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Abstract

This paper studies resilient functions which have applications in fault-tolerant distributed computing,
quantum cryptographic key distribution and random sequence generation for stream ciphers. We present
a number of methods for synthesizing resilient functions. An interesting aspect of these methods is that
they are applicable to both linear and nonlinear resilient functions. Our second major contribution is to
show that every linear resilient function can be transformed into a large number of nonlinear resilient
functions with the same parameters. As a result, we obtain resilient functions that are highly nonlinear
and have a high algebraic degree.

1 Introduction

A (n,m,t)-resilient function is an n-input m-output function F with the property that it runs through
every possible output m-tuple an equal number of times when ¢ arbitrary inputs are fixed and the remaining
n — ¢ inputs runs through all the 2°~! input tuples once. The concept was introduced by Chor et al in [5]
and independently, by Bennett et al in [1]. It turned out that (balanced) correlation immune functions
introduced by Siegenthaler [19] is a special case of resilient functions. Areas where resilient functions find
their applications include fault-tolerant distributed computing, quantum cryptographic key distribution
and random sequence generation for stream ciphers.

Researchers have concentrated themselves on linear resilient functions, with only one exception being
the work by Stinson and Massey [21]. Their aim was solely to disprove a conjecture that if there exists
a nonlinear resilient function then there exists a linear resilient function with the same parameters which
was posed in [5], rather than to explore cryptographic merits of nonlinear resilient functions. Recent
advances in cryptanalysis, in particular the discovery of the linear cryptanalytic attack [12], have shown
the vital importance of nonlinear functions in data encryption and one-way hashing algorithms. With the
further revelation of the potential power of the linear attack, we might see its serious implications on the
security of many other cryptographic routines, including those employing resilient functions. A relevant
but earlier development is the best affine approximation (BAA) attack proposed by Ding, Xiao and Shan
in [6]. It has been shown in the book that the BAA attack can successfully break a number of types of key
stream generators that employ a combining or filtering function which, though correlation immune, has
a low nonlinearity. Success of these attacks clearly shows a need to investigate highly nonlinear resilient
functions.

The rest of the paper is organized as follows: Section 2 introduces basic definitions. It also reviews
important properties of resilient functions, as well as previous work in the area. Section 3 presents a



number of methods for constructing new resilient functions from old. Some of them significantly generalize
methods known previously. An exceptional feature of these methods is that they can be applied to both
linear and nonlinear resilient functions. Section 4 shows how to turn a known resilient function into a new
one. As a result we can obtain a large number of highly nonlinear resilient functions from a linear one.
Some miscellaneous results on resilient functions, including a discussion on algebraic degree, are included
in Section 5, and the paper is closed by some concluding remarks in Section 6.

2 Preliminaries

The vector space of n tuples of elements from GF(2) is denoted by V,,. These vectors, in ascending
alphabetical order, are denoted by ag, ay, ..., agn_y1. As vectors in V,, and integers in [0,2" — 1] have a
natural one-to-one correspondence, it allows us to switch from a vector in V, to its corresponding integer
in [0,2" — 1], and vice versa.

Let f be a (Boolean) function from V,, to GF(2) (or simply, a function on V,,). The sequence of f is
defined as ((—1)/(@0), (=1)f(e1) . (=1)f(@2n-1)) while the truth table of f is defined as (f(ag), f(ay),
cowy flagn_1)). [ is said to be balanced if its truth table assumes an equal number of zeros and ones.
We call h(z) = a121 & -+ & anz, & ¢ an affine function, where 2 = (24,...,2,) and a;,¢ € GF(2). In
particular, & will be called a linear function if ¢ = 0. The sequence of an affine (linear) function will be
called an affine (linear) sequence.

The algebraic degree deg( f) of a function f is the size of the longest term in the algebraic normal form
representation of the function. The Hamming weight of a vector v, denoted by W(v), is the number of
ones in v. Let f and g be functions on V,,. Then d(f,¢) = Zf(x#g(l,) 1, where the addition is over the
reals, is called the Hamming distance between f and g. Let g, ..., pon+1_; be the affine functions on V.
Then Ny = min;—  on+1_1 d(f, ;) is called the nonlinearity of f. It is well-known that the nonlinearity

of f on V, satisfies Ny < 2771 — 2571 An extensive investigation of highly nonlinear balanced functions
has been carried out in [16].

