
Relationships Among Nonlinearity CriteriaJennifer SeberryXian-Mo ZhangYuliang ZhengDepartment of Computer ScienceThe University of WollongongWollongong, NSW 2522, AUSTRALIAE-mail: fjennie,xianmo,yuliangg@cs.uow.edu.auAbstractAn important question in designing cryptographic functions including substitution boxes (S-boxes) isthe relationships among the various nonlinearity criteria each of which indicates the strength or weaknessof a cryptographic function against a particular type of cryptanalytic attacks. In this paper we reveal,for the �rst time, interesting connections among the strict avalanche characteristics, di�erential charac-teristics, linear structures and nonlinearity of quadratic S-boxes. In addition, we show that our prooftechniques allow us to treat in a uni�ed fashion all quadratic permutations (namely, quadratic S-boxesthat form permutations), regardless of the underlying construction methods. This greatly simpli�es theproofs for a number of known results on the nonlinearity characteristics of quadratic permutation. As aby-product, we solve an open problem regarding the existence of di�erentially 2-uniform quadratic per-mutations on an even dimensional vector space. Another contribution of this paper is the identi�cationof an error in a paper presented by Beth and Ding at EUROCRYPT'93.1 Nonlinearity CriteriaThis section introduces basic notions and de�nitions of several nonlinearity criteria for cryptographicfunctions.Denote by Vn the vector space of n tuples of elements from GF (2). Let � = (a1; : : : ; an) and � =(b1; : : : ; bn) be two vectors in Vn. The scalar product of � and �, denoted by h�; �i, is de�ned by h�;�i =a1b1 � � � � � anbn, where multiplication and addition are over GF (2). In this paper we consider functionsfrom Vn to GF (2) (or simply functions on Vn). We are particularly interested in functions whose algebraicdegrees are 2, also called quadratic functions.Let f be a function on Vn. The (1;�1)-sequence de�ned by ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1)) iscalled the sequence of f , and the (0; 1)-sequence de�ned by (f(�0), f(�1), : : :, f(�2n�1)) is called the truthtable of f , where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1;1). f is said balanced if itstruth table has 2n�1 zeros (ones).An a�ne function f on Vn is a function that takes the form of f = a1x1 � � � � � anxn � c, whereaj ; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is called a linear function if c = 0. The sequence of an a�ne(or linear) function is called an a�ne (or linear) sequence.The Hamming weight of a vector � 2 Vn, denoted by W (�), is the number of ones in the vector.1



Now we introduce bent functions, an important combinatorial concept introduced by Rothaus in themid 1960's (although his pioneering work was not published until some ten years later [15].)De�nition 1 A function f on Vn is said to be bent if2�n2 Xx2Vn(�1)f(x)�h�;xi = �1for every � 2 Vn. Here x = (x1; : : : ; xn) and f(x)� h�; xi is considered as a real valued function.From the de�nition, it can be seen that bent functions on Vn exist only when n is even. Another fact isthat bent functions are not balanced, hence not directly applicable in most computer and communicationssecurity practices. Dillon presented a nice exposition of bent functions in [7]. In particular, he showed thatbent functions can be characterized in various ways:Lemma 1 The following statements are equivalent:(i) f is bent.(ii) h�; `i = �2 12n for any a�ne sequence ` of length 2n, where � is the sequence of f .