m <= 12n [15].Conversely, assume that every nonzero linear combination of the component functions of F is a bentfunction. Once again employing Theorem 3.1 in [15], we have kj(�i) = 2n�m for j = 0; 1; : : : ; 2m � 1 andi = 1; : : : ; 2n � 1. In this case, the total number of nonzero entries in the table K is Tnz = 2m(2n � 1).Now the inequality in Part (i) of the theorem becomesNF <= 2n�1 � 2n2�1: (19)On the other hand, since every nonzero linear combination of the component functions of F is a bentfunction, the equality in (19) must hold i.e. the equality in Part (i) of the theorem holds. This completesthe proof of Part (ii). utBefore moving on to the next topic on regular S-boxes, we would like to stress that Theorem 4 shows atight upper bound on the nonlinearity of a general S-box which does not have to be regular. We also notethat an S-box that achieves the upper bound in theorem has a at di�erence distribution table and henceis weak against di�erential cryptanalysis.7.2 For a Regular S-boxAs we mentioned earlier, most encryption algorithms employ regular S-boxes. Hence such S-boxes play amore important role than does a non-regular one. Our research results to be described below show thatthe nonlinearity of a regular n �m S-box can be determined by n, m and a third parameter that countsonly the number of nonzero entries in the leftmost column of the di�erence distribution table of the S-box.We begin with examining partitions of the leftmost column of a di�erence distribution table.Lemma 5 Let F be a mapping from Vn to Vm and K is the di�erence distribution table of F . Then theleftmost column of K is determined by a 2m-partition of Vn, say Vn = 
0 [ � � � [ 
2m�1, that satis�es thecondition that 
j \ 
i = � for all j 6= i. 13



Proof. For each � 2 Vm, de�ne 
� = f� 2 VnjF (�) = �g. Note that we use an integer in [0; : : : ; 2m � 1]and a vector in Vm interchangeably. ClearlyVn = [�2Vm
� (20)and 
�0 \ 
�00 = � if �0 6= �00. Note that F (x)� F (x� �) = 0 if and only if both x and x� � belong tothe same class, say 
�.Now we modify the mapping F into F 0 by applying an arbitrary permutation on Vm to the output ofF . Clearly the partition in (20) remains unchanged, and F 0(x)� F 0(x� �) = 0 if and only if both x andx�� belong to the same class in (20). This proves that the leftmost columns of the di�erence distributiontables of F and F 0 are the same. utArmed with Lemma 5, we are ready to prove the following.Theorem 5 Let F be a regular n �m S-box (For such an S-box n >= m is necessary). Denote by tnz thetotal number of nonzero entries (except for k0(�0)) in the leftmost column of the di�erence distributiontable K of F . Then the nonlinearity of F satis�esNF <= 2n�1 � 12(23n+2m � 24n + t�1nz � 23n+2m(2n�m � 1)2(2n � 1)(2m � 1)2 ) 14 :Proof. Left-multiplying the transposes of the two sides in (7), we have(2m�1Xj=0 h�j; `0i2)2 + (2m�1Xj=0 h�j ; `1i2)2 + � � �+ (2m�1Xj=0 h�j ; `2n�1i2)2 = 22m+n 2n�1Xi=0 k20(�i) (21)Since both �0 and `0 are an all-one sequence, we have h�0; `0i = 2n. Recall that F is regular. By Lemma 1,each nonzero linear combination of the component functions of F is balanced. Thus for j = 1; : : : ; 2m � 1,�j is (1;�1) balanced and we have h�j ; `0i = 0. Also recall the de�nition in (3) and the fact that `j is(1;�1) balanced for j > 0, we can see that h�0; `ji = 0 for j = 1; : : : ; 2n � 1.Note that k0(�0) = 2n. So (21) can be specialized as(2m�1Xj=1 h�j; `1i2)2 + � � �+ (2m�1Xj=1 h�j; `2n�1i2)2 = 22m+3n � 24n + 22m+n 2n�1Xi=1 k20(�i) (22)By using (16) 2n�1Xi=1 k20(�i) >= t�1nz (2n�1Xi=1 k0(�i))2:Note that F is regular and k0(�0) = 2k. By using Corollary 1, P2n�1i=1 k0(�i) >= 22n�m � 2n. Hence2n�1Xi=1 k20(�i) >= t�1nz � (22n�m � 2m)2:Thus there is an i0, 1 <= i0 <= 2n � 1, such that2m�1Xj=1 h�j ; `i0i2 >= (23n+2m � 24n + t�1nz � 2n(22n � 2n+m)22n � 1 ) 12 :14



