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Abstract. The work investigates cheating prevention in secret sharing.
It is argued that cheating is immune against cheating if the cheaters
gain no advantage over honest participants by submitting invalid shares
to the combiner. This work addresses the case when shares and the secret
are taken from GF(p'). Two models are considered. The first one exam-
ines the case when cheaters consistently submit always invalid shares.
The second model deals with cheaters who submit a mixture of valid
and invalid shares. For these two models, cheating immunity is defined,
properties of cheating immune secret sharing are investigated and their
constructions are given.
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1 Introduction

Secret sharing is widely used to produce group-oriented cryptographic algo-
rithms, systems and protocols. Tompa and Woll [11] showed that Shamir se-
cret sharing can be subject to cheating by dishonest participants. It is easy to
see that, in fact, dishonest participants can cheat in any linear secret sharing.
Cheating prevention has been addressed in literature for conditionally and un-
conditionally secure secret sharing. For conditionally secure secret sharing, the
combiner checks validity of submitted shares before attempting to compute the
secret. Any invalid share (and the cheater) is likely to be detected before the se-
cret reconstruction (see [2, 1, 6]). Publicly verifiable secret sharing (see [3,5,9,7])
provide a solution to this problem in the conditionally secure setting. We argue
that instead of setting an expensive verification infrastructure to detect cheaters,
it is possible to discourage them from cheating. It is likely that cheaters will be
discouraged if they are not able to reconstruct the valid secret from the invalid
one returned by the combiner. Ideally, submission of invalid shares should not
give any advantage to the cheaters over the honest participants in recovery of
the valid secret. In this work shares and the secret are from GF(p'). The struc-
ture of the paper is as follows. First we introduce a basic model of cheating in
which, cheaters always submit invalid shares. Cheating immunity is defined and
constructions of cheating immune secret sharing are given. Further we generalise



our model for the case where the collaborating cheaters may submit an arbitrary
mixture of their valid and invalid shares. Again, the notion of strict immunity
is introduced, its properties are investigated and constructions are shown.

2 Basic Model of Cheating

Let GF(p') denote a finite field with p’ elements where p is a prime number and
t in a positive integer. We write GF (p')™ to denote the vector space of n tuples
of elements from GF(p'). Then each vector a € GF(p')" can be expressed as
a = (a,...,a,) where ai,...,a, € GF(p"). We consider a mapping f from
GF(p')™ to GF(p'). Usually we write f as f(z) or f(x1,...,2z,) where z =
(z1,...,z,) and each z; € GF(p'). f is also called a function on GF(p")™. f is
said to be balanced if f(z) takes each element of GF(p) precisely p!(»~ 1) times
while z goes through each vector in GF(p')™ once. The Hamming weight of a
vector a € GF(p')", denoted by HW (), is the number of nonzero coordinates
of a. An affine function f on GF(p')™ is a function that takes the form of f(z,

.y Tp) = a1T1 + -+ + apTy + ¢, where + denotes the addition in GF(pt),
aj,c € GF(p), j =1,2,...,n. Furthermore f is called a linear function if ¢ = 0.
It is easy to verify that any non-constant affine function is balanced.

We see secret sharing as a set of distribution rules combined into a single
table T (see [10]) with entries from GF(p'). We also assume that we are dealing
with (n,n) threshold scheme where any n participants are able to determine a
single entry from 7 which indicates the secret. Our considerations are restricted
to the case of (n,n) secret sharing. The general case of (n,N) secret sharing
can be seen as a concatenation of (n,n) secret sharing with a system of N
“consistent” linear equations. Shares are generated for N participants using the
linear equations. Any n participants can get a system of linear equations with
a unique solution which points out the unique row of the table 7. Let x =
(z1,...,2,) and § = (d1,...,0,) be two vectors in GF(p')™. Define a vector
x; € GF(p")™, whose j-th coordinate is z; if §; # 0, or 0 if §; = 0. In addition,
we define a vector z; € GF(p')", whose j-th coordinate is 0 if §; # 0, or z;
if §; = 0. Let 7 = (11,...,7,) and § = (d1,...,d,) be two vectors in GF(p')™.
We write 7 < § to denote the property that if 7; # 0 then d; # 0. In addition,
we write 7 < § to denote the property that 7 < § and HW (r) < HW(4). In
particular, if ¢’ < § and HW (') = HW(J) we write § X §'. It is easy to verify
that § X §' <= 0’ < § and § < §' <= both :L'5+ = :v; and z; = x5 hold for
any ¢ € GF(p')", where <= denotes “if and only if”. We define the following
notation that will be frequently used in this paper. Let  be a nonzero vector in
GF(p')", 7 < § and u € GF(p?). Set

Ry(d,7,u) = {z5|f(z5 +7) =u} (1)
We also simply write R;(d, 7, u) as R(J, 7, u) if no confusions occur.

