
Characterizing the Structures of Highly Nonlinear CryptographicFunctionsXian-Mo ZhangYuliang ZhengDepartment of Computer ScienceThe University of WollongongWollongong, NSW 2522, AUSTRALIAE-mail: fxianmo,yuliangg@cs.uow.edu.auAbstractThis paper studies the properties and constructions of nonlinear functions, which are a core com-ponent of cryptographic primitives including data encryption algorithms and one-way hash functions.A main contribution of this paper is to reveal the relationship between nonlinearity and propagationcharacteristic, two critical indicators of the cryptographic strength of a Boolean function. In particular,we prove that(i) if f , a Boolean function on Vn, satis�es the propagation criterion with respect to all but a subset< of vectors in Vn, then the nonlinearity of f satis�es Nf >= 2n�1� 2 12 (n+t)�1, where t is the rankof <, and(ii) When j<j > 2, the nonzero vectors in < are linearly dependent.Furthermore we show that(iii) if j<j = 2 then n must be odd, the nonlinearity of f satis�es Nf = 2n�1�212 (n�1), and the nonzerovector in < must be a linear structure of f .(iv) there exists no function on Vn such that j<j = 3.(v) if j<j = 4 then n must be even, the nonlinearity of f satis�es Nf = 2n�1 � 2 12n, and the nonzerovectors in < must be linear structures of f .(vi) if j<j = 5 then n must be odd, the nonlinearity of f is Nf = 2n�1 � 212 (n�1), the four nonzerovectors in <, denoted by �1, �2, �3 and �4, are related by the equation �1 � �2 � �3 � �4 = 0, andnone of the four vectors is a linear structure of f .(vii) there exists no function on Vn such that j<j = 6.We also discuss the structures of functions with j<j = 2;4;5. In particular we show that these functionshave close relationships with bent functions, and can be easily constructed from the latter.1 IntroductionCryptographic techniques for information authentication and data encryption require Boolean functionswith a number of critical properties that distinguish them from linear (or a�ne) functions. Among theproperties are high nonlinearity, high degree of propagation, few linear structures, high algebraic degree etc.These properties are often called nonlinearity criteria. An important topic is to investigate relationshipsamong the various nonlinearity criteria. Progress in this direction has been made in [SZZ95b], where1



connections have been revealed among the strict avalanche characteristic (SAC), di�erential characteristics,linear structures and nonlinearity, of quadratic functions.In this paper we carry on the investigation initiated in [SZZ95b] and bring together nonlinearity andpropagation characteristic of a Boolean function (quadratic or non-quadratic). These two cryptographiccriteria are seemly quite separate, in the sense that the former indicates the minimum distance betweena Boolean function and all the a�ne functions whereas the latter forecasts the avalanche behavior of thefunction when some input bits to the function are complemented.We further extend our investigation into the structures of cryptographic functions. The organizationof the remaining part of this paper is as follows: After introducing basic de�nitions in Section 2, we showin Section 3 the relationship between propagation characteristic and nonlinearity. We further explore thisresult in Sections 4, 5, 6, 7, 8 and 9, and make explicit the structural forms of functions that satisfy thepropagation criterion with respect to all but six or less vectors. We examine degrees of propagation of thefunctions in Section 10, and �nally, close the paper with some remarks in Section 11.A short summary of the results is presented in Table 1.2 Basic De�nitionsWe consider Boolean functions from Vn to GF (2) (or simply functions on Vn), Vn is the vector space ofn tuples of elements from GF (2). The truth table of a function f on Vn is a (0;1)-sequence de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)),where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0;1), : : :, �2n�1�1 = (1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrixof order 2n de�ned by M = ((�1)f(�i��j)). f is said to be balanced if its truth table contains an equalnumber of ones and zeros.An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) = a1x1 � � � � � anxn � c,where aj ; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is called a linear function if c = 0.De�nition 1 The Hamming weight of a (0; 1)-sequence s, denoted by W (s), is the number of ones in thesequence. Given two functions f and g on Vn, the Hamming distance d(f; g) between them is de�ned asthe Hamming weight of the truth table of f(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of f ,denoted by Nf , is the minimal Hamming distance between f and all a�ne functions on Vn, i.e., Nf =mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�ne functions on Vn.Now we introduce the de�nition of propagation criterion.De�nition 2 Let f be a function on Vn. We say that f satis�es1. the propagation criterion with respect to � if f(x) � f(x � �) is a balanced function, where x =(x1; : : : ; xn) and � is a vector in Vn.2. the propagation criterion of degree k if it satis�es the propagation criterion with respect to all � 2 Vnwith 1 <= W (�) <= k.The above de�nition for propagation criterion is from [PLL+91]. Further work on the topic can be foundin [PGV91]. Note that the strict avalanche criterion (SAC) introduced by Webster and Tavares [Web85,WT86] is equivalent to the propagation criterion of degree 1 and that the perfect nonlinearity studied byMeier and Sta�elbach [MS90] is equivalent to the propagation criterion of degree n where n is the numberof the coordinates of the function.While the propagation characteristic measures the avalanche e�ect of a function, the linear structureis a concept that in a sense complements the former, namely, it indicates the straightness of a function.2



De�nition 3 Let f be a function on Vn. A vector � 2 Vn is called a linear structure of f if f(x)�f(x��)is a constant.By de�nition, the zero vector in Vn is a linear structure of all functions on Vn. It is not hard to seethat the linear structures of a function f form a linear subspace of Vn. The dimension of the subspaceis called the linearity dimension of f . We note that it was Evertse who �rst introduced the notion oflinear structure (in a sense broader than ours) and studied its implication on the security of encryptionalgorithms [Eve88].A (1;�1)-matrix H of order m is called a Hadamard matrix if HHt = mIm, where Ht is the transposeof H and Im is the identity matrix of order m. A Sylvester-Hadamard matrix of order 2n, denoted by Hn,is generated by the following recursive relationH0 = 1; Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : :De�nition 4 A function f on Vn is called a bent function if2�n2 Xx2Vn(�1)f(x)�h�;xi = �1;for all � 2 Vn. Here h�; xi is the scalar product of � and x, namely, h�; xi =Pni=1 bixi, and f(x)� h�; xiis regarded as a real-valued function.Bent functions can be characterized in various ways [AT90, Dil72, SZZ95a, YH89]. In particular thefollowing four statements are equivalent:(i) f is bent.(ii) h�; `i = �2 12n for any a�ne sequence ` of length 2n, where � is the sequence of f .(iii) f satis�es the propagation criterion with respect to all non-zero vectors in Vn.(iv) M , the matrix of f , is a Hadamard matrix.Bent functions on Vn exist only when n is even. Another important property of bent functions is thatthey achieve the highest possible nonlinearity 2n�1 � 212n�1.3 Propagation Characteristic and NonlinearityGiven two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise product is de�ned bya � b = (a1b1; : : : ; ambm). Let f be a function on Vn. For a vector � 2 Vn, denote by �(�) the sequence off(x� �). Thus �(0) is the sequence of f itself and �(0) � �(�) is the sequence of f(x)� f(x� �).Set �(�) = h�(0); �(�)i;the scalar product of �(0) and �(�). Obviously, �(�) = 0 if and only if f(x)� f(x��) is balanced, i.e., fsatis�es the propagation criterion with respect to �. On the other hand, if j�(�)j = 2n, then f(x)�f(x��)is a constant and hence � is a linear structure of f .Let M = ((�1)f(�i��j)) be the matrix of f and � be the sequence of f . Due to a very pretty result byR. L. McFarland (see Theorem 3.3 of [Dil72]), M can be decomposed intoM = 2�nHn diag(h�; `0i; � � � ; h�; `2n�1i)Hn3



