Characterizing the Structures of Highly Nonlinear Cryptographic Functions

Xian-Mo Zhang
Yuliang Zheng
Department of Computer Science
The University of Wollongong
Wollongong, NSW 2522, AUSTRALIA
E-mail: \{xianmo,yuliang\}@cs.uow.edu.au

Abstract

This paper studies the properties and constructions of nonlinear functions, which are a core component of cryptographic primitives including data encryption algorithms and one-way hash functions. A main contribution of this paper is to reveal the relationship between nonlinearity and propagation characteristic, two critical indicators of the cryptographic strength of a Boolean function. In particular, we prove that (i) if f, a Boolean function on V_{n}, satisfies the propagation criterion with respect to all but a subset \Re of vectors in V_{n}, then the nonlinearity of f satisfies $N_{f} \geqq 2^{n-1}-2^{\frac{1}{2}(n+t)-1}$, where t is the rank of \Re, and

(ii) When $|\Re|>2$, the nonzero vectors in \Re are linearly dependent.

Furthermore we show that
(iii) if $|\Re|=2$ then n must be odd, the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$, and the nonzero vector in \Re must be a linear structure of f.
(iv) there exists no function on V_{n} such that $|\Re|=3$.
(v) if $|\Re|=4$ then n must be even, the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$, and the nonzero vectors in \Re must be linear structures of f.
(vi) if $|\Re|=5$ then n must be odd, the nonlinearity of f is $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$, the four nonzero vectors in \Re, denoted by $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}, are related by the equation $\beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=0$, and none of the four vectors is a linear structure of f.
(vii) there exists no function on V_{n} such that $|\Re|=6$.

We also discuss the structures of functions with $|\Re|=2,4,5$. In particular we show that these functions have close relationships with bent functions, and can be easily constructed from the latter.

1 Introduction

Cryptographic techniques for information authentication and data encryption require Boolean functions with a number of critical properties that distinguish them from linear (or affine) functions. Among the properties are high nonlinearity, high degree of propagation, few linear structures, high algebraic degree etc. These properties are often called nonlincarity criteria. An important topic is to investigate relationships among the various nonlinearity criteria. Progress in this direction has been made in [SZZ95b], where
connections have been revealed among the strict avalanche characteristic (SAC), differential characteristics, linear structures and nonlinearity, of quadratic functions.

In this paper we carry on the investigation initiated in [SZZ95b] and bring together nonlinearity and propagation characteristic of a Boolean function (quadratic or non-quadratic). These two cryptographic criteria are seemly quite separate, in the sense that the former indicates the minimum distance between a Boolean function and all the affine functions whereas the latter forecasts the avalanche behavior of the function when some input bits to the function are complemented.

We further extend our investigation into the structures of cryptographic functions. The organization of the remaining part of this paper is as follows: After introducing basic definitions in Section 2, we show in Section 3 the relationship between propagation characteristic and nonlinearity. We further explore this result in Sections 4, 5, 6, 7, 8 and 9 , and make explicit the structural forms of functions that satisfy the propagation criterion with respect to all but six or less vectors. We examine degrees of propagation of the functions in Section 10, and finally, close the paper with some remarks in Section 11.

A short summary of the results is presented in Table 1.

2 Basic Definitions

We consider Boolean functions from V_{n} to $G F(2)$ (or simply functions on V_{n}), V_{n} is the vector space of n tuples of elements from $G F(2)$. The truth table of a function f on V_{n} is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)$, and the sequence of f is a $(1,-1)$-sequence defined by $\left((-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}, \ldots,(-1)^{f}\right.$ where $\alpha_{0}=(0, \ldots, 0,0), \alpha_{1}=(0, \ldots, 0,1), \ldots, \alpha_{2^{n-1}-1}=(1, \ldots, 1,1)$. The matrix of f is a $(1,-1)$-matrix of order 2^{n} defined by $M=\left((-1)^{f\left(\alpha_{i} \oplus \alpha_{j}\right)}\right)$. f is said to be balanced if its truth table contains an equal number of ones and zeros.

An affine function f on V_{n} is a function that takes the form of $f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n} \oplus \boldsymbol{c}$, where $a_{j}, c \in G F(2), j=1,2, \ldots, n$. Furthermore f is called a linear function if $c=0$.

Definition 1 The Hamming weight of a $(0,1)$-sequence s, denoted by $W(s)$, is the number of ones in the sequence. Given two functions f and g on V_{n}, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. The nonlinearity of f, denoted by N_{f}, is the minimal Hamming distance between f and all affine functions on V_{n}, i.e., $N_{f}=$ $\min _{i=1,2, \ldots, 2^{n+1}} d\left(f, \varphi_{i}\right)$ where $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{2^{n+1}}$ are all the affine functions on V_{n}.

Now we introduce the definition of propagation criterion.
Definition 2 Let f be a function on V_{n}. We say that f satisfies

1. the propagation criterion with respect to α if $f(x) \oplus f(x \oplus \alpha)$ is a balanced function, where $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and α is a vector in V_{n}.
2. the propagation criterion of degree k if it satisfies the propagation criterion with respect to all $\alpha \in V_{n}$ with $1 \leqq W(\alpha) \leqq k$.

The above definition for propagation criterion is from [PLL+ 91$]$. Further work on the topic can be found in [PGV91]. Note that the strict avalanche criterion (SAC) introduced by Webster and Tavares [Web85, WT86] is equivalent to the propagation criterion of degree 1 and that the perfect nonlinearity studied by Meier and Staffelbach [MS90] is equivalent to the propagation criterion of degree n where n is the number of the coordinates of the function.

While the propagation characteristic measures the avalanche effect of a function, the linear structure is a concept that in a sense complements the former, namely, it indicates the straightness of a function.

Definition 3 Let f be a function on V_{n}. A vector $\alpha \in V_{n}$ is called a linear structure of f if $f(x) \oplus f(x \oplus \alpha)$ is a constant.

By definition, the zero vector in V_{n} is a linear structure of all functions on V_{n}. It is not hard to see that the linear structures of a function f form a linear subspace of V_{n}. The dimension of the subspace is called the linearity dimension of f. We note that it was Evertse who first introduced the notion of linear structure (in a sense broader than ours) and studied its implication on the security of encryption algorithms [Eve88].

A $(1,-1)$-matrix H of order m is called a Hadamard matrix if $H H^{t}=m I_{m}$, where H^{t} is the transpose of H and I_{m} is the identity matrix of order m. A Sylvester-Hadamard matrix of order 2^{n}, denoted by H_{n}, is generated by the following recursive relation

$$
H_{0}=1, H_{n}=\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right], n=1,2, \ldots
$$

Definition 4 A function f on V_{n} is called a bent function if

$$
2^{-\frac{n}{2}} \sum_{x \in V_{n}}(-1)^{f(x) \oplus\langle\beta, x\rangle}= \pm 1
$$

for all $\beta \in V_{n}$. Here $\langle\beta, x\rangle$ is the scalar product of β and x, namely, $\langle\beta, x\rangle=\sum_{i=1}^{n} b_{i} x_{i}$, and $f(x) \oplus\langle\beta, x\rangle$ is regarded as a real-valued function.

Bent functions can be characterized in various ways [AT90, Dil72, SZZ95a, YH89]. In particular the following four statements are equivalent:
(i) f is bent.
(ii) $\langle\xi, \ell\rangle= \pm 2^{\frac{1}{2} n}$ for any affine sequence ℓ of length 2^{n}, where ξ is the sequence of f.
(iii) f satisfies the propagation criterion with respect to all non-zero vectors in V_{n}.
(iv) M, the matrix of f, is a Hadamard matrix.

Bent functions on V_{n} exist only when n is even. Another important property of bent functions is that they achieve the highest possible nonlinearity $2^{n-1}-2^{\frac{1}{2} n-1}$.

3 Propagation Characteristic and Nonlinearity

Given two sequences $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)$, their component-wise product is defined by $a * b=\left(a_{1} b_{1}, \ldots, a_{m} b_{m}\right)$. Let f be a function on V_{n}. For a vector $\alpha \in V_{n}$, denote by $\xi(\alpha)$ the sequence of $f(x \oplus \alpha)$. Thus $\xi(0)$ is the sequence of f itself and $\xi(0) * \xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$.

Set

$$
\Delta(\alpha)=\langle\xi(0), \xi(\alpha)\rangle
$$

the scalar product of $\xi(0)$ and $\xi(\alpha)$. Obviously, $\Delta(\alpha)=0$ if and only if $f(x) \oplus f(x \oplus \alpha)$ is balanced, i.e., f satisfies the propagation criterion with respect to α. On the other hand, if $|\Delta(\alpha)|=2^{n}$, then $f(x) \oplus f(x \oplus \alpha)$ is a constant and hence α is a linear structure of f.

Let $M=\left((-1)^{f\left(\alpha_{i} \oplus \alpha_{j}\right)}\right)$ be the matrix of f and ξ be the sequence of f. Due to a very pretty result by R. L. McFarland (see Theorem 3.3 of [Dil72]), M can be decomposed into

$$
M=2^{-n} H_{n} \operatorname{diag}\left(\left\langle\xi, \ell_{0}\right\rangle, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle\right) H_{n}
$$

where ℓ_{i} is the i th row of H_{n}, a Sylvester-Hadamard matrix of order 2^{n}. By Lemma 2 of [SZZ95a], ℓ_{i} is the sequence of a linear function defined by $\varphi_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$, where α_{i} is the i th vector in V_{n} according to the ascending alphabetical order.

Clearly

$$
\begin{equation*}
M M^{T}=2^{-n} H_{n} \operatorname{diag}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n} . \tag{1}
\end{equation*}
$$

On the other hand, we always have

$$
M M^{T}=\left(\Delta\left(\alpha_{i} \oplus \alpha_{j}\right)\right)
$$

where $i, j=0,1, \ldots, 2^{n}-1$.
Let S be a set of vectors in V_{n}. The rank of S is the maximum number of linearly independent vectors in S. Note that when S forms a linear subspace of V_{n}, its rank coincides with its dimension.