Lemma 1. Let § be a nonzero vector in GF(p')", 7 < 4, and u € GF(p').
Then for any given function f on GF(p")", (i) R(6,7,u) = R(8',7,u) if §' X 6,
(ii) R(6,af ,u) = R(8,7; ,u) for any a,y € GF(p')" with af = ~;, (iii) there
exists some b € GF(p') such that R(5,7,b) # 0, where ) denotes the empty set.



Proof. As (i) and (ii) hold obviously, we only prove (iii). Let v be any vector in
GF(p')™. Set f(v; +7) =b. By definition, v; € Ry(d,7,b) and thus R(d, 7,b) #
0. o

Given a function f on GF(p')", we introduce the following notations:

— Let o € GF(p')™ be the sequence of shares held by the group P = {Py, ..., P,}
of n participants and the secret K = f(«).

— The collection of cheaters is determined by the sequence 6 = (d1,d2,...,0,)
where P; is a cheater <= §; is nonzero.

— At the pooling time, the cheaters submit their shares. It is assumed that
cheaters always submit invalid shares. The honest participants always submit
their valid shares. We consider the vector a + §. From the properties of a:}r
and 5, a+6 = a5 + a}r + 6. Thus the combiner obtains « + ¢ that splits
into two parts: ay — the part submitted by honest participants, and a}' +46
— the part submitted by cheaters. The combiner returns an invalid secret
K* = f(a + §). Note that the cheaters always change their shares. We
assume that there exists at least one cheater, in other words, § is nonzero or
HW(§) > 0.

— af determines valid shares held by the cheaters. The set R(J,a;, K), or
{z5|f(z; +af) = K}, determines a collection of rows of 7~ with the correct
secret K and valid shares held by the cheaters.

— The set R(6,af +6,K*), or {z; |f(z; +af +08) = K*}, represents the view
of the cheaters after getting back K™ from the combiner.

The function f is called the defining function as it determines the secret shar-
ing. The nonzero vector § = (dy,...,d,) is called a cheating vector, a is called a
original vector. The value of ps,o = #(R(J, af +8, K*)NR(3, o , K))/#R(5, af +
0, K*), expresses the probability of cheater success with respect to § and a, where
#X denotes the number of elements in the set X. As an original vector « is al-
ways in R(6, a(;++5, K*) N R(, a;,K), the probability of successful cheating
always satisfies ps o > 0. Clearly the number of cheaters is equal to HW (4).

Theorem 1. Given a secret sharing scheme with its defining function f on
GF(p")". Let § € GF(p")™ with 0 < HW(8) < n be a cheating vector and
« be an original vector in GF(p")™. If pso < p~' then there ezists a vector
v € GF(p")™ such that ps., > p~t.

Proof. Let f(a) = K and f(a+0) = K*. By definition, R(§, o , K) = {z5 | f(z; +
af) = K} and R(6,af + 0, K*) = {z; |f(z5 +af +0) = K*}. We partition
R(9, a}r + 4, K*) into pt parts: R(6, a}r +0,K*) = Uyear(pt)Qu where Q, =
R(9, a}'+(5, K*)NR(J, a}', u+ K). Clearly #R(9, a}' +6,K*) = ZueG’F(p‘) #Q..
Note that R(6,af + 4, K*) N R(3,a), K) = Qo. Therefore ps o = #(R(J,a +
8, K*)NR(8,af , K))/#R(5,af +8, K*) = #Qo/#R(5,f +3, K*). Since ps o <
p~t, wehave #Qo/#R(5,af +6, K*) < p~t. It follows that #Qo < p~ '#R(5, af +
d, K*). Thus we know that 3=, c cp(r) wro #Qu > (1= p H#R(S, af + 0, K).
Thus there exists some b € GF(p!) with b # 0 such that #Q, > p~'#R(5, af +



