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t. The work investigates 
heating prevention in se
ret sharing.It is argued that 
heating is immune against 
heating if the 
heatersgain no advantage over honest parti
ipants by submitting invalid sharesto the 
ombiner. This work addresses the 
ase when shares and the se
retare taken from GF (pt). Two models are 
onsidered. The �rst one exam-ines the 
ase when 
heaters 
onsistently submit always invalid shares.The se
ond model deals with 
heaters who submit a mixture of validand invalid shares. For these two models, 
heating immunity is de�ned,properties of 
heating immune se
ret sharing are investigated and their
onstru
tions are given.Keywords: Se
ret Sharing, Nonlinear Se
ret Sharing, Cheating Immunity1 Introdu
tionSe
ret sharing is widely used to produ
e group-oriented 
ryptographi
 algo-rithms, systems and proto
ols. Tompa and Woll [11℄ showed that Shamir se-
ret sharing 
an be subje
t to 
heating by dishonest parti
ipants. It is easy tosee that, in fa
t, dishonest parti
ipants 
an 
heat in any linear se
ret sharing.Cheating prevention has been addressed in literature for 
onditionally and un-
onditionally se
ure se
ret sharing. For 
onditionally se
ure se
ret sharing, the
ombiner 
he
ks validity of submitted shares before attempting to 
ompute these
ret. Any invalid share (and the 
heater) is likely to be dete
ted before the se-
ret re
onstru
tion (see [2, 1, 6℄). Publi
ly veri�able se
ret sharing (see [3, 5, 9, 7℄)provide a solution to this problem in the 
onditionally se
ure setting. We arguethat instead of setting an expensive veri�
ation infrastru
ture to dete
t 
heaters,it is possible to dis
ourage them from 
heating. It is likely that 
heaters will bedis
ouraged if they are not able to re
onstru
t the valid se
ret from the invalidone returned by the 
ombiner. Ideally, submission of invalid shares should notgive any advantage to the 
heaters over the honest parti
ipants in re
overy ofthe valid se
ret. In this work shares and the se
ret are from GF (pt). The stru
-ture of the paper is as follows. First we introdu
e a basi
 model of 
heating inwhi
h, 
heaters always submit invalid shares. Cheating immunity is de�ned and
onstru
tions of 
heating immune se
ret sharing are given. Further we generalise



our model for the 
ase where the 
ollaborating 
heaters may submit an arbitrarymixture of their valid and invalid shares. Again, the notion of stri
t immunityis introdu
ed, its properties are investigated and 
onstru
tions are shown.2 Basi
 Model of CheatingLet GF (pt) denote a �nite �eld with pt elements where p is a prime number andt in a positive integer. We write GF (pt)n to denote the ve
tor spa
e of n tuplesof elements from GF (pt). Then ea
h ve
tor � 2 GF (pt)n 
an be expressed as� = (a1; : : : ; an) where a1; : : : ; an 2 GF (pt). We 
onsider a mapping f fromGF (pt)n to GF (pt). Usually we write f as f(x) or f(x1; : : : ; xn) where x =(x1; : : : ; xn) and ea
h xj 2 GF (pt). f is also 
alled a fun
tion on GF (pt)n. f issaid to be balan
ed if f(x) takes ea
h element of GF (pt) pre
isely pt(n�1) timeswhile x goes through ea
h ve
tor in GF (pt)n on
e. The Hamming weight of ave
tor � 2 GF (pt)n, denoted by HW (�), is the number of nonzero 
oordinatesof �. An aÆne fun
tion f on GF (pt)n is a fun
tion that takes the form of f(x1;: : : ; xn) = a1x1 + � � � + anxn + 
, where + denotes the addition in GF (pt),aj ; 
 2 GF (pt), j = 1; 2; : : : ; n. Furthermore f is 
alled a linear fun
tion if 
 = 0.It is easy to verify that any non-
onstant aÆne fun
tion is balan
ed.We see se
ret sharing as a set of distribution rules 
ombined into a singletable T (see [10℄) with entries from GF (pt). We also assume that we are dealingwith (n; n) threshold s
heme where any n parti
ipants are able to determine asingle entry from T whi
h indi
ates the se
ret. Our 
onsiderations are restri
tedto the 
ase of (n; n) se
ret sharing. The general 
ase of (n;N) se
ret sharing
an be seen as a 
on
atenation of (n; n) se
ret sharing with a system of N\
onsistent" linear equations. Shares are generated for N parti
ipants using thelinear equations. Any n parti
ipants 
an get a system of linear equations witha unique solution whi
h points out the unique row of the table T . Let x =(x1; : : : ; xn) and Æ = (Æ1; : : : ; Æn) be two ve
tors in GF (pt)n. De�ne a ve
torx+Æ 2 GF (pt)n, whose j-th 
oordinate is xj if Æj 6= 0, or 0 if Æj = 0. In addition,we de�ne a ve
tor x�Æ 2 GF (pt)n, whose j-th 
oordinate is 0 if Æj 6= 0, or xjif Æj = 0. Let � = (�1; : : : ; �n) and Æ = (Æ1; : : : ; Æn) be two ve
tors in GF (pt)n.We write � � Æ to denote the property that if �j 6= 0 then Æj 6= 0. In addition,we write � � Æ to denote the property that � � Æ and HW (�) < HW (Æ). Inparti
ular, if Æ0 � Æ and HW (Æ0) = HW (Æ) we write Æ 1 Æ0. It is easy to verifythat Æ 1 Æ0 () Æ0 � Æ and Æ � Æ0 () both x+Æ = x+Æ0 and x�Æ = x�Æ0 hold forany x 2 GF (pt)n, where () denotes \if and only if". We de�ne the followingnotation that will be frequently used in this paper. Let Æ be a nonzero ve
tor inGF (pt)n, � � Æ and u 2 GF (pt). SetRf (Æ; �; u) = fx�Æ jf(x�Æ + �) = ug (1)We also simply write Rf (Æ; �; u) as R(Æ; �; u) if no 
onfusions o