Lemma 6 of [SZZ95a] states that the distance between two functions f_{1} and f_{2} on V_{n} can be expressed as $d\left(f_{1}, f_{2}\right)=2^{n-1}-\frac{1}{2}\left\langle\xi_{f_{1}}, \xi_{f_{2}}\right\rangle$, where $\xi_{f_{1}}$ and $\xi_{f_{2}}$ are the sequences of f_{1} and f_{2} respectively. As an immediate consequence we have:

Lemma 1 The nonlinearity of a function f on V_{n} can be calculated by

$$
N_{f}=2^{n-1}-\frac{1}{2} \max \left\{\left|\left\langle\xi, \ell_{i}\right\rangle\right|, 0 \leqq i \leqq 2^{n}-1\right\}
$$

where ξ is the sequence of f and $\ell_{0}, \ldots, \ell_{2^{n}-1}$ are the sequences of the linear functions on V_{n}.
Now we prove a central result of this paper:
Theorem 1 Let f be a function on V_{n} that satisfies the propagation criterion with respect to all but a subset \Re of vectors in V_{n}. Then the nonlinearity of f satisfies $N_{f} \geqq 2^{n-1}-2^{\frac{1}{2}(n+t)-1}$, where t is the rank of \Re.

Proof. First we consider the case where $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ are t linearly independent vectors in \Re, where each α_{j} is defined according to the ascending alphabetical order in V_{n}. Let W be the t-dimensional subspace with $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ as its basis. We have $\Re \subseteq W$.

From the discussions preceding the theorem, we have

$$
M M^{T}=\left[\begin{array}{cccc}
D & 0 & \cdots & 0 \\
0 & D & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & D
\end{array}\right]
$$

where 0 denotes the zero matrix and $D=\left(\Delta\left(\alpha_{i+j}\right)\right)$, both of order 2^{t}, and $i, j=0,1, \ldots, 2^{t}-1$. Now let $\lambda_{1}, \ldots, \lambda_{2^{t}}$ be the eigenvalues of D. Then the collection of the eigenvalues of $M M^{T}$ consists of 2^{n-t} copies of $\lambda_{1}, \ldots, \lambda_{2}$.

An interpretation of (1) is that the two matrices $M M^{T}$ and $\operatorname{diag}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)$ are similar in that $2^{-n} H_{n} H_{n}=I$, where I denotes the identity matrix of order 2^{n}. In addition it is easy to see that $\left\{\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right\}$ is also the collection of the eigenvalues of $M M^{T}$.

Thus $\lambda_{i} \geqq 0$ for all $1 \leqq i \leqq 2^{t}$. Also we have

$$
2^{n-t}\left(\lambda_{1}+\cdots+\lambda_{2^{t}}\right)=\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}
$$

By Parseval's equation (p. 416, [MS78]), we have

$$
\sum_{j=0}^{2^{n}-1}\left\langle\xi, \ell_{j}\right\rangle^{2}=2^{2 n}
$$

Hence

$$
\lambda_{1}+\cdots+\lambda_{2 t}=2^{n+t}
$$

Since each $\lambda_{i} \geqq 0$, we have

$$
\lambda_{i} \leqq 2^{n+t}
$$

for $i=1, \ldots, 2^{t}$, or equivalently

$$
\left\langle\xi, \ell_{j}\right\rangle^{2} \leqq 2^{n+t}
$$

for $j=0,1, \ldots, 2^{n}-1$. Thus

$$
\left|\left\langle\xi, \ell_{j}\right\rangle\right| \leqq 2^{\frac{1}{2}(n+t)}
$$

for $j=0,1, \ldots, 2^{n}-1$.
By Lemma 1 , the nonlinearity of f satisfies $N_{f} \geqq 2^{n-1}-2^{\frac{1}{2}(n+t)-1}$.
In the more general case where $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ are not t linearly independent vectors in \Re, we can apply a nonsingular linear transformation A on the input coordinates of f so that the resulting function $g(x)=$ $f(x A)$ has $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ as t linearly independent vectors in the set \Re associated with g. The nonlinearity of g satisfies $N_{g} \geqq 2^{n-1}-2^{\frac{1}{2}(n+t)-1}$. It has been well-known that a nonsingular linear transformation on the input coordinates of a function does not alter its nonlinearity (see for instance [MS90] or Lemma 10 of [SZZ95a]). Consequently $N_{f}=N_{g} \geqq 2^{n-1}-2^{\frac{1}{2}(n+t)-1}$. This completes the proof.

It was observed by Nyberg in Proposition 3 of [Nyb93] (see also a detailed discussion in [SZZ95b]) that knowing the linearity dimension, say ℓ, of a function f on V_{n}, the nonlinearity of the function can be expressed as $N_{f}=2^{\ell} N_{r}$, where N_{r} is the nonlinearity of a function obtained by restricting f on an ($n-\ell$)-dimensional subspace of V_{n}. Therefore, in a sense Theorem 1 is complementary to Proposition 3 of [Nyb93].

In the next section we discuss an interesting special case where $|\Re|=2$. More general cases where $|\Re|>2$, which need very different proof techniques, will be fully discussed in the later part of the paper.

4 Functions with $|\Re|=2$

Since \Re consists of two vectors, a zero and a nonzero, it forms a one-dimensional subspace of V_{n}. The following result on splitting a power of 2 into two squares will be used in later discussions.

Lemma 2 Let $n \geqq 2$ be a positive integer and $2^{n}=p^{2}+q^{2}$ where both $p \geqq 0$ and $q \geqq 0$ are integers. Then $p=2^{\frac{1}{2} n}$ and $q=0$ when n is even, and $p=q=2^{\frac{1}{2}(n-1)}$ when n is odd.

Proof. We first prove that if $n \geqq 2$ and $2^{n}=p^{2}+q^{2}$ then both p and q are even. Assume for contradiction that $p=2 p_{1}+1$ and $q=2 q_{1}+a$ where p_{1} and q_{1} are positive integers and a is 0 or 1 . Then $2^{n}=p^{2}+q^{2}$ can be written as $2^{n}=4 N+1$ or $2^{n}=4 N+2$ for a positive integer N. This contradicts to either the fact that 2^{n} is even or the fact that 2^{n} is divisible by 4.

We now prove the lemma by induction. It is easy to verify that the lemma is true for $n=2,3$. Suppose that the lemma is true for $3 \leqq n \leqq n_{0}$. Consider

$$
2^{n_{0}+1}=p^{2}+q^{2} .
$$

Since both p and q are even, we can write $p=2 p_{1}$ and $q=2 q_{1}$. Thus

$$
2^{n_{0}-1}=p_{1}^{2}+q_{1}^{2} .
$$

Note that $n_{0}+1$ is even (odd) if and only if $n_{0}-1$ is even (odd). By the induction assumption, the lemma is true for $n=n_{0}+1$.

Now we prove
Theorem 2 If f, a function on V_{n}, satisfies the propagation criterion with respect to all but two (a zero and a nonzero) vectors in V_{n}, then
(i) n must be odd,
(ii) the nonzero vector where the propagation criterion is not satisfied must be a linear structure of f and
(iii) the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

Proof. Let β be the vector where the propagation criterion is not satisfied. We can always find a nonsingular matrix of order n over $G F(2)$, say B, such that $\beta B=\alpha_{1}$, where $\alpha_{1}=(0,0, \ldots, 1)$. The new function g, defined by $g(x)=f(x B)$, has the same nonlinearity as that of f, and satisfies the propagation criterion with respect to every nonzero vector except for α_{1}. In addition, β is a linear structure of f if and only if α_{1} is a linear structure of g.

Compare the first row of the two sides of (1), we have

$$
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right)=2^{-n}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n}
$$

where α_{j} is the j th vector in V_{n} in the ascending alphabetical order. Equivalently we have

$$
\begin{equation*}
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right) H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) \tag{2}
\end{equation*}
$$

Note that $\Delta\left(\alpha_{j}\right)=0$ if $j \neq 0,1$. Thus (2) is specialized as

$$
\begin{equation*}
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), 0, \ldots, 0\right) H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) \tag{3}
\end{equation*}
$$

$¿$ From the construction of H_{n}, the first and the second columns of H_{n} are $(1,1, \ldots, 1)^{T}$ and $(1,-1,1,-1, \ldots, 1,-1)^{T}$ respectively. From (3), we have

$$
\Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)=\left\langle\xi, \ell_{0}\right\rangle^{2}
$$

and

$$
\Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)=\left\langle\xi, \ell_{1}\right\rangle^{2} .
$$

Note that $\Delta\left(\alpha_{0}\right)=2^{n}$. Hence

$$
\begin{align*}
& 2^{n}+\Delta\left(\alpha_{1}\right)=\left\langle\xi, \ell_{0}\right\rangle^{2}, \tag{4}\\
& 2^{n}-\Delta\left(\alpha_{1}\right)=\left\langle\xi, \ell_{1}\right\rangle^{2} . \tag{5}
\end{align*}
$$

¿From (4) and (5), we have

$$
\begin{equation*}
2^{n+1}=\left\langle\xi, \ell_{0}\right\rangle^{2}+\left\langle\xi, \ell_{1}\right\rangle^{2} . \tag{6}
\end{equation*}
$$

We now prove that n must be odd. Suppose n is even. By Lemma 2,

$$
\left\langle\xi, \ell_{0}\right\rangle^{2}=\left\langle\xi, \ell_{1}\right\rangle^{2}=2^{n} .
$$

¿From (4) or (5), $\Delta\left(\alpha_{1}\right)=0$. This contradicts the fact that f does not satisfy the propagation characteristic with respect to α_{1}. Thus n must be odd, i.e. the part (i) of the theorem is true.