8, K*). By definition, Q, = {z; |f(z; + af +8) = K*, f(z; +af)=b+ K}.
Then there exists a vector 35 € @y and then f(35 +a}r+5) = K*, f(By +a5+) =
b+K.Set v = f; +af. Thus f(y+6) = K* and f(y) = b+ K. Clearly 7; = o
and v; = ;5 . Next we choose v as an original vector. Due to R(d,7; + 6, K*)
= {5 |f(zy +75 +0) = K*}, RO, , b+ K) = {a5|f(z; +77) = b+ K}
and v; = of , we know that R(d,7; + 9, K*) N R(,7;,b+ K) = Qp and ps =
#(R(8,75 +0, K*)NR(8, 75, b+K))[#R(0, 75 +0,K*) = #Qu /#R(6, 75 +0, K*)
= #Qv/#R(,af +6,K*) > p~t. O

2.1 k-Cheating Immune Secret Sharing Scheme

Given a secret sharing with its defining function f on GF(p')". For a fixed
nonzero § € GF(p')", due to Theorem 1, min{p; .|a € GF(p')"} < p~* implies
that max{ps|la € GF(p")"} > p~t. Therefore it is desirable that ps, = p~*
holds for every a € GF(p')"™. A secret sharing is said to be k-cheating if ps o =
p~ ! holds for every § € GF(p')™ with 1 < HW(§) < k and every a € GF(p')™.

Theorem 2. Given a secret sharing with its defining function f on GF(p')™.
Then this secret sharing is k-cheating immune <=> for any integer | with 1 <
I <k, any § € GF(p")™ with HW(8) = 1, any 7 < § and any u,v € GF(p'),
the following conditions hold simultaneously: (i) #R(8,7,v) = pt™=1=Y (i)
#(R(5,7,0) N R(0, T + 6,u)) = ptn=1=2).

Proof. Assume that the secret sharing is k-cheating immune. Choose § as a cheat-
ing vector and any vector @« € GF(p')™ as an original vector. Due to Lemma
1, there exist a,b € GF(p') such that R(6,af + d,a) # 0 and R(5,af,b) # 0.
Note that R(d,a; + §,a) can be partitioned into p' parts: R(,af + 6,a) =
Uvearp) B(6, ay +6,a)NR(5, af ,v). Assume that R(d,af +6,a)NR(5, af ,v) #
0 for some v € GF(p'). Then there exists a vector 8; € R(§,af + 6,a) N
R(9, a;,v). Set v = 35 + a;. Since the secret sharing is k-cheating immune,
#(R(S,v5 +6,a) N R(S, v ,v))/#R(8,75§ +6,a) = ps, = p~t, where v = af.
Thus #R(9, a}' +6,a) = pt#(R(S, a}' +4,a) N R(9, a}',v)) whenever R(, a}' +
8,a)NR(3,af ,v) # 0. It follows that #R(d,af +6,a) = > vear(p) RS, af +
d,a) N R(4, a;, v)). Combing the above two equalities, we know that R(J, a; +
§,a) N R(6,af,v) # 0 for every v € GF(p') and thus #(R(5,af + 8,a) N
R(8,af,v)) = p~t#R(5,af + 6,a) for every v € GF(p'). Replacing a, §, by
a + 6§, (p — 1)d respectively, due to the same arguments, we have #(R((p —
1)6,a3 + pb,b) (1 R((p — )5, af +6,u)) = p'#R((p — 1)5,aF + pb,b) for ev-
ery u € GF(p). Since the characteristic of the finite field GF(p') is p, pe = 0
for every e € GF(p'). It follows that #(R((p — 1)§,a5,b) N R((p — 1)d,af +
S,u)) = p~t#R((p — 1)d,a;,b) for every u € GF(p'). Using Lemma 1, we ob-
tain #(R(6,af ,b) N R(6,af + 6,u)) = p~t#R(J,af,b) for every u € GF(pt).
Recall that R(d,af + d,a) # 0 and R(6,a;,b) # 0. Therefore we have proved
that R(6,af,v) # 0 and R(d,af + 6,u) # 0 for every u,v € GF(p'). Due to
the same reasoning, we have #(R(8,af + 6,u) N R(6,af ,v)) = p ' #R(5,af +
§,u) and #(R(8,af ,v) N R(8,af + 8,u)) = p~'#R(5,a; ,v) for every u,v €