Algebraic degree and nonlinearity can also be defined for mappings or tuples of Boolean functions. Let
F=1(f1,..., fm) be a function from V,, to V,,, (where each f; is a function on V,,). The algebraic degree
of F', denoted by deg(F'), is defined as the minimum among the algebraic degrees of all nonzero linear
combinations of the component functions of F, namely,

deg(F) = min{deg(g)lg = D e; f).
7=1
Similarly the nonlinearity of F', denoted by N, is defined as
Np = min{N,lg = Pe; f;}

J=1

This definition regarding Ny was first introduced by Nyberg in [13].
F = (fi,...,fm) is said to be linear if all its component functions are linear, and to be nonlinear
otherwise. If F' is linear, then deg(F) = 1 and Ng = 0. The converse, however, is not always true.

2.1 Properties of Resilient Functions

In this sub-section we summarize a number of facts regarding resilient functions. Though most of these
results are either previously known in, for instance, [1, 5, 3], or can be proven easily, they are collected here
with the intention to help the reader in understanding our results to be presented in the coming sections.
We start with a formal definition of a resilient function.



Definition 1 Let F' = (fi,...,fm) be a function from V, to V,, where n. 2 m 2 1, and let @ =
(21, 2n) € V.

1. F is said to be unbiased with respect to a fived subset T = {j1,...,j5:} of {1,...,n}, if for every
(at,...,a¢) € Vy
(f1($)7 L} foL(x))|x]1=a1,...,x]t:at

runs through all the vectors in V,, each 2"~""" times while (v;,,...,x;,_,) runs through V, once,
where t 20, {iy,... 00—} ={1,...on} = {j1,.- -, Ji} and iy < -+ < iy,

2. I is said to be a (n,m,t)-resilient function if I' is unbiased with respect to every T C V,, with |T| = t.
The parameter t is called the resiliency of the function.

Obviously, n — m 2 t holds for each (n,m,t)-resilient function.

Resilient functions are closely related to correlation immune functions introduced by Siegenthaler [19].
As was noticed by Stinson and co-workers, a (n, 1,t)-resilient function is the same as a balanced tth-order
correlation immune Boolean function. We will come back to this issue shortly.

The following lemma is helpful in understanding the relationship between a resilient function and its
component functions. It has been called XOR Lemma and expressed in terms of independence of random
variables in [5, 1]. Here we follow the version described in [18].

Lemma 1 A function (fi,..., fn), where each f; is a function on V,, and n 2 m, is unbiased, namely,
it runs through all the vectors in Vi, each 2"~™ times while x runs through V, once, if and only if each
nonzero linear combinations of f1, ..., f.. are balanced.

Hence we have

Lemma 2 Let F = (fi1,..., fm) be a function from V, to V,, where n and m are integers with n =2 m 2 1
and each f; is a function on V,,. Then F' is unbiased with respect to T = {ji,...,j:}, a fized subset of
{1,...,n}, if and only if every nonzero linear combination of fi,..., fm, f(2) = @JL, ¢; fi(x), is unbiased
(i.e., balanced) with respect to T' = {j1,...,Ji}, where x = (21,...,2,) € V,.

As an immediate consequence, we have

Theorem 1 Let F' = (fi,..., fm) be a function from V,, to V,,,, where n and m are integers withn = m 2 1
and each f; is a function on V,,. Then F is a (n,m,t)-resilient function if and only if every nonzero linear
combination of fi,..., fm, f(z) = DLy ¢;fi(x), is a (n,1,t)-resilient function, where v = (w1,...,2,) €
V.

It follows from Theorem 1 that if F' = (f1,..., fin) is a (n,m,t)-resilient function, then G = (f1,..., fs)
is a (n,s,t)-resilient function for each integer 1 £ s < m.

Theorem 1 shows that each (n,m,t)-resilient function gives 2™ — 1 distinct balanced tth-order corre-
lation immune functions on V,,. It also indicates that we can study (n,m,t)-resilient functions, including
their properties and constructions, through investigating the correlation immune characteristics of their
component functions.

To facilitate our investigations, we introduce the following lemma. whose proof is left to the full version
of the paper.