where `i is the ith row of Hn, a Sylvester-Hadamard matrix of order 2n. By Lemma 2 of [SZZ95a], `i isthe sequence of a linear function de�ned by 'i(x) = h�i; xi, where �i is the ith vector in Vn according tothe ascending alphabetical order.Clearly MMT = 2�nHn diag(h�; `0i2; � � � ; h�; `2n�1i2)Hn: (1)On the other hand, we always have MMT = (�(�i � �j));where i; j = 0; 1; : : : ; 2n � 1.Let S be a set of vectors in Vn. The rank of S is the maximum number of linearly independent vectorsin S. Note that when S forms a linear subspace of Vn, its rank coincides with its dimension.Lemma 6 of [SZZ95a] states that the distance between two functions f1 and f2 on Vn can be expressedas d(f1; f2) = 2n�1 � 12h�f1 ; �f2i, where �f1 and �f2 are the sequences of f1 and f2 respectively. As animmediate consequence we have:Lemma 1 The nonlinearity of a function f on Vn can be calculated byNf = 2n�1 � 12 maxfjh�; `iij; 0 <= i <= 2n � 1gwhere � is the sequence of f and `0, : : :, `2n�1 are the sequences of the linear functions on Vn.Now we prove a central result of this paper:Theorem 1 Let f be a function on Vn that satis�es the propagation criterion with respect to all but asubset < of vectors in Vn. Then the nonlinearity of f satis�es Nf >= 2n�1 � 212 (n+t)�1, where t is the rankof <.Proof. First we consider the case where f�1; : : : ; �tg are t linearly independent vectors in <, where each�j is de�ned according to the ascending alphabetical order in Vn. Let W be the t-dimensional subspacewith f�1; : : : ; �tg as its basis. We have < � W .From the discussions preceding the theorem, we haveMMT = 266664 D 0 � � � 00 D � � � 0... ... ... ...0 0 � � � D 377775where 0 denotes the zero matrix and D = (�(�i+j)), both of order 2t, and i; j = 0; 1; : : : ; 2t � 1. Now let�1; : : : ; �2t be the eigenvalues of D. Then the collection of the eigenvalues of MMT consists of 2n�t copiesof �1; : : : ; �2t.An interpretation of (1) is that the two matrices MMT and diag(h�; `0i2; : : : ; h�; `2n�1i2) are similarin that 2�nHnHn = I , where I denotes the identity matrix of order 2n. In addition it is easy to see thatfh�; `0i2; � � � ; h�; `2n�1i2g is also the collection of the eigenvalues of MMT .Thus �i >= 0 for all 1 <= i <= 2t. Also we have2n�t(�1 + � � �+ �2t) = 2n�1Xj=0 h�; `ji2:4



By Parseval's equation (p. 416, [MS78]), we have2n�1Xj=0 h�; `ji2 = 22n:Hence �1 + � � �+ �2t = 2n+t:Since each �i >= 0, we have �i <= 2n+tfor i = 1; : : : ; 2t, or equivalently h�; `ji2 <= 2n+tfor j = 0; 1; : : : ; 2n � 1. Thus jh�; `jij <= 212 (n+t)for j = 0; 1; : : : ; 2n � 1.By Lemma 1, the nonlinearity of f satis�es Nf >= 2n�1 � 212 (n+t)�1.In the more general case where f�1; : : : ; �tg are not t linearly independent vectors in <, we can applya nonsingular linear transformation A on the input coordinates of f so that the resulting function g(x) =f(xA) has f�1; : : : ; �tg as t linearly independent vectors in the set < associated with g. The nonlinearityof g satis�es Ng >= 2n�1 � 2 12 (n+t)�1. It has been well-known that a nonsingular linear transformation onthe input coordinates of a function does not alter its nonlinearity (see for instance [MS90] or Lemma 10of [SZZ95a]). Consequently Nf = Ng >= 2n�1 � 2 12 (n+t)�1. This completes the proof. utIt was observed by Nyberg in Proposition 3 of [Nyb93] (see also a detailed discussion in [SZZ95b])that knowing the linearity dimension, say `, of a function f on Vn, the nonlinearity of the function canbe expressed as Nf = 2`Nr, where Nr is the nonlinearity of a function obtained by restricting f on an(n � `)-dimensional subspace of Vn. Therefore, in a sense Theorem 1 is complementary to Proposition 3of [Nyb93].In the next section we discuss an interesting special case where j<j = 2. More general cases wherej<j > 2, which need very di�erent proof techniques, will be fully discussed in the later part of the paper.4 Functions with j<j = 2Since < consists of two vectors, a zero and a nonzero, it forms a one-dimensional subspace of Vn. Thefollowing result on splitting a power of 2 into two squares will be used in later discussions.Lemma 2 Let n >= 2 be a positive integer and 2n = p2+ q2 where both p >= 0 and q >= 0 are integers. Thenp = 2 12n and q = 0 when n is even, and p = q = 2 12 (n�1) when n is odd.Proof. We �rst prove that if n >= 2 and 2n = p2+ q2 then both p and q are even. Assume for contradictionthat p = 2p1 + 1 and q = 2q1 + a where p1 and q1 are positive integers and a is 0 or 1. Then 2n = p2 + q2can be written as 2n = 4N + 1 or 2n = 4N +2 for a positive integer N . This contradicts to either the factthat 2n is even or the fact that 2n is divisible by 4.We now prove the lemma by induction. It is easy to verify that the lemma is true for n = 2; 3. Supposethat the lemma is true for 3 <= n <= n0. Consider2n0+1 = p2 + q2:5



