
Pitfalls in Designing Substitution BoxesJennifer SeberryXian-Mo ZhangYuliang ZhengDepartment of Computer ScienceThe University of WollongongWollongong, NSW 2522, AUSTRALIAE-mail: fjennie,xianmo,yuliangg@cs.uow.edu.auAbstractTwo signi�cant recent advances in cryptanalysis, namely the di�erential attack put for-ward by Biham and Shamir [3] and the linear attack by Matsui [7, 8], have had devastatingimpact on data encryption algorithms. An eminent problem that researchers are facing is todesign S-boxes or substitution boxes so that an encryption algorithm that employs the S-boxesis immune to the attacks. In this paper we present evidence indicating that there are manypitfalls on the road to achieve the goal. In particular, we show that certain types of S-boxeswhich are seemly very appealing do not exist. We also show that, contrary to previous per-ception, techniques such as chopping or repeating permutations do not yield cryptographicallystrong S-boxes. In addition, we reveal an important combinatorial structure associated withcertain quadratic permutations, namely, the di�erence distribution table of each di�erentially2-uniform quadratic permutation embodies a Hadamard matrix. As an application of thisresult, we show that chopping a di�erentially 2-uniform quadratic permutation results in anS-box that is very prone to the di�erential cryptanalytic attack.Key Wordssubstitution boxes (S-boxes), permutations, di�erential attack, Hadamard matrix, cryptography.1 Basic De�nitionsDenote by Vn the vector space of n tuples of elements from GF (2). Let � = (a1; : : : ; an) and� = (b1; : : : ; bn) be two vectors in Vn. The scalar product of � and �, denoted by h�;�i, is de�nedby h�; �i = a1b1 � � � � � anbn, where multiplication and addition are over GF (2). In this paper weconsider Boolean functions from Vn to GF (2) (or simply functions on Vn).Let f be a function on Vn. The (1;�1)-sequence de�ned by ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1))is called the sequence of f , and the (0; 1)-sequence de�ned by (f(�0), f (�1), : : :, f(�2n�1)) is called1



the truth table of f , where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1 = (1; : : : ;1; 1). f is saidto be balanced if its truth table has 2n�1 zeros (ones).An a�ne function f on Vn is a function that takes the form of f = a1x1� � � �� anxn� c, whereaj; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is called a linear function if c = 0. The sequence ofan a�ne (or linear) function is called an a�ne (or linear) sequence.The Hamming weight of a vector � 2 Vn, denoted by W (�), is the number of ones in the vector.A (1;�1)-matrix H of order m is called a Hadamard matrix if HH t = mIm, where H t is thetranspose of H and Im is the identity matrix of order m. A Sylvester-Hadamard matrix or Walsh-Hadamard matrix of order 2n, denoted by Hn, is generated by the following recursive relationH0 = 1; Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : :Now we introduce bent functions, an important combinatorial concept discovered by Rothausin the mid 1960's, although his pioneering work was not published until some ten years later [14].De�nition 1 A function f on Vn is said to be bent if2� n2 Xx2Vn(�1)f(x)�h�;xi = �1for every � 2 Vn. Here x = (x1; : : : ; xn) and f(x)� h�;xi is considered as a real valued function.Bent functions can be characterized in various ways. In particular, the following statements areequivalent (see also [6]):(i) f is bent.(ii) h�; `i = �2 12n for any a�ne sequence ` of length 2n, where � is the sequence of f .(iii) f(x)� f(x� �) is balanced for any non-zero vector � 2 Vn, where x = (x1; : : : ; xn).An n�s S-box or substitution box is a mapping from Vn to Vs, where n >= s. Now we consider anonlinearity criterion that measures the strength of an S-box against di�erential cryptanalysis [3, 4].The essence of a di�erential attack is that it exploits particular entries in the di�erence distributiontables of S-boxes employed by a block cipher. The di�erence distribution table of an n � s S-boxis a 2n � 2s matrix. The rows of the matrix, indexed by the vectors in Vn, represent the change inthe input, while the columns, indexed by the vectors in Vs, represent the change in the output ofthe S-box. An entry in the table indexed by (�;�) indicates the number of input vectors which,when changed by � (in the sense of bit-wise XOR), result in a change in the output by � (also inthe sense of bit-wise XOR).Note that an entry in a di�erence distribution table can only take an even value, the sum of thevalues in a row is always 2n, and the �rst row is always (2n;0; : : : ; 0). As entries with higher valuesin the table are particularly useful to di�erential cryptanalysis, a necessary condition for an S-boxto be immune to di�erential cryptanalysis is that it does not have large values in its di�erentialdistribution table (not counting the �rst entry in the �rst row).2