ur.Lemma 1. Let Æ be a nonzero ve
tor in GF (pt)n, � � Æ, and u 2 GF (pt).Then for any given fun
tion f on GF (pt)n, (i) R(Æ; �; u) = R(Æ0; �; u) if Æ0 1 Æ,(ii) R(Æ; �+Æ ; u) = R(Æ; 
+Æ ; u) for any �; 
 2 GF (pt)n with �+Æ = 
+Æ , (iii) thereexists some b 2 GF (pt) su
h that R(Æ; �; b) 6= ;, where ; denotes the empty set.



Proof. As (i) and (ii) hold obviously, we only prove (iii). Let 
 be any ve
tor inGF (pt)n. Set f(
�Æ + �) = b. By de�nition, 
�Æ 2 Rf (Æ; �; b) and thus R(Æ; �; b) 6=;. utGiven a fun
tion f on GF (pt)n, we introdu
e the following notations:{ Let � 2 GF (pt)n be the sequen
e of shares held by the groupP = fP1; : : : ; Pngof n parti
ipants and the se
ret K = f(�).{ The 
olle
tion of 
heaters is determined by the sequen
e Æ = (Æ1; Æ2; : : : ; Æn)where Pi is a 
heater () Æi is nonzero.{ At the pooling time, the 
heaters submit their shares. It is assumed that
heaters always submit invalid shares. The honest parti
ipants always submittheir valid shares. We 
onsider the ve
tor � + Æ. From the properties of x+Æand x�Æ , � + Æ = ��Æ + �+Æ + Æ. Thus the 
ombiner obtains �+ Æ that splitsinto two parts: ��Æ { the part submitted by honest parti
ipants, and �+Æ + Æ{ the part submitted by 
heaters. The 
ombiner returns an invalid se
retK� = f(� + Æ). Note that the 
heaters always 
hange their shares. Weassume that there exists at least one 
heater, in other words, Æ is nonzero orHW (Æ) > 0.{ �+Æ determines valid shares held by the 
heaters. The set R(Æ; �+Æ ;K), orfx�Æ jf(x�Æ +�+Æ ) = Kg, determines a 
olle
tion of rows of T with the 
orre
tse
ret K and valid shares held by the 
heaters.{ The set R(Æ; �+Æ + Æ;K�), or fx�Æ jf(x�Æ +�+Æ + Æ) = K�g, represents the viewof the 
heaters after getting ba
k K� from the 
ombiner.The fun
tion f is 
alled the de�ning fun
tion as it determines the se
ret shar-ing. The nonzero ve
tor Æ = (Æ1; : : : ; Æn) is 
alled a 
heating ve
tor, � is 
alled aoriginal ve
tor. The value of �Æ;� = #(R(Æ; �+Æ +Æ;K�)\R(Æ; �+Æ ;K))=#R(Æ; �+Æ +Æ;K�), expresses the probability of 
heater su

ess with respe
t to Æ and �, where#X denotes the number of elements in the set X . As an original ve
tor � is al-ways in R(Æ; �+Æ +Æ; K�) \ R(Æ; �+Æ ;K), the probability of su

essful 
heatingalways satis�es �Æ;� > 0. Clearly the number of 
heaters is equal to HW (Æ).Theorem 1. Given a se
ret sharing s
heme with its de�ning fun
tion f onGF (pt)n. Let Æ 2 GF (pt)n with 0 < HW (Æ) < n be a 
heating ve
tor and� be an original ve
tor in GF (pt)n. If �Æ;� < p�t then there exists a ve
tor
 2 GF (pt)n su
h that �Æ;
 > p�t.Proof. Let f(�) = K and f(�+Æ) = K�. By de�nition, R(Æ; �+Æ ;K) = fx�Æ jf(x�Æ +�+Æ ) = Kg and R(Æ; �+Æ + Æ;K�) = fx�Æ jf(x�Æ + �+Æ + Æ) = K�g. We partitionR(Æ; �+Æ + Æ;K�) into pt parts: R(Æ; �+Æ + Æ;K�) = [u2GF (pt)Qu where Qu =R(Æ; �+Æ +Æ;K�)\R(Æ; �+Æ ; u+K). Clearly #R(Æ; �+Æ +Æ;K�) =Pu2GF (pt)#Qu.Note that R(Æ; �+Æ + Æ;K�) \ R(Æ; �+Æ ;K) = Q0. Therefore �Æ;� = #(R(Æ; �+Æ +Æ;K�)\R(Æ; �+Æ ;K))=#R(Æ; �+Æ +Æ;K�) = #Q0=#R(Æ; �+Æ +Æ;K�). Sin
e �Æ;� <p�t, we have #Q0=#R(Æ; �+Æ +Æ;K�) < p�t. It follows that #Q0 < p�t#R(Æ; �+Æ +Æ;K�). Thus we know that Pu2GF (pt);u 6=0#Qu > (1� p�t)#R(Æ; �+Æ + Æ;K�).Thus there exists some b 2 GF (pt) with b 6= 0 su
h that #Qb > p�t#R(Æ; �+Æ +