GF(p'). Comparing the above two equalities, we conclude that #R(6 af +6,u) =

#R(5,af,v) for every u,v € GF(p'). Therefore both #R + d0,u) and
#R(6, a5 ,v) are constant. Note that 35, ) #R(, a5 v t{i” ). We have
proved that #R(6, o ,v) = p!»~1=1) for any v € GF(p'). Thus we have proved
that #(R(6, af +6,u)NR(8, af,v)) = p'"~1=2) for every u,v € GF(p'). For any
T < 68, choose a € GF(p')™ such that i = 7. Clearly both conditions (i) and
(ii) hold. Conversely assume the defining function f satisfies conditions (i) and
(ii). Choose any § € GF(p')™ with HW (§) = I, where 1 <[ < k, as a cheating
vector and any « as an original vector. Set f(a) = K and f(a+J) = K*. By
definition, ps.o = #(R(d,af + 6, K*) N R(8,af , K))/#R(5,af + 6, K*). Due to
conditions (i) and (ii), pso = p~*. Thus we have proved that the secret sharing
is k-cheating immune. O

Theorem 3. Given a secret sharing with its defining function f on GF(p')™.
Then the following statements are equivalent: (i) this secret sharing is k-cheating
immune, (ii) for any integer | with 1 <1 < k, any § € GF(p")"™ with HW (§) =1,
any 7 < 6 and any u,v € GF(p'), we have #(R(5,7,v) N R(6,7 + §,u)) =
pt=1=2) " (iii) for suchl, 8, T, u and v mentioned in (i), the system of equations:
{ ;Eii_ i:)+=63) = has precisely ptn—1=2) solutions on Ty .
Proof. Clearly (ii) <= (iii). Due to Theorem 2, (i) = (ii). To complete the
proof we only need prove that (ii) = (i). Assume that (11) holds. Thus #(R(9,
,v) N R, 7+ 6,u)) = p' ™12 for every u,v € GF(p'). Note that R(8,7,v)=
UuEGF(p y R(6,7,v) ﬁR(&,T-I-(S, u) and then #R(&, T, V) = ZueGF(pt) #(R(0, T,
v) N R(4, T+ 6, u)). This proves that #R(J,7,v) = pt»~'=1)_ Using Theorem
2, we have proved that (i) holds. a

2.2 Constructions of k-cheating Immune Secret Sharing

Let h is a function of degree two on GF(p')"® and § = {41, ...,d,) be a nonzero
vector in GF(p')". Set J = {j | §; # 0, 1 < j < n}. Let 7 be any vector in
GF(p')" with 7 < 6. It is easy to verify that z;z; is a term in h(z] +7) < z;;
isatermin halso j,i ¢ J < x;z; is a term in h(z] +7+0). Thus h(z] +7) and
h(z{ +7+0) have the same quadratic terms, and thus h(z} +7+6) —h(zf +7)
must be an affine function. The function h of degree two is said to have the
property B(k) if for any § € GF(p')® with 1 < HW () < k and any 7 < §,
h(z} + 7+ 8) — h(z} + 1) is a non-constant affine function.

Lemma 2. Let fi and fo be two functions on GF(p')™ and GF(p')™* respec-
tively. Set f(z) = fi(y) + f2(2) where © = (y,2) where y € GF(p')™* and
2z € GF(p')"2. Then f is balanced if f or fo is balanced,

The above lemma can be verified directly. The special case of p =2 and t = 1
was given in Lemma 12 of [8]. Using Lemma 2, we can prove



Lemma 3. Let fi and f> be two functions of degree two on GF(p')™ and
GF(p')™ respectively. Set f(z) = fi(y) + f2(z) where x = (y,z) where y €
GF(pH)™ and z € GF(p')™2. Then f has the property B(k) if both fi and f>
have the property B(k).

Theorem 4. Let k and s be two positive integers with s > k41, h; be a balanced
function of degree two on GF(pt)" satisfying the property B(k), j = 1,...,s.
Set n = ny + -+ + ns. Define a function f on GF(ph)™ such as f(z) = hi(y)
+ -+ + hs(2) where x = (y,...,2), h; and h; have disjoint variables if i # j.
Then the secret sharing with the defining function f is k-cheating immune.