Lemma 3 A function f on V,, is unbiased with respect to T' = {ji,...,jt}, @ fized subset of {1,...,n}, if
and only if for each linear function o(x) = c; ) O B cja;, on'V,, where x = (zq,...,2,), f(2)D (z)
s balanced.



This results in

Corollary 1 fisa( t)-resilient function if and only if for each linear function p(z) = cra1F- - Py,

n? 17
with W(ey,...,¢,) S t, f(z) @ o(a) is balanced.
From this corollary and Theorem 1 it follows

Corollary 2 I' is a (n,m,t)-resilient function if and only if it is a (n,m,s)-resilient function for each
0<s<t.

Now we go back to correlation immune functions. Work by Xiao and Massey provides us with an
equivalent definition of the concept [10]:

Definition 2 A function f on V, is said to be tth-order correlation immune if for each linear function
o) =ca1 @B cpay, withl S W(er,...,c,) S t, f(2) @ @(a) is balanced.

As W(ey,...,¢,) = 0 is excluded, the definition covers both balanced and non-balanced correlation
immune function, although stream ciphers prefer balanced to non-balanced functions.

Comparing the definition with Corollary 1, it becomes clear that a balanced tth-order correlation
immune function is indeed identical to a (n,1,t)-resilient function.

Having presented essential facts on resilient functions, next we consider transformations on the coor-
dinates of a resilient function. Unlike nonlinearity and algebraic degree, the resiliency of functions is not
invariant under a nonsingular linear transformation on the coordinates. This can be seen from the following
example.

Let f(z)=21P a2 - P x,, where & = (21,...,2,). Then fis a(n,1,n— 1)resilient function. Now
let B be a matrix of order n over GF(2) satisfying (z1,72,...,@n—1,2,)B = (¥2,23,...,2u—1,D]= 7).
Set g(z) = f(xB™'). Then g(x) = x, whose resiliency is zero.

Another issue is in relation to the transformation of the component functions, namely output, of a
resilient function. This will be discussed in detail in Section 4, where we show an important result regarding
invariant properties of resilient functions under transformations of (output) component functions.

2.2 Related Work

The concept of a resilient function was introduced in [5, 1]. The equivalence between linear resilient
functions and linear error correcting codes was established also in [5, 1], while the equivalence between
resilient functions and large sets of orthogonal arrays was proved in [20]. Two upper bounds on resiliency
which are the best known so far were derived in [7, 3]. In [21] Stinson and Massey disproved the conjecture
that if there exists a nonlinear resilient function then there exists a linear resilient function with the same
parameters. The nonlinear resilient functions they constructed were based on the (nonlinear) Kerdock
and Preparata codes. Some linear resilient functions achieving an upper bound on resiliency can be found
in [7, 3]. Resilient functions which are symmetric were studied in [5, 8], while non-binary resilient functions
were examined in [9].

Soon after the concept of a correlation immune function was introduced by Siegenthaler [19], Xiao and
Massey gave an equivalent definition in [10]. These were followed by [4, 17] where various methods for
constructing correlation immune functions were presented.



3 Constructing New Resilient Functions from Old

Constructing new resilient functions from old ones is an interesting problem that has many practical
implications. There are two opposite directions in relation to this problem, these being constructing
“large” ones from “small” ones and “small” ones from “large” ones. Due to the close relationship between
resilient functions and error correcting codes, in particular the equivalence between linear codes and linear
resilient functions as was revealed in [5, 1], numerous techniques can be borrowed from the theory of error
correcting codes to construct new resilient functions from old. These techniques have been further enriched
by Stinson’s work on the equivalence between resilient functions and large sets of orthogonal arrays [20].
Some concrete examples on constructing new from old can be found in [3].

The main purpose of this section is to present a number of methods for directly synthesizing large
resilient functions from small ones. A distinctive feature of these methods is that they are applicable to
both linear and nonlinear resilient functions.

We start with correlation immune functions. Let f; be a (n;,1,¢;)-resilient function, 7 = 1,2. Then
fi(a) @ f2(y) is a (ng + no, 1,1 + t3 + 1)-resilient function, where 2 € V,,, and y € V,,,. To show that this
is correct, let ¢ be a linear function on V,, 4., defined by

ela,y) =z & B epyTpy Bdiys & - B dny Yy,
where @ = (21,..., 20, ), ¥ = (Y15 -+ Yny )» ¢5.d; € GF(2). Suppose that
W(Cl,...,Cnl,dl,...,dn2) § tl —|—t2 + 1.