Æ;K�). By de�nition, Qb = fx�Æ jf(x�Æ + �+Æ + Æ) = K�, f(x�Æ + �+Æ ) = b+Kg.Then there exists a ve
tor ��Æ 2 Qb and then f(��Æ +�+Æ +Æ) = K�, f(��Æ +�+Æ ) =b+K. Set 
 = ��Æ +�+Æ . Thus f(
+Æ) = K� and f(
) = b+K. Clearly 
+Æ = �+Æand 
�Æ = ��Æ . Next we 
hoose 
 as an original ve
tor. Due to R(Æ; 
+Æ + Æ; K�)= fx�Æ jf(x�Æ + 
+Æ + Æ) = K�g, R(Æ; 
+Æ ; b +K) = fx�Æ jf(x�Æ + 
+Æ ) = b +Kgand 
+Æ = �+Æ , we know that R(Æ; 
+Æ + Æ;K�)\R(Æ; 
+Æ ; b+K) = Qb and �Æ;
 =#(R(Æ; 
+Æ +Æ;K�)\R(Æ; 
+Æ ; b+K))=#R(Æ; 
+Æ +Æ;K�) = #Qb=#R(Æ; 
+Æ +Æ;K�)= #Qb=#R(Æ; �+Æ + Æ;K�) > p�t. ut2.1 k-Cheating Immune Se
ret Sharing S
hemeGiven a se
ret sharing with its de�ning fun
tion f on GF (pt)n. For a �xednonzero Æ 2 GF (pt)n, due to Theorem 1, minf�Æ;�j� 2 GF (pt)ng < p�t impliesthat maxf�Æ;�j� 2 GF (pt)ng > p�t. Therefore it is desirable that �Æ;� = p�tholds for every � 2 GF (pt)n. A se
ret sharing is said to be k-
heating if �Æ;� =p�t holds for every Æ 2 GF (pt)n with 1 � HW (Æ) � k and every � 2 GF (pt)n.Theorem 2. Given a se
ret sharing with its de�ning fun
tion f on GF (pt)n.Then this se
ret sharing is k-
heating immune () for any integer l with 1 �l � k, any Æ 2 GF (pt)n with HW (Æ) = l, any � � Æ and any u; v 2 GF (pt),the following 
onditions hold simultaneously: (i) #R(Æ; �; v) = pt(n�l�1), (ii)#(R(Æ; �; v) \ R(Æ; � + Æ; u)) = pt(n�l�2).Proof. Assume that the se
ret sharing is k-
heating immune. Choose Æ as a 
heat-ing ve
tor and any ve
tor � 2 GF (pt)n as an original ve
tor. Due to Lemma1, there exist a; b 2 GF (pt) su
h that R(Æ; �+Æ + Æ; a) 6= ; and R(Æ; �+Æ ; b) 6= ;.Note that R(Æ; �+Æ + Æ; a) 
an be partitioned into pt parts: R(Æ; �+Æ + Æ; a) =Sv2GF (pt)R(Æ; �+Æ +Æ; a)\R(Æ; �+Æ ; v). Assume that R(Æ; �+Æ +Æ; a)\R(Æ; �+Æ ; v) 6=; for some v 2 GF (pt). Then there exists a ve
tor ��Æ 2 R(Æ; �+Æ + Æ; a) \R(Æ; �+Æ ; v). Set 
 = ��Æ + �+Æ . Sin
e the se
ret sharing is k-
heating immune,#(R(Æ; 
+Æ + Æ; a) \ R(Æ; 
+Æ ; v))=#R(Æ; 
+Æ + Æ; a) = �Æ;
 = p�t, where 
+Æ = �+Æ .Thus #R(Æ; �+Æ + Æ; a) = pt#(R(Æ; �+Æ + Æ; a) \R(Æ; �+Æ ; v)) whenever R(Æ; �+Æ +Æ; a)\R(Æ; �+Æ ; v) 6= ;. It follows that #R(Æ; �+Æ +Æ; a) =Pv2GF (pt)#(R(Æ; �+Æ +Æ; a) \ R(Æ; �+Æ ; v)). Combing the above two equalities, we know that R(Æ; �+Æ +Æ; a) \ R(Æ; �+Æ ; v) 6= ; for every v 2 GF (pt) and thus #(R(Æ; �+Æ + Æ; a) \R(Æ; �+Æ ; v)) = p�t#R(Æ; �+Æ + Æ; a) for every v 2 GF (pt). Repla
ing �, Æ, by� + Æ, (p � 1)Æ respe
tively, due to the same arguments, we have #(R((p �1)Æ; �+Æ + pÆ; b) \ R((p � 1)Æ; �+Æ + Æ; u)) = p�t#R((p � 1)Æ; �+Æ + pÆ; b) for ev-ery u 2 GF (pt). Sin
e the 
hara
teristi
 of the �nite �eld GF (pt) is p, pe = 0for every e 2 GF (pt). It follows that #(R((p � 1)Æ; �+Æ ; b) \ R((p � 1)Æ; �+Æ +Æ; u)) = p�t#R((p � 1)Æ; �+Æ ; b) for every u 2 GF (pt). Using Lemma 1, we ob-tain #(R(Æ; �+Æ ; b) \ R(Æ; �+Æ + Æ; u)) = p�t#R(Æ; �+Æ ; b) for every u 2 GF (pt).Re
all that R(Æ; �+Æ + Æ; a) 6= ; and R(Æ; �+Æ ; b) 6= ;. Therefore we have provedthat R(Æ; �+Æ ; v) 6= ; and R(Æ; �+Æ + Æ; u) 6= ; for every u; v 2 GF (pt). Due tothe same reasoning, we have #(R(Æ; �+Æ + Æ; u) \ R(Æ; �+Æ ; v)) = p�t#R(Æ; �+Æ +Æ; u) and #(R(Æ; �+Æ ; v) \ R(Æ; �+Æ + Æ; u)) = p�t#R(Æ; �+Æ ; v) for every u; v 2