Proof. Let § = (d1,...,0,) € GF(p")™ with HW(§) = I, where 1 < [ < k.
Let 7 be any vector in GF(p')" with 7 < §. Consider the system of equations:
{;Eigi:;’:‘sz}_“. Set J = {j | §; £0, 1 < j < n}. Note that #J =
HW(6) = 1. We write J = {j1,...,71}. Since I < k < s — 1, there exists some
jo with 1 < jo < s such that each variable of hj, is not in {zj,,...,z;}. For
the sake of convenience, we assume that jo = s and thus h, remains in both
equations above. Thus if j € J then j < n — ns. Write © = (u,2), where
p € GF(pt)" ™ and z € GF(p')™. Define a vector ¢ € GF(p!)" " such that
o = (01,...,0n_n,) satisfying o; = 6;, j = 1,...,n — ns. Thus HW (o) =
HW($) =#J =1 and z; = (p,,2). We rewrite the above system of equations
as {gl(ug) +hs(2) = u

92(ps ) + hs(2) =0
Note that z;z; is a term in g; + hy <= z;2; is a term in f and j,7 ¢ J <=
z;x; is a term in g» + hs. Thus g1 + hs; and g2 + hs have the same quadratic
terms. Therefore g — g» is an affine function. Set g» — g1 = . Note that the
fbl(%f))igsfzg ~ " Since each h;
has the property B(k), ¢ is a non-constant affine function and thus the equation
Y(uy) = u — v has ptn=n=I=1) solutions on p; . For each fixed solution pu
of the equation ¥ (u,) = u — v, since hy is balanced, ¢1(u, ) + hs(z) takes u
precisely p'("s~1) times while z runs through GF(p*)* once. Therefore the above
system of equations has precisely pt(?—7—I=1) . pt(ns—1) — pt(n—1=2) gg]utions on
(ny,2) = x5 . Due to Theorem 3, we have proved that the secret sharing with
the defining function f, defined in the theorem, is k-cheating immune. O

where both g; and g, are functions on GF(pt)"~".

above system of equations is equivalent to {

Lemma 4. Define a function xorp1 on GF(pP)2 T by xorr1(z1,. .., 2opyp1) =
T1Ty+ Tog+ - -+ TogTogt1 + Tokr121. Then (i) the function xor11 is balanced,
(ii) Xar+1 satisfies the property B(k).

Proof. By a nonsingular linear transform on the variables, the function xa2gt1
can be transformed to the form of y1ys +y2ys +- - -+ Y2612k :I:y%kH. It is easy to
verify that the function h(yi,...,y2k+1) = y3;,,, is balanced. Due to Lemma 2,
Xz2k+1 is balanced. Next we prove the part (ii) of the lemma. Let § € GF (p')?*+!
with HW(0) =1, where 1 <1 < k, and 7 < 4. Write 6 = (d1,...,02k+1) and
J={j|d; #0, 1 <j < 2k+1}. Clearly, #J = HW () =1. The index i ¢ J is



said to be associated with j € J if x;z; is a term in x2x41. Due to the structure
of xa2r+1, €ach i & J is associated at most two elements of J. Since [ < k, it is
easy to verify that there exists some jg such that jo € J, jo+1 & J and jo + 1
is associated with jo only — Case 1, otherwise there exists some jo such that
io € J,i9—1 ¢ J and ig — 1 is associated with ig only — Case 2. Assume Case 1
occurs. Write 7 = (7i,. .., Tog+1). Since jo € J, we know that d;, # 0. Therefore
8joTjo+1 must appear in yog+1(zy + 7 + ) — X2k+1(xF + 7). This proves that
X2k+1 has the property B(k) in Case 1. Similarly we can prove that y2x+1 has
the property B(k) in Case 2. O

Using Lemmas 2, 3 and 4, we obtain the following;:

Lemma 5. Define a function xary2 on GF(P)* 2 by xapio(T1,. .., Tapgn) =

X2kt1(T1, -« -, Tokr1) + Xokr1 (To2ra2, - - -, Tagso). Then (i) the function Xaxio 18
balanced, (ii) xax+2 satisfies the property B(k).

Xn in Lemma 4 or 5 has been defined for odd n and even n with n = 2 mod 4.
Due to Lemma 4, Lemma 5 and Theorem 4, we have the following construction.

