
On Nonlinear Resilient FunctionsXian-Mo ZhangYuliang ZhengDepartment of Computer ScienceThe University of WollongongWollongong, NSW 2522, AUSTRALIAE-mail: fxianmo,yuliangg@cs.uow.edu.auAbstractThis paper studies resilient functions which have applications in fault-tolerant distributed computing,quantum cryptographic key distribution and random sequence generation for stream ciphers. We presenta number of methods for synthesizing resilient functions. An interesting aspect of these methods is thatthey are applicable to both linear and nonlinear resilient functions. Our second major contribution is toshow that every linear resilient function can be transformed into a large number of nonlinear resilientfunctions with the same parameters. As a result, we obtain resilient functions that are highly nonlinearand have a high algebraic degree.1 IntroductionA (n;m; t)-resilient function is an n-input m-output function F with the property that it runs throughevery possible outputm-tuple an equal number of times when t arbitrary inputs are �xed and the remainingn� t inputs runs through all the 2n�t input tuples once. The concept was introduced by Chor et al in [5]and independently, by Bennett et al in [1]. It turned out that (balanced) correlation immune functionsintroduced by Siegenthaler [19] is a special case of resilient functions. Areas where resilient functions �ndtheir applications include fault-tolerant distributed computing, quantum cryptographic key distributionand random sequence generation for stream ciphers.Researchers have concentrated themselves on linear resilient functions, with only one exception beingthe work by Stinson and Massey [21]. Their aim was solely to disprove a conjecture that if there existsa nonlinear resilient function then there exists a linear resilient function with the same parameters whichwas posed in [5], rather than to explore cryptographic merits of nonlinear resilient functions. Recentadvances in cryptanalysis, in particular the discovery of the linear cryptanalytic attack [12], have shownthe vital importance of nonlinear functions in data encryption and one-way hashing algorithms. With thefurther revelation of the potential power of the linear attack, we might see its serious implications on thesecurity of many other cryptographic routines, including those employing resilient functions. A relevantbut earlier development is the best a�ne approximation (BAA) attack proposed by Ding, Xiao and Shanin [6]. It has been shown in the book that the BAA attack can successfully break a number of types of keystream generators that employ a combining or �ltering function which, though correlation immune, hasa low nonlinearity. Success of these attacks clearly shows a need to investigate highly nonlinear resilientfunctions.The rest of the paper is organized as follows: Section 2 introduces basic de�nitions. It also reviewsimportant properties of resilient functions, as well as previous work in the area. Section 3 presents a1



number of methods for constructing new resilient functions from old. Some of them signi�cantly generalizemethods known previously. An exceptional feature of these methods is that they can be applied to bothlinear and nonlinear resilient functions. Section 4 shows how to turn a known resilient function into a newone. As a result we can obtain a large number of highly nonlinear resilient functions from a linear one.Some miscellaneous results on resilient functions, including a discussion on algebraic degree, are includedin Section 5, and the paper is closed by some concluding remarks in Section 6.2 PreliminariesThe vector space of n tuples of elements from GF (2) is denoted by Vn. These vectors, in ascendingalphabetical order, are denoted by �0, �1, : : :, �2n�1. As vectors in Vn and integers in [0; 2n � 1] have anatural one-to-one