(iii) f(x)� f(x� �) is balanced for any non-zero vector � 2 Vn, where x = (x1; : : : ; xn).The strict avalanche criterion (SAC) was �rst introduced by Webster and Tavares [21, 22] when studyingthe design of cryptographically strong S-boxes.De�nition 2 A function f on Vn is said to satisfy the strict avalanche criterion (SAC) if f(x)� f(x��)is balanced for all � 2 Vn with W (�) = 1, where x = (x1; : : : ; xn).It is widely accepted that the component functions of an S-box employed by a modern block ciphershould all satisfy the SAC. A general technique for constructing SAC-ful�lling cryptographic functions canbe found in [17].While the SAC measures the avalanche characteristics of a function, the linear structure is a conceptthat in a sense is complementary to the former, namely, the linear structure indicates the smoothness of afunction.De�nition 3 Let f be a function on Vn. A vector � 2 Vn is called a linear structure of f if f(x)�f(x��)is a constant.By de�nition, the zero vector in Vn is a linear structure of all functions on Vn. As was pointed outin [11], the linear structures of a function f form a linear subspace of Vn. The dimension of the subspaceis called the linearity dimension of f . Clearly, the linearity dimension of a function on Vn is bounded fromthe above by n, with the a�ne functions achieving the maximum dimension n. It is bounded from thebelow by 1 when n is even and by 2 when n is odd. The lower bound 1 is achieved only by bent functions,while 2 can be achieved by such functions as obtained by concatenating two bent functions (see [18, 20]).In mathematical terms, an n� s S-box (i.e., with n input bits and s output bits), can be described as amapping from Vn to Vs (n >= s). To avoid trivial statistical attacks, an S-box F should be regular, namely,F (x) should run through all the vectors in Vs each 2n�s times while x runs through Vn once. Note thatan n � n S-box is a permutation on Vn and always regular.Regularity of an n � s S-box F can be characterized by the balance of nonzero linear combinations ofits component functions. It has been known that when n = s, F is regular if and only if all nonzero linearcombinations of the component functions are balanced. A proof can be found in Remark 5.8 of [7]. Thecharacterization can be extended to the case when n > s.2



Theorem 1 Let F = (f1; : : : ; fs), where fi is a function on Vn, n >= s. Then F is a regular mapping fromVn to Vs if and only if all nonzero linear combinations of f1; : : : ; fn are balanced.A proof for the theorem is given in Appendix A. It seems to the authors that the proof for the case ofn = s as described in [7] can not be directly adapted to the general case of n > s, and hence the extensionpresented here is not trivial.The next criterion is the nonlinearity that indicates the Hamming distance between a function and allthe a�ne functions.De�nition 4 Given two functions f and g on Vn, the Hamming distance between them, denoted by d(f; g),is de�ned as the Hamming weight of the truth table of the function f(x) � g(x), where x = (x1; : : : ; xn).The nonlinearity of f , denoted by Nf , is the minimal Hamming distance between f and all a�ne functionson Vn, i.e., Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 denote the a�ne functions on Vn.The above de�nition can be extended to the case of mappings by de�ning the nonlinearity of a mappingfrom Vn to Vs as the minimum among the nonlinearities of nonzero linear combinations of the componentfunctions.The nonlinearity of a function f on Vn has been known to be bounded from the above by 2n�1� 2 12n�1.When n is even, the upper bound is achieved by bent functions. Constructions for highly nonlinear balancedfunctions can be found in [18, 20].Nonlinearity has been considered to be an important criterion. Recent advances in Linear cryptanalysisput forward by Matsui [9] have made it explicit that nonlinearity is not just important, but essential to DES-like block encryption algorithms. Linear cryptanalysis exploits the low nonlinearity of S-boxes employed bya block cipher, and it has been successfully applied in attacking FEAL and DES. In [16], it has been shownthat to immunize an S-box against linear cryptanalysis, it su�ces for the Hamming distance between eachnonzero linear combination of the component functions and each a�ne function not to deviate too farfrom 2n�1, namely, an S-box is immune to linear cryptanalysis if the nonlinearity of each nonzero linearcombination of its component