Then either W(cq,...,c,,) S tyor W(dy,...,d,,) S t;. By Corollary 1, either fi(2)@e1(z)or f2(y)Be2(y)
is balanced, where ¢1(2) = c1a1 & -+ - B ¢y @, and a(y) = diy1 & -+ - & dyy Y, . Note that the sum of two
functions with disjoint variables is balanced if one of the two functions is balanced (for a simple proof see
Lemma 9 of [15]). Hence fi(z)® fa(y) & e(z,y) = [fi(2) & ¢1(2)] @ [fo(y) © w2(y)] is balanced. Again by
Corollary 1, fi(z) ® fa(y) is a (n1 + ng, 1,t1 + t3 + 1)-resilient function.

By induction, we have the following result.

Lemma 4 Let f; be a (n;,1,t;)-resilient function, t = 1,...,s. Then fi(z)®---@ fs(y) is a (37— nj, 1,5~
L+ t;)-resilient function, where x € V,,,,...,y € V,_.

As an application of Lemma 4, we can combine known resilient functions to obtain a new one. First we
show that if F' = (f1,..., f) is a (n,m,t)-resilient function, then G(z,y,z) = (F(z) D F(y), F(y) & F(2))
is a (3n,2m,2t + 1)-resilient function, where z,y,z € V,,.

To prove that G is a (3n,2m, 2t+1)-resilient function, we first note that fi(2)® fi(y), ..., fi(2)D fi(y),
fly)® fi(2), .. fm(y)® fin(z) comprise all the 2m component functions of . Consider a nonzero linear
combination of these 2m component functions

(2.y.2) = P e;(fi(x) @ f;(y) © D di(fi(y) B fi(2)),
=1 7=1
where either (¢1,...,¢,) #(0,...,0) or (dy,...,dy) # (0,...,0).
Note that . .
fla,y,2 @c]f] @@q@d f] @@df]
j=1
By Theorem 1, @JL, ¢;fi(z) is a (n,l,t)—resﬂlent function when (cl,...,cm) # (0,...,0). Similarly,

@71 d;fi(2) is a (n,1,t)-resilient function when (dy,...,d,,) # (0,...,0), and @ (c; ® d;)f;(y) is a
(n,1,t)-resilient function when (¢1 & dy,..., ¢, B dy) # (0,...,0).



Since either (¢1,...,¢,) # (0,...,0)or (dy,...,dy) # (0,...,0), at least two hold among (¢1,...,¢) #
(0,...,0), (d1,...,dw) # (0,...,0) and (¢1 P d1,...,¢m B dy) # (0,...,0). By Lemma 4, when two hold
flz,y,2)is a (3n,1,2t 4 1)-resilient function, while when three hold it is a (3n, 1,3t + 2)-resilient function.
By Theorem 1, G(z,y, ) is indeed a (3n,2m, 2t 4 1)-resilient function.

It was first observed in [5] that g(z1,...,23p) = (1B Do, The1 B - -Baay) is a linear (3h,2,2h—1)-
resilient function. We can view this function as being obtained from f(z1,...,2,) =21 & --- P @3, which
is a (h,1,h — 1)-resilient function, by using the technique described above. Conversely we can also regard
our technique as a significant generalization of the idea underling the construction of g(1,...,23,) =
(21 B - B xop, Tpp1 B -+ B x3p).

Now applying the same technique to the resulting function G itself, we obtain a (3%n,2%m, 2%(1+t)—1)-
resilient function. In general repeating the technique for k times, k = 1,2, ..., we obtain a (3*n, 2%m, 2%(1+
t) — 1)-resilient function from a (n,m,t)-resilient function.

The technique can be further generalized. In particular, it is easy to prove that if F'= (f1,...,fn)is a
(n,m,t)-resilient function, then G(z,y,2,u) = (F(2)® F(y), F(y) B F(z), F(2)B F(u))is a (4n,3m,2t+1)-
resilient function, where z,y,z,u € V,,. Again by iterating the technique, we can construct from a (n, m,t)-
resilient function a (4%n, 3¥m, 2%(1 + t) — 1)-resilient function for all k = 1,2,. ...