Theorem 5. Let k and s be positive integers with s > k + 1. Let ny,...,ng =
4k +1 or 4k +2, and n = ny + --- + ns. Define a function on GF(p')™ such
as f(x) = an(y) + -+ an(z) where T = (ya"'az)’ y € GF(pt)nla"'az €
GF(p')", each xn; has been defined in (4) or (5), and xn,, - - -, Xn. have disjoint
variables mutually. Then the secret sharing with the defining function f is k-
cheating immune.

Note that n = ny + --- + ng, defined in Theorem 5, can be expressed as
n = (4k + 1)r + (4k + 2)q where r > 0 and ¢ > 0 are integers. Since 4k + 1 and
4k+2 are relatively prime, any integer can also be written as (4k+1)r+ (4k+2)q
where r and ¢ are integers. Furthermore it is easy to verify that any integer n
with n > (4k 4+ 1)2 can be expressed as n = (4k + 1)r + (4k + 2)q where r, ¢ > 0.
Since n > (4k + 1)2, s = r + ¢ > k + 1 where s was mentioned in Theorem 5.
Using Theorem 5, we can construct k-cheating immune secret sharing with n
participants where n > (4k + 1)2.

3 Generalised Model of Cheating

Given a function f on GF(p')", we introduce the following notations:

— Let a € GF(p')" be the sequence of shares held by the group P = {P1,..., Py}
of n participants and the secret K = f(«).

— The collection of cheaters is determined by the sequence 6 = (61,02, . ..,0,)
where P; is a cheater <= if §; # 0.

— At the pooling time, the cheaters submit their shares. This time it is assumed
that cheaters may submit a mixture of valid and invalid shares. The honest
participants always submit their valid shares. The collection of cheaters who
submit invalid shares is determined by the sequence 7 = (7q,...,7,) where
7j = 0 <= P; is honest or P; is a cheater who submits a valid share, in
other words, 7; # 0 <= P; is a cheater who submits an invalid share.



Clearly 7 < 0. We assume that there exists at least one cheater who submits
invalid share, in other words, we only consider the case that 7 is nonzero
or HW(r) > 0. We consider the vector « + 7. Due to the properties of
operations xg' and 3, a+ 7= a5 + a}' + 7. The combiner obtains a + 7
that splits into two parts: a; — the part submitted by honest participants
and o + 7 the part submitted by cheaters. The combiner returns an invalid
secret K* = f(a+ 7).

— R(8,af +7,K*), or {z|f(zy +af +71) = K*}, where af determines valid
shares held by the cheaters, represents the view of the cheater after getting
back K* from the combiner.

— The set R(d,af,K), or {z;|f(z; + af) = K}, determines a collection of
rows of 7 with the correct secret K and valid shares held by the cheaters.

In generalised model of cheating, 7 is used to determine how to cheat while
¢ is only used to determine which participants are dishonest, therefore we can
define § as a (0,1)-vector in GF(pt)". However, in basic model of cheating, &
is not only used to determine which participants are dishonest but also used to
determine how to cheat, thus § has a more general form.

The function f is called the defining function. The nonzero vector § =
(61,...,0y) is called a cheating vector, the nonzero vector 7 < § is called an active
cheating vector, o is called a original vector. The value of ps ;.o = #(R(5,af +
7, K*)NR(4, a}r, K))/#R(, a; +7, K*) expresses the probability of cheater suc-
cess with respect to §,7 and a. As an original vector « is always in R(J, a}' +
7, K*)NR(0, a;, K), the probability of successful cheating always satisfies ps ro >
0. Clearly the number of cheaters is equal to HW (4) and the number of active
cheaters is equal to HW (7). In particular, if 7 = §, we regain basic model of
cheating. From now, we consider secret sharing against cheating by generalised
model of cheating.

3.1 Strictly k-cheating Immune Secret Sharing Scheme
By using the same arguments as in the proof of Theorem 1, we can state.

Theorem 6. Given a secret sharing with its defining function f on GF(ph)™.
Let § € GF(p")™ with 0 < HW (8) < n be a cheating vector, T < § with T # 0 be
an active cheating vector, and o € GF (p')™ be an original vector. If ps.r.o <p*
then there exists a vector v € GF(p')™ such that psr~ > p~t.