Since tnz <= 2n � 1, it is easy to verify that the expression under the square root is always positive.Furthermore there is a j0, 1 <= j0 <= 2m � 1, such thatjh�j0; `i0ij >= (23n+2m � 24n + t�1nz � 2n(22n � 2n+m)2(2n � 1)(2m � 1)2 )14 :Now the theorem follows immediately from (1). utComparing Theorem 4 with Theorem 5, we note that while the former deals with a general S-box whichis not necessarily regular, the latter is strictly on a regular S-box. Therefore the condition that n >= m isrequired only in Theorem 5. In addition to n and m, both theorems employ a third parameter in upperbounding the nonlinearity of an S-box. The third parameter Tnz used in Theorem 4 is the total numberof nonzero entries in the entire di�erence distribution table of the S-box (not taking into account the �rstentry in the leftmost column). In contrast, the third parameter tnz used in Theorem 5 is the total numberof nonzero entries in the leftmost column in the di�erence distribution table of the S-box (again not takinginto account the �rst entry in the column).Another di�erence between Theorems 4 and 5 is that while the bound in the former is tight, it is unclearwhether the same can be said with the latter. This is, however, not surprising, given that identifying theexact upper bound on the nonlinearity of a balanced function is one of the outstanding open problems inthe study of nonlinear Boolean functions.Before closing this section, we note that a paper by Chabaud and Vaudenay [8] is a prior work mostrelevant to this research. A main result in [8] is their Theorem 4 which is equivalent to stating that forevery mapping from Vn to Vm, say F , the nonlinearity of F , NF , satis�esNF <= 2n�1 � 12(3 � 2n � 2� 2(2n � 1)(2n�1 � 1)2m � 1 ) 12 : (23)Examining the part under the square root in the expression, one can see that it is negative if m <= n � 2.Therefore, (23) is applicable only to n �m S-boxes with m >= n� 1.8 Concluding RemarksWe have introduced three tables associated with an S-box, and based on a relationship among the threetables, we have established a number of results ranging from regularity, nonexistence of certain quadratic S-boxes, to a tight lower bound on the di�erential uniformity and two tight upper bounds on the nonlinearityof an S-box.The technique used in proving the nonexistence result is essentially similar to that used in [29]. Thistechnique, however, seems to have its limitation in that it may not be applicable to proving the nonexistenceof higher-degree S-boxes.In light of recent progress in interpolation [11] and high order di�erential cryptanalysis [25], a naturaltopic that deserves immediate attention is to research into high order di�erential distribution tables ofS-boxes, together with connections to other cryptographic properties of S-boxes.AcknowledgmentThe �rst author was supported by a Queen Elizabeth II Research Fellowship (223 23 1001). Part of thesecond author's work was completed while on sabbatical at the University of Tokyo.15
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Appendix: The Proof of Lemma 2There are close relationships between the Hamming distance between rows and the distribution of onesin the columns in a (0; 1) matrix. Such relationships have been very useful in constructing linear errorcorrecting codes. In this appendix we review some of the relationships from the view point of Hadamardtransforms. Once the relationships are clear, the proof of Lemma 2 becomes straightforward.Let t >= s, and A be an s� t (0; 1) matrix with rank s. SetA = 266664 �0�1...�s�1 377775 = (aij) = [�0; �1; � � � ; �t�1]; (24)where �i 2 Vt is the ith row vector and �j 2 Vs is the jth column vector of A.We are concerned with all the linear combinations of �0; �1; : : : ; �s�1, denoted by �0; �1; : : : ; �2s�1, where�j =Ls�1u=0 cu�u, (c0; c1; : : : ; cs�1) is the binary representation of an integer j, j = 0; 1 : : : ; 2s � 1. Now setB = 266664 �0�1...�2s�1 377775 = (bij) = [0; 1; � � � ; t�1]; (25)where B is a (0; 1) matrix of order 2s� t and j 2 V2s is the jth column vector of B. Replace every 0 entryin B with 1, and every 1 entry in B with �1. Then denote by B� the new (1;�1) matrix of order 2s � t.Write B� = (b�ij) = 266664 R0R1...R2s�1 377775 = [h0; h1; � � � ; ht�1]; (26)where Ri is the ith row vector and hj is the jth column vector of B�. One can verify that each hj is alinear sequence of length 2s.Let B� be the matrix de�ned in (26), e0; e1; : : : ; e2s�1 be the row vectors, from the top to the bottom,of Hs. Assume that ej appears kj times in the columns of B�. We now proveeiB�B�TeTj = ( kj22s if ei = ej0 otherwise. (27)Write eiB� = (c�0; : : : ; c�t�1) where c�u = ( 2s if eTi = hu0 otherwise (28)for all u = 0; : : : ; t � 1. Similarly, write ejB� = (d�0; : : : ; d�t�1), whered�u = ( 2s if eTj = hu0 otherwise (29)for all u = 0; : : : ; t � 1. 18



If ei = ej , then eiB�B�TeTj =Pt�1u=0 c�uc�u = kj22s. On the other hand, if ei 6= ej , then by (28) and (29),c�u 6= 0 implies d�u = 0, which results in eiB�B�T eTj =Pt�1u=0 c�ud�u = 0. This proves (27).As the Sylvester-Hadamard matrix Hm is symmetric, (27) can be equivalently stated as:HsB�B�THs = 22s diag(k0; k1; : : : ; k2s�1): (30)Let Rj be a row of B� de�ned in (26) and kj the number of times a row vector ej in Hs appears in thecolumns of B�. From (30) we have B�B�T = Hs diag(k0; k1; : : : ; k2s�1)Hs. Comparing the �rst rows in thetwo sides of the equation, we have(hR0;R0i; hR0;R1i; : : : ; hR0;R2s�1i) = (k0; k1; : : : ; k2s�1)Hs: (31)Now we are in a position to prove Lemma 2. Consider an s� t matrix A de�ned in (24) with s = m andt = n. Let a row �i in (24) be the truth table of fi(x)� fi(x� �), i = 0;1; : : : ;m� 1. Correspondingly, �iin (25) denotes the truth table of gi(x)� gi(x��), and Ri in (26) denotes the sequence of gi(x)�gi(x��),i = 0; 1; : : : ; 2m � 1.As g0 is the zero function, R0 is the all-one sequence. Hence hR0;Rii is equal to the sum of thecomponents in Ri. That is, hR0;Rii = �i(�). Hence Part (i) of Lemma 2 follows from (31).For � = �0; �1; : : : ; �2n�1, Part (i) of Lemma 2 gives 2n equations. These equations can be writtenas Part (ii) of the lemma. Part (iii) of the lemma follows from (2). And �nally Parts (ii) and (iii) of thelemma together give Part (iv) of the lemma.
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