Since both p and q are even, we can write p = 2p1 and q = 2q1. Thus2n0�1 = p21 + q21:Note that n0+1 is even (odd) if and only if n0� 1 is even (odd). By the induction assumption, the lemmais true for n = n0 + 1. utNow we proveTheorem 2 If f , a function on Vn, satis�es the propagation criterion with respect to all but two (a zeroand a nonzero) vectors in Vn, then(i) n must be odd,(ii) the nonzero vector where the propagation criterion is not satis�ed must be a linear structure of f and(iii) the nonlinearity of f satis�es Nf = 2n�1 � 2 12 (n�1).Proof. Let � be the vector where the propagation criterion is not satis�ed. We can always �nd anonsingular matrix of order n over GF (2), say B, such that �B = �1, where �1 = (0; 0; : : : ; 1). The newfunction g, de�ned by g(x) = f(xB), has the same nonlinearity as that of f , and satis�es the propagationcriterion with respect to every nonzero vector except for �1. In addition, � is a linear structure of f if andonly if �1 is a linear structure of g.Compare the �rst row of the two sides of (1), we have(�(�0);�(�1); : : : ;�(�2n�1)) = 2�n(h�; `0i2; : : : ; h�; `2n�1i2)Hnwhere �j is the jth vector in Vn in the ascending alphabetical order. Equivalently we have(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; : : : ; h�; `2n�1i2) (2)Note that �(�j) = 0 if j 6= 0; 1. Thus (2) is specialized as(�(�0);�(�1); 0; : : : ; 0)Hn = (h�; `0i2; : : : ; h�; `2n�1i2) (3)>From the construction ofHn, the �rst and the second columns ofHn are (1; 1; : : : ; 1)T and (1;�1; 1;�1; : : : ; 1;�1)Trespectively. From (3), we have �(�0) + �(�1) = h�; `0i2and �(�0)��(�1) = h�; `1i2:Note that �(�0) = 2n. Hence 2n +�(�1) = h�; `0i2; (4)2n ��(�1) = h�; `1i2: (5)>From (4) and (5), we have 6



2n+1 = h�; `0i2 + h�; `1i2: (6)We now prove that n must be odd. Suppose n is even. By Lemma 2,h�; `0i2 = h�; `1i2 = 2n:>From (4) or (5), �(�1) = 0. This contradicts the fact that f does not satisfy the propagationcharacteristic with respect to �1. Thus n must be odd, i.e. the part (i) of the theorem is true.Since n is odd, from (6) and Lemma 2 we have h�; `0i2 = 2n+1 or 0.Case 1: h�; `0i2 = 2n+1 and hence h�; `1i2 = 0. >From (4) or (5), we have �(�1) = 2n.Case 2: h�; `0i2 = 0 and hence h�; `1i2 = 2n+1. Again from (4) or (5), we have �(�1) = �2n.In both cases, �1 is a linear structure of g. Thus � = �1B�1 is a linear structure of f . This proves (ii)of the theorem.The above discussions for Cases 1 and 2, together with (3), imply that h�; `ii2 = 2n+1 or 0, i.e.,jh�; `iij = 2 12 (n+1) or 0, for all 0 <= i <= 2n � 1. Applying Lemma 1,Nf = Ng = 2n�1 � 212 (n�1):This completes the proof. utA further examination of the proof for Theorem 2 reveals that a function with j<j = 2 has a very simplestructure as described below.Corollary 1 A function f on Vn satis�es the propagation criterion with respect to all but two (a zero anda nonzero) vectors in Vn, if and only if there exists a nonsingular linear matrix of order n over GF (2), sayB, such that g(x) = f(xB) can be written asg(x) = cxn � h(x1; : : : ; xn�1)where h is a bent function on Vn�1 and c is a constant in GF (2).Proof. >From the proof of Theorem 2, one can see that g(x) = f(xB) has an unique nonzero linearstructure �1 = (0; 0; : : : ; 1) and hence it can be written asg(x) = cxn � h(x1; : : : ; xn�1); (7)where c is a constant from GF (2). By Proposition 3 of [Nyb93], Ng = 2Nh. On the other hand, from (iii)of Theorem 2, Ng = 2n�1 � 212 (n�1):Thus Nh = 2n�2 � 2 12 (n�1)�1:This indicates that h, a function on Vn�1, achieves the maximum nonlinearity and hence it is bent (seealso [MS78] or Lemma 4 of [SZZ95a]).Conversely, suppose that g can be expressed as (7). Since h is a bent function on Vn�1, �1 =(0; 0; : : : ; 0; 1) is the only nonzero linear structure of g, and hence � = �1B�1 is the only nonzero lin-ear structure of the original function f . ut7



By Theorem 2 and Corollary 1, functions on Vn that satisfy the propagation criterion with respect toall but two vectors in Vn exist only if n is odd, and such a function can always be (informally) viewed asbeing obtained by repeating twice a bent function on Vn�1 (subject to a nonsingular linear transformationon the input coordinates).When < has more than two vectors, it does not necessarily form a linear subspace of Vn. Thereforediscussions presented in this section do not directly apply to the more general case. Nevertheless, usinga di�erent technique, we show in the next section a signi�cant result on the structure of <, namely, thenonzero vectors in < with j<j > 2 are linearly dependent.5 Linear Dependence in <The following result on vectors will be used in the proof of the main result in this section.Lemma 3 Let  1; : : : ;  k be linear functions on Vn which are linearly independent. SetQ = 264 �1...�k 375 and P = 264 `1...̀k 375where �i is the truth table and `i is the sequence of  i, i = 1; : : : ; k. Then(i) each vector in Vk appears as a column in Q precisely 2n�k times and(ii) each k-dimensional (1;�1)-vector appears as a column in P precisely 2n�k times.Proof. Note that (i) and (ii) are equivalent. Clearly, any nonzero linear combination of '1; : : : ; 'k isa nonzero linear function and thus it is balanced. Consequently, this lemma is equivalent to Lemma 7of [SZZ95b]. utNext we show the linear dependence of nonzero vectors in <.Theorem 3 Suppose that f , a function on Vn, satis�es the propagation criterion with respect to all butk + 1 vectors 0; �1; : : : ; �k in Vn, where k > 1. Then �1; : : : ; �k are linearly dependent, namely, there existk constants c1; : : : ; ck 2 GF (2), not all of which are zeros, such that c1�1 � � � � � ck�k = 0.Proof. The theorem is obviously true if k > n. Now we prove the theorem for k <= n by contradiction.Assume that �1; : : : ; �k are linearly independent. Let � be the sequence of f .Let P be a matrix that consists of the 0th, �1th, : : :, �kth rows of Hn. Here we regard �i as an integer.Set a2j = h�; `ji2, j = 0; 1; : : : ; 2n � 1. Note that �(�) = 0 if � 62 f0; �1; : : : ; �kg. Hence (2) can be writtenas (�(0);�(�1); : : : ;�(�k))P = (a20; a21; : : : ; a22n�1) (8)where 0 in (8) is identical to �0 in (2).Write P = (pij), i = 0; 1; : : : k, j = 0; 1; : : : ; 2n� 1. As the top row of P is (1; 1; : : : ; 1), a2j in (8) can beexpressed as �(0) + kXi=1 pij�(�i) = a2j8