For the same reason mentioned in Section 2.1, we introduce the concept of k-
cheating immune secret sharing scheme. Given a secret sharing with its defining
function f on GF(p')™. Let k be an integer with 1 < k < n — 1. The secret
sharing is said to be strictly k-cheating immune if the probability of successful
cheating satisfies ps ro = p* for every § € GF(p')" and any 7 < § with 1 <
HW (1) < HW(4) < k and every a € GF(p')™. The following is a relationship
between the two models of cheating immune secret sharing.

Theorem 7. Given a secret sharing with its defining function f on GF(p')™.
Then the secret sharing is strictly k-cheating immune <= for any integer r with



0<r<k-—1, any subset {j1,...,jr} of {1,...,n} and any a1, . ..,a, € GF(p'),
f(xi, - m0)le;, =ar,. x5, =an, @S a function on GF(p')"=" with the variables
Tiyy ey Tip_,, where {iy,.. in_pt U {j1,...,4r} = {1,...,n}, is the defining
function on GF(p")"" of a (k — r)-cheating immune secret sharing.

Proof. Assume that the secret sharing is strictly k-cheating immune. Let g be a
function on GF(p)"~" given by g = f(z1,...,2n)|s,, —a1,....;,—a,- COmparing
basic model of cheating with generalised model of cheating, since f is the defining
function on GF(p')™ of a strictly k-cheating immune secret sharing in generalised
model of cheating, we know that g is the defining function on GF(p!)™ " of a
(k —r)-cheating immune secret sharing against basic model of cheating. We have
proved the necessity. By definition, we can invert the above reasoning and prove
the sufficiency. O

3.2 Construction of Strictly k-cheating Immune Secret Sharing

Lemma 6. Let a function f of degree two on GF(p')" do not have a nonzero
constant term, in other words, f(0,...,0) =0, where 0 denotes the zero element
in GF(p'). Then f is balanced <= there ezists a nonzero vector a € GF(p')™
such that f(z + a) — f(z) is constant and f(a) # 0.

Lemma 6 with p = 2 and ¢ = 1 is a special case of the lemma in [4]. Lemma
6 can be proved using the same arguments as those used for the proof of the
lemma in [4].

Lemma 7. Let A\, be a function on GF(p')™ (n > 2p* + p) defined by

A (@1, @) = 21+ 200 (2240, + T2 42, o0+ LT, ) where
[i](n) denotes the integer j such that 1 < j <n and j =i mod n (we replace i
by [i](n) as i is possibly greater than n). Then (i) A, p is balanced, (ii) for any
r with 0 <r <p—1, any subset {j1,...,j-} of {1,...,n} and any a4,...,a, €
GF(p"), Mnp(T1,.. s Zn)le; =ar,....x;, =a,, 05 a function on GF(p')"~" with the
variables x;,,...,x;,_ ., where {i1, ... in_r }U{j1,..., -} = {1,...,n}, satisfies
the property B(p).

Proof. From the construction of A, ,, for any j with 1 < j < n, there precisely
exist 2p quadratic terms of A, ,: TiT4d), and T, containing x; where

i =1,...,p. It is easy to verify that A, , has precisely np quadratic terms, in ad-
dition, a linear term 1. Set ¢ = A, — 21 OF g(T1,...,2,) = 2?21 (l‘jﬂf[j+1](n) +
TiT(j42),, T '+$j$[j+p](n)), and a = (1,...,1) where 1 denotes the identity in

GF(p'). Recall that the characteristic of the finite field GF(p') is p. Then pe = 0
holds for any element e € GF(p'). Thus it is easy to verify that g(z+a)—g(z) =0
and g(a) = 0. Therefore A\, p(z + @) — App(z) = 1 and A, ,(a) = 1. Due to
Lemma 6, we know that Ay, is balanced. Next we prove the part (ii) of the
lemma. Write h(x;,,..., 2, ) = A\pp(®1, ---axn)|zj1=a1,...,zjr=ar- Set x;, =
Yiyeo s iy = Yn—r and ¥y = (Y1,...,Yn—r). Then we consider the function
h(y1,...,Yn—r). Recall that for each j, 1 < j < n, z; appears precisely in 2p
quadratic terms of App: z;z(j14,, and z;z(;_4,, where i = 1,... p. Since