De�nition 2 Let F be an n � s S-box, where n >= s. Let � be the largest value in di�erentialdistribution table of the S-box (not counting the �rst entry in the �rst row), namely,� = max�2Vn;�6=0max�2Vs jfxjF (x)� F (x� �) = �gj:Then F is said to be di�erentially �-uniform, and accordingly, � is called the di�erential uniformityof F .Obviously the di�erential uniformity � of an n � s S-box is constrained by 2n�s <= � <= 2n.Extensive research has been carried out in constructing di�erentially �-uniform S-boxes with a low� [1, 13, 2, 9, 10, 11, 12]. Some constructions, in particular those based on permutation polynomialson �nite �elds, are simple and elegant. However, caution must be taken with De�nition 2. Inparticular, it should be noted that low di�erential uniformity (a small �) is only a necessary, butnot a su�cient condition for immunity to di�erential attacks. This is shown by the fact that S-boxesconstructed in [1, 9], which have a at di�erence distribution table, are extremelyweak to di�erentialattacks, despite that they achieve the lowest possible di�erential uniformity � = 2n�s [4, 5, 15]. Amore complete measurement that takes into account the number of nonzero entries in the �rstcolumn of a di�erence distribution table is the robustness introduced in [15].De�nition 3 Let F = (f1; : : : ; fs) be an n�s S-box, where fi is a function on Vn, i = 1; : : : ; s, andn >= s. Denote by L the largest value in the di�erence distribution table of F , and by N the numberof nonzero entries in the �rst column of the table. In either case the value 2n in the �rst row is notcounted. Then we say that F is R-robust against di�erential cryptanalysis, where R is de�ned byR = (1� N2n )(1� L2n ):Robustness gives more accurate information about the strength of an S-box against the di�eren-tial attack than di�erential uniformity does. However, di�erential uniformity has an advantage overrobustness in that the former is easier to discuss than the latter. For this reason, di�erential unifor-mity is employed as the �rst indicator for the strength of an S-box against the di�erential attack,while robustness is considered when more complete information about the strength is needed.An n � s S-box F = (f1; : : : ; fs) is said to be regular if F runs through each vector in Vs 2n�stimes while x runs through Vn once. S-boxes employed by a block cipher must be regular, sinceotherwise the cipher would be prone to statistical attacks. For a regular n� s S-box, its di�erentialuniformity is larger than 2n�s (see also Lemma 2 of [17]). The robustness of the S-box is furtherdetermined by the number of nonzero entries in the �rst column of the table.We are particularly interested in n�s S-boxes that have the following property: for any nonzerovector � 2 Vn, F (x)� F (x� �) runs through half of the vectors in Vs, each 2n�s+1 times, but notthrough the other half of the vectors in Vn. With each row in the di�erence distribution table ofsuch an S-box, half of its entries contain a value 2n�s+1 while the other half contain a value zero.For simplicity, we say such a di�erence distribution table to be uniformly half-occupied . Clearlyan n � s S-box with a UHODDT or uniformly half-occupied di�erence distribution table achievesthe di�erential uniformity of 2n�s+1. In Theorem 3 of [17], it has been proved that for quadraticS-boxes, 2n�s+1 is the lower bound on di�erential uniformity.Note that a di�erentially 2-uniform permutation is also a permutation with a UHODDT, andvice versa. These permutations have many nice properties [13, 2, 9, 10, 11, 12]. In particular, they3



achieve the highest possible robustness against the di�erential attack. The concept of n�s S-boxeswith a UHODDT can be viewed as a generalization of di�erentially 2-uniform permutations. Hencen � s S-boxes with a UHODDT are very appealing and have received extensive research (see forinstance [2]).There are two important questions about S-boxes with a UHODDT, namely(i) Do there exist S-boxes with a UHODDT ? If there do, how to construct them ?