j = 0; 1; : : : ; 2n � 1. Let P � be the submatrix of P obtained by removing the top row from P . As wasmentioned earlier, the �ith row of Hn is the sequence of a linear function de�ned by  i(x) = h�i; xi (seeLemma 2 of [SZZ95a]). The linear independence of the vectors �1; : : : ; �k implies the linear independence ofthe linear functions  1(x) = h�1; xi; : : : ;  k(x) = h�k; xi. By Lemma 3, each k-dimensional (1;�1)-vectorappears in P �, as a column vector, precisely 2n�k times. Thus for each �xed j there exists a j0 such that(p1j; : : : ; pkj) = �(p1j0 ; : : : ; pkj0) and hence�(0) + kXi=1 pij0�(�i) = a2j0 :Adding together both sides of the above two equations, we have 2�(0) = a2j + a2j0 . Hence a2j + a2j0 = 2n+1.There are two cases to be considered: n even and n odd.Case 1: n is even. By Lemma 2, a2j = a2j0 = 2n. This implies that h�; `ji = 2n for any �xed j, whichin turn implies that f is bent and that it satis�es the propagation criterion with respect to every nonzerovector in Vn (see also the equivalent statements about bent functions in Section 2). This clearly contradictsthe fact that f does not satisfy the propagation criterion with respect to �1; : : : ; �k.Case 2: n is odd. Again by Lemma 2, a2j = 2n+1 or 0. If a2j = 2n+1, then Pki=1 pij�(�i) = 2n.Otherwise if a2j = 0, then Pki=1 pij�(�i) = �2n. Thus we can writekXi=1 pij�(�i) = cj2n (9)where cj = �1, j = 0; 1; : : : ; 2n � 1. For each �xed j rewrite (9) asp1j�(�1) + kXi=2 pij�(�i) = cj2n:From Lemma 3, there exists a j1 such that pij1 = p1j and pij1 = �pij , i = 2; : : : ; k. Note thatp1j1�(�1) + kXi=2 pij1�(�i) = cj12n:Adding the above two equations together, we have2p1j�(�1) = (cj + cj1)2n:As f does not satisfy the propagation criterion with respect to �1, we have �(�1) 6= 0 and cj+cj0 6= 0. Thisimplies cj + cj0 = �2, and hence �(�1) = �2n. By the same reasoning, we can prove that �(�j) = �2n,j = 2; : : : ; k. Thus we can write (�(�1); : : : ;�(�k)) = 2n(b1; : : : ; bk)where each bj = �1. By Lemma 3, there exists an s such that(p1s; : : : ; pks) = (b1; : : : ; bk):This gives us kXi=1 pis�(�i) = kXi=1 bi�(�i) = kXi=1 bibi2n = k2n: (10)9



Since k > 1, (10) contradicts (9).Summarizing Cases 1 and 2, we conclude that the assumption that �1; : : : ; �k are linearly independentis wrong. This proves the theorem. utWe believe that Theorem 3 is of signi�cant importance, as it reveals for the �rst time the interdepen-dence among the vectors where the propagation criterion is not satis�ed by f . Of particular interest is thecase when < = f0; �1; : : : ; �kg forms a linear subspace of Vn. Recall that linear structures form a linearsubspace. Therefore, when < is a subspace, a nonzero vector in < is a linear structure if and only if allother nonzero vectors are linear structures of f .In the following sections we examine the cases when j<j = 3; 4; 5; 6.6 Functions with j<j = 3When j<j = 3, the two distinct nonzero vectors in < can not be linearly dependent. By Theorem 3 wehaveTheorem 4 There exists no function that does not satisfy the propagation criterion with respect to onlythree vectors.7 Functions with j<j = 4Next we consider the case when j<j = 4. Similarly to the case of j<j = 2, the �rst step we take is tointroduce a result on splitting a power of 2 into four, but not two, squares.Lemma 4 Let n >= 3 be a positive integer and 2n =P4j=1 p2j where each pj >= 0 is an integer. Then(i) p21 = p22 = 2n�1, p3 = p4 = 0, if n is odd;(ii) p21 = 2n, p2 = p3 = p4 = 0 or p21 = p22 = p23 = p24 = 2n�2, if n is even.Proof. We �rst prove that if n >= 3 and 2n = P4j=1 p2j then each pj must be even. Write pj = 2tj + aj ,where aj = 0 or 1, j = 1; 2; 3; 4. Then we have 2n =P4j=1(4t2j + 4tjaj + a2j ) or equivalently2n = 4Xj=1 a2j + 4 4Xj=1 tj(tj + aj): (11)Note that the left hand side of (11) is always even. If fa1; a2; a3; a4g contains one or three ones, then theright hand side of (11) is odd, which is something that can not stand in parallel with the left hand sideof (11). Otherwise, if fa1; a2; a3; a4g contains two or four ones, then by dividing both sides of (11) by 2 or4, and also noting that t(t+a) is even for a = 1, we obtain the same contradiction. Hence none of the fournumbers a1; a2; a3; a4 can take the value one, i.e., p1; p2; p3; p4 must be even.Next we prove the lemma by induction. It is easy to verify the lemma for n = 3; 4. Suppose that thelemma is true for 3 <= n <= n0. Consider 2n0+1 = 4Xj=1 p2j :Since pj is even, we can write pj = 2tj . Thus 2n0�1 = 4Xj=1 t2j :10



Note that n0+1 is even (odd) if and only if n0� 1 is even (odd). By the induction assumption, the lemmais true for n = n0 + 1. utNow we can prove a key result on the case of j<j = 4.Theorem 5 If f , a function on Vn, satis�es the propagation criterion with respect to all but four vectors(0, �1; �2, �3) in Vn. Then(i) < = f0; �1; �2; �3g forms a two-dimensional linear subspace of Vn,(ii) n must be even,(iii) �1; �2 and �3 must be linear structures of f ,(iv) the nonlinearity of f satis�es Nf = 2n�1 � 2 12n.Proof. By Lemma 3, �1; �2 and �3 are linearly dependent. The only possibility is �1� �2� �3 = 0. Since�1; �2 and �3 are mutually distinct, < is a two-dimensional linear subspace of Vn. This proves the part (i).Let B be a nonsingular matrix of order n on GF (2) such that �iB = �i, where i = 1; 2; 3 and �iis the ith vector in Vn according to the ascending alphabetical order. Let g(x) = f(xB). Then g hasthe same nonlinearity as f and the only vectors where the propagation criterion is not satis�ed by g aref�0; �1; �2; �3g.For g, the matrix D in the proof of Theorem 1 has the following form:D = 26664 �(�0) �(�1) �(�2) �(�3)�(�1) �(�2) �(�3) �(�0)�(�2) �(�3) �(�0) �(�1)�(�3) �(�0) �(�1) �(�2) 37775Compare the �rst row of the two sides of (1), we have(�(�0);�(�1);�(�2);�(�3); 0; : : : ; 0) = 2�n(h�; `0i2; � � � ; h�; `2n�1i2)Hnand hence (h�; `0i2; � � � ; h�; `2n�1i2) = (�(�0);�(�1);�(�2);�(�3); 0; : : : ; 0)Hn: (12)Recall that the �rst, second, third and fourth columns of Hn have the following forms:(1; 1; 1; 1; : : : ; 1; 1; 1; 1)T ;(1;�1; 1;�1; : : : ; 1;�1; 1;�1)T ;(1; 1;�1;�1; : : : ; 1; 1;�1;�1)T ;(1;�1;�1; 1; : : : ; 1;�1;�1; 1)TBy noting the �rst four elements of each of the four columns, we haveh�; `0i2 = �(�0) + �(�1) + �(�2) + �(�3);h�; `1i2 = �(�0)��(�1) + �(�2)��(�3);h�; `2i2 = �(�0) + �(�1)��(�2)��(�3);h�; `3i2 = �(�0)��(�1)��(�2) + �(�3):11