Since n is odd, from (6) and Lemma 2 we have $\left\langle\xi, \ell_{0}\right\rangle^{2}=2^{n+1}$ or 0 .
Case 1: $\left\langle\xi, \ell_{0}\right\rangle^{2}=2^{n+1}$ and hence $\left\langle\xi, \ell_{1}\right\rangle^{2}=0$. ¿From (4) or (5), we have $\Delta\left(\alpha_{1}\right)=2^{n}$.
Case 2: $\left\langle\xi, \ell_{0}\right\rangle^{2}=0$ and hence $\left\langle\xi, \ell_{1}\right\rangle^{2}=2^{n+1}$. Again from (4) or (5), we have $\Delta\left(\alpha_{1}\right)=-2^{n}$.
In both cases, α_{1} is a linear structure of g. Thus $\beta=\alpha_{1} B^{-1}$ is a linear structure of f. This proves (ii) of the theorem.

The above discussions for Cases 1 and 2, together with (3), imply that $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n+1}$ or 0 , i.e., $\left|\left\langle\xi, \ell_{i}\right\rangle\right|=2^{\frac{1}{2}(n+1)}$ or 0 , for all $0 \leqq i \leqq 2^{n}-1$. Applying Lemma 1,

$$
N_{f}=N_{g}=2^{n-1}-2^{\frac{1}{2}(n-1)} .
$$

This completes the proof.
A further examination of the proof for Theorem 2 reveals that a function with $|\Re|=2$ has a very simple structure as described below.

Corollary 1 A function f on V_{n} satisfies the propagation criterion with respect to all but two (a zero and a nonzero) vectors in V_{n}, if and only if there exists a nonsingular linear matrix of order n over $G F(2)$, say B, such that $g(x)=f(x B)$ can be written as

$$
g(x)=c x_{n} \oplus h\left(x_{1}, \ldots, x_{n-1}\right)
$$

where h is a bent function on V_{n-1} and c is a constant in $G F(2)$.

Proof. ¿From the proof of Theorem 2, one can see that $g(x)=f(x B)$ has an unique nonzero linear structure $\alpha_{1}=(0,0, \ldots, 1)$ and hence it can be written as

$$
\begin{equation*}
g(x)=c x_{n} \oplus h\left(x_{1}, \ldots, x_{n-1}\right), \tag{7}
\end{equation*}
$$

where c is a constant from $G F(2)$. By Proposition 3 of [Nyb93], $N_{g}=2 N_{h}$. On the other hand, from (iii) of Theorem 2,

$$
N_{g}=2^{n-1}-2^{\frac{1}{2}(n-1)} .
$$

Thus

$$
N_{h}=2^{n-2}-2^{\frac{1}{2}(n-1)-1} .
$$

This indicates that h, a function on V_{n-1}, achieves the maximum nonlinearity and hence it is bent (see also [MS78] or Lemma 4 of [SZZ95a]).

Conversely, suppose that g can be expressed as (7). Since h is a bent function on $V_{n-1}, \alpha_{1}=$ $(0,0, \ldots, 0,1)$ is the only nonzero linear structure of g, and hence $\beta=\alpha_{1} B^{-1}$ is the only nonzero linear structure of the original function f.

By Theorem 2 and Corollary 1 , functions on V_{n} that satisfy the propagation criterion with respect to all but two vectors in V_{n} exist only if n is odd, and such a function can always be (informally) viewed as being obtained by repeating twice a bent function on V_{n-1} (subject to a nonsingular linear transformation on the input coordinates).

When \Re has more than two vectors, it does not necessarily form a linear subspace of V_{n}. Therefore discussions presented in this section do not directly apply to the more general case. Nevertheless, using a different technique, we show in the next section a significant result on the structure of \Re, namely, the nonzero vectors in \Re with $|\Re|>2$ are linearly dependent.

5 Linear Dependence in \Re

The following result on vectors will be used in the proof of the main result in this section.
Lemma 3 Let $\psi_{1}, \ldots, \psi_{k}$ be linear functions on V_{n} which are linearly independent. Set

$$
Q=\left[\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{k}
\end{array}\right] \text { and } P=\left[\begin{array}{c}
\ell_{1} \\
\vdots \\
\ell_{k}
\end{array}\right]
$$

where σ_{i} is the truth table and ℓ_{i} is the sequence of $\psi_{i}, i=1, \ldots, k$. Then
(i) each vector in V_{k} appears as a column in Q precisely 2^{n-k} times and
(ii) each k-dimensional $(1,-1)$-vector appears as a column in P precisely 2^{n-k} times.

Proof. Note that (i) and (ii) are equivalent. Clearly, any nonzero linear combination of $\varphi_{1}, \ldots, \varphi_{k}$ is a nonzero linear function and thus it is balanced. Consequently, this lemma is equivalent to Lemma 7 of [SZZ95b].

Next we show the linear dependence of nonzero vectors in \Re.
Theorem 3 Suppose that f, a function on V_{n}, satisfies the propagation criterion with respect to all but $k+1$ vectors $0, \beta_{1}, \ldots, \beta_{k}$ in V_{n}, where $k>1$. Then $\beta_{1}, \ldots, \beta_{k}$ are linearly dependent, namely, there exist k constants $c_{1}, \ldots, c_{k} \in G F(2)$, not all of which are zeros, such that $c_{1} \beta_{1} \oplus \cdots \oplus c_{k} \beta_{k}=0$.

Proof. The theorem is obviously true if $k>n$. Now we prove the theorem for $k \leqq n$ by contradiction. Assume that $\beta_{1}, \ldots, \beta_{k}$ are linearly independent. Let ξ be the sequence of f.

Let P be a matrix that consists of the 0 th, β_{1} th $, \ldots, \beta_{k}$ th rows of H_{n}. Here we regard β_{i} as an integer. Set $a_{j}^{2}=\left\langle\xi, \ell_{j}\right\rangle^{2}, j=0,1, \ldots, 2^{n}-1$. Note that $\Delta(\alpha)=0$ if $\alpha \notin\left\{0, \beta_{1}, \ldots, \beta_{k}\right\}$. Hence (2) can be written as

$$
\begin{equation*}
\left(\Delta(0), \Delta\left(\beta_{1}\right), \ldots, \Delta\left(\beta_{k}\right)\right) P=\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{2^{n}-1}^{2}\right) \tag{8}
\end{equation*}
$$

where 0 in (8) is identical to α_{0} in (2).
Write $P=\left(p_{i j}\right), i=0,1, \ldots k, j=0,1, \ldots, 2^{n}-1$. As the top row of P is $(1,1, \ldots, 1), a_{j}^{2}$ in (8) can be expressed as

$$
\Delta(0)+\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=a_{j}^{2}
$$

$j=0,1, \ldots, 2^{n}-1$. Let P^{*} be the submatrix of P obtained by removing the top row from P. As was mentioned earlier, the β_{i} th row of H_{n} is the sequence of a linear function defined by $\psi_{i}(x)=\left\langle\beta_{i}, x\right\rangle$ (see Lemma 2 of [SZZ95a]). The linear independence of the vectors $\beta_{1}, \ldots, \beta_{k}$ implies the linear independence of the linear functions $\psi_{1}(x)=\left\langle\beta_{1}, x\right\rangle, \ldots, \psi_{k}(x)=\left\langle\beta_{k}, x\right\rangle$. By Lemma 3 , each k-dimensional $(1,-1)$-vector appears in P^{*}, as a column vector, precisely 2^{n-k} times. Thus for each fixed j there exists a j_{0} such that $\left(p_{1 j}, \ldots, p_{k j}\right)=-\left(p_{1 j_{0}}, \ldots, p_{k j_{0}}\right)$ and hence

$$
\Delta(0)+\sum_{i=1}^{k} p_{i j_{0}} \Delta\left(\beta_{i}\right)=a_{j_{0}}^{2}
$$

Adding together both sides of the above two equations, we have $2 \Delta(0)=a_{j}^{2}+a_{j 0}^{2}$. Hence $a_{j}^{2}+a_{j 0}^{2}=2^{n+1}$. There are two cases to be considered: n even and n odd.

Case 1: n is even. By Lemma 2, $a_{j}^{2}=a_{j_{0}}^{2}=2^{n}$. This implies that $\left\langle\xi, \ell_{j}\right\rangle=2^{n}$ for any fixed j, which in turn implies that f is bent and that it satisfies the propagation criterion with respect to every nonzero vector in V_{n} (see also the equivalent statements about bent functions in Section 2). This clearly contradicts the fact that f does not satisfy the propagation criterion with respect to $\beta_{1}, \ldots, \beta_{k}$.

Case 2: n is odd. Again by Lemma $2, a_{j}^{2}=2^{n+1}$ or 0 . If $a_{j}^{2}=2^{n+1}$, then $\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=2^{n}$. Otherwise if $a_{j}^{2}=0$, then $\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=-2^{n}$. Thus we can write

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i j} \Delta\left(\beta_{i}\right)=c_{j} 2^{n} \tag{9}
\end{equation*}
$$

where $c_{j}= \pm 1, j=0,1, \ldots, 2^{n}-1$. For each fixed j rewrite (9) as

$$
p_{1 j} \Delta\left(\beta_{1}\right)+\sum_{i=2}^{k} p_{i j} \Delta\left(\beta_{i}\right)=c_{j} 2^{n}
$$

From Lemma 3, there exists a j_{1} such that $p_{i j_{1}}=p_{1 j}$ and $p_{i j_{1}}=-p_{i j}, i=2, \ldots, k$. Note that

$$
p_{1 j_{1}} \Delta\left(\beta_{1}\right)+\sum_{i=2}^{k} p_{i j_{1}} \Delta\left(\beta_{i}\right)=c_{j_{1}} 2^{n}
$$

Adding the above two equations together, we have

$$
2 p_{1 j} \Delta\left(\beta_{1}\right)=\left(c_{j}+c_{j_{1}}\right) 2^{n}
$$

As f does not satisfy the propagation criterion with respect to β_{1}, we have $\Delta\left(\beta_{1}\right) \neq 0$ and $c_{j}+c_{j_{0}} \neq 0$. This implies $c_{j}+c_{j_{0}}= \pm 2$, and hence $\Delta\left(\beta_{1}\right)= \pm 2^{n}$. By the same reasoning, we can prove that $\Delta\left(\beta_{j}\right)= \pm 2^{n}$, $j=2, \ldots, k$. Thus we can write

$$
\left(\Delta\left(\beta_{1}\right), \ldots, \Delta\left(\beta_{k}\right)\right)=2^{n}\left(b_{1}, \ldots, b_{k}\right)
$$

where each $b_{j}= \pm 1$. By Lemma 3 , there exists an s such that

$$
\left(p_{1 s}, \ldots, p_{k s}\right)=\left(b_{1}, \ldots, b_{k}\right)
$$

This gives us

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i s} \Delta\left(\beta_{i}\right)=\sum_{i=1}^{k} b_{i} \Delta\left(\beta_{i}\right)=\sum_{i=1}^{k} b_{i} b_{i} 2^{n}=k 2^{n} \tag{10}
\end{equation*}
$$

Since $k>1$, (10) contradicts (9).
Summarizing Cases 1 and 2 , we conclude that the assumption that $\beta_{1}, \ldots, \beta_{k}$ are linearly independent is wrong. This proves the theorem.