(ii) What is the robustness of an S-box with a UHODDT ?When n = s, the answer to the �rst question is \yes". It has been shown in [13, 11, 2] thatcertain permutation polynomials on GF (2n), n odd, have a UHODDT. So far no result has beenknown regarding the case of n > s. In Section 2, we will partially solve the problem by showing thatthere exist no quadratic n�s S-boxes with a UHODDT, if either n or s is even. The second questionwill be discussed in Section 3. We will prove that the robustness of an S-box with a UHODDT isvery low.Another important question is the synthesis of S-boxes, namely(iii) How to construct S-boxes from existing ones ?This question will be discussed in Section 4. We will show that many synthesis methods whichwere previously taken for granted, in fact do not yield strong S-boxes, even though the starting S-boxes employed are all strong ones. Section 5 is solely devoted to the investigation of combinatorialproperties of the di�erential distribution table of an quadratic permutation. We reveal a result thatis very interesting even from the point of view of pure combinatorics, namely, every uniformly half-occupied di�erence distribution table of a quadratic permutation embodies a Sylvester-Hadamardmatrix.2 Nonexistence of Certain Quadratic S-boxes2.1 On Quadratic S-boxes with a UHODDTAs mentioned in the previous section, an n� s S-box with a UHODDT or uniformly half-occupieddi�erence distribution table achieves the di�erential uniformity of 2n�s+1, and for quadratic S-boxes,2n�s+1 is the lower bound on di�erential uniformity. In the following we show an impossibility result,namely, there exist no quadratic S-boxes that have a UHODDT if either n or s is even.Assume that F = (f1; : : : ; fs) is a quadratic n � s S-box with a UHODDT, where n > s. Weprove that neither n nor s can be even.Recall that a vector � 2 Vn is called a linear structure of a function f on Vn if f(x)� f (x� �)is a constant. The set of the linear structures of f forms a linear subspace. The dimension of thesubspace is called the linearity dimension of f . Let �1; : : : ; �2n�1 be the 2n � 1 nonzero vectors inVn and g1; : : : ; g2s�1 be the 2s�1 nonzero linear combinations of f1; : : : ; fs. We construct a bipartitegraph whose vertices comprise �1; : : : ; �2n�1 on one side and g1; : : : ; g2s�1 on the other side. Anedge or link between �i and gj exists if and only if �i is a linear structure of gj .Theorem 2 of [17] states that n�`i is even, where `i is the linearity dimension of gi. Equivalently,n and `i must be both even or both odd. Since each gi is balanced, it can not be bent. By Lemma 54



of [17], a quadratic function is bent if and only if it does not have linear structures. Hence we have`i >= 1. On the other hand, from the proof for Corollary 1 of [17], we have `i <= n�2. We distinguishthe following two cases:Case 1: n is odd and `i is 1; 3; 5; : : :, or n� 2.Case 2: n is even and `i is 2; 4; 6; : : :, or n� 2.First we consider Case 1. Let pj denote the number of `i, 1 <= i <= 2n�1, such that `i = j. Thenwe have a sequence of numbers p1; p3; p5; : : : ; pn�2: Obviously,p1 + p3 + p5 + � � �+ pn�2 = 2s � 1: (1)Since F is a S-box with a UHODDT, for any nonzero vector �k 2 VnF (x)� F (x� �k) = (f1(x)� f1(x� �k); : : : ; fs(x)� fs(x� �k))is not regular. Thus, by Lemma 1, there exists a linear combination of f1(x)�f1(x��k); : : : ; fs(x)�fs(x��k), say gj(x)�gj(x��k), such that gj(x)�gj(x��k) is not balanced. Since gj(x)�gj(x��k)is a�ne, gj(x) � gj(x � �k) must be constant. This proves that any nonzero vector �k 2 Vn is alinear structure of a gj , a linear combination of f1; : : : ; fs. On the other hand, by Theorem 4 of [17],for each �k, there exists at most one gj among g1; : : : ; g2s�1 such that �k is a linear structure ofgj . By the construction of the bipartite graph, each �k is linked to a unique gj. Also each gi with`i = j has j linearly independent linear structures and 2j � 1 nonzero linear structures. Hence wehave (21 � 1)p1 + (23 � 1)p3 + (25 � 1)p5 + � � �+ (2n�2 � 1)pn�2 = 2n � 1: (2)>From (1) and (2) we have(21 � 2)p1 + (23 � 2)p3 + (25 � 2)p5 + � � �+ (2n�2 � 2)pn�2 = 2n � 2sor equivalently (22 � 1)p3 + (24 � 1)p5 + � � �+ (2n�3 � 1)pn�2 = 2s�1(2n�s � 1) (3)Note that 2k � 1 is divisible by 3 if and only k >= 2 is even. Thus the left hand side of (3) isdivisible by 3. This implies that the (2n�s�1) part in the right hand side of the equation is divisibleby 3. Hence s must be odd. Thus there exists no quadratic n � s S-box with a UHODDT if n isodd (n >= 5) and s is even.We now consider Case 2. Let qj denote the number of `i, 1 <= i <= 2n � 1, such that `i = j.Similarly to Case 1, we have a sequence of numbers q2; q4; q6; : : : ; qn�2, andq2 + q4 + q6 � � �+ qn�2 = 2s � 1;(22 � 1)q2 + (24 � 1)q4 + (26 � 1)q6 + � � �+ (2n�2 � 1)qn�2 = 2n � 1:By simple deduction,(23 � 2)q4 + (25 � 2)q6 + � � �+ (2n�3 � 2)qn�2 = 2n�1 � 3 � 2s�1 + 1: (4)It is not hard to see that the left hand side of (4) is even when n >= 4, while the right hand sideof (4) is always odd for s >= 2. >From this we can conclude that there exists no quadratic n � sS-box with a UHODDT if n is even with n >= 4.Summarizing Case 1 and Case 2, we have 5