functions is high.Finally we consider a nonlinearity criterion that measures the strength of an S-box against di�erentialcryptanalysis [3, 4]. The essence of a di�erential attack is that it exploits particular entries in the di�erencedistribution tables of S-boxes employed by a block cipher. The di�erence distribution table of an n � sS-box is a 2n�2s matrix. The rows of the matrix, indexed by the vectors in Vn, represent the change in theinput, while the columns, indexed by the vectors in Vs, represent the change in the output of the S-box.An entry in the table indexed by (�;�) indicates the number of input vectors which, when changed by �(in the sense of bit-wise XOR), result in a change in the output by � (also in the sense of bit-wise XOR).Note that an entry in a di�erence distribution table can only take an even value, the sum of the valuesin a row is always 2n, and the �rst row is always (2n; 0; : : : ; 0). As entries with higher values in the tableare particularly useful to di�erential cryptanalysis, a necessary condition for an S-box to be immune todi�erential cryptanalysis is that it does not have large values in its di�erential distribution table (notcounting the �rst entry in the �rst row).De�nition 5 Let F be an n � s S-box, where n >= s. Let � be the largest value in di�erential distributiontable of the S-box (not counting the �rst entry in the �rst row), namely,� = max�2Vn;�6=0max�2Vs jfxjF(x)� F (x� �) = �gj:Then F is said to be di�erentially �-uniform, and accordingly, � is called the di�erential uniformity of f .3



Extensive research has been conducted in constructing di�erentially �-uniform S-boxes with a low� [10, 1, 11, 13, 12, 2]. Some constructions, in particular those based on permutation polynomials on �nite�elds, are simple and elegant. However, as pointed in [4, 5, 16], cautions must be taken with De�nition 5.In particular, it should be noted that low di�erential uniformity (a small �) is only a necessary, but notsu�cient condition for immunity to di�erential attacks. A more complete measurement is the robustnessintroduced in [16]. The reader is directed to that paper for a comprehensive treatment of this subject.We have discussed various cryptographic properties including the algebraic degree, the SAC, the linearstructure, the regularity, the nonlinearity and the di�erential uniformity. As is stated in the followinglemmas, some properties are invariant under a nonsingular linear transformation.Lemma 2 Let f be a function on Vn, A be a nonsingular matrix of order n over GF (2), and let g(x) =f(xA). Then f and g have the same algebraic degree, nonlinearity and linearity dimension.Lemma 3 Let F be a mapping from Vn to Vs, where n >= s, A be a nonsingular matrix of order n overGF (2), and B be a nonsingular matrix of order s over GF (2). Let G(x) = F (xA) and H(x) = F (x)B,where x = (x1; : : : ; xn). Note that A is applied to the input, while B to the output of F . Then F , G andH all have the same regularity and di�erential uniformity.A proof for Lemma 3 can be found in Section 5.3 of [16].2 Cryptographic Properties of Quadratic S-boxesIn this section we �rst prove a lower bound on the nonlinearity of S-boxes whose component functions areall quadratic (or simply, quadratic S-boxes). Then we reveal interesting relationships among the di�erencedistribution table, linear structures and SAC of regular quadratic S-boxes.2.1 Nonlinearity of Quadratic S-boxesConsider a quadratic function f on Vn. Then f(x)� f(x��) is a�ne, where x = (x1; : : : ; xn) and � 2 Vn.Assume that f does not have nonzero linear structures. Then for any nonzero � 2 Vn, f(x)� f(x� �) isa nonzero a�ne function, hence balanced. By Part (iii) of Lemma 1, f is bent. Thus we have proved:Lemma 4 If a quadratic function f on Vn has no nonzero linear structures, then f is bent and n is even.The following lemma is a useful tool in calculating the nonlinearity of functions obtained via Kroneckerproduct.Lemma 5 Let g(x; y) = f1(x)� f2(y), where x = (x1; : : : ; xn1), y = (y1; : : : ; yn2), f1 is a function on Vn1and f2 is a function on Vn1. Let d1 and d2 denote the nonlinearities of f1 and f2 respectively. Then thenonlinearity of g satis�es Ng >= d12n2 + d22n1 � 2d1d2:In addition, we have Ng >= d12n2 and Ng >= d22n1 .Proof. The �rst half of the lemma can be found in Lemma 8 of [19]. The second half is true due to thefact that d1 <= 2n1�1 and d2 <= 2n2�1 (see also Section 3 of [18]). utWe now prove a lower bound on the nonlinearity of any quadratic n� s S-box (n >= s).4



