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Key Wordscryptography, security in digital systems, strict avalanche criterion (SAC), substitu-tion boxes (S-boxes).1 The Strict Avalanche CriterionA (Boolean) function on Vn, where Vn denotes the the vector space of n-tuples ofelements from GF (2), is said to satisfy the strict avalanche criterion (SAC) if comple-menting a single bit in its input results in the output of the function being comple-mented half the time over all the input vectors. The SAC is one of the most importantrequirements for cryptographic functions. The formal de�nition for the SAC seemsto appear �rst in the open literature in 1985 [11, 12]:De�nition 1 Let f be a function on Vn. f is said to satisfy the SAC if f(x)�f (x��)assumes the values zero and one an equal number of times, or simply, f(x)�f (x��)is balanced, for every � 2 Vn with W (�) = 1, where x = (x1; : : : ; xn) and W (�)denotes the number of ones in (or the Hamming weight of) the vector �.The SAC has been further generalized in two di�erent directions: high order SACand propagation criterion. The �rst direction is represented by [4], while the secondby [1, 8, 7]. We shall not pursue further these developments in this paper. Insteadwe will focus our attention on how to transform functions which do not satisfy theSAC into ones that satisfy the criterion.2 Single FunctionsFirst we introduce the following basic theorem.Theorem 1 Let f be a function on Vn, and A be a nondegenerate matrix of ordern whose entries are from GF (2). Suppose that f (x)� f(x� i) is balanced for eachrow i of A, where i = 1; : : : ; n and x = (x1; : : : ; xn). Then  (x) = f(xA) satis�esthe SAC. 2



Proof. Let �i be a vector in Vn whose entries, except the ith, are all zero. Notethat W (�i) = 1 and �iA = i, i = 1; : : : n. Then we have  (x) �  (x � �i) =f (xA)� f((x� �i)A) = f(u) � f(u� i), where u = xA. Since A is nondegenerate,u runs through Vn while x does. By assumption, f(u) � f (u� i) runs through thevalues zero and one an equal number of times while u runs through Vn. Consequently (x)� (x��i) runs through the values zero and one an equal number of times whilex runs through Vn. That is,  (x) satis�es the SAC. utNote that the algebraic degree, the nonlinearity and the balancedness of a functionis unchanged under a linear transformation of coordinates [13]. In the case of S-boxes(tuples of functions), the pro�le of its XOR distribution table, which measures thestrength against the di�erential cryptanalysis [2], also remains invariant under such atransformation [10]. Thus Theorem 1 provides us a powerful tool to improve the strictavalanche characteristics of cryptographic functions. In the following we consider twoapplications of the theorem.Application 1 Our �rst application shows that a SAC-ful�lling function on a higherdimensional space can be easily obtained from a SAC-ful�lling function on a lowerdimensional space.Let g(y1; : : : ; ys) be a function on Vs that satis�es the SAC. Adding t pseudo-coordinates x1; : : : ; xt into g, we obtain a function f on Vs+t, namely,f(y1; : : : ; ys; x1; : : : ; xt) = g(y1; : : : ; ys)The t newly added coordinates have no inuence on the output of f . Hence f doesnot satisfy the SAC.Let A be a nondegenerate matrix of order s+ t. Assume that each row i of A canbe written as i = (�i; �i), whereW (�) = 1, �i 2 Vs and �i 2 Vt. Let x = (x1; : : : ; xt),y = (y1; : : : ; ys) and z = (y; x). Then we have f(z) � f (z � i) = g(y) � g(y � �i).This shows that f (z) � f (z � i) is balanced for i, i = 1; : : : ; s+ t. By Theorem 1, (z) = f (zA) satis�es the SAC. 3



An example of the matrices that satisfy the requirements is as follows:A = 264 Is 0s�tQt�s It 375 (1)where I denotes the identity matrix, 0 denotes the zero matrix, and Q is de�ned asQ = 2666666664 1 0 � � � 01 0 � � � 0...1 0 � � � 0 3777777775 :Application 2 For each vector � = (i1; : : : ; is) 2 Vs, we de�ne a function D� on Vsin the following way: D�(y) = (y1 � �i1) : : : (ys � �is)where y = (y1; : : : ; ys) and �i denotes the binary complement of i, namely, �i = 1 � i.Using this notation, we de�ne the \concatenation" of 2s functions on Vt as follows:f(y; x) = M�2VsD�(y)g�(x)� r(y) (2)where x = (x1; : : : ; xt), each g� is a function on Vt, and r is an arbitrary function onVs. Of particular interest is the concatenation of linear functions on Vt. In Theorems 4and 5 of [9], the following result is proved:Lemma 1 When t >= s and all g�, � 2 Vs, are distinct nonzero linear functions onVt, the function f constructed by (2) is highly nonlinear and balanced. In addition,f (z) � f (z � ) is balanced for all  = (�; �) with � 6= 0, where z = (y; x), � 2 Vsand � 2 Vt.Let A be a nondegenerate matrix of order s + t. Suppose that the ith row i ofA can be written as i = (�i; �i) with �i 6= 0, where �i 2 Vs and �i 2 Vt. Then byTheorem 1,  (z) = f(zA) satis�es the SAC. Note that the matrix A de�ned by (1)satis�es the requirements. 4