Theorem 1 For n >= 4, there exists no quadratic n� s S-box with a UHODDT if either n or s iseven.Theorem 1 can be viewed as an extension of Corollary 2 in [17], which states that there existsno di�erentially 2-uniform quadratic permutation on an even dimensional vector space.By Theorem 1, n� s S-boxes with a UHODDT do not exist if either n or s is even. When n isodd and n = s, as mentioned before, we do have di�erentially 2-uniform quadratic permutation [13,2, 11]. Thus a problem that is left open is whether there are quadratic S-boxes with a UHODDTfor n > s, both n and s odd. It should be pointed out that an S-box which has an odd number ofinput bits and also an odd number of output bits may not be very useful in practice.2.2 An ExtensionThe result in the previous subsection can be extended to a special kind of di�erentially 2n�s+t-uniform quadratic S-boxes. Let F be a n � s S-box such that for any nonzero vector � 2 Vn,F (x)�F (x��) runs through 2s�t vectors in Vs, each 2n�s+t times, but not through the remaining2s � 2s�t vectors in Vs, where t >= 1. The case when t = 1 has been discussed in the previoussubsection. In the following we present a nonexistence result on the case when t > 1.Assume that F is a di�erentially 2n�s+t-uniform quadratic S-boxes such that for any nonzerovector � 2 Vn, F (x)�F (x��) runs through 2s�t vectors in Vs, each 2n�s+t times, but not throughthe remaining 2s � 2s�t vectors in Vs.Similarly to the previous discussions, we can construct a bipartite graph with �1; : : : ; �2n�1,the 2n � 1 nonzero vectors in Vn on one side and g1; : : : ; g2s�1, the nonzero linear combinations off1; : : : ; fs on the other side. An edge between �i and gj exists if and only if �i is a linear structureof gj . By Theorem 4 of [17], each �i is associated with at most 2n�s+t edges. In addition, one cansee that each �i is associated with exactly 2n�s+t edges.Now assume further that n is odd. By a similar argument to Case 1 in the previous section, wehave p1 + p3 + p5 + � � �+ pn�2 = 2s � 1;and (21 � 1)p1 + (23 � 1)p3 + � � �+ (2n�2 � 1)pn�2 = (2n�s+t � 1)(2n � 1):Hence (21 � 2)p1 + (23 � 2)p3 + � � �+ (2n�2 � 2)pn�2 = (2n�s+t � 1)(2n � 1)� (2s � 1): (5)where pj denotes the number of `i, 1 <= i <= 2n�1, such that `i = j, and `i is the linearity dimensionof gi.Now we prove that (5) can not hold for n odd and t even. Again we consider two cases: s oddand s even. First we suppose that s is odd. The left hand side is divisible by 3. With the righthand side, 2n�s+t � 1 is divisible by 3 (since n� s+ t is even), while 2s � 1 is not. Thus (5) cannothold when t is even and both n and s are odd.The other case is that s is even. In this case, the left hand side of (5) is divisible by 3. Sincen � s + t is odd, 2n�s+t � 1 is not divisible by 3, while 2s � 1 is. Thus (5) cannot stand when t iseven, n is odd and s is even.In summary, we have 6



Theorem 2 If n is odd and t is even, there exists no quadratic n � s S-boxes such that for anynonzero vector � 2 Vn, F (x)�F (x��) runs through 2s�t vectors in Vs, each 2n�s+t times, but notthrough the remaining vectors in Vs.3 Columns of a UHODDTIn the previous section we proved that there does not exist a quadratic n�s S-box with a UHODDTif either n or s is even. It is not clear whether or not higher degree S-boxes with a UHODDT exist.If there do exist such S-boxes, we would like to know whether or not they satisfy a more stringentrequirement, namely high robustness. Results to be shown below give a negative answer to thequestion.The following lemma is exactly the same as Theorem 1 of [17].Lemma 1 Let F = (f1; : : : ; fs) be a mapping from Vn to Vs, where each fj is a function on Vn.Then F is regular if and only if each nonzero linear combination of f1; : : : ; fs is balanced.It is easy to show that the pro�le of the di�erence distribution table of an S-box is not changedby a nonsingular linear transformation on input coordinates (see for instance [2, 17]). In particularwe haveLemma 2 Let F = (f1; : : : ; fs) be a regular S-box with a UHODDT or uniformly half-occupieddi�erence distribution table. Let A be a nonsingular matrix of order n and B a nonsingular matrixof order s over GF (2). Then both Let G(x) = F (xA) = (f1(xA); : : : ; fn(xA)) and H(x) = F (x)B =(f1(x); : : : ; fn(x))B are regular S-boxes with a UHODDT.By de�nition, each row in a uniformly half-occupied di�erence distribution table, except the�rst, contains an equal number of zero and nonzero entries. The following lemma shows that asimilar result holds with columns in the table.Lemma 3 Let F be a regular n� s S-box with a UHODDT. Then each column, except the �rst, inthe di�erence distribution table contains an equal number of zero and nonzero entries.Proof. We prove that for each nonzero � 2 Vs, there exist 2n�1 nonzero � 2 Vn such thatF (x)� F (x� �) = � has solutions for x.Fix x0 2 Vn. Since the di�erence distribution