Lemma 6 Let F = (f1; : : : ; fs) be a quadratic n � s S-box. Also let g(x) = Pnj=1 cjfj(x) be a nonzerolinear combination of f1; : : : ; fn, and ` be the linearity dimension of g. Then(i) n� ` is even, and(ii) the nonlinearity of g satis�es Ng >= 2n�1 � 212 (n+`)�1.Proof. (i) Recall that ` <= n. If g is a�ne, then ` = n, hence n � ` is even. Now suppose that g isnot a�ne, i.e., ` < n. Let f�1; : : : ; �`g be a basis of the subspace consisting of the linear structures of g.f�1; : : : ; �`g can be extended to f�1; : : : ; �`; �`+1; : : : ; �ng such that the latter is a basis of Vn. Now let Bbe a nonsingular matrix with �i as its ith row, and let g�(x) = g(xB). By Lemma 2, g� and g have thesame linearity dimension. Thus the question is transformed into the discussion of g�.Let ej be the vector in Vn whose jth coordinate is one and others are zero. Then we have ejB = �j , andg�(ej) = g(�j), j = 1; : : : ; n. Thus fe1; : : : ; e`g is a basis of the subspace consisting of the linear structuresof g�. As g� is quadratic, it can be written asg�(x) = q(y)� p(z)� X̀j=1 rj(z)xj ;where x = (x1; : : : ; xn), y = (x1; : : : ; x`), and z = (x`+1; : : : ; xn). In addition, each ej can be written asej = (�j ; 0), where �j 2 V` and 0 2 Vn�`. Since each ej is a linear structure of g�, g�(x) � g�(x � ej) =q(y)� q(y � �j)� rj(z) is a constant. Thus both q(y)� q(y � �j) and rj(z) are constants. This allows usto rewrite g� as g�(x) = q(y)� p(z)� X̀j=1ajxj= q(y)� X̀j=1ajxj � p(z)= h(y)� p(z)where aj = rj is a constant and h(y) = q(y)�Pj̀=1 ajxj .Since linear structures form a subspace, f�1; : : : ; �`g is a basis of V` and q(y)� q(y � �j) is a constantfor each �j , q(y)� q(y� �) must be a constant for all � 2 V`. In other words, q must be an a�ne functionon V`. Thus h is also an a�ne function on V`. As the linearity dimension of g is `, and h is an a�nefunction on V`, p, a function on Vn�`, possesses no nonzero linear structures. By Lemma 4, p is a bentfunction on Vn�` and hence n� ` is even.(ii) This part is obviously true if g is a�ne. Now suppose that g is not a�ne. In this case, it hasthe same nonlinearity as that of g�. As the function p is a bent function on V`, its nonlinearity satis�esNp = 2n�`�1 � 212 (n�`)�1. By Lemma 5, the nonlinearity of g�, and hence of g, satis�es Ng >= 2`Np =2n�1 � 2 12 (n+`)�1. This completes the proof. ut2.2 Di�erence Distribution Table vs Linear StructureFirst we show an interesting result stating that the number representing the di�erential uniformity of aquadratic S-box must be a power of 2. 5



Theorem 2 Let � be the di�erential uniformity of a regular quadratic n� s S-box. Then � = 2d for somen� s+ 1 <= d <= n.Proof. Let F = (f1; : : : ; fs). Let � be a nonzero vector in Vn. ThenF (x)� F (x� �) = (f1(x)� f1(x� �); : : : ; fs(x)� fs(x� �)):As f1 is quadratic, fi(x)� fi(x��) is a�ne, hence F (x)�F (x��) = xD� c, where D is an n� s matrixover GF (2) and c is a vector in Vs.Assume that the rank of D is r with 0 <= r <= s. Then xD� c runs through 2r vectors in Vs, each 2n�rtimes, while x runs through Vn, where n, s and r satisfy n�s <= n�r <= n. Thus the di�erential uniformityof F takes the form of 2d, n� s <= d <= n.We now prove n � s + 1 <= d. Assume d = n � s holds. Since � = 2n�s, for any nonzero � 2 Vn,F (x)� F (x� �) runs through at least 2n=2n�s = 2s vectors in Vs while x runs through Vn once. On theother hand, F (x) � F (x � �), as a mapping from Vn to Vs, runs through at most 2s vectors in Vs whilex runs through Vn once. This