correspondence, it allows us to switch from a vector in Vn to its corresponding integerin [0; 2n � 1], and vice versa.Let f be a (Boolean) function from Vn to GF (2) (or simply, a function on Vn). The sequence of f isde�ned as ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1)), while the truth table of f is de�ned as (f(�0), f(�1),: : :, f(�2n�1)). f is said to be balanced if its truth table assumes an equal number of zeros and ones.We call h(x) = a1x1 � � � � � anxn � c an a�ne function, where x = (x1; : : : ; xn) and aj ; c 2 GF (2). Inparticular, h will be called a linear function if c = 0. The sequence of an a�ne (linear) function will becalled an a�ne (linear) sequence.The algebraic degree deg(f) of a function f is the size of the longest term in the algebraic normal formrepresentation of the function. The Hamming weight of a vector v, denoted by W (v), is the number ofones in v. Let f and g be functions on Vn. Then d(f; g) = Pf(x) 6=g(x) 1, where the addition is over thereals, is called the Hamming distance between f and g. Let '0; : : : ; '2n+1�1 be the a�ne functions on Vn.Then Nf = mini=0;:::;2n+1�1 d(f;'i) is called the nonlinearity of f . It is well-known that the nonlinearityof f on Vn satis�es Nf <= 2n�1 � 2 12n�1. An extensive investigation of highly nonlinear balanced functionshas been carried out in [16].Algebraic degree and nonlinearity can also be de�ned for mappings or tuples of Boolean functions. LetF = (f1; : : : ; fm) be a function from Vn to Vm (where each fi is a function on Vn). The algebraic degreeof F , denoted by deg(F ), is de�ned as the minimum among the algebraic degrees of all nonzero linearcombinations of the component functions of F , namely,deg(F ) = ming fdeg(g)jg = mMj=1 cjfjg:Similarly the nonlinearity of F , denoted by NF , is de�ned asNF = ming fNgjg = mMj=1 cjfjg:This de�nition regarding NF was �rst introduced by Nyberg in [13].F = (f1; : : : ; fm) is said to be linear if all its component functions are linear, and to be nonlinearotherwise. If F is linear, then deg(F ) = 1 and NF = 0. The converse, however, is not always true.2.1 Properties of Resilient FunctionsIn this sub-section we summarize a number of facts regarding resilient functions. Though most of theseresults are either previously known in, for instance, [1, 5, 3], or can be proven easily, they are collected herewith the intention to help the reader in understanding our results to be presented in the coming sections.We start with a formal de�nition of a resilient function.2



De�nition 1 Let F = (f1; : : : ; fm) be a function from Vn to Vn, where n >= m >= 1, and let x =(x1; : : : ; xn) 2 Vn.1. F is said to be unbiased with respect to a �xed subset T = fj1; : : : ; jtg of f1; : : : ; ng, if for every(a1; : : : ; at) 2 Vt (f1(x); : : : ; fm(x))jxj1=a1;:::;xjt=atruns through all the vectors in Vm each 2n�m�t times while (xi1 ; : : : ; xin�t) runs through Vn once,where t >= 0, fi1; : : : ; in�tg = f1; : : : ; ng � fj1; : : : ; jtg and i1 < � � � < in�t.2. F is said to be a (n;m; t)-resilient function if F is unbiased with respect to every T � Vn with jT j = t.The parameter t is called the resiliency of the function.Obviously, n�m >= t holds for each (n;m; t)-resilient function.Resilient functions are closely related to correlation immune functions introduced by Siegenthaler [19].As was noticed by Stinson and co-workers, a (n; 1; t)-resilient function is the same as a balanced tth-ordercorrelation immune Boolean function. We will come back to this issue shortly.The following lemma is helpful in understanding the relationship between a resilient function and itscomponent functions. It has been called XOR Lemma and expressed in terms of independence of randomvariables in [5, 1]. Here we follow the version described in [18].Lemma 1 A function (f1; : : : ; fm), where