table of F is uniformly half-occupied, F (x0) �F (x0��) runs through each nonzero � 2 Vs 2n�s times while � runs through Vn. As x0 is arbitrary,for each nonzero � 2 Vs, there exist 2n � 2n�s pairs (x; �) such that F (x) � F (x � �) = �, where� 6= 0. On the other hand, since the di�erence distribution table of F is uniformly half-occupied,F (x) � F (x � �) = � either has 2n�s+1 solutions or has no solution for x. Thus for each nonzero� 2 Vs there exist 2n � 2n�s=2n�s+1 = 2n�1 nonzero vectors � 2 Vn such that F (x)� F (x� �) = �has solutions for x. utRecall that the robustness of an S-box is determined by the largest value in the di�erencedistribution table of the S-box, and also by the number of nonzero entries in the �rst column of thetable. The lemma described below gives the precise number of nonzero entries in the �rst columnof a uniformly half-occupied di�erence distribution table.7



Lemma 4 Let F be a regular n � s S-box with a UHODDT. Then there are 2n�1 � 2s�1 nonzeroentries in the �rst column of the di�erence distribution table (excluding the �rst entry).Proof. We show that there exist 2n�1 � 2s�1 nonzero � 2 Vn such that F (x)� F (x � �) = 0 hassolutions for x. Fix x0 2 Vn. Since the di�erence distribution table of F is uniformly half-occupied,F (x0) � F (x0 � �) runs through each � 2 Vs 2n�s times while � runs through Vn. In particular,F (x0)�F (x0��) runs through the zero vector in Vs 2n�s times, while � runs through Vn. Note that� = 0 is a trivial case. Hence F (x0)�F (x0��) runs through the zero vector in Vs 2n�s times while� runs through all nonzero vectors in Vn. In other words, there exist 2n�s � 1 nonzero � 2 Vn suchthat F (x0)�F (x0��) = 0. Since x0 is arbitrary, for each nonzero � 2 Vs, there exist 2n � (2n�s�1)pairs (x; �) such that F (x) � F (x � �) = 0, where � 6= 0. Recall that F (x) � F (x � �) = 0either has 2n�s+1 solutions or has no solution for x. Thus for each nonzero � 2 Vs there exist2n � (2n�s � 1)=2n�s+1 = 2n�1 � 2s�1 nonzero vectors � 2 Vn such that F (x) � F (x � �) = 0 hassolutions for x. utAs an immediate consequence of Lemma 4, we obtain the robustness of an S-box with aUHODDT: R = [1� (2n�1 � 2s�1)=2n](1� 2n�s+1=2n) = (1=2 + 2�n+s�1)(1 � 2�s+1):When n = s, we have R = 1 � 2�n+1, which is the highest possible value for robustness. However,when s is relatively smaller than n, say n� s > 3, R is very close to 1=2. For comparison, we notethat the robustness of S-boxes constructed in [15] is at least 7=8.4 On Methods for Synthesizing S-boxesThis section is concerned with methods for constructing S-boxes from existing ones. We show thata number of techniques which were previously taken for granted do not yield good S-boxes.4.1 Chopping PermutationsChopping permutations which are cryptographically strong has been conceived as a promisingmethod to construct S-boxes for DES-like encryption algorithms. For this reason, many researchershave focused their attention on permutations, especially those on a �nite �eld [2, 9, 10, 11, 12].Results to be present in this subsection indicate that, contrary to the common perception, thispractice does not produce good S-boxes.First we prove the following:Theorem 3 Let F = (f1; : : : ; fs) be a regular n� s S-box with a UHODDT, where n >= s and eachfj is a function on Vn. The following two statements hold:(i) Let 1 <= t <= s � 1 and let G be an S-box obtained by dropping s � t component functionsfrom F , say G = (f1; : : : ; ft). Then the di�erence distribution table of G is not uniformlyhalf-occupied. 8



(ii) Let n >= t >= s + 1 and let H be an S-box obtained by adding t � s component functions toF , say H = (f1; : : : ; fs; fs+1; : : : ; ft), where fs+1; : : : ; ft are newly added. Then the di�erencedistribution table of H is not uniformly half-occupied.Proof. (i) Since F has a UHODDT, for any nonzero � 6= 0, F (x)� F (x � �) runs through 2s�1vectors in Vs, each 2n�s+1 times, but not through the other 2s�1 vectors in Vs, while � runs throughVn. Fix a nonzero vector, say  = (0; �) 2 Vs, where 0 is the zero vector in Vt and � is a nonzerovector in Vs�t. By Lemma 3 there exist 2n�1 nonzero vector � such that F (x)� F (x� �) =  hassolutions for x. Thus there exist 2n�1 nonzero vector � such that G(x)�G(x� �) = 0, where 0 isthe zero vector in Vt, has solutions for x. It is easy to show that G is not uniformly half-occupied.Since G is regular there exist 2n�1 � 2t�1 nonzero vector � such that G(x) � G(x � �) = 0 (seeLemma 3) if G is uniformly half-occupied.