proves that F (x)� F (x� �) runs through exactly 2s vectors in Vs while xruns through Vn once. Since F (x)� F (x� �) is an a�ne transformation, it runs through 2s vectors in Vseach 2n=2s = 2n�s times while x runs through Vn once. In other words, F (x)� F (x� �) is regular. Notethat � is an arbitrary nonzero vector in Vs. By Theorem 3.1 of [10], any nonzero linear combination of thecomponents of F (x) is a bent function on Vn. Since F (x) is regular, any nonzero linear combination of thecomponents of F (x) is balanced (see Theorem 1). Since any bent function is not balanced (see [15]), theassumption of n � s = d cannot hold. utTheorem 3 Let F = (f1; : : : ; fs) be a di�erentially �-uniform regular quadratic n � s S-box, where � =2n�s+t for some 1 <= t <= s (see Theorem 2). Then(i) any nonzero vector � 2 Vn is a linear structure of m nonzero linear combinations of f1; : : : ; fs, wherem satis�es 1 <= m <= 2t � 1;(ii) any nonzero nonzero linear combination of f1; : : : ; fs has at least one linear structure � 2 Vn.Proof. (i) Fix an arbitrary nonzero vector � 2 Vn. Note that � > 2n�s. Then F (x) � F (x � �) is notregular. By Theorem 1 there exists a nonzero linear combination of f1; : : : ; fs, say g =Pnj=1 cjfj , such thatg(x)�g(x��) is not balanced. As f1; : : : ; fs are all quadratic, g is quadratic or a�ne. Thus g(x)�g(x��)must be a constant.Now we proceed to proving that there exist at most 2t � 1 such combinations g in (i). First we notethat there are 2s�1 nonzero linear combinations of f1; : : : ; fs, denoted by g1, : : :, g2s�1, and 2n�1 nonzerovectors in Vn, denoted by �1, : : :, �2n�1. Now suppose that there exist 2t nonzero linear combinationsg1; : : : ; g2t , such that � is a linear structure of each gj . Write gj(x)� gj(x� �) = aj , where aj is constant,j = 1; : : : ; 2t. Let 
 = fg1; : : : ; g2tg. We are interested in the rank of 
, namely the maximum number offunctions in 
 that are linearly independent. Recall that t linearly independent functions can generate only2t�1 distinct nonzero combinations. As 
 contains 2t nonzero functions, its rank is at least t+1. Withoutloss of generality, suppose that g1; : : : ; gt+1 are linearly independent. Then there exist additional s� t� 1nonzero linear combinations of f1; : : : ; fs, denoted by ht+2; : : : ; hs, such that g1; : : : ; gt+1; ht+2; : : : ; hs areall linearly independent. Let G be an n � s mapping de�ned by G = (g1; : : : ; gt+1; ht+2; : : : ; hs). Then Gcan be expressed as G(x) = F (x)B for a nonsingular matrix B of order s over GF (2).By Lemma 3, G is also a di�erentially �-uniform n � s S-box. Since � = 2n�s+t (1 <= t <= s), G(x) �G(x� �) runs through at least 2n=2n�s+t = 2s�t vectors. On the other hand,G(x)� G(x� �) = (a1; : : : ; at+1; ht+2(x)� ht+2(x� �); : : : ; hs(x)� hs(x� �))6



where a1, : : :, at+1 are all constants. This indicates that G(x) � G(x � �) runs through at most 2s�t�1vectors in Vs. This is a contradiction. Thus Part (i) is true.(ii) Let g =Psj=1 cjfj , where (c1; : : : ; cs) is a nonzero vector in Vs. Assume that g has no nonzero linearstructures. Then by Lemma 4, g is a bent function. This contradicts the fact that F is regular and thatthe nonzero linear combinations of its component functions are all balanced and have linear structures.This proves Part (ii). ut2.3 Di�erence Distribution Table vs SACTheorem 4 Let F = (f1; : : : ; fs) be a di�erentially �-uniform regular quadratic n � s S-box, where � =2n�s+t, 1 <= t <= s (see Theorem 2) and s <= 2s�t�2. Then there exists a nonsingular matrix of order nover GF (2), say A, and a nonsingular matrix of order s over GF (2), say B, such that 	(x) = F (xA)B =(f1(xA); : : : ; fs(xA))B = ( 1(x); : : : ;  s(x)) is also a di�erentially �-uniform regular quadratic n� s S-boxwhose component functions all satisfy the SAC.Proof. Again denote by g1, : : :, g2s�1 the 2s � 1 nonzero linear combinations of f1; : : : ; fs, and by �1,: : :, �2n�1 the 2n � 1 nonzero vectors in Vs. We construct a bipartite graph � whose vertices are