This can be translated into�(�0) = 14(h�; `0i2 + h�; `1i2 + h�; `2i2 + h�; `3i2);�(�1) = 14(h�; `0i2 � h�; `1i2 + h�; `2i2 � h�; `3i2);�(�2) = 14(h�; `0i2 + h�; `1i2 � h�; `2i2 � h�; `3i2);�(�3) = 14(h�; `0i2 � h�; `1i2 � h�; `2i2 + h�; `3i2):Note that �(�0) = 2n. Hence h�; `0i2 + h�; `1i2 + h�; `2i2 + h�; `3i2 = 2n+2:It turns out that that n must be even. Suppose that n is odd. By Lemma 4, we have h�; `0i2 = h�; `1i2 =2n+1, h�; `2i2 = h�; `3i2 = 0. Thus �(�1) = 0. This contradicts the fact that g does not satis�es thepropagation criterion with respect to �1. This proves the part (ii), namely, n must be even.Next we show that the part (iii) is true. Since n is even, by Lemma 4, we need to consider the followingtwo cases.Case 1: h�; `ji2 = 2n, j = 0; 1; 2;3. In this case we have �(�j) = 0, j = 0; 1; 2; 3, contradicting the factthat g does not satis�es the propagation criterion with respect to the four vectors.So we are left with Case 2: one of the four quantities h�; `0i2, h�; `1i2, h�; `2i2 and h�; `3i2 is 2n+2, andthe other three are all zero. Without loss of generality, suppose that h�; `1i2 = 2n+2 and h�; `ji2 = 0,j = 0; 2; 3. Then we have �(�0) = �(�2) = 2n, �(�1) = �(�3) = �2n. This implies that �1, �2 and �3all are linear structures of g. Hence �1; �2 and �3 must be linear structures of the original function f . Thisshow that the part (iii) holds.The above discussions also show that h�; `ii2 = 2n+2 or 0 for all 0 <= i <= 2n � 1. By Lemma 1,Nf = Ng = 2n�1 � 2 12n. Hence the part (iv) is true. utAs a result we haveCorollary 2 A function f on Vn satis�es the propagation criterion with respect to all but four vectorsin Vn if and only if there exists a nonsingular linear matrix of order n over GF (2), say B, such thatg(x) = f(xB) can be written as g(x) = c1xn�1 � c2xn � h(x1; : : : ; xn�2)where c1 and c2 are constants in GF (2), and h is a bent function on Vn�2.The proof of Corollary 2 is similar to that of Corollary 1.In [SZZ95a], it has been shown that repeating twice or four times a bent function on Vn, n even, resultsin a function on Vn�1 or Vn�2 that satis�es the propagation criterion with respect to all but two or fourvectors in Vn�1 or Vn�2. Combining Corollaries 2 and 1 with results shown in [SZZ95a], we conclude thatthe methods of repeating bent functions presented in [SZZ95a] generate all the functions that satisfy thepropagation criterion with respect to all but two or four vectors.8 Functions with j<j = 5Let f be a function on Vn with j<j = 5 and let < = f0; �1; �2; �3; �4g. First we discuss properties ofand relationship among the four nonzero vectors. This is followed by a method showing how to constructfunctions with j<j = 5. 12



8.1 �1 � �2 � �3 � �4 = 0By Theorem 3, �1; �2, �3, �4 are linearly dependent. As �1; �2, �3, �4 are distinct nonzero vectors, therank of f�1; �2; �3; �4g must be 3.Without loss of generality, we assume that �1; �2; �3 are linearly independent. As a nonsingular lineartransformation on the input coordinates does not a�ect the total number of vectors where the propa-gation criterion is satis�ed by f , we can further assume that �1 = �1 = (0; : : : ; 0; 0; 0; 1), �2 = �2 =(0; : : : ; 0; 0; 1; 0) and �3 = �4 = (0; : : : ; 0; 1; 0; 0). Our goal is to prove that �1, �2, �3 and �4 are related by�1� �2� �3� �4 = 0; that is, �4 = �1� �2� �3. We achieve this by showing that there exist no \shorter"relations than �4 = �1 � �2 � �3, namely, none of the three shorter equations �4 = �1 � �2, �4 = �2 � �3and �4 = �1 � �3 can hold.We �rst show that �4 6= �1 � �2. Assume for contradiction that �4 = �1 � �2. Thus �4 = �1 � �2 =(0; : : : ; 0; 1; 1) = �3.Rewrite (2) as (�(�0);�(�1); : : : ;�(�2n�1))Hn = (a20; a21; : : : ; a22n�1) (13)where aj = h�; `ji2, j = 0; 1; : : : ; 2n � 1, and � is the sequence of f . Since �1 = �1, �2 = �2, �3 = �4,�4 = �3, and �(�) = 0 for � 6= 0; �1; �2; �3; �4, (13) is specialized as(�(�0);�(�1);�(�2);�(�3);�(�4))P = (a20; a21; : : : ; a22n�1) (14)where P is a matrix that consists of the 0th, 1st, 2nd, 3rd and 4th rows of Hn. The matrix P can beviewed as P = (P0; P1; : : : ; P2n�3)where each Pj is a 5� 8 matrix speci�ed by:Pj = 2666664 1 1 1 1 1 1 1 11 �1 1 �1 1 �1 1 �11 1 �1 �1 1 1 �1 �11 �1 �1 1 1 �1 �1 11 1 1 1 �1 �1 �1 �1 3777775 :Using the 0th, 1st, 6th and 7th columns of Pj , we obtain from (14) the following four equations:�(�0) + �(�1) + �(�2) + �(�3) + �(�4) = a20�(�0)��(�1) + �(�2)��(�3) + �(�4) = a21�(�0) + �(�1)��(�2)��(�3)��(�4) = a26�(�0)��(�1)��(�2) + �(�3)��(�4) = a27Since �(�0) = 2n we have �(�1) + �(�2) + �(�3) + �(�4) = a20 � 2n��(�1) + �(�2)��(�3) + �(�4) = a21 � 2n�(�1)��(�2)��(�3)��(�4) = a26 � 2n��(�1)��(�2) + �(�3)��(�4) = a27 � 2n (15)13