GF (pt). Comparing the above two equalities, we 
on
lude that #R(Æ; �+Æ +Æ; u) =#R(Æ; �+Æ ; v) for every u; v 2 GF (pt). Therefore both #R(Æ; �+Æ + Æ; u) and#R(Æ; �+Æ ; v) are 
onstant. Note thatPv2GF (pt)#R(Æ; �+Æ ; v) = pt(n�l). We haveproved that #R(Æ; �+Æ ; v) = pt(n�l�1) for any v 2 GF (pt). Thus we have provedthat #(R(Æ; �+Æ +Æ; u)\R(Æ; �+Æ ; v)) = pt(n�l�2) for every u; v 2 GF (pt). For any� � Æ, 
hoose � 2 GF (pt)n su
h that �+Æ = � . Clearly both 
onditions (i) and(ii) hold. Conversely assume the de�ning fun
tion f satis�es 
onditions (i) and(ii). Choose any Æ 2 GF (pt)n with HW (Æ) = l, where 1 � l � k, as a 
heatingve
tor and any � as an original ve
tor. Set f(�) = K and f(� + Æ) = K�. Byde�nition, �Æ;� = #(R(Æ; �+Æ + Æ;K�) \R(Æ; �+Æ ;K))=#R(Æ; �+Æ + Æ;K�). Due to
onditions (i) and (ii), �Æ;� = p�t. Thus we have proved that the se
ret sharingis k-
heating immune. utTheorem 3. Given a se
ret sharing with its de�ning fun
tion f on GF (pt)n.Then the following statements are equivalent: (i) this se
ret sharing is k-
heatingimmune, (ii) for any integer l with 1 � l � k, any Æ 2 GF (pt)n with HW (Æ) = l,any � � Æ and any u; v 2 GF (pt), we have #(R(Æ; �; v) \ R(Æ; � + Æ; u)) =pt(n�l�2), (iii) for su
h l, Æ, � , u and v mentioned in (ii), the system of equations:�f(x�Æ + � + Æ) = uf(x�Æ + �) = v has pre
isely pt(n�l�2) solutions on x�Æ .Proof. Clearly (ii) () (iii). Due to Theorem 2, (i) =) (ii). To 
omplete theproof, we only need prove that (ii) =) (i). Assume that (ii) holds. Thus #(R(Æ;�; v) \ R(Æ; � + Æ; u)) = pt(n�l�2) for every u; v 2 GF (pt). Note that R(Æ;�;v)=[u2GF (pt) R(Æ; �; v)\R(Æ; � + Æ; u) and then #R(Æ; �; v) =Pu2GF (pt) #(R(Æ; �;v ) \ R( Æ; � + Æ; u)). This proves that #R(Æ; �; v) = pt(n�l�1). Using Theorem2, we have proved that (i) holds. ut2.2 Constru
tions of k-
heating Immune Se
ret SharingLet h is a fun
tion of degree two on GF (pt)n and Æ = fÆ1; : : : ; Æn) be a nonzerove
tor in GF (pt)n. Set J = fj j Æj 6= 0; 1 � j � ng. Let � be any ve
tor inGF (pt)n with � � Æ. It is easy to verify that xjxi is a term in h(x+Æ +�)() xjxiis a term in h also j; i 62 J () xjxi is a term in h(x+Æ +�+Æ). Thus h(x+Æ +�) andh(x+Æ +� +Æ) have the same quadrati
 terms, and thus h(x+Æ +� +Æ)�h(x+Æ +�)must be an aÆne fun
tion. The fun
tion h of degree two is said to have theproperty B(k) if for any Æ 2 GF (pt)n with 1 � HW (Æ) � k and any � � Æ,h(x+Æ + � + Æ)� h(x+Æ + �) is a non-
onstant aÆne fun
tion.Lemma 2. Let f1 and f2 be two fun
tions on GF (pt)n1 and GF (pt)n2 respe
-tively. Set f(x) = f1(y) + f2(z) where x = (y; z) where y 2 GF (pt)n1 andz 2 GF (pt)n2 . Then f is balan
ed if f1 or f2 is balan
ed,The above lemma 
an be veri�ed dire
tly. The spe
ial 
ase of p = 2 and t = 1was given in Lemma 12 of [8℄. Using Lemma 2, we 
an prove