g1, : : :,g2s�1 and �1, : : :, �2n�1. An edge exists between gi and �j if and only if �j is a linear structure of gi. ByTheorem 3, there exist at most 2t�1 edges associated with each �. Thus there exist at most (2t�1)�(2n�1)edges in the graph �.Denote by tj the number of linear structures of gj , j = 1; : : : ; 2s�1. Without loss of generality supposethat t1 <= t2 <= � � � <= t2s�1. It can be seen that tj < 2n�s+t+1 , j = 1; : : : ; 2s�1. The reason is as follows.Suppose that it is not the case. Then we have t1+ � � �+ t2s�1 >= 2s�1 � 2n�s+t+1 = 2n+t > (2t� 1) � (2n� 1).This contradicts the fact that � has at most 2t�1 � (2n � 1) edges.Now set � = fg1; : : : ; g2s�1+1g. As the rank of � is s, we can choose s functions from�, say gj1 , : : : , gjs,such that they are all linearly independent. Since s <= 2s�t�2, we have tj1 + � � �+ tjs < s � 2n�s+t+1 <= 2n�1.By Theorem 2 of [17], there exists a nonsingular matrix A of order n over GF (2), such that all componentfunctions of (gj1(xA); : : : ; gjs(xA)) satisfy the SAC. Furthermore, as each gj is a nonzero linear combinationof f1, : : :, fs, there is a nonsingular matrix B of order s over GF (2) such that (gj1(x); : : : ; gjs(x)) =(f1(x); : : : ; fs(x))B. Accordingly, by Lemma 3,	(x) = F (xA)B = (f1(xA); : : : ; fs(xA))B = ( 1(x); : : : ;  s(x))is a di�erentially �-uniform regular quadratic n� s S-box, where each component function  j satis�es theSAC. utaaaaaa By (i) of Theorem 3, there exist at most 2t�1 nonzero linear functions, without loss of generalitysay U = fg1; : : : ; g2tg.3 A Uni�ed Treatment of Quadratic PermutationsThis section is concerned with di�erentially 2-uniform quadratic n � n S-boxes. Such an S-box F has thefollowing property: for any nonzero vector � 2 Vn, F (x)� F (x� �) runs through 2n�1 vectors in Vn, eachtwice, but not through the other 2n�1 vectors, while x runs through Vn.Di�erentially 2-uniform quadratic n � n S-boxes have been extensively studied in the past years [14,13, 6, 2, 12] and hence deserve special attention. Such S-boxes appear in various forms and researchershave employed di�erent techniques, some of which are rather sophisticated, to prove their nonlinearity.By re�ning our proof techniques described in Section 2, we will show in this section that all di�erentially7



2-uniform quadratic permutations, no matter how they are constructed, have the same nonlinearity andcan be transformed into SAC-ful�lling S-boxes. This greatly simpli�es the proof for a number of knownresults and could be a powerful tool in designing cryptographically strong block ciphers.3.1 Linear Structure and NonlinearityTheorem 5 Let F = (f1; : : : ; fn) be a di�erentially 2-uniform quadratic permutation on Vn as describedat the beginning of the section. Then there is a one-to-one correspondence between the nonzero vectors inVn and the nonzero linear combinations of f1; : : : ; fn, namely,(i) each nonzero vector in Vn is the linear structure of a unique nonzero linear combination of f1; : : : ; fn,(ii) each nonzero nonzero linear combination of f1; : : : ; fn has a unique nonzero vector in Vn as its linearstructure.Proof. (i) follows from the �rst part of Theorem 3 (by letting s = n and t = 1), while (ii) follows from (i)and (ii) of Theorem 3. utTheorem 6 Let F = (f1; : : : ; fn) is a di�erentially 2-uniform quadratic permutation on Vn. Then(i) n is odd,(ii) for any nonzero linear combination of f1; : : : ; fn, say g = Pnj=1 cjfj, the nonlinearity of g satis�esNg >= 2n�1 � 212 (n�1).Proof. (i) Let g be a nonzero linear combination of the n component functions. By Lemma 5, there is aunique nonzero vector � 2 Vn such that g(x)� g(x� �) is a constant. Without loss of generality, we cansuppose that � = e, where e = (0; : : : 0; 1). On the other hand, g can be written asg(x) = p(x1; : : : ; xn�1)xn � q(x1; : : : ; xn�1):Thus g(x)� g(x� e) = p(x1; : : : ; xn�1) = a is a constant andg(x) = axn � q(x1; : : : ; xn�1):Write x = (x1; : : : ; xn), y = (x1; : : : ; xn�1). Let � = (a1; : : : ; an�1; 0) be any nonzero vector in Vn thus = (a1; : : : ; an�1) is a nonzero vector in Vn�1. Due to the uniqueness of the vector e, g(x) � g(x� �) =q(y)� q(y� ) is a non-constant a�ne function and must be balanced. This proves that q(y)� q(y� ) isbalanced for any nonzero vector  2 Vn�1. Hence q does not have nonzero linear structures. By Lemma 4,q is bent and n� 1 is even. Thus n is odd.