(ii) follows (i). ut>From Theorem 3 chopping a regular S-box with a UHODDT does not yield a regular S-boxwith a UHODDT. In particular, chopping a di�erentially 2-uniform permutation on Vn does notproduce an S-box with a UHODDT.As quadratic permutations with a UHODDT or di�erentially 2-uniform quadratic permutationshave been studied very extensively, an important problem is about the structure of the di�erencedistribution table of an S-box obtained by chopping such a permutation. We will devote a singlesection, Section 5, to this topic.In addition to chopping permutations, other techniques, such as linear transforms or modulooperations on inputs or outputs of di�erentially 2-uniform permutations, and repeating di�erentially2-uniform permutations, are also conceived as possible S-box synthesis methods. In the followingwe show that none of these methods generates an S-box with a UHODDT.4.2 Linear Transforms Applied on InputsLet F be a di�erentially 2-uniform permutation on Vs, B a matrix of order n � s (n > s) overGF (2). Set G(y) = F (yB) where y 2 Vn. Since the rank of B is s, yB runs through 2s vectors inVs each 2n�s times while y runs through Vn. Since F is a permutation on Vs, G(y) is a regular n� sS-box.Unfortunately the di�erence distribution table of G(y) is not uniformly half-occupied. Thereason is described in the following. Since n > s there exists a nonzero vector, say �, such that�B = 0, where 0 is the zero vector in Vs. Note that G(y) � G(y � �) = F (yB) � F ((y � �)B) =F (yB)� F (yB � �B) = F (yB)� F (yB) = 0, where 0 is the zero vector in Vs, for every y 2 Vn.4.3 Linear Transforms Applied on OutputsLet F be a di�erentially 2-uniform permutation on Vs, and B a matrix of order n� s (n > s) overGF (2). Set G(x) = F (x)B. Note that the rank of B is s. Hence yB runs through 2s vectors in Vseach 2n�s times while y runs through Vn. As F is a permutation on Vn, G is a regular n� s S-box.Since n > s, there exists a matrix of order n � (n � s), say D, such that the matrix A = [BD]of order n is nonsingular. Set 	(x) = F (x)A. By Lemma 2, 	 is a also a di�erentially 2-uniformpermutation. By Theorem 3, G is not an S-box with a UHODDT.9



4.4 Connecting Permutations in ParallelLet F be a di�erentially 2-uniform permutation on Vs. SetG(y) = (1 � xs+1)F (x)� xs+1F (x� �)where x = (x1; : : : ; xs), y = (x1; : : : ; xs; xs+1), � 2 Vs. Note that G(x; 0) = F (x),G(x; 1) = F (x��).Since F is permutation on Vs G is a regular (s+ 1)� s S-box.Let � = (�;1). Clearly G(y � �) = G(y) for every y 2 Vs+1. Thus G(y)�G(y � �) = 0, where0 is the zero vector in Vs, for every y 2 Vn. Thus the di�erence distribution is very bad in this case,and G(y) is not an S-box with a UHODDT.The above discussions can be extended to the general case where F is repeated 2k times, k >= 1.4.5 Enlarging Inputs or Reducing Outputs by Modulo OperationsLet � = (a1; : : : ; an) 2 Vn. Rewrite � as � = a1 � a2x � � � � � anxn�1. Thus Vn and the set ofpolynomials of degree at most n� 1 over GF (2) have a one-to-one correspondence. Let �(x) be aprimitive polynomial of degree s (s < n). For any � 2 Vn, we have� = h� � �where the degree of h is less than or equal to n� s� 1, the degree of � is less than s. Thus we havede�ned a mapping from Vn to Vs: �! �.Now let � be a vector in Vn and � a vector in Vs. Let F (�) be a di�erentially 2-uniformpermutation on Vs. Set G(�) = F (�). This gives an n � s S-box. Note that � � � = � � �. Thismeans that the mapping from Vn to Vs, � ! �, is linear. Hence G(�) is not an S-box with aUHODDT, although it is regular (see Subsection 5.1).Now let �(�) be a di�erentially 2-uniform permutation on Vn. Set 	(�) = �(�). 	 is an n � sS-box. A similar argument shows that the di�erence distribution table of 	(�) is not uniformlyhalf-occupied.5 Hadamard Matrices Embodied in Di�erence Distribu-tion TableIn this section we reveal a very important combinatorial property of di�erentially 2-uniform quadraticpermutations, namely, every di�erentially 2-uniform quadratic permutation is associated with aSylvester-Hadamard matrix. As an application of the result, we show that chopping a di�erentially2-uniform quadratic permutation results in an S-box whose di�erence distribution table is nearlyat. Such an S-box is very weak to the di�erential attack.5.1 Di�erence Distribution Tables and Incidence FunctionsLet F = (f1; : : : ; fn) be a di�erentially 2-uniform quadratic permutation on Vn, namely, a quadraticpermutation with a UHODDT or uniformly half-occupied di�erence distribution table. Let W� bethe set of vectors F (x)� F (x� �) runs through when x runs through Vn, namely,W� = fF (x)� F (x� �)jx 2 Vng (6)10