We believe that Theorem 3 is of significant importance, as it reveals for the first time the interdependence among the vectors where the propagation criterion is not satisfied by f. Of particular interest is the case when $\Re=\left\{0, \beta_{1}, \ldots, \beta_{k}\right\}$ forms a linear subspace of V_{n}. Recall that linear structures form a linear subspace. Therefore, when \Re is a subspace, a nonzero vector in \Re is a linear structure if and only if all other nonzero vectors are linear structures of f.

In the following sections we examine the cases when $|\Re|=3,4,5,6$.

6 Functions with $|\Re|=3$

When $|\Re|=3$, the two distinct nonzero vectors in \Re can not be linearly dependent. By Theorem 3 we have

Theorem 4 There exists no function that does not satisfy the propagation criterion with respect to only three vectors.

7 Functions with $|\Re|=4$

Next we consider the case when $|\Re|=4$. Similarly to the case of $|\Re|=2$, the first step we take is to introduce a result on splitting a power of 2 into four, but not two, squares.

Lemma 4 Let $n \geqq 3$ be a positive integer and $2^{n}=\sum_{j=1}^{4} p_{j}^{2}$ where each $p_{j} \geqq 0$ is an integer. Then
(i) $p_{1}^{2}=p_{2}^{2}=2^{n-1}, p_{3}=p_{4}=0$, if n is odd;
(ii) $p_{1}^{2}=2^{n}, p_{2}=p_{3}=p_{4}=0$ or $p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=2^{n-2}$, if n is even.

Proof. We first prove that if $n \geqq 3$ and $2^{n}=\sum_{j=1}^{4} p_{j}^{2}$ then each p_{j} must be even. Write $p_{j}=2 t_{j}+a_{j}$, where $a_{j}=0$ or $1, j=1,2,3,4$. Then we have $2^{n}=\sum_{j=1}^{4}\left(4 t_{j}^{2}+4 t_{j} a_{j}+a_{j}^{2}\right)$ or equivalently

$$
\begin{equation*}
2^{n}=\sum_{j=1}^{4} a_{j}^{2}+4 \sum_{j=1}^{4} t_{j}\left(t_{j}+a_{j}\right) . \tag{11}
\end{equation*}
$$

Note that the left hand side of (11) is always even. If $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ contains one or three ones, then the right hand side of (11) is odd, which is something that can not stand in parallel with the left hand side of (11). Otherwise, if $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ contains two or four ones, then by dividing both sides of (11) by 2 or 4 , and also noting that $t(t+a)$ is even for $a=1$, we obtain the same contradiction. Hence none of the four numbers $a_{1}, a_{2}, a_{3}, a_{4}$ can take the value one, i.e., $p_{1}, p_{2}, p_{3}, p_{4}$ must be even.

Next we prove the lemma by induction. It is easy to verify the lemma for $n=3,4$. Suppose that the lemma is true for $3 \leqq n \leqq n_{0}$. Consider

$$
2^{n_{0}+1}=\sum_{j=1}^{4} p_{j}^{2} .
$$

Since p_{j} is even, we can write $p_{j}=2 t_{j}$. Thus

$$
2^{n_{0}-1}=\sum_{j=1}^{4} t_{j}^{2} .
$$

Note that $n_{0}+1$ is even (odd) if and only if $n_{0}-1$ is even (odd). By the induction assumption, the lemma is true for $n=n_{0}+1$.

Now we can prove a key result on the case of $|\Re|=4$.
Theorem 5 If f, a function on V_{n}, satisfies the propagation criterion with respect to all but four vectors $\left(0, \beta_{1}, \beta_{2}, \beta_{3}\right)$ in V_{n}. Then
(i) $\Re=\left\{0, \beta_{1}, \beta_{2}, \beta_{3}\right\}$ forms a two-dimensional linear subspace of V_{n},
(ii) n must be even,
(iii) β_{1}, β_{2} and β_{3} must be linear structures of f,
(iv) the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2} n}$.

Proof. By Lemma 3, β_{1}, β_{2} and β_{3} are linearly dependent. The only possibility is $\beta_{1} \oplus \beta_{2} \oplus \beta_{3}=0$. Since β_{1}, β_{2} and β_{3} are mutually distinct, \Re is a two-dimensional linear subspace of V_{n}. This proves the part (i).

Let B be a nonsingular matrix of order n on $G F(2)$ such that $\beta_{i} B=\alpha_{i}$, where $i=1,2,3$ and α_{i} is the i th vector in V_{n} according to the ascending alphabetical order. Let $g(x)=f(x B)$. Then g has the same nonlinearity as f and the only vectors where the propagation criterion is not satisfied by g are $\left\{\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.

For g, the matrix D in the proof of Theorem 1 has the following form:

$$
D=\left[\begin{array}{llll}
\Delta\left(\alpha_{0}\right) & \Delta\left(\alpha_{1}\right) & \Delta\left(\alpha_{2}\right) & \Delta\left(\alpha_{3}\right) \\
\Delta\left(\alpha_{1}\right) & \Delta\left(\alpha_{2}\right) & \Delta\left(\alpha_{3}\right) & \Delta\left(\alpha_{0}\right) \\
\Delta\left(\alpha_{2}\right) & \Delta\left(\alpha_{3}\right) & \Delta\left(\alpha_{0}\right) & \Delta\left(\alpha_{1}\right) \\
\Delta\left(\alpha_{3}\right) & \Delta\left(\alpha_{0}\right) & \Delta\left(\alpha_{1}\right) & \Delta\left(\alpha_{2}\right)
\end{array}\right]
$$

Compare the first row of the two sides of (1), we have

$$
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \Delta\left(\alpha_{2}\right), \Delta\left(\alpha_{3}\right), 0, \ldots, 0\right)=2^{-n}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) H_{n}
$$

and hence

$$
\begin{equation*}
\left(\left\langle\xi, \ell_{0}\right\rangle^{2}, \cdots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)=\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \Delta\left(\alpha_{2}\right), \Delta\left(\alpha_{3}\right), 0, \ldots, 0\right) H_{n} \tag{12}
\end{equation*}
$$

Recall that the first, second, third and fourth columns of H_{n} have the following forms:

$$
\begin{aligned}
& (1,1,1,1, \ldots, 1,1,1,1)^{T}, \\
& (1,-1,1,-1, \ldots, 1,-1,1,-1)^{T} \\
& (1,1,-1,-1, \ldots, 1,1,-1,-1)^{T} \\
& (1,-1,-1,1, \ldots, 1,-1,-1,1)^{T}
\end{aligned}
$$

By noting the first four elements of each of the four columns, we have

$$
\begin{aligned}
& \left\langle\xi, \ell_{0}\right\rangle^{2}=\Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right), \\
& \left\langle\xi, \ell_{1}\right\rangle^{2}=\Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right), \\
& \left\langle\xi, \ell_{2}\right\rangle^{2}=\Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right), \\
& \left\langle\xi, \ell_{3}\right\rangle^{2}=\Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right) .
\end{aligned}
$$

This can be translated into

$$
\begin{aligned}
& \Delta\left(\alpha_{0}\right)=\frac{1}{4}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}+\left\langle\xi, \ell_{1}\right\rangle^{2}+\left\langle\xi, \ell_{2}\right\rangle^{2}+\left\langle\xi, \ell_{3}\right\rangle^{2}\right), \\
& \Delta\left(\alpha_{1}\right)=\frac{1}{4}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}-\left\langle\xi, \ell_{1}\right\rangle^{2}+\left\langle\xi, \ell_{2}\right\rangle^{2}-\left\langle\xi, \ell_{3}\right\rangle^{2}\right), \\
& \Delta\left(\alpha_{2}\right)=\frac{1}{4}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}+\left\langle\xi, \ell_{1}\right\rangle^{2}-\left\langle\xi, \ell_{2}\right\rangle^{2}-\left\langle\xi, \ell_{3}\right\rangle^{2}\right), \\
& \Delta\left(\alpha_{3}\right)=\frac{1}{4}\left(\left\langle\xi, \ell_{0}\right\rangle^{2}-\left\langle\xi, \ell_{1}\right\rangle^{2}-\left\langle\xi, \ell_{2}\right\rangle^{2}+\left\langle\xi, \ell_{3}\right\rangle^{2}\right) .
\end{aligned}
$$

Note that $\Delta\left(\alpha_{0}\right)=2^{n}$. Hence

$$
\left\langle\xi, \ell_{0}\right\rangle^{2}+\left\langle\xi, \ell_{1}\right\rangle^{2}+\left\langle\xi, \ell_{2}\right\rangle^{2}+\left\langle\xi, \ell_{3}\right\rangle^{2}=2^{n+2} .
$$

It turns out that that n must be even. Suppose that n is odd. By Lemma 4, we have $\left\langle\xi, \ell_{0}\right\rangle^{2}=\left\langle\xi, \ell_{1}\right\rangle^{2}=$ $2^{n+1},\left\langle\xi, \ell_{2}\right\rangle^{2}=\left\langle\xi, \ell_{3}\right\rangle^{2}=0$. Thus $\Delta\left(\alpha_{1}\right)=0$. This contradicts the fact that g does not satisfies the propagation criterion with respect to α_{1}. This proves the part (ii), namely, n must be even.