(ii) From the proof of (i), we know that p is a constant a. Hence g can be expressed as g(x) =axn � q(x1; : : : ; xn�1) = (1� xn)q(x1; : : : ; xn�1)� xn(a� q(x1; : : : ; xn�1)). Let � be the sequence of q. By(ii) of Lemma 1 in Section 1, h�; `i = �2 12 (n�1) for any a�ne sequence ` of length 2n�1. By Lemma 7 of[18], Ng >= 2n�1 � 12(2 12 (n�1) + 2 12 (n�1)) = 2n�1 � 2 12 (n�1). utTheorem 6 indicates that di�erentially 2-uniform quadratic permutations are highly nonlinear andhence are immune to linear cryptanalysis.Restating the part (i) of Theorem 6, we have: 8



Corollary 1 There exists no di�erentially 2-uniform quadratic permutation on an even dimensional vectorspace.This gives a negative answer to an open problem regarding the existence of di�erentially 2-uniformquadratic permutations on an even dimensional vector space.Now it is a right place to point out an error in [2]. Corollary 2 of [2] states that the permutation de�nedby a polynomial P (x) = x2`(2k+1) is a di�erentially 2-uniform quadratic permutation, where x 2 GF (2n),`, k and n are positive integers, and gcd(2k + 1; 2n � 1) = gcd(k; n) = 1. Beth and Ding claim that theircorollary indicates the existence of di�erentially 2-uniform quadratic permutations on Vn, n even. Thisseemingly contradicts the non-existence result shown in our Corollary 1. However, one can see that whenn is even, k must be odd in order for gcd(k; n) = 1 to stand. On the other hand, if n is even and k is odd,then gcd(2k + 1; 2n � 1) has 3 as a factor. Thus gcd(2k + 1; 2n � 1) = gcd(k; n) = 1 can not stand for neven. In other words, Beth and Ding's corollary does not imply the existence of di�erentially 2-uniformquadratic permutations on Vn, n even.3.2 SACTheorem 7 Let F = (f1; : : : ; fn) (n >= 3) be a di�erentially 2-uniform quadratic permutation. Then thereexists a nonsingular matrix A of order n over GF (2) such that 	(x) = F (xA) = (f1(xA); : : : ; fn(xA)) =( 1(x); : : : ;  n(x)) is also di�erentially 2-uniform, and each component function  j satis�es the SAC.Proof. Let � denote the set of vectors  such that fj � fj(x� ) is not balanced for some 1 <= j <= n. ByLemma 5, we have j�j = n. Since j�j < 2n�1 for all n >= 3, by Theorem 2 of [17], there exists a nonsingularmatrix A of order n over GF (2) that transforms F into a SAC-ful�lling S-box. ut4 ConclusionWe have proved that for quadratic S-boxes, there are close relationships among di�erential uniformity,linear structures, nonlinearity and the SAC. We have shown that by using our proof techniques, all di�er-entially 2-uniform quadratic permutations can be treated in a uni�ed fashion. In particular, general resultsregarding nonlinearity characteristics of these permutations are derived, regardless of the actual methodsfor constructing the permutations.A future research direction is to extend the results to the more general case where component functionsof an S-box can have an algebraic degree larger than 2. Another direction is to enlarge the scope ofnonlinearity criteria so that it includes other cryptographic properties such as algebraic degree, propagationcharacteristics, and correlation immunity.References[1] C. M. Adams. On immunity against Biham and Shamir's \di�erential cryptanalysis". InformationProcessing Letters, 41:77{80, 1992.[2] T. Beth and C. Ding. On permutations against di�erential cryptanalysis. In Advances in Cryptology- EUROCRYPT'93, volume 765, Lecture Notes in Computer Science, pages 65{76. Springer-Verlag,Berlin, Heidelberg, New York, 1994.[3] E. Biham and A. Shamir. Di�erential cryptanalysis of DES-like cryptosystems. Journal of Cryptology,Vol. 4, No. 1:3{72, 1991. 9