each fi is a function on Vn and n >= m, is unbiased, namely,it runs through all the vectors in Vm each 2n�m times while x runs through Vn once, if and only if eachnonzero linear combinations of f1, : : :, fm are balanced.Hence we haveLemma 2 Let F = (f1; : : : ; fm) be a function from Vn to Vn, where n and m are integers with n >= m >= 1and each fj is a function on Vn. Then F is unbiased with respect to T = fj1; : : : ; jtg, a �xed subset off1; : : : ; ng, if and only if every nonzero linear combination of f1; : : : ; fm, f(x) =Lmj=1 cjfj(x), is unbiased(i.e., balanced) with respect to T = fj1; : : : ; jtg, where x = (x1; : : : ; xn) 2 Vn.As an immediate consequence, we haveTheorem 1 Let F = (f1; : : : ; fm) be a function from Vn to Vm, where n and m are integers with n >= m >= 1and each fj is a function on Vn. Then F is a (n;m; t)-resilient function if and only if every nonzero linearcombination of f1; : : : ; fm, f(x) = Lmj=1 cjfj(x), is a (n; 1; t)-resilient function, where x = (x1; : : : ; xn) 2Vn. It follows from Theorem 1 that if F = (f1; : : : ; fm) is a (n;m; t)-resilient function, then G = (f1; : : : ; fs)is a (n; s; t)-resilient function for each integer 1 <= s <= m.Theorem 1 shows that each (n;m; t)-resilient function gives 2m � 1 distinct balanced tth-order corre-lation immune functions on Vn. It also indicates that we can study (n;m; t)-resilient functions, includingtheir properties and constructions, through investigating the correlation immune characteristics of theircomponent functions.To facilitate our investigations, we introduce the following lemma. whose proof is left to the full versionof the paper.Lemma 3 A function f on Vn is unbiased with respect to T = fj1; : : : ; jtg, a �xed subset of f1; : : : ; ng, ifand only if for each linear function '(x) = cj1xj1 � � � � � cjtxjt on Vn, where x = (x1; : : : ; xn), f(x)� '(x)is balanced. 3



This results inCorollary 1 f is a (n; 1; t)-resilient function if and only if for each linear function '(x) = c1x1�� � ��cnxnwith W (c1; : : : ; cn) <= t, f(x)� '(x) is balanced.From this corollary and Theorem 1 it followsCorollary 2 F is a (n;m; t)-resilient function if and only if it is a (n;m; s)-resilient function for each0 <= s <= t.Now we go back to correlation immune functions. Work by Xiao and Massey provides us with anequivalent de�nition of the concept [10]:De�nition 2 A function f on Vn is said to be tth-order correlation immune if for each linear function'(x) = c1x1 � � � � � cnxn with 1 <= W (c1; : : : ; cn) <= t, f(x)� '(x) is balanced.As W (c1; : : : ; cn) = 0 is excluded, the de�nition covers both balanced and non-balanced correlationimmune function, although stream ciphers prefer balanced to non-balanced functions.Comparing the de�nition with Corollary 1, it becomes clear that a balanced tth-order correlationimmune function is indeed identical to a (n; 1; t)-resilient function.Having presented essential facts on resilient functions, next we consider transformations on the coor-dinates of a resilient function. Unlike nonlinearity and algebraic degree, the resiliency of functions is notinvariant under a nonsingular linear transformation on the coordinates. This can be seen from the followingexample.Let f(x) = x1 � x2� � � � � xn, where x = (x1; : : : ; xn). Then f is a (n; 1; n� 1)-resilient function. Nowlet B be a matrix of order n over GF (2) satisfying (x1; x2; : : : ; xn�1; xn)B = (x2; x3; : : : ; xn�1;Lnj=1 xj):Set g(x) = f(xB�1). Then g(x) = xn whose resiliency is zero.Another issue is in relation to the transformation of the component functions, namely output, of aresilient function. This will be discussed in detail in Section 4, where we show an important result regardinginvariant properties of resilient functions under transformations of (output) component functions.2.2 Related WorkThe