Next we show that the part (iii) is true. Since n is even, by Lemma 4, we need to consider the following two cases.

Case 1: $\left\langle\xi, \ell_{j}\right\rangle^{2}=2^{n}, j=0,1,2,3$. In this case we have $\Delta\left(\alpha_{j}\right)=0, j=0,1,2,3$, contradicting the fact that g does not satisfies the propagation criterion with respect to the four vectors.

So we are left with Case 2: one of the four quantities $\left\langle\xi, \ell_{0}\right\rangle^{2},\left\langle\xi, \ell_{1}\right\rangle^{2},\left\langle\xi, \ell_{2}\right\rangle^{2}$ and $\left\langle\xi, \ell_{3}\right\rangle^{2}$ is 2^{n+2}, and the other three are all zero. Without loss of generality, suppose that $\left\langle\xi, \ell_{1}\right\rangle^{2}=2^{n+2}$ and $\left\langle\xi, \ell_{j}\right\rangle^{2}=0$, $j=0,2,3$. Then we have $\Delta\left(\alpha_{0}\right)=\Delta\left(\alpha_{2}\right)=2^{n}, \Delta\left(\alpha_{1}\right)=\Delta\left(\alpha_{3}\right)=-2^{n}$. This implies that α_{1}, α_{2} and α_{3} all are linear structures of g. Hence β_{1}, β_{2} and β_{3} must be linear structures of the original function f. This show that the part (iii) holds.

The above discussions also show that $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n+2}$ or 0 for all $0 \leqq i \leqq 2^{n}-1$. By Lemma 1 , $N_{f}=N_{g}=2^{n-1}-2^{\frac{1}{2} n}$. Hence the part (iv) is true.

As a result we have
Corollary 2 A function f on V_{n} satisfies the propagation criterion with respect to all but four vectors in V_{n} if and only if there exists a nonsingular linear matrix of order n over $G F(2)$, say B, such that $g(x)=f(x B)$ can be written as

$$
g(x)=c_{1} x_{n-1} \oplus c_{2} x_{n} \oplus h\left(x_{1}, \ldots, x_{n-2}\right)
$$

where c_{1} and c_{2} are constants in $G F(2)$, and h is a bent function on V_{n-2}.
The proof of Corollary 2 is similar to that of Corollary 1.
In [SZZ95a], it has been shown that repeating twice or four times a bent function on V_{n}, n even, results in a function on V_{n-1} or V_{n-2} that satisfies the propagation criterion with respect to all but two or four vectors in V_{n-1} or V_{n-2}. Combining Corollaries 2 and 1 with results shown in [SZZ95a], we conclude that the methods of repeating bent functions presented in [SZZ95a] generate all the functions that satisfy the propagation criterion with respect to all but two or four vectors.

8 Functions with $|\Re|=5$

Let f be a function on V_{n} with $|\Re|=5$ and let $\Re=\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$. First we discuss properties of and relationship among the four nonzero vectors. This is followed by a method showing how to construct functions with $|\Re|=5$.

$8.1 \quad \beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=0$

By Theorem 3, $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are linearly dependent. As $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are distinct nonzero vectors, the rank of $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$ must be 3 .

Without loss of generality, we assume that $\beta_{1}, \beta_{2}, \beta_{3}$ are linearly independent. As a nonsingular linear transformation on the input coordinates does not affect the total number of vectors where the propagation criterion is satisfied by f, we can further assume that $\beta_{1}=\alpha_{1}=(0, \ldots, 0,0,0,1), \beta_{2}=\alpha_{2}=$ $(0, \ldots, 0,0,1,0)$ and $\beta_{3}=\alpha_{4}=(0, \ldots, 0,1,0,0)$. Our goal is to prove that $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} are related by $\beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=0$; that is, $\beta_{4}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3}$. We achieve this by showing that there exist no "shorter" relations than $\beta_{4}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3}$, namely, none of the three shorter equations $\beta_{4}=\beta_{1} \oplus \beta_{2}, \beta_{4}=\beta_{2} \oplus \beta_{3}$ and $\beta_{4}=\beta_{1} \oplus \beta_{3}$ can hold.

We first show that $\beta_{4} \neq \beta_{1} \oplus \beta_{2}$. Assume for contradiction that $\beta_{4}=\beta_{1} \oplus \beta_{2}$. Thus $\beta_{4}=\alpha_{1} \oplus \alpha_{2}=$ $(0, \ldots, 0,1,1)=\alpha_{3}$.

Rewrite (2) as

$$
\begin{equation*}
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right) H_{n}=\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{2^{n}-1}^{2}\right) \tag{13}
\end{equation*}
$$

where $a_{j}=\left\langle\xi, \ell_{j}\right\rangle^{2}, j=0,1, \ldots, 2^{n}-1$, and ξ is the sequence of f. Since $\beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{2}, \beta_{3}=\alpha_{4}$, $\beta_{4}=\alpha_{3}$, and $\Delta(\alpha)=0$ for $\alpha \neq 0, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4},(13)$ is specialized as

$$
\begin{equation*}
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \Delta\left(\alpha_{2}\right), \Delta\left(\alpha_{3}\right), \Delta\left(\alpha_{4}\right)\right) P=\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{2^{n}-1}^{2}\right) \tag{14}
\end{equation*}
$$

where P is a matrix that consists of the 0 th, 1 st, 2 nd, 3 rd and 4 th rows of H_{n}. The matrix P can be viewed as

$$
P=\left(P_{0}, P_{1}, \ldots, P_{2^{n-3}}\right)
$$

where each P_{j} is a 5×8 matrix specified by:

$$
P_{j}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1
\end{array}\right]
$$

Using the 0 th, 1 st, 6 th and 7 th columns of P_{j}, we obtain from (14) the following four equations:

$$
\begin{aligned}
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right)+\Delta\left(\alpha_{4}\right)=a_{0}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right)+\Delta\left(\alpha_{4}\right)=a_{1}^{2} \\
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right)-\Delta\left(\alpha_{4}\right)=a_{6}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right)-\Delta\left(\alpha_{4}\right)=a_{7}^{2}
\end{aligned}
$$

Since $\Delta\left(\alpha_{0}\right)=2^{n}$ we have

$$
\begin{align*}
\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right)+\Delta\left(\alpha_{4}\right) & =a_{0}^{2}-2^{n} \\
-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right)+\Delta\left(\alpha_{4}\right) & =a_{1}^{2}-2^{n} \\
\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right)-\Delta\left(\alpha_{4}\right) & =a_{6}^{2}-2^{n} \\
-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right)-\Delta\left(\alpha_{4}\right) & =a_{7}^{2}-2^{n} \tag{15}
\end{align*}
$$

Thus

$$
\begin{align*}
a_{0}^{2}+a_{1}^{2}+a_{6}^{2}+a_{7}^{2} & =2^{n+2}, \tag{16}\\
\Delta\left(\alpha_{1}\right) & =\frac{1}{4}\left(a_{0}^{2}-a_{1}^{2}+a_{6}^{2}-a_{7}^{2}\right), \tag{17}\\
\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right) & =\frac{1}{4}\left(a_{0}^{2}+a_{1}^{2}-a_{6}^{2}-a_{7}^{2}\right) . \tag{18}
\end{align*}
$$

Similarly, using the 2nd, 3rd, 4th and 5th columns of P_{j}, we have

$$
\begin{align*}
\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right)+\Delta\left(\alpha_{4}\right) & =a_{2}^{2}-2^{n} \\
-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right)+\Delta\left(\alpha_{4}\right) & =a_{3}^{2}-2^{n} \\
\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{3}\right)-\Delta\left(\alpha_{4}\right) & =a_{4}^{2}-2^{n} \\
-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{3}\right)-\Delta\left(\alpha_{4}\right) & =a_{5}^{2}-2^{n} \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
a_{2}^{2}+a_{3}^{3}+a_{4}^{2}+a_{5}^{2} & =2^{n+2} \tag{20}\\
\Delta\left(\alpha_{1}\right) & =\frac{1}{4}\left(a_{2}^{2}-a_{3}^{2}+a_{4}^{2}-a_{5}^{2}\right) \tag{21}\\
\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{4}\right) & =\frac{1}{4}\left(-a_{2}^{2}-a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right) . \tag{22}
\end{align*}
$$

We continue our discussions with the cases n odd and n even. In both cases we present a contradiction by showing that f satisfies the propagation criterion with respect to at least one of the four vectors β_{1}, β_{2}, β_{3} and β_{4}.

The 0 th, 1 st, 6 th and 7 th columns of P_{j} provide us with enough information for the case when n is odd. To repeat the equation (17), we have $\Delta\left(\alpha_{1}\right)=\frac{1}{4}\left(a_{0}^{2}-a_{1}^{2}+a_{6}^{2}-a_{7}^{2}\right)$. We can obtain one more equation from (15):

$$
\begin{equation*}
\Delta\left(\alpha_{3}\right)=\frac{1}{4}\left(a_{0}^{2}-a_{1}^{2}-a_{6}^{2}+a_{7}^{2}\right) . \tag{23}
\end{equation*}
$$

According to (16), the sum of the squares of a_{0}, a_{1}, a_{6} and a_{7} is 2^{n+2}. As n is odd, by Lemma 4, $a_{j_{1}}^{2}=a_{j_{2}}^{2}=2^{n+1}$, for some j_{1} and $j_{2} \in\{0,1,6,7\}$, and $a_{j}=0$, for the other two j s. Comparing (17) with (23), we can see that at least one of $\Delta\left(\alpha_{1}\right)$ and $\Delta\left(\alpha_{3}\right)$ must be zero, which contradicts the fact that f does not satisfy the propagation criterion with respect to $\beta_{j}, j=1,2,3,4$. Hence $\beta_{4}=\beta_{1} \oplus \beta_{2}$ does not hold for n odd.