Obviously if � = 0 then W� = f0g. Since each fj is quadratic fj(x)�fj(x��) is an a�ne function.Write fj � fj(x� �) = c1jx1 � � � � � cnjxn � dj , j = 1; : : : ; n. Set C� = (cij), �� = (d1; : : : ; dn).Thus F (x)� F (x� �) = xC� � �� and W� = fF (x)� F (x� �)jx 2 Vng = fxC� � ��jx 2 Vng.Now let � 6= 0. Since F is a permutation, F (x)� F (x� �) 6= 0 for any x 2 Vn. Hence 0 62 W�.Since F (0) � F (�) = ��, we have �� 6= 0. And by the de�nition of a UHODDT, jW�j = 2n�1 andhence rank(C�) = n� 1. Thus we haveLemma 5 Let F be a di�erentially 2-uniform quadratic permutation on Vn. If � 6= 0 then(i) 0 62 W�, (ii) �� 6= 0, (iii) jW�j = 2n�1, and (iv) rank(C�) = n� 1.Now set W 0� = fxC�jx 2 Vng. Then we haveLemma 6 Let F be a di�erentially 2-uniform quadratic permutation on Vn. If � 6= 0 then Vn =W� [W 0� and W� \W 0� = �.Proof. Suppose that W� \W 0� 6= �. Then there exists a � 2 Vn such that � 2 W� \W 0�. Thus� = �C� � �� and � = �C� for some �, � 2 Vn. Hence (� � �)C� � �� = 0. This implies that0 2 W�, which contradicts Lemma 5. This proves that W� \W 0� = �. Note that rank(C�) = n� 1.Hence we have jW 0�j = 2n�1 and W� [W 0� = Vn. utLemma 7 Let F be a di�erentially 2-uniform quadratic permutation on Vn. Let � 6= 0. Then thefollowing statements hold:(i) If �, �0 2 W� then � � �0 2 W 0�,(ii) if � 2 W�, �0 2 W 0� then � � �0 2 W�,(iii) if �, �0 2 W 0� then � � �0 2 W 0�.Proof. (i) Write � = �C�� �� and �0 = �0C�� �� for some �, �0 2 Vn. Hence �� �0 = (� � �0)C�.This implies that � � � 2 W 0�.(ii) Write � = �C� � �� and �0 = �0C� for some �, �0 2 Vn. Hence � � �0 = (� � �0)C�� �� and� � � 2 W�.(iii) Write � = �C� and �0 = �0C� for some �, �0 2 Vn. Hence ���0 = (���0)C� and ��� 2 W 0�.utLet F be a di�erentially 2-uniform quadratic permutation on Vn and let W� be the same as (6).For each � 2 Vn we de�ne an incidence function '� as follows:'�(�) = 8>>><>>>: 0 if � = 01 if � 6= 0 and � 2 W�0 if � 6= 0 and � 62 W� (7)As is to be proved below, each '� is in fact a linear function on Vn.11



Lemma 8 Let F be a di�erentially 2-uniform quadratic permutation on Vn. Then '�, de�ned in(7), is a linear function on Vn for every vector � 2 Vn.Proof. The lemma is true trivially true when � = 0. Now let � 6= 0 and consider '�(x)�'�(x�!).We distinguish between ! 2 W� and ! 62 W�.Case 1: ! 2 W�. In this case we have '�(!) = 1.Case 1.1: Consider x 2 W�. We have '�(x) = 1. By Lemma 7, x�! 62 W�. Hence '�(y�!) = 0.Furthermore we have '�(x)� '�(x� !) = '�(!) = 1.Case 1.2: Now we consider x 62 W�. We have '�(x) = 0. By Lemma 7, x� ! 2 W� and hence'�(x� !) = 1. Therefore '�(x)� '�(x� !) = '�(!) = 1.Case 2: ! 62 W�. In this case we have '�(!) = 0. By an argument similar to the above, we have'�(x)� '�(x� !) = '�(!) = 0 regardless whether or not x 2 W�.In summary, '�(x) � '�(x � !) = '�(!) holds in all cases. This proves that '� is a linearfunction on Vn. utLemma 9 Let F be a di�erentially 2-uniform quadratic permutation on Vn. If � 6= �0, then '� 6='�0.Proof. When � = 0 or �0 = 0, the lemma is clearly true.Next we consider the case when � 6= 0 and �0 6= 0. Suppose the lemma is not true. Then wehave '� = '�0, namely, W� = W�0 for � 6= �0. Note that F (x0)� F (x0 � �� �0) 2 W���0 for each�xed x0 2 Vn. Rewrite F (x0)�F (x0����0) = F (x0)�F (x0��)�F (x0��)�F (x0����0).Since F (x0)�F (x0��) 2 W�, F (x0��)�F (x0����0) 2 W�0 and W� = W�0, by Lemma 7,we have F (x0)� F (x0 � � � �0) 2 W 0�.As x0 is arbitrary, we have W���0 �W 0�. Note that jW���0j = jW 0�j = 2n�1. ThusW���0 = W 0� (8)By Lemma 5, 0 62 W�. Then by Lemma 6, 0 2 W 0�. On the other hand, by Lemma 5, 0 62 W���0.This contradicts (8). ut5.2 Hadamard Matrices in Di�erence Distribution TablesLemma 8 states that each row of the di�erential distribution table is associated with a linear functionon Vn, while Lemma 9 indicates that these linear functions are all di�erent. Hence we haveTheorem 4 Let F be a di�erentially 2-uniform quadratic permutation on Vn. Then '� runs throughall linear functions on Vn while � runs through the vectors in Vn.Recall that �0; �1; : : : ; �2n�1 are all the vectors in Vn, with �0 = (0; : : : ; 0), : : :, �2n�1 = (1; : : : ; 1).Let M = (mij) be a (1;�1)-matrix de�ned bymij = (�1)'�i(�j) (9)M is called the di�erence trait matrix of F . Essentially,M is a matrix obtained from the di�erencedistribution table of the S-box by replacing each zero entry by 1 and each nonzero entry by �1,with an exception that the �rst entry in the �rst row is replaced by 1.12