To summarize the discussions, we have

Lemma 5 Given a(n,m,t)-resilient function, there is an iterative method to construct a ((h-+1)*n, h*m, 2%(14-
t) — 1)-resilient function for allh =2,3,... and k= 1,2,....

As another application of Lemma 4, we give the following result.

Corollary 3 Let F' = (f1,...,fm) be a (n1,m,ty)-resilient function and G' = (g1,...,9m) a (ng,m,t3)-
restlient function. Then P(z) = F(z)®G(y) = (f1(2)Pg1(y), ..., fm(2)Bgm(y)) is a (nq+ng, m,t1+1341)-

resilient function, where z = (x,y), * € V,,, and y € V,,,.

Proof. Consider an arbitrary nonzero linear combination of the component functions of P(z), say
m m m
p(2) = Peilfile) © 9;()] = P eifile) &P eigi(y)-
j=1 j=1 j=1
By Theorem 1, 7., ¢; fi(x) is a t-resilient function, while 7., c;g;(y) is a ty-resilient function. Hence
by Lemma 4, p(z) is a t1 + ¢3 + 1-resilient function. As p(z) is arbitrary, again by Theorem 1, P(z) is a
(n1 4 ng,m,t1 + ta + 1)-resilient function. O

A special case of the technique indicated in Corollary 3, namely when both F and G are linear, has
been employed by Bierbrauer, Gopalakrishnan and Stinson in proving their Theorem 7 in [3].
The following result is concerned with placing resilient functions in parallel.

Corollary 4 Let F' = (f1,..., fm,) be a(ny1,my,t1)-resilient function and G = (g1, ..., ¢m,) be a (ngy, ma,t3)-

resilient function. Then P(z) = (fi(@),..., [, (2),01(¥)s - - gmy(y)) is a (n1 + ng, my + mq, p)-resilient
function, where z = (z,y), * € V,,,, y € V,,, and p = min{ty, 13}

Proof. Consider an arbitrary nonzero linear combination of the component functions of P(z)

o) = Do) & D).



As(e1,. .. €my,d1, ..., dy,)is anonzero vector, without loss of generality, we can assume that (¢q,...,¢5, ) #
(0,...,0). For any Ai-subset {ji,...,jn} € {1,...,n1} and any Ag-subset {i1,...,ix,} C {1,...,n2},
where Ay + Ay = p, and any aq,...,ay,, b1,...,by, € GF(2), by Theorem 1, and the fact that the sum of
two functions with disjoint variables is balanced if one of the two functions is balanced (Lemma 9 of [15]),
@7211 ijj($)|x]1:a17,,,7x]A1 =ay, 18 balanced. Thus

m1 m2

D i fi (@) =ar, oy, =an, © D 4395 (Y )y, =b1 by, =br,

J=1 7=1
is balanced. It follows from Theorem 1 that P(z) = (fi(@),..., fm, (), 91(Y), - -, §m,(y)) is & (n1+ng, m1 +
ma, p)-resilient function. 0

4 Transforming Linear Resilient Functions to Nonlinear Ones

A resilient function is said to be linear if its component functions are all linear, and said to be nonlinear
otherwise. When the concept of resilient functions was introduced, it was conjectured that if there exists
a nonlinear resilient function with certain parameters, then there exists a linear resilient function with
the same parameters [5, 1]. This conjecture was disproved by Stinson and Massey [21]. In particular,
they showed that there exists an infinite class of nonlinear resilient functions for which there do not
exist linear resilient functions with the same parameters. They used nonlinear error correcting codes in
their proof. In this section we investigate this topic in a slightly different direction. In particular we
show that by permuting the output m-tuples (i.e., all 2 vectors in V,,), instead of only re-ordering the m
component functions of a (n, m,t)-resilient function, we can obtain 2™! distinct (n,m,?)-resilient functions.
A consequence of this result is that the converse of the conjecture in [5, 1] is true, namely if there exists a
linear resilient function with certain parameters, then there exists a nonlinear resilient function with the
same parameters.
Here is the main result in this section.

Theorem 2 Let F' be a (n,m,t)-resilient function and G be a permutation on V,,. Then P = G o I,
namely P(z) = G(F(2)), is also a (n, m,t)-resilient function.