Next we consider the case when n is even. In this case, by Lemma 4, (16) implies

$$
\begin{equation*}
a_{0}^{2}=a_{1}^{2}=a_{6}^{2}=a_{7}^{2}=2^{n}, \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{j_{0}}^{2}=2^{n+2}, \text { for a } j_{0} \in\{0,1,6,7\} \text {, and } a_{j}=0, \text { for the other three } j \mathrm{~s} \text {, } \tag{25}
\end{equation*}
$$

while (20) implies

$$
\begin{equation*}
a_{2}^{2}=a_{3}^{2}=a_{4}^{2}=a_{5}^{2}=2^{n}, \tag{26}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{k_{0}}^{2}=2^{n+2} \text {, for an } k_{0} \in\{2,3,4,5\} \text {, and } a_{k}=0, \text { for the other three } k \mathrm{~s} . \tag{27}
\end{equation*}
$$

(24) or (26), together with (17), causes $\Delta\left(\alpha_{1}\right)=0$, a contradiction. This leaves us with (25) and (27).

When (25) and (27) hold, (18) results in $\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)= \pm 2^{n}$, while (22) gives us $\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{4}\right)= \pm 2^{n}$. Thus we have

$$
\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)= \pm\left(\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{4}\right)\right)
$$

This canses $\Delta\left(\alpha_{2}\right)=0$ or $\Delta\left(\alpha_{4}\right)=0$. In either case it contradicts the fact that f does not satisfy the propagation criterion with respect to $\beta_{j}, j=1,2,3,4$. Hence $\beta_{4}=\beta_{1} \oplus \beta_{2}$ does not hold for n even.

In summary, $\beta_{4} \neq \beta_{1} \oplus \beta_{2}$ both for n odd and for n even. The other two cases, $\beta_{4} \neq \beta_{2} \oplus \beta_{3}$ and $\beta_{4} \neq \beta_{1} \oplus \beta_{3}$, can be proved in the same way. Hence we have proved the following result:

Lemma 5 Let f be a function on V_{n} that satisfies the propagation criterion with respect to all but five vectors $0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ in V_{n}. Then $\beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=0$.

8.2 $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} Are Not Linear Structures

We have proved that $\beta_{1}=\alpha_{1}, \beta_{2}=\alpha_{2}, \beta_{3}=\alpha_{4}$ and $\beta_{4}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3}=(0, \ldots, 0,1,1,1)=\alpha_{7}$. The next topic is to find out the value of $\Delta\left(\beta_{i}\right), i=1,2,3,4$.

Since $\Delta(\alpha)=0$ for $\alpha \neq 0, \alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{7},(13)$ is simplified as

$$
\begin{equation*}
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \Delta\left(\alpha_{2}\right), \Delta\left(\alpha_{4}\right), \Delta\left(\alpha_{7}\right)\right) Q=\left(a_{0}^{2}, a_{1}^{2}, \ldots, a_{2^{n}-1}^{2}\right) \tag{28}
\end{equation*}
$$

where Q is a matrix that consists of the 0 th, 1 st, 2 nd, 4 th and 7 th rows of H_{n}. In other words, we have

$$
P=\left(Q_{0}, Q_{1}, \ldots, Q_{2^{n-3}}\right)
$$

where each Q_{j} is defined by

$$
Q_{j}=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right]
$$

Thus from (28), we have

$$
\begin{align*}
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right)=a_{0}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)-\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right)=a_{7}^{2} \tag{29}
\end{align*}
$$

which correspond to the first and last columns of Q_{j} respectively. Hence

$$
\begin{equation*}
a_{0}^{2}+a_{7}^{2}=2 \Delta\left(\alpha_{0}\right)=2^{n+1} \tag{30}
\end{equation*}
$$

We distinguish two cases: n even and n odd.
When n is even, by Lemma 2, we have $a_{0}^{2}=a_{7}^{2}=2^{n}$. Similarly we have $a_{1}^{2}=a_{6}^{2}=2^{n}, a_{2}^{2}=a_{5}^{2}=2^{n}$ and $a_{3}^{2}=a_{4}^{2}=2^{n}$. Hence $a_{i}^{2}=2^{n}$ for all $0 \leqq i \leqq 7$.

On the other hand, from (28),

$$
\begin{aligned}
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right)=a_{0}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right)=a_{1}^{2}
\end{aligned}
$$

Recall that $\Delta\left(\alpha_{0}\right)=2^{n}$. Hence

$$
\begin{equation*}
\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)=0 \tag{31}
\end{equation*}
$$

Again, from (28),

$$
\begin{aligned}
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right)=a_{2}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right)=a_{3}^{2}
\end{aligned}
$$

hence

$$
\begin{equation*}
-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)=0 \tag{32}
\end{equation*}
$$

Compare (31) with (32), $\Delta\left(\alpha_{2}\right)=\Delta\left(\alpha_{4}\right)=0$. This contradicts the fact that f does not satisfy the propagation criterion with respect to $\beta_{j}, j=1,2,3,4$. Thus we have the following conclusion:

Lemma 6 Let f be a function on V_{n} that satisfies the propagation criterion with respect to all but five vectors $0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ in V_{n}. Then n is odd.

Now we know that n must be odd. ¿From (30) and Lemma 2, we have

$$
a_{0}^{2}=2^{n+1} \text { or } 0,\left(a_{7}^{2}=0 \text { or } 2^{n+1}\right) .
$$

By the same reasoning,

$$
\begin{gather*}
a_{0}^{2}=2^{n+1} \text { or } 0\left(a_{7}^{2}=0 \text { or } 2^{n+1}\right), a_{1}^{2}=2^{n+1} \text { or } 0\left(a_{6}^{2}=0 \text { or } 2^{n+1}\right), \\
a_{2}^{2}=2^{n+1} \text { or } 0\left(a_{5}^{2}=0 \text { or } 2^{n+1}\right), a_{3}^{2}=2^{n+1} \text { or } 0\left(a_{4}^{2}=0 \text { or } 2^{n+1}\right) . \tag{33}
\end{gather*}
$$

The first four columns of Q_{j}, together with (28), yield,

$$
\begin{aligned}
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right)=a_{0}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right)=a_{1}^{2} \\
& \Delta\left(\alpha_{0}\right)+\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right)=a_{2}^{2} \\
& \Delta\left(\alpha_{0}\right)-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right)=a_{3}^{2}
\end{aligned}
$$

Using (33), they can be rewritten as

$$
\begin{aligned}
\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right) & =c_{1} 2^{n} \\
-\Delta\left(\alpha_{1}\right)+\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right) & =c_{2} 2^{n} \\
\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)-\Delta\left(\alpha_{7}\right) & =c_{3} 2^{n} \\
-\Delta\left(\alpha_{1}\right)-\Delta\left(\alpha_{2}\right)+\Delta\left(\alpha_{4}\right)+\Delta\left(\alpha_{7}\right) & =c_{4} 2^{n}
\end{aligned}
$$

where $\boldsymbol{c}_{j}= \pm 1, j=1,2,3,4$. Hence

$$
\begin{align*}
& \Delta\left(\alpha_{1}\right)=\left(c_{1}-c_{2}+c_{3}-c_{4}\right) 2^{n-2} \\
& \Delta\left(\alpha_{2}\right)=\left(c_{1}+c_{2}-c_{3}-c_{4}\right) 2^{n-2} \\
& \Delta\left(\alpha_{3}\right)=\left(c_{1}+c_{2}+c_{3}+c_{4}\right) 2^{n-2} \\
& \Delta\left(\alpha_{4}\right)=\left(c_{1}-c_{2}-c_{3}+c_{4}\right) 2^{n-2} . \tag{34}
\end{align*}
$$

Since $\Delta\left(\alpha_{j}\right) \neq 0, j=1,2,3,4$, we have $\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \neq \pm(1,1,1,1), \pm(1,1,-1,-1),(1,-1,1,-1)$ or $\pm(1,-1,-1,1)$. Hence $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$ can come only from $\pm(1,1,1,-1), \pm(1,1,-1,1),(1,-1,1,1)$ and $\pm(-1,1,1,1)$.

Without loss of generality, suppose that $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)= \pm(1,1,1,-1)$. ¿From (34), we have

$$
\Delta\left(\alpha_{1}\right)=2^{n-1}, \Delta\left(\alpha_{2}\right)=2^{n-1}, \Delta\left(\alpha_{4}\right)=2^{n-1}, \Delta\left(\alpha_{7}\right)=-2^{n-1}
$$

This proves the result shown below.

Lemma 7 Let f be a function on V_{n} that satisfies the propagation criterion with respect to all but five vectors $0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ in V_{n}. Then $\left|\Delta\left(\beta_{j}\right)\right|=2^{n-1}, j=1,2,3,4$. Furthermore, among the four values $\Delta\left(\beta_{j}\right), j=1,2,3,4$, three have the same sign while the remaining one has a different sign.