concept of a resilient function was introduced in [5, 1]. The equivalence between linear resilientfunctions and linear error correcting codes was established also in [5, 1], while the equivalence betweenresilient functions and large sets of orthogonal arrays was proved in [20]. Two upper bounds on resiliencywhich are the best known so far were derived in [7, 3]. In [21] Stinson and Massey disproved the conjecturethat if there exists a nonlinear resilient function then there exists a linear resilient function with the sameparameters. The nonlinear resilient functions they constructed were based on the (nonlinear) Kerdockand Preparata codes. Some linear resilient functions achieving an upper bound on resiliency can be foundin [7, 3]. Resilient functions which are symmetric were studied in [5, 8], while non-binary resilient functionswere examined in [9].Soon after the concept of a correlation immune function was introduced by Siegenthaler [19], Xiao andMassey gave an equivalent de�nition in [10]. These were followed by [4, 17] where various methods forconstructing correlation immune functions were presented.4



3 Constructing New Resilient Functions from OldConstructing new resilient functions from old ones is an interesting problem that has many practicalimplications. There are two opposite directions in relation to this problem, these being constructing\large" ones from \small" ones and \small" ones from \large" ones. Due to the close relationship betweenresilient functions and error correcting codes, in particular the equivalence between linear codes and linearresilient functions as was revealed in [5, 1], numerous techniques can be borrowed from the theory of errorcorrecting codes to construct new resilient functions from old. These techniques have been further enrichedby Stinson's work on the equivalence between resilient functions and large sets of orthogonal arrays [20].Some concrete examples on constructing new from old can be found in [3].The main purpose of this section is to present a number of methods for directly synthesizing largeresilient functions from small ones. A distinctive feature of these methods is that they are applicable toboth linear and nonlinear resilient functions.We start with correlation immune functions. Let fi be a (ni; 1; ti)-resilient function, i = 1; 2. Thenf1(x)� f2(y) is a (n1 + n2; 1; t1 + t2 + 1)-resilient function, where x 2 Vn1 and y 2 Vn2 . To show that thisis correct, let ' be a linear function on Vn1+n2 de�ned by'(x; y) = c1x1 � � � � � cn1xn1 � d1y1 � � � � � dn2yn2 ;where x = (x1; : : : ; xn1), y = (y1; : : : ; yn2), cj ; di 2 GF (2). Suppose thatW (c1; : : : ; cn1 ; d1; : : : ; dn2) <= t1 + t2 + 1:Then eitherW (c1; : : : ; cn1) <= t1 orW (d1; : : : ; dn2) <= t2. By Corollary 1, either f1(x)�'1(x) or f2(y)�'2(y)is balanced, where '1(x) = c1x1 � � � � � cn1xn1 and '2(y) = d1y1 � � � � � dn2yn2 . Note that the sum of twofunctions with disjoint variables is balanced if one of the two functions is balanced (for a simple proof seeLemma 9 of [15]). Hence f1(x)� f2(y)� '(x;y) = [f1(x)� '1(x)]� [f2(y)� '2(y)] is balanced. Again byCorollary 1, f1(x)� f2(y) is a (n1 + n2; 1; t1 + t2 + 1)-resilient function.By induction, we have the following result.Lemma 4 Let fi be a (ni; 1; ti)-resilient function, i = 1; : : : ; s. Then f1(x)�� � ��fs(y) is a (Psj=1 nj ; 1; s�1 +Psj=1 tj)-resilient function, where x 2 Vn1 ; : : : ; y 2 Vns.As an application of Lemma 4, we can combine known resilient functions to obtain a new one. First weshow that if F = (f1; : : : ; fm) is a (n;m; t)-resilient function, then G(x; y; z) = (F (x)�F (y); F (y)�F (z))is a (3n; 2m; 2t+ 1)-resilient function, where x; y; z 2 Vn.To prove thatG is a (3n; 2m; 2t+1)-resilient function, we �rst note that f1(x)�f1(y), : : :, fm(x)�fm(y),f1(y)� f1(z), : : :, fm(y)� fm(z) comprise