3 A Set of FunctionsIn computer security practice, such as the design of S-boxes, we often consider aset of functions. It is desirable that all component functions in a set simultaneouslysatisfy the SAC. >From Theorem 1 we can see that given a set of functions on Vn,ff1; : : : ; fmg, if A is a nondegenerate matrix of order n such that fi(x) � fi(x � j)is balanced for every function fi and every row j in A, then g1(x) = f1(xA), : : :,gm(x) = fm(xA) all satisfy the SAC. The following theorem gives a su�cient conditionfor the existence of such a nondegenerate matrix.Theorem 2 Let f1, : : :, fm be functions on Vn. Denote by B the set of vectors  inVn such that fj(x) � fj(x � ) is not balanced for some 1 <= j <= m, and by #B thenumber of vectors in B. If #B < 2n�1, then there exists a nondegenerate matrix Aof order n with entries from GF (2) such that each  j(x) = fj(xA) satis�es the SAC.Proof. We show how to construct a nondegenerate matrix A of order n, under thecondition that #B < 2n�1. Denote by S�1;:::;�k the set of vectors consisting of all thelinear combinations of vectors �1; : : : ; �k.The �rst row of A, 1, is selected from Vn excluding those in B and the zero vector,i.e., from the vector set Vn �B�S0. There are 2n �#B� 20 di�erent choices for 1.The second row of A, 2, is selected from the vector set Vn�B�S1 . This guaranteesthat 2 is linearly independent of 1. We have 2n �#B � 21 di�erent choices for 2.In general, once the �rst k � 1 linearly independent rows 1, : : :, k�1 of A areselected, the kth row k, k <= n, will be selected from the vector set Vn�B�S1;:::;k�1 .This process ensures that 1, : : :, k are all linearly independent.The number of choices for the last row n is 2n �#B � 2n�1 = 2n�1 �#B > 0.Therefore, we can always �nd a nondegenerate matrix A such that fi(x)� fi(x� j)is balanced for every 1 <= i <= m and 1 <= j <= n. By Theorem 1,  1(x) = f1(xA), : : :, m(x) = fm(xA) all satisfy the SAC. utTheorem 2 has been applied in [10] to design S-boxes that possess many desirablecryptographic properties, which include the high nonlinearity, the SAC, the balanced-5



ness and the robustness against di�erential cryptanalysis. As is shown below, thetransformation technique can also be applied to other approaches to the constructionof S-boxes.Application 3 With the S-boxes studied in [6, 5, 3] each component function fjhas the following property: fj(x) � fj(x � �) is balanced for all but one nonzerovector � 2 Vn, where x = (x1; : : : ; xn) and n >= 3 is odd. Thus we have #B <= n.By Theorem 2 we can use a nondegenerate matrix to transform all the componentfunctions of such an S-box into SAC-ful�lling ones.4 A Final RemarkIn [13], we have constructed highly nonlinear balanced functions on V2k+1 that satisfythe propagation criterion of degree 2k [8], and highly nonlinear balanced functionson V2k that satisfy the propagation criterion of degree 43k. A transformation tech-nique similar to that presented in this paper has played an important role in theconstructions.References[1] C. M. Adams and S. E. Tavares. The use of bent sequences to achieve higher-order strict avalanche criterion. Technical Report, TR 90-013, Department ofElectrical Engineering, Queen's University, 1990.[2] E. Biham and A. Shamir. Di�erential cryptanalysis of DES-like cryptosystems.Journal of Cryptology, Vol. 4, No. 1:3{72, 1991.[3] J. Detombe and S. Tavares. Constructing large cryptographically strong S-boxes.InAdvances in Cryptology - AUSCRYPT'92. Springer-Verlag, Berlin, Heidelberg,New York, 1993. to appear.[4] R. Forr�e. The strict avalanche criterion: Special properties of boolean func-tions and extended de�nition. In Advances in Cryptology - CRYPTO'88, volume6
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