Finally we examine the nonlinearity of f. Clearly, from (33) we have $a_{j}=\left\langle\xi, \ell_{j}\right\rangle^{2}=2^{n+1}$ or 0 , namely $\left\langle\xi, \ell_{j}\right\rangle= \pm 2^{\frac{1}{2}(n+1)}$ or 0 , for all $j=0,1, \ldots, 2^{n}-1$. By Lemma 1 , the nonlinearity of f with $|\Re|=5$ is $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

Lemma 8 Let f be a function on V_{n} that satisfies the propagation criterion with respect to all but five vectors $0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ in V_{n}. Then the nonlinearity of f is $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

Combining together Lemmas 5, 6, 7 and 8 , we have the following conclusion
Theorem 6 Let f be a Boolean function on V_{n} that satisfies the propagation criterion with respect to all but a subset $\Re=\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$. Then
(i) n is odd,
(ii) $\beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=0$,
(iii) $\left|\Delta\left(\beta_{j}\right)\right|=2^{n-1}, j=1,2,3,4$, and three $\Delta\left(\beta_{j}\right)$ have the same sign while the remaining has a different sign, and
(iv) the nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

Recall that when $|\Re|=2$ or 4 , all nonzero vectors in \Re are linear structures of f, and the structure of f is very simple - it can be (informally) viewed as the two- or four-repetition of a bent function on V_{n-1} or V_{n-2}. In contrast, when $|\Re|=5$, none of the nonzero vectors in \Re is a linear structure of f. Thus if a non-bent function does not possess linear structures, then $|\Re|$ must be at least 5 . In this sense, functions with $|\Re|=5$ occupy a very special position in our understanding of the structures of functions.

8.3 Constructing Functions with $|\Re|=5$

The structure of a function with $|\Re|=5$ is not as simple as the cases when $|\Re|<5$. Unlike the case with $|\Re|=2$ or 4 , there seem to be a number of different ways to construct functions with $|\Re|=5$. The purpose of this section is to demonstrate one of such construction methods.

We start with $n=5$. Let $\omega(y)$ be a mapping from V_{2} into V_{3}, defined as follows

$$
\omega(0,0)=(1,0,0), \omega(0,1)=(0,1,0), \omega(1,0)=(1,1,0), \omega(1,1)=(0,1,1) .
$$

Set

$$
\begin{equation*}
f_{5}(z)=f_{5}(y, x)=\langle\omega(y), x\rangle \tag{35}
\end{equation*}
$$

where $y \in V_{2}$ and $x \in V_{3}, z=(y, x)$. Obviously f_{5} is a function on V_{5} and

$$
\begin{aligned}
f_{5}\left(0,0, x_{1}, x_{2}, x_{3}\right) & =x_{1}, \\
f_{5}\left(0,1, x_{1}, x_{2}, x_{3}\right) & =x_{2}, \\
f_{5}\left(1,0, x_{1}, x_{2}, x_{3}\right) & =x_{1} \oplus x_{2}, \\
f_{5}\left(1,1, x_{1}, x_{2}, x_{3}\right) & =x_{2} \oplus x_{3} .
\end{aligned}
$$

Hence f_{5} can be explicitly expressed as

$$
\begin{align*}
f_{5}\left(y_{1}, y_{2}, x_{1}, x_{2}, x_{3}\right)= & \left(1 \oplus y_{1}\right)\left(1 \oplus y_{2}\right) x_{1} \oplus\left(1 \oplus y_{1}\right) y_{2} x_{2} \oplus \\
& y_{1}\left(1 \oplus y_{2}\right)\left(x_{1} \oplus x_{2}\right) \oplus y_{1} y_{2}\left(x_{2} \oplus x_{3}\right) \tag{36}
\end{align*}
$$

Let $\ell_{100}, \ell_{010}, \ell_{110}, \ell_{011}$ denote the sequences of $\varphi_{100}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}, \varphi_{010}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}, \varphi_{110}\left(x_{1}, x_{2}, x_{3}\right)=$ $x_{1} \oplus x_{2}, \varphi_{011}\left(x_{1}, x_{2}, x_{3}\right)=x_{2} \oplus x_{3}$ respectively, where each φ is regarded as a linear function on V_{3}. By Lemma 1 of [SZZ95a], $\ell_{100}, \ell_{010}, \ell_{110}, \ell_{011}$ are four different rows of H_{3}. By Lemma 2 of [SZZ95a], the sequence of f_{5} is

$$
\xi=\left(\ell_{100}, \ell_{010}, \ell_{110}, \ell_{011}\right)
$$

Let $\xi(\gamma)$ denote the sequence of

$$
f_{5}(z \oplus \gamma)=\langle\omega(y \oplus \beta), x \oplus \alpha\rangle
$$

where $\beta \in V_{2}$ and $\alpha \in V_{3}, \gamma=(\beta, \alpha)$. We now consider $\Delta(\gamma)=\langle\xi, \xi(\gamma)\rangle$.
Case 1: $\beta \neq 0$. In this case we have

$$
f_{5}(z) \oplus f_{5}(z \oplus \gamma)=\langle\omega(y) \oplus \omega(y \oplus \beta), x\rangle \oplus\langle\omega(y \oplus \beta), \alpha\rangle .
$$

Note that $\omega(y) \oplus \omega(y \oplus \beta)$ is a nonzero constant vector in V_{3} for any fixed $y \in V_{2}$. Thus $f_{5}(z) \oplus f_{5}(z \oplus \gamma)$ is a nonzero linear function on V_{3} for any fixed $y \in V_{2}$ and hence it is balanced. This proves that $\Delta(\gamma)=0$ with $\gamma=(\beta, \alpha)$ and $\beta \neq 0$.

Case 2: $\beta=0$. In this case

$$
f_{5}(z) \oplus f_{5}(z \oplus \gamma)=\langle\omega(y), \alpha\rangle
$$

is balanced for $\alpha=(0,1,1),(1,0,0)$ and $(1,1,1)$. In other words, $\Delta(\gamma)=0$, if $\gamma=(0, \alpha)$ and $\alpha=(0,1,1)$, $(1,0,0)$ or $(1,1,1)$. It is straightforward to verify that $\Delta(\gamma)=2^{4},-2^{4},-2^{4}$ and -2^{4} with $\gamma=(0, \alpha)$ and $\alpha=(0,0,1),(0,1,0),(1,0,1)$ and $(1,1,0)$ respectively. Obviously $\Delta(0)=2^{5}$. Thus f_{5} satisfies the propagation criterion with respect to all but five vectors in V_{5}.

With f_{5} as a basis, we now construct functions with $|\Re|=5$ over higher dimensional spaces. Let $t \geqq 5$ be odd and s be even. And let g be a function on V_{t} that satisfies the propagation criterion with respect to all but five vectors in V_{t}, and h be a bent function on V_{s}. Set

$$
\begin{equation*}
f(w)=g(v) \oplus h(u) \tag{37}
\end{equation*}
$$

where $w=(v, u), v \in V_{t}$ and $u \in V_{s}$. Then we have
Lemma 9 A function constructed by (37) satisfies $|\Re|=5$.

Proof. Let $\xi(\beta)$ and $\eta(\alpha)$ be the sequences of $g(v \oplus \beta)$ and $h(u \oplus \alpha)$ respectively. Write $\zeta(\gamma)$ as the sequence of $f(w \oplus \gamma)=g(v \oplus \beta) \oplus h(u \oplus \alpha)$, where $\gamma=(\beta, \alpha)$. By definition, $\zeta(\gamma)=\xi(\beta) \times \eta(\alpha)$, where \times is the Kronecker product. Hence we have

$$
\begin{aligned}
\Delta_{f}(\gamma) & =\langle\zeta(0), \zeta(\gamma)\rangle=\langle\xi(0) \times \eta(0), \xi(\beta) \times \eta(\alpha)\rangle \\
& =\langle\xi(0), \xi(\beta)\rangle\langle\eta(0), \eta(\alpha)\rangle \\
& =\Delta_{h}(\beta) \Delta_{g}(\alpha)
\end{aligned}
$$

where Δ_{f}, Δ_{g} and Δ_{h} are well defined and the subscripts are used to distinguish the three different functions f, g and h.

Since $h(u)$ is a bent function, $\Delta_{h}(\alpha) \neq 0$ if and only if $\alpha=0$. On the other hand, since g satisfies the propagation criterion with respect to all but five vectors $0, \beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} in $V_{t}, \Delta_{h}(\beta)=0$ if and only if $\beta \in\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$. Thus $\Delta_{g}(\gamma)=0$ if and only if $\gamma=(\beta, \alpha)$ with $\alpha=0$ and $\beta \in\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$. This proves that f satisfies the propagation criterion with respect to all but five vectors in V_{t+s}.

As f_{5} defined in (36) is balanced, f constructed by (37) is also balanced. Hence we have
Theorem 7 For any odd $n \geqq 5$, there exists a balanced function f satisfying the propagation criterion with respect to all but five vectors in V_{n}. The nonlinearity of f satisfies $N_{f}=2^{n-1}-2^{\frac{1}{2}(n-1)}$.

As an example, set $h\left(x_{6}, x_{7}\right)=x_{6} x_{7}$ and

$$
f_{7}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=f_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \oplus h\left(x_{6}, x_{7}\right)
$$

where f_{5} is defined in (36). Note that $h\left(x_{6}, x_{7}\right)$ is a bent function on V_{2}, by Theorem $7, f_{7}$ is a balanced function on V_{7} that satisfies $|\Re|=5$.

To close this section we note that one can also start with constructing a function f_{7} on V_{7} with $|\Re|=5$ by using the same method as that for designing f_{5}.

9 Functions with $|\Re|=6$

This section proves that there is no function with $|\Re|=6$. Throughout this section f is a function on V_{n} satisfying the propagation criterion with respect to all but six vectors $0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ and β_{5} in V_{n}. As $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ and β_{5} are linearly dependent, the rank of $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$ can only be 3 or 4 .