all the 2m component functions of G. Consider a nonzero linearcombination of these 2m component functionsf(x; y; z) = mMj=1 cj(fj(x)� fj(y))� mMj=1 dj(fj(y)� fj(z));where either (c1; : : : ; cm) 6= (0; : : : ; 0) or (d1; : : : ; dm) 6= (0; : : : ; 0).Note that f(x; y; z) = mMj=1 cjfj(x)� mMj=1(cj � dj)fj(y)� mMj=1 djfj(z):By Theorem 1, Lmj=1 cjfj(x) is a (n; 1; t)-resilient function when (c1; : : : ; cm) 6= (0; : : : ; 0). Similarly,Lmj=1 djfj(z) is a (n; 1; t)-resilient function when (d1; : : : ; dm) 6= (0; : : : ; 0), and Lmj=1(cj � dj)fj(y) is a(n; 1; t)-resilient function when (c1 � d1; : : : ; cm � dm) 6= (0; : : : ; 0).5



Since either (c1; : : : ; cm) 6= (0; : : : ; 0) or (d1; : : : ; dm) 6= (0; : : : ; 0), at least two hold among (c1; : : : ; cm) 6=(0; : : : ; 0), (d1; : : : ; dm) 6= (0; : : : ; 0) and (c1 � d1; : : : ; cm � dm) 6= (0; : : : ; 0). By Lemma 4, when two holdf(x; y; z) is a (3n;1; 2t+1)-resilient function, while when three hold it is a (3n; 1; 3t+2)-resilient function.By Theorem 1, G(x;y; z) is indeed a (3n; 2m; 2t+ 1)-resilient function.It was �rst observed in [5] that g(x1; : : : ; x3h) = (x1�� � ��x2h; xh+1�� � ��x3h) is a linear (3h; 2; 2h�1)-resilient function. We can view this function as being obtained from f(x1; : : : ; xh) = x1 � � � � � xh, whichis a (h; 1; h� 1)-resilient function, by using the technique described above. Conversely we can also regardour technique as a signi�cant generalization of the idea underling the construction of g(x1; : : : ; x3h) =(x1 � � � � � x2h; xh+1 � � � � � x3h).Now applying the same technique to the resulting function G itself, we obtain a (32n; 22m; 22(1+t)�1)-resilient function. In general repeating the technique for k times, k = 1; 2; : : :, we obtain a (3kn; 2km; 2k(1+t)� 1)-resilient function from a (n;m; t)-resilient function.The technique can be further generalized. In particular, it is easy to prove that if F = (f1; : : : ; fm) is a(n;m; t)-resilient function, then G(x; y; z; u) = (F (x)�F (y); F (y)�F (z); F (z)�F (u)) is a (4n; 3m; 2t+1)-resilient function, where x; y; z; u 2 Vn. Again by iterating the technique, we can construct from a (n;m; t)-resilient function a (4kn; 3km; 2k(1 + t)� 1)-resilient function for all k = 1; 2; : : :.To summarize the discussions, we haveLemma 5 Given a (n;m; t)-resilient function, there is an iterative method to construct a ((h+1)kn; hkm; 2k(1+t)� 1)-resilient function for all h = 2; 3; : : : and k = 1; 2; : : :.As another application of Lemma 4, we give the following result.Corollary 3 Let F = (f1; : : : ; fm) be a (n1;m; t1)-resilient function and G = (g1; : : : ; gm) a (n2;m; t2)-resilient function. Then P (z) = F (x)�G(y) = (f1(x)�g1(y); : : : ; fm(x)�gm(y)) is a (n1+n2;m; t1+t2+1)-resilient function, where z = (x;y), x 2 Vn1 and y 2 Vn2.Proof. Consider an arbitrary nonzero linear combination of the component functions of P (z), sayp(z) = mMj=1 cj [fj(x)� gj(y)] = mMj=1 cjfj(x)� mMj=1 cjgj(y):By Theorem 1, Lmj=1 cjfj(x) is a t1-resilient function, while Lmj=1 cjgj(y) is a t2-resilient function. Henceby Lemma 4, p(z) is a t1 + t2 + 1-resilient function. As p(z) is arbitrary, again by Theorem 1, P (z) is a(n1 + n2;m; t1 + t2 + 1)-resilient function. utA special case of the technique indicated in Corollary 3, namely when both F and G are linear, hasbeen employed by Bierbrauer, Gopalakrishnan and Stinson in proving their Theorem 7 in [3].The following result is concerned with placing resilient functions in parallel.Corollary 4 Let F = (f1; : : : ; fm1) be a (n1;m1; t1)-resilient function and G = (g1; : : : ; gm2) be a (n2; m2; t2)-resilient function. Then P (z) = (f1(x); : : : ; fm1(x); g1(y); : : : ; gm2(y)) is a (n1 + n2;m1 +m2; �)-resilientfunction, where z = (x; y), x 2 Vn1, y 2 Vn2, and � = minft1; t2g.Proof. Consider an arbitrary nonzero linear combination of the component functions of P (z)p(z) = m1Mj=1 cjfj(x)� m2Mj=1 djgj(y):6