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AppendixA Proof for Theorem 1First we haveLemma 7 Let Li = (hi1; : : : ; hi2s) be the sequence of a linear function on Vs, where i = 1; : : : ; 2n (n >= s).Set M = [LT1 ; : : : ; LT2n ]:If the rows of M are mutually orthogonal then each linear sequence of length 2s appears as 2n�s columnsof M .Proof. Let � = (a1; : : : ; a2s) be a (1, -1) sequences of length 2s. Since h�;Lii =P2sp=1 aphip, we haveh�;Lii2 = 2s + 2Xp<q apaqhiphiqand 2nXi=1h�; Lii2 = 2n+s + 2 2nXi=1Xp<q apaqhiphiq = 2n+s + 2Xp<q 2nXi=1 apaqhiphiq:Since rows of M are mutually orthogonal, we have P2nj=1 hiphiq = 0 (p 6= q) and hence2nXj=1h�;Lii2 = 2n+s: (1)Now suppose that L, an arbitrary linear sequence of length 2s, appears as k columns of M . By notinghL;Lii = ( 2s if L = Li0 otherwisewe have 2nXj=1hL;Lii2 = k � 22s: (2)Compare (1) and (2) we have k � 22s = 2n+sand hence k = 2n�s. utNote that (2) can be viewed as a generalization of Parseval's equation (Page 416, [8]). The following isthe proof for Theorem 1.Proof. (for Theorem 1) Suppose that F is a regular S-box, namely, F (x) runs through each vector inVs 2n�s times while x runs through Vn, where x = (x1; : : : ; xn). Then the truth table of each componentfunction fi must contain an equal number of ones and zeros, i.e., fi is balanced.Now we show that any nonzero linear combination, f(x) =Psj=1 cjfj(x), of the s component functionsis also balanced. Recall that for any nonsingular matrix A of order s, (f1(x); : : : ; fs(x)) is regular if andonly if (f1(x); : : : ; fs(x))A is (see Lemma 3). Now suppose that the �rst column of A is (c1; : : : ; cs)T . Let12



G(x) = (g1(x); : : : ; gs(x)) = (f1(x); : : : ; fs(x))A. Then G is also regular, and hence its �rst componentfunction g1(x) = f (x) =Psj=1 cjfj(x) is balanced. This proves one direction of the theorem.We now prove the other direction. Suppose that all nonzero linear combinations of the componentfunctions are balanced. Let �i = (ci1; : : : ; ci2n)be the truth table of fi, i = 1; : : : ; s. From the s truth tables, we construct 2n linear functions on Vs asfollows: 'j(y) = c1jy1 � c2jy2 � � � � � csjys (3)where y = (y1; : : : ; ys) and j = 1; : : : 2n.Let �j = (bj1; : : : ; bj2s)be the truth table of 'j . Set N = [�T1 ; : : : ; �T2n ]:Note that N is a 2s � 2n matrix whose elements come from GF (2).N is constructed in such a way that its rows consist of precisely the 2s di�erent linear combinations of�1; : : : ; �s. To prove this is true, we take a close look at the rows of N . Let i = (b1i; b2i; : : : ; b2ni) be theith row of N , 0 <= i <= 2s � 1. Since bji = 'j(�i), where �i is the vector in Vs corresponding to the integeri, we have i = ('1(�i); '2(�i); : : : ; '2n(�i)). Write �i = (ai1; : : : ai2s). Theni = ( sXj=1 cj1aij ; sXj=1 cj2aij ; : : : ; sXj=1 cj2naij)= sXj=1 aij(cj1; cj2; : : : ; cj2n)= sXj=1 aij�j :This proves that i, the ith row of N , is indeed a linear combination of �1; : : : ; �s. On the other hand,since any nonzero linear combination of �1; : : : ; �s is balanced, �1; : : : ; �s are linearly independent. Thusi 6= j for any i 6= j. This proves our claim that the rows of N consist of precisely the 2s di�erent linearcombinations of �1; : : : ; �s.Now letM be an matrix obtained from N by substituting 0 with +1 and 1 with �1. Note that the sumof two di�erent rows of N is a nonzero linear combination of �1; : : : ; �s and hence balanced. This impliesthat the rows ofM is mutually orthogonal. By Lemma 7 each linear sequence of length 2s appears as 2n�scolumns ofM . This in turn implies that the truth table of a linear function on Vs appears as 2n�s columnsof N , i.e. any linear function ' on Vs appears 2n�s times in the set f'1; : : : '2ng, where 'j is de�ned in (3).As there is a one to one correspondence between linear functions on Vs and vectors in Vs, we conclude thatF (x) = (f1(x); : : : ; fs(x)) runs through each vector in Vs 2n�s times while x runs through Vn. ut
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