Thus a20 + a21 + a26 + a27 = 2n+2; (16)�(�1) = 14(a20 � a21 + a26 � a27); (17)�(�2) + �(�4) = 14(a20 + a21 � a26 � a27): (18)Similarly, using the 2nd, 3rd, 4th and 5th columns of Pj , we have�(�1)��(�2)��(�3) + �(�4) = a22 � 2n��(�1)��(�2) + �(�3) + �(�4) = a23 � 2n�(�1) + �(�2) + �(�3)��(�4) = a24 � 2n��(�1) + �(�2)��(�3)��(�4) = a25 � 2n (19)and a22 + a33 + a24 + a25 = 2n+2; (20)�(�1) = 14(a22 � a23 + a24 � a25); (21)�(�2)��(�4) = 14(�a22 � a23 + a24 + a25): (22)We continue our discussions with the cases n odd and n even. In both cases we present a contradictionby showing that f satis�es the propagation criterion with respect to at least one of the four vectors �1, �2,�3 and �4.The 0th,1st, 6th and 7th columns of Pj provide us with enough information for the case when n is odd.To repeat the equation (17), we have �(�1) = 14(a20 � a21 + a26 � a27). We can obtain one more equationfrom (15): �(�3) = 14(a20 � a21 � a26 + a27): (23)According to (16), the sum of the squares of a0, a1, a6 and a7 is 2n+2. As n is odd, by Lemma 4,a2j1 = a2j2 = 2n+1, for some j1 and j2 2 f0; 1; 6; 7g, and aj = 0, for the other two js. Comparing (17) with(23), we can see that at least one of �(�1) and �(�3) must be zero, which contradicts the fact that f doesnot satisfy the propagation criterion with respect to �j , j = 1; 2; 3; 4. Hence �4 = �1 � �2 does not holdfor n odd.Next we consider the case when n is even. In this case, by Lemma 4, (16) impliesa20 = a21 = a26 = a27 = 2n; (24)or a2j0 = 2n+2; for a j0 2 f0;1; 6; 7g; and aj = 0, for the other three js; (25)while (20) implies a22 = a23 = a24 = a25 = 2n; (26)or a2k0 = 2n+2; for an k0 2 f2; 3; 4; 5g; and ak = 0, for the other three ks: (27)14



(24) or (26), together with (17), causes �(�1) = 0, a contradiction. This leaves us with (25) and (27).When (25) and (27) hold, (18) results in �(�2)+�(�4) = �2n, while (22) gives us �(�2)��(�4) = �2n.Thus we have �(�2) + �(�4) = �(�(�2)��(�4)):This causes �(�2) = 0 or �(�4) = 0. In either case it contradicts the fact that f does not satisfy thepropagation criterion with respect to �j , j = 1; 2; 3; 4. Hence �4 = �1 � �2 does not hold for n even.In summary, �4 6= �1 � �2 both for n odd and for n even. The other two cases, �4 6= �2 � �3 and�4 6= �1 � �3, can be proved in the same way. Hence we have proved the following result:Lemma 5 Let f be a function on Vn that satis�es the propagation criterion with respect to all but �vevectors 0, �1; �2, �3, �4 in Vn. Then �1 � �2 � �3 � �4 = 0.8.2 �1, �2, �3 and �4 Are Not Linear StructuresWe have proved that �1 = �1, �2 = �2, �3 = �4 and �4 = �1 � �2 � �3 = (0; : : : ; 0; 1; 1; 1) = �7. The nexttopic is to �nd out the value of �(�i), i = 1; 2; 3; 4.Since �(�) = 0 for � 6= 0; �1; �2; �4; �7, (13) is simpli�ed as(�(�0);�(�1);�(�2);�(�4);�(�7))Q = (a20; a21; : : : ; a22n�1) (28)where Q is a matrix that consists of the 0th, 1st, 2nd, 4th and 7th rows of Hn. In other words, we haveP = (Q0; Q1; : : : ;Q2n�3)where each Qj is de�ned by Qj = 2666664 1 1 1 1 1 1 1 11 �1 1 �1 1 �1 1 �11 1 �1 �1 1 1 �1 �11 1 1 1 �1 �1 �1 �11 �1 �1 1 �1 1 1 �1 3777775Thus from (28), we have�(�0) + �(�1) + �(�2) + �(�4) + �(�7) = a20�(�0)��(�1)��(�2)��(�4)��(�7) = a27 (29)which correspond to the �rst and last columns of Qj respectively. Hencea20 + a27 = 2�(�0) = 2n+1: (30)We distinguish two cases: n even and n odd.When n is even, by Lemma 2, we have a20 = a27 = 2n. Similarly we have a21 = a26 = 2n, a22 = a25 = 2nand a23 = a24 = 2n. Hence a2i = 2n for all 0 <= i <= 7.On the other hand, from (28),�(�0) + �(�1) + �(�2) + �(�4) + �(�7) = a20�(�0)��(�1) + �(�2) + �(�4)��(�7) = a21Recall that �(�0) = 2n. Hence �(�2) + �(�4) = 0: (31)15



Again, from (28), �(�0) + �(�1)��(�2) + �(�4)��(�7) = a22�(�0)��(�1)��(�2) + �(�4) + �(�7) = a23hence ��(�2) + �(�4) = 0: (32)Compare (31) with (32), �(�2) = �(�4) = 0. This contradicts the fact that f does not satisfy thepropagation criterion with respect to �j , j = 1; 2; 3; 4. Thus we have the following conclusion:Lemma 6 Let f be a function on Vn that satis�es the propagation criterion with respect to all but �vevectors 0, �1; �2, �3, �4 in Vn. Then n is odd.Now we know that n must be odd. >From (30) and Lemma 2, we havea20 = 2n+1 or 0, (a27 = 0 or 2n+1):By the same reasoning,a20 = 2n+1 or 0 (a27 = 0 or 2n+1); a21 = 2n+1 or 0 (a26 = 0 or 2n+1);a22 = 2n+1 or 0 (a25 = 0 or 2n+1); a23 = 2n+1 or 0 (a24 = 0 or 2n+1): (33)The �rst four columns of Qj , together with (28), yield,�(�0) + �(�1) + �(�2) + �(�4) + �(�7) = a20�(�0)��(�1) + �(�2) + �(�4)��(�7) = a21�(�0) + �(�1)��(�2) + �(�4)��(�7) = a22�(�0)��(�1)��(�2) + �(�4) + �(�7) = a23Using (33), they can be rewritten as�(�1) + �(�2) + �(�4) + �(�7) = c12n��(�1) + �(�2) + �(�4)��(�7) = c22n�(�1)��(�2) + �(�4)��(�7) = c32n��(�1)��(�2) + �(�4) + �(�7) = c42nwhere cj = �1, j = 1; 2; 3; 4. Hence�(�1) = (c1 � c2 + c3 � c4)2n�2�(�2) = (c1 + c2 � c3 � c4)2n�2�(�3) = (c1 + c2 + c3 + c4)2n�2�(�4) = (c1 � c2 � c3 + c4)2n�2: (34)Since �(�j) 6= 0, j = 1; 2; 3; 4, we have (c1; c2; c3; c4) 6= �(1; 1; 1; 1), �(1;1;�1;�1), (1;�1; 1;�1)or �(1;�1;�1; 1). Hence (c1; c2; c3; c4) can come only from �(1; 1; 1;�1), �(1; 1;�1; 1), (1;�1; 1; 1) and�(�1; 1; 1; 1).Without loss of generality, suppose that (c1; c2; c3; c4) = �(1; 1; 1;�1). >From (34), we have�(�1) = 2n�1;�(�2) = 2n�1;�(�4) = 2n�1;�(�7) = �2n�1:This proves the result shown below. 16