r < p—1,it is easy to see that for each 7, 1 < j < n — r, there at least two
quadratic terms of h. Let § € GF(p!)™~" be a cheating vector with HW (§) =1,
where 1 <1 < p,and 7 < § be an active cheating vector. Write § = (1, ..., 0n—r)
and J ={j | d; #0, 1 <j <n—r}. Clearly #J = HW () = I. We do not
need to consider any term y;y; in h with j,i ¢ J as it does not appear in
h(yf + 7 +68) — h(yF + 7). Since n — r > 2p* + 1, there exist some integers
Jo and m such that m > 2p + 1, [jo + m](n,r) € J and {[jo + 1](n,r),[j0 +
2l (n—rys---»LJo+m—=1]—p}NJ = 0. Due to the structures of A, , and h, there
exists some [io](n—r) € {[.70 + ]-](n—r)a [.70 + 2](n—r)a ) [.70 +m — 1](n—r)} such
that YjoUlio](n_ry 1S @ term in h but Yljo+m](n_r Ylio](n_r, 1S DOt a term in h. Fur-
thermore, due to the structures of A,, , and h, YjYlio)(n_,, CADNOL be a term in h
for any j € J with j # jo. Since [io](,,—r) & J, as the discussion before, any term
YiYliol(n_r, With j & J does not appear in h(ys +7+68) —h(yf +7). Since jo & J,
we know that d;, # 0. Therefore 5,y _,, appears in h(yy +7+08)—h(yf +1).
This proves that h has the property B(p). O

Based on Theorem 7 and Lemma 7, we have the following construction.

Theorem 8. Let GF(p!) be a finite field, s be an integer with s > 2p. Let
Niyeooys =202 +p or 202 +p+1, and n = ny + --- + ng. Define a function
on GF(p')" such as f(z) = An,p(y) + -+ + A, p(2) where z = (y,...,z2),
y € GF(p")™,...,z € GF(p")", each A, p has been defined in Lemma 7 and
Anips -+ Any,p have disjoint variables if i # j. Then the secret sharing with the
defining function f is strictly p-cheating immune.

Proof. Let r be an integer with 0 < r < p — 1 and {ji,...,J-} be a subset
of {1,...,n}. Since r < p — 1, there exist at least s — r > p + 1 functions

among Ay, p, - -+, An,,p, €ach of whose variables is not included in {z;,,..., ;. }.
Without loss of generality, we assume that each variable of A, | ,,..., A5, p
is not included in {zj,,...,z;, }. Therefore for any ai,...,a, € GF(p'), f can

be expressed as flu; =ar,...e5=ar = 9+ Anpyrp T Anpporp + 000 + An, p where
9= Anip+ -+ Ao p)ley, =ar .. 25, =a,- Due to Lemmas 7,

Anjplej, =ay,....x;,=a, has the property B(p), j = 1,...,r and thus from Lemma
3, g has the property B(p) and thus f|;; =a,,....z;, =a, has the property B(p).
Since each A, ;, is balanced, due to Lemma 2, f|xh:a17...,x1,:ar is balanced.
Applying Theorem 4 t0 flz; =ay,....2;,=ar = 9+ Mppsp T Anppop + - + Ay,
we conclude the secret sharing with the defining function f|$j1:a17---7xj.,‘:ar is
p-cheating immune. Finally, using Theorem 7, we know that the secret sharing
with the defining function f is strictly p-cheating immune. O

By using the same arguments as in the last paragraph of Section 2.2, it
is easy to verify that any integer n > (2p® + p)? can be expressed as n =
r(2p® +p) + q(2p® + p + 1) where 7,¢ > 0. Since n. > (2p®> +p)?, s =r+q > 2p
where s was mentioned in Theorem 7. Using Theorem 7, we can construct p-
cheating immune secret sharing with n participants where n > (2p% + p)2.



4 Conclusions and Remarks

We have considered secret sharing over finite field and its resistance against
cheating by a group of k dishonest participants. We have proved that the proba-
bility of successful cheating is always higher than p—*. The secret scheme is said
to be k-cheating immune if the probability of successful cheating is p~* for any
group of k or less participants. We have characterised k-cheating immune secret
sharing scheme by examining its defining function. This characterisation enables
us to construct k-cheating immune secret sharing scheme. Being more precise,
we have studied two cases. In the first case, the group of cheaters always submit
invalid shares. While in the second case, the group is more flexible as they col-
lectively decide which of their shares should be modified and which should be
submitted in their original form.
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