As (c1; : : : ; cm1 ; d1; : : : ; dm2) is a nonzero vector, without loss of generality, we can assume that (c1; : : : ; cm1) 6=(0; : : : ; 0). For any �1-subset fj1; : : : ; j�1g � f1; : : : ; n1g and any �2-subset fi1; : : : ; i�2g � f1; : : : ; n2g,where �1 + �2 = �, and any a1; : : : ; a�1, b1; : : : ; b�2 2 GF (2), by Theorem 1, and the fact that the sum oftwo functions with disjoint variables is balanced if one of the two functions is balanced (Lemma 9 of [15]),Lm1j=1 cjfj(x)jxj1=a1;:::;xj�1=a�1 is balanced. Thusm1Mj=1 cjfj(x)jxj1=a1;:::;xj�1=a�1 � m2Mj=1 djgj(y)jyi1=b1;:::;bi�2=b�2is balanced. It follows from Theorem 1 that P (z) = (f1(x); : : : ; fm1(x); g1(y); : : : ; gm2(y)) is a (n1+n2;m1+m2; �)-resilient function. ut4 Transforming Linear Resilient Functions to Nonlinear OnesA resilient function is said to be linear if its component functions are all linear, and said to be nonlinearotherwise. When the concept of resilient functions was introduced, it was conjectured that if there existsa nonlinear resilient function with certain parameters, then there exists a linear resilient function withthe same parameters [5, 1]. This conjecture was disproved by Stinson and Massey [21]. In particular,they showed that there exists an in�nite class of nonlinear resilient functions for which there do notexist linear resilient functions with the same parameters. They used nonlinear error correcting codes intheir proof. In this section we investigate this topic in a slightly di�erent direction. In particular weshow that by permuting the output m-tuples (i.e., all 2m vectors in Vm), instead of only re-ordering the mcomponent functions of a (n;m; t)-resilient function, we can obtain 2m! distinct (n;m; t)-resilient functions.A consequence of this result is that the converse of the conjecture in [5, 1] is true, namely if there exists alinear resilient function with certain parameters, then there exists a nonlinear resilient function with thesame parameters.Here is the main result in this section.Theorem 2 Let F be a (n;m; t)-resilient function and G be a permutation on Vm. Then P = G � F ,namely P (x) = G(F (x)), is also a (n;m; t)-resilient function.Proof. Since F is a (n;m; t)-resilient function, for each fj1; : : : ; jtg � f1; : : : ; ng and a1; : : : ; at 2 GF (2),F (x)jxj1=a1;:::;xjt=atruns through all the vectors in Vm each 2n�m�t times while (xi1 ; : : : ; xin�t) runs through Vn once, wherefi1; : : : ; in�tg = f1; : : : ; ng � fj1; : : : ; jtg and i1 < � � � < in�t. As G is a permutation on Vm,P (x)jxj1=a1;:::;xjt=at = G(F (x))jxj1=a1;:::;xjt=atruns through all the vectors in Vm each 2n�m�t times while (xi1 ; : : : ; xin�t) runs through Vn once. Itimmediately follows that P is a (n;m; t)-resilient function. utNote that the total number of di�erent permutations on Vm is 2m! which is far larger than m!. Thelatter is the number of ways to re-order the m component functions. New resilient functions generatedusing these permutations are all di�erent. To prove this, let G1 and G2 be two di�erent permutations onVm. We want to prove that G1 � F 6= G2 � F . Suppose for contradiction that G1 � F = G2 � F . ThenF = G�11 �G2 � F . As F is unbiased, for each � 2 Vm, there exist 2n�m di�erent vectors � 2 Vn such thatF (�) = �. This causes � = G�11 �G2(�). As � is arbitrary, G�11 �G2 must be the identity permutation onVm, which contradicts the fact that G1 6= G2. Thus we have proved the following:7