9.1 \quad Rank $=3$

Without loss of generality, we suppose that $\beta_{1}, \beta_{2}, \beta_{3}$ are linearly independent and are a basis of $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$. We can further assume that $\beta_{1}=\alpha_{1}=(0, \ldots, 0,0,0,1), \beta_{2}=\alpha_{2}=(0, \ldots, 0,0,1,0), \beta_{3}=\alpha_{4}=$ $(0, \ldots, 0,1,0,0)$. We distinguish two cases:

Case 1: $\beta_{4}=\beta_{1} \oplus \beta_{2}=\alpha_{1} \oplus \alpha_{2}=\alpha_{3}$, and $\beta_{5}=\beta_{1} \oplus \beta_{3}=\alpha_{1} \oplus \alpha_{4}=\alpha_{5}$.
Case 2: $\beta_{4}=\beta_{1} \oplus \beta_{2}=\alpha_{1} \oplus \alpha_{2}=\alpha_{3}$, and $\beta_{5}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3}=\alpha_{1} \oplus \alpha_{2} \oplus \alpha_{4}=\alpha_{7}$. We note that other cases can all be reduced to either Case 1 or Case 2. In both cases, a contradiction can be derived. The proofs are similar to that for the proof of Lemma 5. The main difference is that in Case 1, the matrix P consists of the 0 th, 1st, $2 \mathrm{nd}, 3 \mathrm{rd}$, 4th and 5 th rows, while in Case 2, it consists of the 0 th, 1 st , 2nd, 3 rd, 4th and 7 th rows of H_{n}. Hence in both cases, P_{j} is a 6×8 matrix, and, as we did with the proof of Lemma 5 , we use the 0 th, 1 st, 6 th and 7 th columns of P_{j} to obtain the first set of four equations, and the 2 nd , 3rd, 4th and 5th columns of P_{j} to generate the second set of four equations.

9.2 \quad Rank $=4$

In this case, we suppose that $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ are linearly independent and are a basis of $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$. We also assume that $\beta_{1}=\alpha_{1}=(0, \ldots, 0,0,0,0,1), \beta_{2}=\alpha_{2}=(0, \ldots, 0,0,0,1,0), \beta_{3}=\alpha_{4}=(0, \ldots, 0,0,1,0,0)$, and $\beta_{4}=\alpha_{8}=(0, \ldots, 0,1,0,0,0)$. Unlike the situation where the rank is 3 , this time we distinguish three different cases to which all other cases can be reduced:

Case 1: $\beta_{5}=\beta_{1} \oplus \beta_{2}=\alpha_{1} \oplus \alpha_{2}=\alpha_{3}$.
Case 2: $\beta_{5}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3}=\alpha_{1} \oplus \alpha_{2} \oplus \alpha_{4}=\alpha_{7}$.
Case 3: $\beta_{5}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=\alpha_{1} \oplus \alpha_{2} \oplus \alpha_{4} \oplus \alpha_{8}=\alpha_{15}$.
The proof for the rank of 4 is a generalization of that for the rank of 3 . In particular, in Case 1, the matrix P consists of the 0 th, 1 st, 2 nd , 3 rd , 4th and 8 th rows, in Case 2 , of the 0 th, $1 \mathrm{st}, 2 \mathrm{nd}, 4$ th, 7 th and

8th rows, and in Case 3, of the 0 th, 1 st, 2 nd, 4 th, 8 th and 15 th rows of H_{n}. In each case, P_{j} is a 6×16 matrix.

We derive a contradiction for each of the three cases. For Case 1, we establish four sets, each having four equations, from the 0 th, 1 st, 14 th and 15 th columns, the $2 \mathrm{nd}, 3 \mathrm{rd}, 12$ th and 13 th columns, the 4 th, 5 th, 10 th and 11 th columns, and the 6 th, 7 th, 8 th and 9 th columns of P_{j}. For Case 2, we need a set of eight equations, which are constructed from the first eight columns of P_{j}. And For Case 3 a set of four equations is constructed from the first four columns of P_{j}. Note that each case defines a different P_{j}.

Careful analysis shows that:
Theorem 8 There exists no function on V_{n} such that $|\Re|=6$.

10 Degrees of Propagation

In [SZZ95a] it has been shown that if f is a function on V_{n} with $|\Re|=2$, then, through a nonsingular linear transformation on input coordinates, f can be converted into a function satisfying the propagation criterion of degree $n-1$. Similarly, when $|\Re|=4$, the degree can be $\approx \frac{2}{3} n$. In this section we show that with $|\Re|=5$, the degree can be $n-3$.

Assume that the four nonzero vectors in \Re are $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}, and that β_{1}, β_{2} and β_{3} are a basis of $\Re=\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$. Let B be an $n \times n$ nonsingular matrix on $G F(2)$ with the property that

$$
\begin{aligned}
& \beta_{1} B=(1, \ldots, 1,0,0,1) \\
& \beta_{2} B=(1, \ldots, 1,0,1,0) \\
& \beta_{3} B=(1, \ldots, 1,1,0,0)
\end{aligned}
$$

As $\beta_{4}=\beta_{1} \oplus \beta_{2} \oplus \beta_{3}$, we have

$$
\beta_{4} B=\left(\beta_{1} \oplus \beta_{2} \oplus \beta_{3}\right) B=(1, \ldots, 1,1,1,1) .
$$

Now let $g(x)=f(x B)$. Then g satisfies the propagation criterion of degree $n-3$, as the only exceptional vectors are $(0, \ldots, 0,0,0,0),(1, \ldots, 1,0,0,1),(1, \ldots, 1,0,1,0),(1, \ldots, 1,1,0,0)$ and $(1, \ldots, 1,1,1,1)$. These discussions, together with Theorem 7 , show that for any odd $n \geqq 5$, there exist balanced functions on V_{n} that satisfy the propagation criterion of degree $n-3$ and do not possess a nonzero linear structure.

Table 1 shows structural properties of functions with $|\Re| \leqq 6$.

11 Final Remarks

We have presented a quantitative relationship between propagation characteristic and nonlinearity. We have shown that no functions satisfy the propagation criterion with respect to all but three or six vectors. We have also completely decided the structures and construction methods of cryptographic functions that satisfy the propagation criterion with respect to all but two, four or five vectors. An interesting topic for future research is to investigate the structures of functions with seven or more exceptional vectors.

Acknowledgments

The first author was supported in part by the Australian Research Council under the reference numbers A49130102, A49131885 and A49232172, the second author by A49130102, and the third author by A49232172. All authors were supported by a University of Wollongong Research Program grant and the first two by ATERB C010/058.

\Re	\{0\}	$\{0, \beta\}$	$\left\{0, \beta_{1}, \beta_{2}, \beta_{3}\right\}$	$\left\{0, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$
Dimension n	even	odd	even	odd
Form of function	bent	$\begin{aligned} & c x_{n} \oplus \\ & \quad h\left(x_{1}, \ldots, x_{n-1}\right) \end{aligned}$ h is bent.	$\begin{aligned} & c_{1} x_{n} \oplus c_{2} x_{n-1} \oplus \\ & \quad h\left(x_{1}, \ldots, x_{n-2}\right), \end{aligned}$ h is bent.	e.g. $\begin{aligned} & f_{5}\left(x_{1}, \ldots, x_{5}\right) \oplus \\ & \quad h\left(x_{6}, \ldots, x_{n}\right) \end{aligned}$ f_{5} is defined in (36), h is bent.
Nonzero linear structure(s)	No	β	$\beta_{1}, \beta_{2}, \beta_{3}$	No
Nonlinearity	$2^{n-1}-2^{\frac{1}{2} n-1}$	$2^{n-1}-2^{\frac{1}{2}(n-1)}$	$2^{n-1}-2^{\frac{1}{2} n}$	$2^{n-1}-2^{\frac{1}{2}(n-1)}$
Degree of propagation	n	$n-1$	$\approx \frac{2}{3} n$	$n-3$
Is \Re a subspace?	Yes	Yes	Yes	No. However, $\beta_{1} \oplus \beta_{2} \oplus \beta_{3} \oplus \beta_{4}=0$
Rank of \Re	0	1	2	3

Table 1: Structural Properties of Highly Nonlinear Functions (Functions with three or six exceptional vectors do not exist.)

References

[AT90] C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, IT-36 No. 5:1170-1173, 1990.
[Dil72] J. F. Dillon. A survey of bent functions. The NSA Technical Journal, pages 191-215, 1972. (unclassified).
[Eve88] J.-H. Evertse. Linear structures in blockciphers. In Advances in Cryptology-EUROCRYPT'87, volume 304, Lecture Notes in Computer Science, pages 249-266. Springer-Verlag, Berlin, Heidelberg, New York, 1988.
[MS78] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, New York, Oxford, 1978.
[MS90] W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology-EUROCRYPT'89, volume 434, Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, Berlin, Heidelberg, New York, 1990.
[Nyb93] K. Nyberg. On the construction of highly nonlinear permutations. In Advances in Cryptology - EUROCRYPT'92, volume 658, Lecture Notes in Computer Science, pages 92-98. SpringerVerlag, Berlin, Heidelberg, New York, 1993.
[PGV91] B. Preneel, R. Govaerts, and J. Vandewalle. Boolean functions satisfying higher order propagation criteria. In Advances in Cryptology - EUROCRYPT'91, volume 547, Lecture Notes in Computer Science, pages 141-152. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
[PLL $\left.{ }^{+} 91\right]$ B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle. Propagation characteristics of boolean functions. In Advances in Cryptology - EUROCRYPT'go, volume

437, Lecture Notes in Computer Science, pages 155-165. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
[SZZ95a] J. Seberry, X. M. Zhang, and Y. Zheng. Nonlinearity and propagation characteristics of balanced boolean functions. Information and Computation, 119(1):1-13, 1995.
[SZZ95b] J. Seberry, X. M. Zhang, and Y. Zheng. Relationships among nonlinearity criteria. In Advances in Cryptology - EUROCRYPT'94, volume 950, Lecture Notes in Computer Science, pages 376388. Springer-Verlag, Berlin, Heidelberg, New York, 1995.
[Web85] A. F. Webster. Plaintext/ciphertext bit dependencies in cryptographic system. Master's Thesis, Department of Electrical Engineering, Queen's University, Ontario, 1985.
[WT86] A. F. Webster and S. E. Tavares. On the design of S-boxes. In Advances in Cryptology CRYPTO'85, volume 219, Lecture Notes in Computer Science, pages 523-534. Springer-Verlag, Berlin, Heidelberg, New York, 1986.
[YH89] R. Yarlagadda and J. E. Hershey. Analysis and synthesis of bent sequences. IEE Proceedings (Part E), 136:112-123, 1989.