Lemma 3. Let f1 and f2 be two fun
tions of degree two on GF (pt)n1 andGF (pt)n2 respe
tively. Set f(x) = f1(y) + f2(z) where x = (y; z) where y 2GF (pt)n1 and z 2 GF (pt)n2 . Then f has the property B(k) if both f1 and f2have the property B(k).Theorem 4. Let k and s be two positive integers with s � k+1, hj be a balan
edfun
tion of degree two on GF (pt)nj satisfying the property B(k), j = 1; : : : ; s.Set n = n1 + � � � + ns. De�ne a fun
tion f on GF (pt)n su
h as f(x) = h1(y)+ � � � + hs(z) where x = (y; : : : ; z), hi and hj have disjoint variables if i 6= j.Then the se
ret sharing with the de�ning fun
tion f is k-
heating immune.Proof. Let Æ = (Æ1; : : : ; Æn) 2 GF (pt)n with HW (Æ) = l, where 1 � l � k.Let � be any ve
tor in GF (pt)n with � � Æ. Consider the system of equations:�f(x�Æ + � + Æ) = uf(x�Æ + �) = v . Set J = fj j Æj 6= 0; 1 � j � ng. Note that #J =HW (Æ) = l. We write J = fj1; : : : ; jlg. Sin
e l � k � s � 1, there exists somej0 with 1 � j0 � s su
h that ea
h variable of hj0 is not in fxj1 ; : : : ; xjlg. Forthe sake of 
onvenien
e, we assume that j0 = s and thus hs remains in bothequations above. Thus if j 2 J then j � n � ns. Write x = (�; z), where� 2 GF (pt)n�ns and z 2 GF (pt)ns . De�ne a ve
tor � 2 GF (pt)n�ns su
h that� = (�1; : : : ; �n�ns) satisfying �j = Æj , j = 1; : : : ; n � ns. Thus HW (�) =HW (Æ) = #J = l and x�Æ = (��� ; z). We rewrite the above system of equationsas �g1(��Æ ) + hs(z) = ug2(��Æ ) + hs(z) = v where both g1 and g2 are fun
tions on GF (pt)n�ns .Note that xjxi is a term in g1 + hs () xjxi is a term in f and j; i 62 J ()xjxi is a term in g2 + hs. Thus g1 + hs and g2 + hs have the same quadrati
terms. Therefore g1 � g2 is an aÆne fun
tion. Set g2 � g1 =  . Note that theabove system of equations is equivalent to � g1(��� ) + hs(z) = u (��� ) = u� v . Sin
e ea
h hjhas the property B(k),  is a non-
onstant aÆne fun
tion and thus the equation (��� ) = u � v has pt(n�ns�l�1) solutions on ��� . For ea
h �xed solution ���of the equation  (��� ) = u � v, sin
e hs is balan
ed, g1(��� ) + hs(z) takes upre
isely pt(ns�1) times while z runs through GF (pt)s on
e. Therefore the abovesystem of equations has pre
isely pt(n�ns�l�1) � pt(ns�1) = pt(n�l�2) solutions on(��� ; z) = x�Æ . Due to Theorem 3, we have proved that the se
ret sharing withthe de�ning fun
tion f , de�ned in the theorem, is k-
heating immune. utLemma 4. De�ne a fun
tion �2k+1 on GF (pt)2k+1 by �2k+1(x1; : : : ; x2k+1) =x1x2+x2x3+ � � �+x2kx2k+1+x2k+1x1. Then (i) the fun
tion �2k+1 is balan
ed,(ii) �2k+1 satis�es the property B(k).Proof. By a nonsingular linear transform on the variables, the fun
tion �2k+1
an be transformed to the form of y1y2+y2y3+� � �+y2k�1y2k�y22k+1. It is easy toverify that the fun
tion h(y1; : : : ; y2k+1) = y22k+1 is balan
ed. Due to Lemma 2,�2k+1 is balan
ed. Next we prove the part (ii) of the lemma. Let Æ 2 GF (pt)2k+1with HW (Æ) = l, where 1 � l � k, and � � Æ. Write Æ = (Æ1; : : : ; Æ2k+1) andJ = fj j Æj 6= 0; 1 � j � 2k+1g. Clearly, #J = HW (Æ) = l. The index i 62 J is



said to be asso
iated with j 2 J if xjxi is a term in �2k+1. Due to the stru
tureof �2k+1, ea
h i 62 J is asso
iated at most two elements of J . Sin
e l � k, it iseasy to verify that there exists some j0 su
h that j0 2 J , j0 + 1 62 J and j0 + 1is asso
iated with j0 only { Case 1, otherwise there exists some j0 su
h thati0 2 J , i0� 1 62 J and i0 � 1 is asso
iated with i0 only { Case 2. Assume Case 1o