Corollary 5 Given a (n;m; t)-resilient function, Theorem 2 produces 2m! distinct (n;m; t)-resilient func-tion.Now we describe an example to show applications of Theorem 2. It is easy to verify thatF (x1; x2; x3; x4; x5; x6) = (x1 � x2 � x3; x3 � x4 � x5; x5 � x6 � x1)is a linear (6; 3; 2)-resilient function. Consider a permutation G on V3 de�ned byG(u1; u2; u3) = (u1 � u3 � u2u3; u1 � u2 � u1u3; u2 � u3 � u1u2):By Theorem 2, P = G � F is also a (6; 3; 2)-resilient function.Note that all component functions of the resulting resilient function P are quadratic. The rest of thissection is devoted to this direction, namely converting linear resilient functions to nonlinear ones. We alsoshow how to calculate the nonlinearity of a resulting nonlinear resilient function. The following lemma willbe used in the discussions.Lemma 6 Let g be a function on Vm whose nonlinearity is Ng. Let n >= m and B be an n�m matrix overGF (2) whose rank is m. Set h(x1; : : : ; xn) = g((x1; : : : ; xn)B), where (u1; : : : ; um) 2 Vm and (x1; : : : ; xn) 2Vn. Then the nonlinearity Nh of h, a function on Vn, satis�es Nh = 2n�mNg, and the algebraic degree ofh is the same as that of g.Proof. First we note that this lemma is a generalization of the following result: Let h(x1; : : : ; xn) =g(x1; : : : ; xk). Then h, a function on Vn, satis�es Nh = 2n�mNg. A proof for this special case can befound in, for instance, [17].To prove this lemma, we append to B an n � (n �m) matrix C so that A = [B;C] is a nonsingularmatrix of order n over GF (2). Set (u1; : : : ; un) = (x1; : : : ; xn)A. Now de�ne a function on Vn, say g�, asfollows g�(u1; : : : ; un) = g(u1; : : : ; um):Then Ng� = 2n�mNg, and g� and g share the same algebraic degree. On the other hand, from theconstruction of h, h(x1; : : : ; xn) = g((x1; : : : ; xn)B) = g�((x1; : : : ; xn)A):By noting the fact that the nonlinearity and algebraic degree of a function are invariant under a nonsingularlinear transformation on coordinates, we have Nh = Ng� = 2n�mNg, and that h has the same algebraicdegree as that of g�, which is the same as that of g. utNow we prove a signi�cant result on constructing new resilient functions from old, linear ones.Theorem 3 Let F be a linear (n;m; t)-resilient function and G be a permutation on Vm. Then P = G�Fis a (n;m; t)-resilient function and(i) the nonlinearity of P satis�es NP = 2n�mNG.(ii) the algebraic degree of P is the same as that of G.Proof. As F is a linear resilient function, it can be written as F (x1; : : : ; xn) = (x1; : : : ; xn)B where Bis an n �m matrix of rank m over GF (2) and (x1; : : : ; xn) 2 Vn. The theorem follows immediately fromLemma 6. ut8



We turn our attention back to the nonlinear (6; 3; 2)-resilient function constructed above. It is easy toverify that the nonlinearity of each nonzero linear combination of the component functions of G is 2. ByTheorem 3, the nonlinearity of P is 16, and as we have seen, the algebraic degree of P is indeed 2.Theorem 3 implies that highly nonlinear resilient functions can be constructed from linear resilientfunctions by applying highly nonlinear permutations in the transforming process. A number of highlynonlinear permutations which are based on polynomials on a �nite �eld have been shown in [14, 2]. Inparticular, it is shown in [14] that the nonlinearity of a permutation G based on the inverse function onGF (2m) satis�es NG >= 2m�1� 2 12m and the algebraic degree of G is m� 1. Hence the following is proved:Corollary 6 If there exists a linear (n;m; t)-resilient function, then there exists a nonlinear (n;m; t)-resilient function P whose nonlinearity satis�es NP >= 2n�1 � 2n� 12m and whose algebraic degree is m� 1.Another important implication of Theorem 3 is that from each linear resilient function, we can derivea large number nonlinear resilient functions with the same parameters. This, together with the resultby Stinson and Massey [21], shows that it is more a�uent in nonlinear resilient functions than in linearresilient functions, in terms of either the numbers or the parameters.5 Remarks on Algebraic DegreeIn his pioneering work [19], Siegenthaler