Proof. Since F'is a (n,m,t)-resilient function, for each {j1,...,j¢:} C{1,...,n} and aq,...,a; € GF(2),

F($)|l’]1:a1 yeeny Ty =0at

runs through all the vectors in V,, each 2=~ times while (z;,,...,%;,_,) runs through V,, once, where
{ityeeesin_et =4{1,...on} = {j1,.. ., Ji} and 4y < -+ < ip—¢. As G is a permutation on V,,,

P($)|xn:a1,...,x]t:at = G(F(w))|l’]1:a17...71’]t:at

runs through all the vectors in V,,, each 2"~™~! times while (x;,,...,;,_,) runs through V, once. It
immediately follows that P is a (n,m,t)-resilient function. O

Note that the total number of different permutations on V,,, is 2™! which is far larger than m!. The
latter is the number of ways to re-order the m component functions. New resilient functions generated
using these permutations are all different. To prove this, let G; and G5 be two different permutations on
Vin. We want to prove that Gy o F' # (G5 0 F.. Suppose for contradiction that Gy o F' = G50 F. Then
F= Gl_l oGy o F. As F is unbiased, for each 3 € V,,,, there exist 2"~ different vectors a € V,, such that
F(a) = (. This causes 3 = G7' o Go(B). As § is arbitrary, G7' o Gl must be the identity permutation on
Vin, which contradicts the fact that Gi; # G3. Thus we have proved the following:



Corollary 5 Given a (n,m,t)-resilient function, Theorem 2 produces 2™! distinct (n,m,t)-resilient func-
tion.

Now we describe an example to show applications of Theorem 2. It is easy to verify that
Fay,22,%3,24,25,%6) = (21 B 22 B 23, 23D x4 B 5, @50 6D 1)
is a linear (6,3, 2)-resilient function. Consider a permutation G on V3 defined by
G(ur,ug,us) = (u1 @ us © ugus, ur O ug O urus, U O us O uius).

By Theorem 2, P = G o F'is also a (6,3, 2)-resilient function.

Note that all component functions of the resulting resilient function P are quadratic. The rest of this
section is devoted to this direction, namely converting linear resilient functions to nonlinear ones. We also
show how to calculate the nonlinearity of a resulting nonlinear resilient function. The following lemma will
be used in the discussions.

Lemma 6 Let g be a function on V,, whose nonlinearity is N,. Let n 2 m and B be an n X m matriz over
G F(2) whose rank is m. Set h(x1,...,2,) = g((z1,...,2,)B), where (uy,...,up) € Vi and (z1,...,2,) €
V. Then the nonlinearity Ny, of h, a function on V,, satisfies N, = 2""™ N,, and the algebraic degree of
h is the same as that of g.

Proof.  First we note that this lemma is a generalization of the following result: Let h(zq1,...,2,) =
g(z1,...,25). Then h, a function on V,, satisfies Nj, = 2"~ N,. A proof for this special case can be
found in, for instance, [17].

To prove this lemma, we append to B an n x (n — m) matrix C so that A = [B,(] is a nonsingular
matrix of order n over GF(2). Set (uq,...,u,) = (21,...,2,)A. Now define a function on V,,, say ¢*, as
follows

G (U1, tn) = gUn, .oy U ).

Then Ng« = 2"7™N,, and ¢* and g share the same algebraic degree. On the other hand, from the
construction of h,

har, ..., xn) = g((21, ..., 20)B) = ¢ ((1,...,2,)A).

By noting the fact that the nonlinearity and algebraic degree of a function are invariant under a nonsingular
linear transformation on coordinates, we have Ny = Ny« = 2"7"™ N/, and that h has the same algebraic
degree as that of g*, which is the same as that of g. O

Now we prove a significant result on constructing new resilient functions from old, linear ones.

Theorem 3 Let F' be a linear (n, m,t)-resilient function and G' be a permutation on V,,. Then P = GoF
is a (n,m,t)-resilient function and

(i) the nonlinearity of P satisfies Np = 2"~ Ng;.

(ii) the algebraic degree of P is the same as that of G.