urs. Write � = (�1; : : : ; �2k+1). Sin
e j0 2 J , we know that Æj0 6= 0. ThereforeÆj0xj0+1 must appear in �2k+1(x+Æ + � + Æ) � �2k+1(x+Æ + �). This proves that�2k+1 has the property B(k) in Case 1. Similarly we 
an prove that �2k+1 hasthe property B(k) in Case 2. utUsing Lemmas 2, 3 and 4, we obtain the following:Lemma 5. De�ne a fun
tion �4k+2 on GF (pt)4k+2 by �4k+2(x1; : : : ; x4k+2) =�2k+1(x1; : : : ; x2k+1) + �2k+1(x2k+2; : : : ; x4k+2). Then (i) the fun
tion �4k+2 isbalan
ed, (ii) �4k+2 satis�es the property B(k).�n in Lemma 4 or 5 has been de�ned for odd n and even n with n � 2 mod 4.Due to Lemma 4, Lemma 5 and Theorem 4, we have the following 
onstru
tion.Theorem 5. Let k and s be positive integers with s � k + 1. Let n1; : : : ; ns =4k + 1 or 4k + 2, and n = n1 + � � � + ns. De�ne a fun
tion on GF (pt)n su
has f(x) = �n1(y) + � � � + �ns(z) where x = (y; : : : ; z), y 2 GF (pt)n1 ; : : : ; z 2GF (pt)ns , ea
h �nj has been de�ned in (4) or (5), and �n1 ; : : : ; �ns have disjointvariables mutually. Then the se
ret sharing with the de�ning fun
tion f is k-
heating immune.Note that n = n1 + � � � + ns, de�ned in Theorem 5, 
an be expressed asn = (4k + 1)r + (4k + 2)q where r � 0 and q � 0 are integers. Sin
e 4k + 1 and4k+2 are relatively prime, any integer 
an also be written as (4k+1)r+(4k+2)qwhere r and q are integers. Furthermore it is easy to verify that any integer nwith n � (4k+1)2 
an be expressed as n = (4k+1)r+(4k+2)q where r; q � 0.Sin
e n � (4k + 1)2, s = r + q > k + 1 where s was mentioned in Theorem 5.Using Theorem 5, we 
an 
onstru
t k-
heating immune se
ret sharing with nparti
ipants where n � (4k + 1)2.3 Generalised Model of CheatingGiven a fun
tion f on GF (pt)n, we introdu
e the following notations:{ Let � 2 GF (pt)n be the sequen
e of shares held by the groupP = fP1; : : : ; Pngof n parti
ipants and the se
ret K = f(�).{ The 
olle
tion of 
heaters is determined by the sequen
e Æ = (Æ1; Æ2; : : : ; Æn)where Pi is a 
heater () if Æi 6= 0.{ At the pooling time, the 
heaters submit their shares. This time it is assumedthat 
heaters may submit a mixture of valid and invalid shares. The honestparti
ipants always submit their valid shares. The 
olle
tion of 
heaters whosubmit invalid shares is determined by the sequen
e � = (�1; : : : ; �n) where�j = 0 () Pj is honest or Pj is a 
heater who submits a valid share, inother words, �j 6= 0 () Pj is a 
heater who submits an invalid share.



Clearly � � Æ. We assume that there exists at least one 
heater who submitsinvalid share, in other words, we only 
onsider the 
ase that � is nonzeroor HW (�) > 0. We 
onsider the ve
tor � + � . Due to the properties ofoperations x+Æ and x�Æ , � + � = ��Æ + �+Æ + � . The 
ombiner obtains � + �that splits into two parts: ��Æ { the part submitted by honest parti
ipantsand �+Æ + � the part submitted by 
heaters. The 
ombiner returns an invalidse
ret K� = f(�+ �).{ R(Æ; �+Æ + �;K�), or fx�Æ jf(x�Æ +�+Æ + �) = K�g, where �+Æ determines validshares held by the 
heaters, represents the view of the 
heater after gettingba
k K� from the 
ombiner.{ The set R(Æ; �+Æ ;K), or fx�Æ jf(x�Æ + �+Æ ) = Kg, determines a 
olle
tion ofrows of T with the 
orre
t se
ret K and valid shares held by the 
heaters.In generalised model of 
heating, � is used to determine how to 
heat whileÆ is only used to determine whi
h parti
ipants are dishonest, therefore we 
ande�ne Æ as a (0; 1)-ve
tor in GF (pt)n. However, in basi
 model of 
heating, Æis not only used to determine whi
h parti
ipants are dishonest but also used todetermine how to 
heat, thus Æ has a more general form.The fun
tion f is 
alled the de�ning fun
tion. The nonzero ve
tor Æ =(Æ1; : : : ; Æn) is 
alled a 
heating ve
tor, the nonzero ve
tor � � Æ is 
alled an a
tive
heating ve
tor, � is 
alled a original ve
tor. The value of �Æ;�;� = #(R(Æ; �+Æ +�;K�)\R(Æ; �+Æ ;K))=#R(Æ; �+Æ +�;K�) expresses the probability of 
heater su
-
ess with respe
t to Æ; � and �. As an original ve
tor � is always in R(Æ; �+Æ +�;K�)\R(Æ; �+Æ ;K), the probability of su

essful 
heating always satis�es �Æ;�;� >0. Clearly the number of 
heaters is equal to HW (Æ) and the number of a
tive
heaters is equal to HW (�). In parti
ular, if � = Æ, we regain basi
 model of
heating. From now, we 
onsider se
ret sharing against 
heating by generalisedmodel of 
heating.3.1 Stri
tly k-
heating Immune Se
ret Sharing S
hemeBy using the same arguments as in the proof of Theorem 1, we 
an state.Theorem 6. Given a se
ret sharing with its de�ning fun
tion f on GF (pt)n.Let Æ 2 GF (pt)n with 0 < HW (Æ) < n be a 
heating ve
tor, � � Æ with � 6= 0 bean a
tive 
heating ve
tor, and � 2 GF (pt)n be an original ve
tor. If �Æ;�;� < p�tthen there exists a ve
tor 
 2 GF (pt)n su
h that �Æ;�;
 > p�t.For the same reason mentioned in Se
tion 2.1, we introdu
e the 
on
ept of k-
heating immune se
ret sharing s
heme. Given a se
ret sharing with its de�ningfun
tion f on GF (pt)n. Let k be an integer with 1 � k � n � 1. The se
retsharing is said to be stri
tly k-
heating immune if the probability of su