Lemma 7 Let f be a function on Vn that satis�es the propagation criterion with respect to all but �vevectors 0, �1; �2, �3, �4 in Vn. Then j�(�j)j = 2n�1, j = 1; 2; 3; 4. Furthermore, among the four values�(�j), j = 1; 2; 3; 4, three have the same sign while the remaining one has a di�erent sign.Finally we examine the nonlinearity of f . Clearly, from (33) we have aj = h�; `ji2 = 2n+1 or 0, namelyh�; `ji = �2 12 (n+1) or 0, for all j = 0; 1; : : : ; 2n � 1. By Lemma 1, the nonlinearity of f with j<j = 5 isNf = 2n�1 � 212 (n�1).Lemma 8 Let f be a function on Vn that satis�es the propagation criterion with respect to all but �vevectors 0, �1; �2, �3, �4 in Vn. Then the nonlinearity of f is Nf = 2n�1 � 2 12 (n�1).Combining together Lemmas 5, 6, 7 and 8, we have the following conclusionTheorem 6 Let f be a Boolean function on Vn that satis�es the propagation criterion with respect to allbut a subset < = f0; �1; �2; �3; �4g. Then(i) n is odd,(ii) �1 � �2 � �3 � �4 = 0,(iii) j�(�j)j = 2n�1, j = 1; 2; 3; 4, and three �(�j) have the same sign while the remaining has a di�erentsign, and(iv) the nonlinearity of f satis�es Nf = 2n�1 � 2 12 (n�1).Recall that when j<j = 2 or 4, all nonzero vectors in < are linear structures of f , and the structure off is very simple | it can be (informally) viewed as the two- or four-repetition of a bent function on Vn�1or Vn�2. In contrast, when j<j = 5, none of the nonzero vectors in < is a linear structure of f . Thus if anon-bent function does not possess linear structures, then j<j must be at least 5. In this sense, functionswith j<j = 5 occupy a very special position in our understanding of the structures of functions.8.3 Constructing Functions with j<j = 5The structure of a function with j<j = 5 is not as simple as the cases when j<j < 5. Unlike the case withj<j = 2 or 4, there seem to be a number of di�erent ways to construct functions with j<j = 5. The purposeof this section is to demonstrate one of such construction methods.We start with n = 5. Let !(y) be a mapping from V2 into V3, de�ned as follows!(0; 0) = (1; 0; 0);!(0; 1) = (0;1; 0); !(1;0) = (1; 1; 0);!(1; 1) = (0; 1; 1):Set f5(z) = f5(y; x) = h!(y); xi (35)where y 2 V2 and x 2 V3, z = (y; x). Obviously f5 is a function on V5 andf5(0;0; x1; x2; x3) = x1;f5(0;1; x1; x2; x3) = x2;f5(1;0; x1; x2; x3) = x1 � x2;f5(1;1; x1; x2; x3) = x2 � x3:17



Hence f5 can be explicitly expressed asf5(y1; y2; x1; x2; x3) = (1� y1)(1� y2)x1 � (1� y1)y2x2 �y1(1� y2)(x1 � x2)� y1y2(x2 � x3) (36)Let `100, `010, `110, `011 denote the sequences of '100(x1; x2; x3) = x1, '010(x1; x2; x3) = x2, '110(x1; x2; x3) =x1 � x2, '011(x1; x2; x3) = x2 � x3 respectively, where each ' is regarded as a linear function on V3. ByLemma 1 of [SZZ95a], `100, `010, `110, `011 are four di�erent rows of H3. By Lemma 2 of [SZZ95a], thesequence of f5 is � = (`100; `010; `110; `011):Let �() denote the sequence of f5(z � ) = h!(y � �); x � �iwhere � 2 V2 and � 2 V3,  = (�;�). We now consider �() = h�; �()i.Case 1: � 6= 0. In this case we havef5(z)� f5(z � ) = h!(y)� !(y � �); xi � h!(y � �); �i:Note that !(y)� !(y � �) is a nonzero constant vector in V3 for any �xed y 2 V2. Thus f5(z)� f5(z � )is a nonzero linear function on V3 for any �xed y 2 V2 and hence it is balanced. This proves that �() = 0with  = (�;�) and � 6= 0.Case 2: � = 0. In this case f5(z)� f5(z � ) = h!(y);�iis balanced for � = (0; 1; 1), (1;0; 0) and (1; 1; 1). In other words, �() = 0, if  = (0; �) and � = (0; 1; 1),(1; 0; 0) or (1; 1; 1). It is straightforward to verify that �() = 24, �24, �24 and �24 with  = (0; �)and � = (0;0; 1), (0;1; 0), (1;0; 1) and (1;1; 0) respectively. Obviously �(0) = 25. Thus f5 satis�es thepropagation criterion with respect to all but �ve vectors in V5.With f5 as a basis, we now construct functions with j<j = 5 over higher dimensional spaces. Let t >= 5be odd and s be even. And let g be a function on Vt that satis�es the propagation criterion with respectto all but �ve vectors in Vt, and h be a bent function on Vs. Setf(w) = g(v)� h(u) (37)where w = (v; u), v 2 Vt and u 2 Vs. Then we haveLemma 9 A function constructed by (37) satis�es j<j = 5.Proof. Let �(�) and �(�) be the sequences of g(v � �) and h(u � �) respectively. Write �() as thesequence of f(w� ) = g(v� �)� h(u� �), where  = (�;�). By de�nition, �() = �(�)� �(�), where �is the Kronecker product. Hence we have�f () = h�(0); �()i = h�(0)� �(0); �(�)� �(�)i= h�(0); �(�)ih�(0); �(�)i= �h(�)�g(�)where �f , �g and �h are well de�ned and the subscripts are used to distinguish the three di�erentfunctions f , g and h. 18