Proof. As F'is a linear resilient function, it can be written as F(z1,...,2,) = (21,...,2,)B where B
is an n X m matrix of rank m over GF(2) and (z1,...,2,) € V,,. The theorem follows immediately from
Lemma 6. O



We turn our attention back to the nonlinear (6,3,2)-resilient function constructed above. It is easy to
verify that the nonlinearity of each nonzero linear combination of the component functions of GG is 2. By
Theorem 3, the nonlinearity of P is 16, and as we have seen, the algebraic degree of P is indeed 2.

Theorem 3 implies that highly nonlinear resilient functions can be constructed from linear resilient
functions by applying highly nonlinear permutations in the transforming process. A number of highly
nonlinear permutations which are based on polynomials on a finite field have been shown in [14, 2]. In
particular, it is shown in [14] that the nonlinearity of a permutation G based on the inverse function on

G F(2™) satisfies Ng =2 2™~ 1 — 25™ and the algebraic degree of G'is m — 1. Hence the following is proved:

Corollary 6 If there exists a linear (n,m,t)-resilient function, then there exists a nonlinear (n,m,t)-

im

resilient function P whose nonlinearity satisfies Np 2 271 — 2""2™ and whose algebraic degree is m — 1.

Another important implication of Theorem 3 is that from each linear resilient function, we can derive
a large number nonlinear resilient functions with the same parameters. This, together with the result
by Stinson and Massey [21], shows that it is more affluent in nonlinear resilient functions than in linear
resilient functions, in terms of either the numbers or the parameters.

5 Remarks on Algebraic Degree

In his pioneering work [19], Siegenthaler showed, by a lengthy argument, that the algebraic degree of a
balanced correlation immune function, i.e., a (n, 1,?)-resilient function, is at most n —t — 1, except for the
case when t = n — 1. Here we show that the proof can substantially shortened by employing Theorem 1
on Page 372 of [11].

Let f be a (n,1,t)-resilient function. As f is a function on V,,, by Theorem 1 on Page 372 of [11], it
can be expressed in the algebraic normal form, namely

flag,...,z,) = @ glay, ... a,)x]t - aon,

ai,....an€GF(2)

where

g(alv"'van): @ f(blv"'vbn)v
(bl,...,bn)c(al,...,an)
and by (b1,...,b,) C (a1,...,a,) we mean that if b; = 1 then a; = 1.
Consider the coefficient of the term x4 ---x,_;, that is

P F(biye. b s, 0,...,0). (1)

by ,...,bn_tEGF(Q)

Since f is a (n,1,t)-resilient function, (1) becomes zero, except for n — ¢ = 1 in which case (1) becomes
one. By the same reasoning, we can see that the coeflicient of every term of algebraic degree n — t is zero.
This proves that the algebraic degree of f is at most n —¢ — 1.

By noting our Theorem 1, we have

Corollary 7 The algebraic degree of a (n,m,t)-resilient function is at most n —t — 1, except for the case
whent =n — 1.

Recall that it is easy to construct linear (n,n — 1,1)-resilient functions from linear error correcting
codes. Using Corollaries 5 and 6, we obtain 27~!! distinct (n,n — 1,1)-resilient functions, a large number

of which have a nonlinearity of at least 27~1 — 2"% and whose algebraic degree is n — 2.



It should be noted, however, that due to Corollary 7, applying Theorem 3 to a nonlinear (n,n —1,1)-
resilient function does not always yield a function that has a higher algebraic degree.
In [7] Friedman proved that the resiliency ¢ of a (n,m,t)-resilient function is bounded from above by

2m=1p
By = - 1.
1= e
Theorem 3 of [3] gives another upper bound
2m2(n + 1
BQ:QL%J—L (2)

As shown in [3] a linear (2™ — 1,m,2™~! — 1)-resilient function can be obtained from a simplex code.
This function achieves the upper bound on resiliency (5). Applying Corollaries 5 and 6 to this resilient
function, we obtain 2! distinct (27 —1,m,2™~! — 1) resilient functions, some of which have a nonlinearity
of at least 22" =2 — 22" ~1=57 414 whose algebraic degree is m — 1. All the resulting functions achieve the
upper bound on resiliency indicated in (5).

6 Conclusion

Main results of this paper are related to the construction of nonlinear resilient functions. Of particular
importance to practical applications is the method for transforming linear resilient functions into nonlinear
ones. Currently we are in the process of extending in various directions the results reported in this paper.
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