showed, by a lengthy argument, that the algebraic degree of abalanced correlation immune function, i.e., a (n; 1; t)-resilient function, is at most n� t� 1, except for thecase when t = n � 1. Here we show that the proof can substantially shortened by employing Theorem 1on Page 372 of [11].Let f be a (n; 1; t)-resilient function. As f is a function on Vn, by Theorem 1 on Page 372 of [11], itcan be expressed in the algebraic normal form, namelyf (x1; : : : ; xn) = Ma1;:::;an2GF (2) g(a1; : : : ; an)xa11 � � �xann ;where g(a1; : : : ; an) = M(b1;:::;bn)�(a1;:::;an) f(b1; : : : ; bn);and by (b1; : : : ; bn) � (a1; : : : ; an) we mean that if bj = 1 then aj = 1.Consider the coe�cient of the term x1 � � �xn�t, that isMb1;:::;bn�t2GF (2) f(b1; : : : ; bn�t; 0; : : : ; 0): (1)Since f is a (n; 1; t)-resilient function, (1) becomes zero, except for n � t = 1 in which case (1) becomesone. By the same reasoning, we can see that the coe�cient of every term of algebraic degree n� t is zero.This proves that the algebraic degree of f is at most n � t � 1.By noting our Theorem 1, we haveCorollary 7 The algebraic degree of a (n;m; t)-resilient function is at most n� t� 1, except for the casewhen t = n � 1.Recall that it is easy to construct linear (n; n � 1; 1)-resilient functions from linear error correctingcodes. Using Corollaries 5 and 6, we obtain 2n�1! distinct (n;n� 1; 1)-resilient functions, a large numberof which have a nonlinearity of at least 2n�1 � 2n+12 and whose algebraic degree is n� 2.9



It should be noted, however, that due to Corollary 7, applying Theorem 3 to a nonlinear (n;n� 1;1)-resilient function does not always yield a function that has a higher algebraic degree.In [7] Friedman proved that the resiliency t of a (n;m; t)-resilient function is bounded from above byB1 = b 2m�1n2m � 1c � 1:Theorem 3 of [3] gives another upper boundB2 = 2b2m�2(n+ 1)2m � 1 c � 1: (2)As shown in [3] a linear (2m � 1;m; 2m�1 � 1)-resilient function can be obtained from a simplex code.This function achieves the upper bound on resiliency (5). Applying Corollaries 5 and 6 to this resilientfunction, we obtain 2m! distinct (2m�1;m; 2m�1�1) resilient functions, some of which have a nonlinearityof at least 22m�2 � 22m�1� 12m and whose algebraic degree is m� 1. All the resulting functions achieve theupper bound on resiliency indicated in (5).6 ConclusionMain results of this paper are related to the construction of nonlinear resilient functions. Of particularimportance to practical applications is the method for transforming linear resilient functions into nonlinearones. Currently we are in the process of extending in various directions the results reported in this paper.AcknowledgmentTo be added in the full paper.References[1] Bennett, C. H., Brassard, G., and Robert, J. M. Privacy ampli�cation by public discussion.SIAM J. Computing 17 (1988), 210{229.[2] Beth, T., and Ding, C. On permutations against di�erential cryptanalysis. In Advances in Cryptol-ogy - EUROCRYPT'93 (1994), vol. 765, Lecture Notes in Computer Science, Springer-Verlag, Berlin,Heidelberg, New York, pp. 65{76.[3] Bierbrauer, J., Gopalakrishnan, K., and Stinson, D. R. Bounds on resilient functions andorthogonal arrays. In Advances in Cryptology - CRYPTO'94 (1994), vol. 839, Lecture Notes inComputer Science, Springer-Verlag, Berlin, Heidelberg, New York, pp. 247{256.[4] Camion, P., Carlet, C., Charpin, P., and Sendrier, N. On correlation-immune functions. InAdvances in Cryptology - CRYPTO'91 (1991), vol. 576, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, pp. 87{100.[5] Chor, B., Goldreich, O., H�astad, J., Friedman, J., Rudich, S., and Smolensky, R. Thebit extraction problem or t-resilient functions. IEEE Symposium on Foundations of Computer Science26 (1985), 396{407. 10
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