Theorem 5 Let F be a di�erentially 2-uniform quadratic permutation on Vn. Then M , the di�er-ence trait matrix of F , is a Sylvester-Hadamard matrix if the row-order is ignored.Proof. From Theorem 4, the 2n rows of M comprise all the linear sequences of length 2n. ByLemma 1 of [16], each linear sequence of length 2n is a row of Hn. Thus M can be changed to Hnby re-ordering its rows. utObviously, W�, '� and M can be de�ned for any permutation on Vn, not restricted to quadraticones.Theorem 6 Let F be a di�erentially 2-uniform (not necesarrily quadratic) permutation on Vn andM be the di�erence trait matrix of F . Then F�1, the inverse of F , is also a di�erentially 2-uniformpermutation, and the di�erence trait matrix of F�1 is the transpose of M .Proof. Suppose that F�1(y)� F�1(y � �) = � (10)where �, � 6= 0. Set x = F�1(y). Then we have y = F (x), F�1(y � �) = x� �, F (F�1(y � �)) =F (x� �), y � � = F (x� �), and F (x)� � = F (x� �). HenceF (x)� F (x� �) = �: (11)Since F is di�erentially 2-uniform, by Lemma 3, for any nonzero � 2 Vn there exist 2n�1 nonzerovectors � 2 Vn such that (11) holds. Note that if (11) holds then (10) also holds. Thus for anynonzero � 2 Vn there exist 2n�1 nonzero vectors � 2 Vn such that (10) holds. This proves thatF�1 is also di�erentially 2-uniform. This result has also been obtained by Nyberg (Proposition 2of [11]).We can de�ne W 0�, '0� and M 0 for F�1 as we did with W�, '� and M for F . Since (10) and (11)stand in parallel, we can conclude that '0�(�) = '�(�) and M 0 is identical to the transpose of M .Since M ia an Hadamard matrix, so is M 0 utNote that for a di�erentially 2-uniform quadratic permutation F based on a cubic polynomialon GF (2n), n odd, the algebraic degree of F�1 is larger than (n+1)=2. By Theorems 5 and 6, boththe di�erence trait matrix of F and that F�1 are Sylvester-Hadamard Matrices, with the formerbeing subject to re-ordering its rows while the later its columns.5.3 Chopping Quadratic PermutationsLet F = (f1; : : : ; fn) be a di�erentially 2-uniform permutation on Vn. Let G be an S-box obtained bychopping a component function of F , say G = (f2; : : : ; fn). Similarly toW�, ' andM correspondingto F (see (6), (7) and (9)), we can de�neU� = fG(x)�G(x� �)jx 2 Vng;13



where � 2 Vn, and the incidence function �(�) = 8>>><>>>: 0 if � = 01 if � 6= 0 and � 2 U�0 if � 6= 0 and � 62 U�where � 2 Vn�1.Let �0; �1; � � � ; �2n�1 be the ordered vectors in Vn and �0; �1; � � � ; �2n�1�1 the ordered vectorsin Vn�1. De�ne a 2n � 2n�1 (1, -1)-matrix, say N = (nij), where nij = (�1) �i (�j).Write M = [M1M2] where each Mj is of order 2n � 2n�1, M1 = (mij), and M2 = (mij+2n�1). Itis easy to see that  �(�) = 1 if and only if '�(0; �) = 1 or '�(1; �) = 1. In other words, nij = �1if and only if mij = �1 or mij+2n�1 = �1.Since F is a di�erentially 2-uniform quadratic permutation, by Theorem 5, each row of M is arow of Hn. Now recall that Hn = " Hn�1 Hn�1Hn�1 �Hn�1 #. Write Hn = (hij), i; j = 1; : : : ;2n. We can seethat �hij = hij+2n�1 if i > 2n�1. This implies that hij = �1 or mij+2n�1 = �1, if i > 2n�1. Notethat M and Hn have the same set of rows. This proves that there exists 2n�1 nonzero � 2 Vn suchthat  � is constant 1. In this case G(x) �G(x � �) runs through every vector (including the zerovector) in Vn�1, for some 2n�1 nonzero vectors � 2 Vn and hence the robustness of G is less than 12.To summarize the above discussions, the di�erence distribution table of an S-box obtained bychopping a component function of a di�erentially 2-uniform quadratic permutation has the followingpro�le: it can be viewed as a folded (right to left) version of the uniformly half-occupied table of theoriginal permutation, with half of the rows containing a value 2 in all their entries, and the remainingrows, not counting the �rst row, containing an equal number of 0s and 4s. Similarly, chopping twocomponent functions from a permutation results in an S-box whose di�erence distribution table isalmost at: it can be viewed as a twice-folded (right to left) version of the uniformly half-occupiedtable of the original permutation, and three quarters of the rows contain a value 4 in all theirentries, while the remaining rows, not counting the �rst row, have an equal number of 0s and 8s.This observation can be extended to the case when three or more component functions are chopped.In conclusion, S-boxes obtained by chopping di�erentially 2-uniform quadratic permutationshave an almost at di�erence distribution table, which renders a DES-like encryption algorithmthat employs such S-boxes very prone to the di�erential attack.6 Concluding RemarksWe have shown that certain S-boxes that are seemly very appealing do not exist. We have also shownthat various methods for synthesizing S-boxes do not produce cryptographically desirable S-boxes.In addition, we have revealed an important combinatorial structure in quadratic permutations,namely, each di�erentially 2-uniform quadratic permutation embodies a Hadamard matrix.In Section 2, we obtained a nonexistence result for quadratic S-boxes with a UHODDT oruniformly half-occupied di�erence distribution table. This result might be extended in several di-rections. One direction is to di�erentially 2n�s+1-uniform quadratic S-boxes which include quadraticS-boxes with a UHODDT as a special case. Another direction is to higher degree S-boxes.14
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