essful
heating satis�es �Æ;�;� = p�t for every Æ 2 GF (pt)n and any � � Æ with 1 �HW (�) � HW (Æ) � k and every � 2 GF (pt)n. The following is a relationshipbetween the two models of 
heating immune se
ret sharing.Theorem 7. Given a se
ret sharing with its de�ning fun
tion f on GF (pt)n.Then the se
ret sharing is stri
tly k-
heating immune () for any integer r with



0 � r � k�1, any subset fj1; : : : ; jrg of f1; : : : ; ng and any a1; : : : ; ar 2 GF (pt),f(x1; : : : ; xn)jxj1=a1;:::;xjr=ar , as a fun
tion on GF (pt)n�r with the variablesxi1 ; : : : ; xin�r , where fi1; : : : ; in�rg [ fj1; : : : ; jrg = f1; : : : ; ng, is the de�ningfun
tion on GF (pt)n�r of a (k � r)-
heating immune se
ret sharing.Proof. Assume that the se
ret sharing is stri
tly k-
heating immune. Let g be afun
tion on GF (pt)n�r given by g = f(x1; : : : ; xn)jxjr=a1;:::;xjr=ar . Comparingbasi
 model of 
heating with generalised model of 
heating, sin
e f is the de�ningfun
tion on GF (pt)n of a stri
tly k-
heating immune se
ret sharing in generalisedmodel of 
heating, we know that g is the de�ning fun
tion on GF (pt)n�r of a(k�r)-
heating immune se
ret sharing against basi
 model of 
heating. We haveproved the ne
essity. By de�nition, we 
an invert the above reasoning and provethe suÆ
ien
y. ut3.2 Constru
tion of Stri
tly k-
heating Immune Se
ret SharingLemma 6. Let a fun
tion f of degree two on GF (pt)n do not have a nonzero
onstant term, in other words, f(0; : : : ; 0) = 0, where 0 denotes the zero elementin GF (pt). Then f is balan
ed () there exists a nonzero ve
tor � 2 GF (pt)nsu
h that f(x+ �) � f(x) is 
onstant and f(�) 6= 0.Lemma 6 with p = 2 and t = 1 is a spe
ial 
ase of the lemma in [4℄. Lemma6 
an be proved using the same arguments as those used for the proof of thelemma in [4℄.Lemma 7. Let �n;p be a fun
tion on GF (pt)n (n � 2p2 + p) de�ned by�n;p(x1; : : : ; xn) = x1 +Pnj=1(xjx[j+1℄(n) + xjx[j+2℄(n) + � � �+ xjx[j+p℄(n) ) where[i℄(n) denotes the integer j su
h that 1 � j � n and j � i mod n (we repla
e iby [i℄(n) as i is possibly greater than n). Then (i) �n;p is balan
ed, (ii) for anyr with 0 � r � p� 1, any subset fj1; : : : ; jrg of f1; : : : ; ng and any a1; : : : ; ar 2GF (pt), �n;p(x1; : : : ; xn)jxj1=a1;:::;xjr=ar , as a fun
tion on GF (pt)n�r with thevariables xi1 ; : : : ; xin�r , where fi1; : : : ; in�rg[fj1; : : : ; jrg = f1; : : : ; ng, satis�esthe property B(p).Proof. From the 
onstru
tion of �n;p, for any j with 1 � j � n, there pre
iselyexist 2p quadrati
 terms of �n;p: xjx[j+i℄(n) and xjx[j�i℄(n) 
ontaining xj wherei = 1; : : : ; p. It is easy to verify that �n;p has pre
isely np quadrati
 terms, in ad-dition, a linear term x1. Set g = �n;p�x1 or g(x1; : : : ; xn) =Pnj=1(xjx[j+1℄(n) +xjx[j+2℄(n) + � � �+xjx[j+p℄(n) ), and � = (1; : : : ; 1) where 1 denotes the identity inGF (pt). Re
all that the 
hara
teristi
 of the �nite �eld GF (pt) is p. Then pe = 0holds for any element e 2 GF (pt). Thus it is easy to verify that g(x+�)�g(x) = 0and g(�) = 0. Therefore �n;p(x + �) � �n;p(x) = 1 and �n;p(�) = 1. Due toLemma 6, we know that �n;p is balan
ed. Next we prove the part (ii) of thelemma. Write h(xi1 ; : : : ; xin�r ) = �n;p(x1, : : : ; xn)jxj1=a1;:::;xjr=ar . Set xi1 =y1; : : : ; xin�r = yn�r and y = (y1; : : : ; yn�r). Then we 
onsider the fun
tionh(y1; : : : ; yn�r). Re
all that for ea
h j, 1 � j � n, xj appears pre
isely in 2pquadrati
 terms of �n;p: xjx[j+i℄(n) and xjx[j�i℄(n) where i = 1; : : : ; p. Sin
e