Since h(u) is a bent function, �h(�) 6= 0 if and only if � = 0. On the other hand, since g satis�es thepropagation criterion with respect to all but �ve vectors 0, �1; �2; �3 and �4 in Vt, �h(�) = 0 if and onlyif � 2 f0; �1; �2; �3; �4g. Thus �g() = 0 if and only if  = (�; �) with � = 0 and � 2 f0; �1; �2; �3; �4g.This proves that f satis�es the propagation criterion with respect to all but �ve vectors in Vt+s. utAs f5 de�ned in (36) is balanced, f constructed by (37) is also balanced. Hence we haveTheorem 7 For any odd n >= 5, there exists a balanced function f satisfying the propagation criterionwith respect to all but �ve vectors in Vn. The nonlinearity of f satis�es Nf = 2n�1 � 2 12 (n�1).As an example, set h(x6; x7) = x6x7 andf7(x1; x2; x3; x4; x5; x6; x7) = f5(x1; x2; x3; x4; x5)� h(x6; x7)where f5 is de�ned in (36). Note that h(x6; x7) is a bent function on V2, by Theorem 7, f7 is a balancedfunction on V7 that satis�es j<j = 5.To close this section we note that one can also start with constructing a function f7 on V7 with j<j = 5by using the same method as that for designing f5.9 Functions with j<j = 6This section proves that there is no function with j<j = 6. Throughout this section f is a function on Vnsatisfying the propagation criterion with respect to all but six vectors 0, �1; �2, �3, �4 and �5 in Vn. As�1; �2, �3, �4 and �5 are linearly dependent, the rank of f�1; �2; �3; �4; �5g can only be 3 or 4.9.1 Rank = 3Without loss of generality, we suppose that �1; �2; �3 are linearly independent and are a basis of f�1; �2; �3; �4; �5g.We can further assume that �1 = �1 = (0; : : : ; 0; 0; 0; 1), �2 = �2 = (0; : : : ; 0; 0; 1; 0), �3 = �4 =(0; : : : ; 0; 1; 0; 0). We distinguish two cases:Case 1: �4 = �1 � �2 = �1 � �2 = �3, and �5 = �1 � �3 = �1 � �4 = �5.Case 2: �4 = �1 � �2 = �1 � �2 = �3, and �5 = �1 � �2 � �3 = �1 � �2 � �4 = �7. We note thatother cases can all be reduced to either Case 1 or Case 2. In both cases, a contradiction can be derived.The proofs are similar to that for the proof of Lemma 5. The main di�erence is that in Case 1, the matrixP consists of the 0th, 1st, 2nd, 3rd, 4th and 5th rows, while in Case 2, it consists of the 0th, 1st, 2nd,3rd, 4th and 7th rows of Hn. Hence in both cases, Pj is a 6� 8 matrix, and, as we did with the proof ofLemma 5, we use the 0th, 1st, 6th and 7th columns of Pj to obtain the �rst set of four equations, and the2nd, 3rd, 4th and 5th columns of Pj to generate the second set of four equations.9.2 Rank = 4In this case, we suppose that �1; �2; �3; �4 are linearly independent and are a basis of f�1; �2; �3; �4; �5g. Wealso assume that �1 = �1 = (0; : : : ; 0; 0; 0; 0; 1), �2 = �2 = (0; : : : ; 0; 0; 0; 1; 0), �3 = �4 = (0; : : : ; 0; 0; 1; 0; 0),and �4 = �8 = (0; : : : ; 0; 1; 0; 0; 0). Unlike the situation where the rank is 3, this time we distinguish threedi�erent cases to which all other cases can be reduced:Case 1: �5 = �1 � �2 = �1 � �2 = �3.Case 2: �5 = �1 � �2 � �3 = �1 � �2 � �4 = �7.Case 3: �5 = �1 � �2 � �3 � �4 = �1 � �2 � �4 � �8 = �15.The proof for the rank of 4 is a generalization of that for the rank of 3. In particular, in Case 1, thematrix P consists of the 0th, 1st, 2nd, 3rd, 4th and 8th rows, in Case 2, of the 0th, 1st, 2nd, 4th, 7th and19



8th rows, and in Case 3, of the 0th, 1st, 2nd, 4th, 8th and 15th rows of Hn. In each case, Pj is a 6� 16matrix.We derive a contradiction for each of the three cases. For Case 1, we establish four sets, each havingfour equations, from the 0th, 1st, 14th and 15th columns, the 2nd, 3rd, 12th and 13th columns, the 4th,5th, 10th and 11th columns, and the 6th, 7th, 8th and 9th columns of Pj . For Case 2, we need a set ofeight equations, which are constructed from the �rst eight columns of Pj . And For Case 3 a set of fourequations is constructed from the �rst four columns of Pj . Note that each case de�nes a di�erent Pj .Careful analysis shows that:Theorem 8 There exists no function on Vn such that j<j = 6.10 Degrees of PropagationIn [SZZ95a] it has been shown that if f is a function on Vn with j<j = 2, then, through a nonsingularlinear transformation on input coordinates, f can be converted into a function satisfying the propagationcriterion of degree n � 1. Similarly, when j<j = 4, the degree can be � 23n. In this section we show thatwith j<j = 5, the degree can be n� 3.Assume that the four nonzero vectors in < are �1, �2, �3 and �4, and that �1, �2 and �3 are a basis of< = f0; �1; �2; �3; �4g. Let B be an n � n nonsingular matrix on GF (2) with the property that�1B = (1; : : : ; 1; 0; 0; 1)�2B = (1; : : : ; 1; 0; 1; 0)�3B = (1; : : : ; 1; 1; 0; 0)As �4 = �1 � �2 � �3, we have �4B = (�1 � �2 � �3)B = (1; : : : ; 1; 1; 1; 1):Now let g(x) = f(xB). Then g satis�es the propagation criterion of degree n� 3, as the only exceptionalvectors are (0; : : : ; 0; 0; 0; 0), (1; : : : ; 1; 0; 0; 1), (1; : : : ; 1; 0; 1; 0), (1; : : : ; 1; 1; 0; 0) and (1; : : : ; 1;1; 1; 1). Thesediscussions, together with Theorem 7, show that for any odd n >= 5, there exist balanced functions on Vnthat satisfy the propagation criterion of degree n� 3 and do not possess a nonzero linear structure.Table 1 shows structural properties of functions with j<j <= 6.11 Final RemarksWe have presented a quantitative relationship between propagation characteristic and nonlinearity. Wehave shown that no functions satisfy the propagation criterion with respect to all but three or six vectors.We have also completely decided the structures and construction methods of cryptographic functions thatsatisfy the propagation criterion with respect to all but two, four or �ve vectors. An interesting topic forfuture research is to investigate the structures of functions with seven or more exceptional vectors.AcknowledgmentsThe �rst author was supported in part by the Australian Research Council under the reference num-bers A49130102, A49131885 and A49232172, the second author by A49130102, and the third author byA49232172. All authors were supported by a University of Wollongong Research Program grant and the�rst two by ATERB C010/058. 20
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