r � p � 1, it is easy to see that for ea
h j, 1 � j � n � r, there at least twoquadrati
 terms of h. Let Æ 2 GF (pt)n�r be a 
heating ve
tor with HW (Æ) = l,where 1 � l � p, and � � Æ be an a
tive 
heating ve
tor. Write Æ = (Æ1; : : : ; Æn�r)and J = fj j Æj 6= 0; 1 � j � n � rg. Clearly #J = HW (Æ) = l. We do notneed to 
onsider any term yjyi in h with j; i 62 J as it does not appear inh(y+Æ + � + Æ) � h(y+Æ + �). Sin
e n � r � 2p2 + 1, there exist some integersj0 and m su
h that m � 2p + 1, [j0 + m℄(n�r) 2 J and f[j0 + 1℄(n�r); [j0 +2℄(n�r); : : : ; [j0+m�1℄(n�r)g\J = ;. Due to the stru
tures of �n;p and h, thereexists some [i0℄(n�r) 2 f[j0 + 1℄(n�r); [j0 + 2℄(n�r); : : : ; [j0 +m � 1℄(n�r)g su
hthat yj0y[i0℄(n�r) is a term in h but y[j0+m℄(n�r)y[i0℄(n�r) is not a term in h. Fur-thermore, due to the stru
tures of �n;p and h, yjy[i0℄(n�r) 
annot be a term in hfor any j 2 J with j 6= j0. Sin
e [i0℄(n�r) 62 J , as the dis
ussion before, any termyjy[i0℄(n�r) with j 62 J does not appear in h(y+Æ +�+Æ)�h(y+Æ +�). Sin
e j0 62 J ,we know that Æj0 6= 0. Therefore Æj0y[i0℄(n�r) appears in h(y+Æ +�+Æ)�h(y+Æ +�).This proves that h has the property B(p). utBased on Theorem 7 and Lemma 7, we have the following 
onstru
tion.Theorem 8. Let GF (pt) be a �nite �eld, s be an integer with s � 2p. Letn1; : : : ; ns = 2p2 + p or 2p2 + p + 1, and n = n1 + � � � + ns. De�ne a fun
tionon GF (pt)n su
h as f(x) = �n1;p(y) + � � � + �ns;p(z) where x = (y; : : : ; z),y 2 GF (pt)n1 ; : : : ; z 2 GF (pt)ns , ea
h �nj ;p has been de�ned in Lemma 7 and�ni;p; : : : ; �nj ;p have disjoint variables if i 6= j. Then the se
ret sharing with thede�ning fun
tion f is stri
tly p-
heating immune.Proof. Let r be an integer with 0 � r � p � 1 and fj1; : : : ; jrg be a subsetof f1; : : : ; ng. Sin
e r � p � 1, there exist at least s � r � p + 1 fun
tionsamong �n1;p; : : : ; �ns;p, ea
h of whose variables is not in
luded in fxj1 ; : : : ; xjrg.Without loss of generality, we assume that ea
h variable of �nr+1;p; : : : ; �ns;pis not in
luded in fxj1 ; : : : ; xjrg. Therefore for any a1; : : : ; ar 2 GF (pt), f 
anbe expressed as f jxj1=a1;:::;xjr=ar = g + �nr+1;p + �nr+2;p + � � � + �ns;p whereg = (�n1;p + � � �+ �nr ;p)jxj1=a1;:::;xjr=ar . Due to Lemmas 7,�nj ;pjxj1=a1;:::;xjr=ar has the property B(p), j = 1; : : : ; r and thus from Lemma3, g has the property B(p) and thus f jxj1=a1;:::;xjr=ar has the property B(p).Sin
e ea
h �nj ;p is balan
ed, due to Lemma 2, f jxj1=a1;:::;xjr=ar is balan
ed.Applying Theorem 4 to f jxj1=a1;:::;xjr=ar = g + �nr+1;p + �nr+2;p + � � � + �ns;p,we 
on
lude the se
ret sharing with the de�ning fun
tion f jxj1=a1;:::;xjr=ar isp-
heating immune. Finally, using Theorem 7, we know that the se
ret sharingwith the de�ning fun
tion f is stri
tly p-
heating immune. utBy using the same arguments as in the last paragraph of Se
tion 2.2, itis easy to verify that any integer n � (2p2 + p)2 
an be expressed as n =r(2p2 + p) + q(2p2 + p+ 1) where r; q � 0. Sin
e n � (2p2 + p)2, s = r + q � 2pwhere s was mentioned in Theorem 7. Using Theorem 7, we 
an 
onstru
t p-
heating immune se
ret sharing with n parti
ipants where n � (2p2 + p)2.



4 Con
lusions and RemarksWe have 
onsidered se
ret sharing over �nite �eld and its resistan
e against
heating by a group of k dishonest parti
ipants. We have proved that the proba-bility of su

essful 
heating is always higher than p�t. The se
ret s
heme is saidto be k-
heating immune if the probability of su

essful 
heating is p�t for anygroup of k or less parti
ipants. We have 
hara
terised k-
heating immune se
retsharing s
heme by examining its de�ning fun
tion. This 
hara
terisation enablesus to 
onstru
t k-
heating immune se
ret sharing s
heme. Being more pre
ise,we have studied two 
ases. In the �rst 
ase, the group of 
heaters always submitinvalid shares. While in the se
ond 
ase, the group is more 
exible as they 
ol-le
tively de
ide whi
h of their shares should be modi�ed and whi
h should besubmitted in their original form.A
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