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t. The work addresses the problem of 
heating prevention in se-
ret sharing. Two 
heating s
enarios are 
onsidered. In the �rst one, the
heaters always submit invalid shares to the 
ombiner. In the se
ond one,the 
heaters 
olle
tively de
ide whi
h shares are to be modi�ed so the
ombiner gets a mixture of valid and invalid shares from the 
heaters.The se
ret s
heme is said to be k-
heating immune if any group of k
heaters has no advantage over honest parti
ipants. The paper investi-gates 
ryptographi
 properties of the de�ning fun
tion of se
ret sharingso the s
heme is k-
heating immune. Constru
tions of se
ret sharing im-mune against k 
heaters are given.1 Introdu
tionSe
ret sharing is the basi
 
ryptographi
 tool that allows to de�ne an environ-ment in whi
h the a
tive entity is a group. A (t; n) threshold se
ret sharings
heme permits any group of t or more parti
ipants to a

ess the se
ret. Anygroup of t�1 or less parti
ipants 
annot re
over the se
ret. The group operationis normally performed by a trusted 
ombiner who 
olle
ts shares from parti
i-pants, 
omputes the result and 
ommuni
ates it to the members of the a
tivegroup. Tompa and Woll [20℄ showed that a dishonest parti
ipant 
an 
heat byproviding an invalid share to the 
ombiner. If the se
ret sharing in use is lin-ear then the 
heater is able to re
over the valid se
ret from an invalid se
retreturned by the 
ombiner. In e�e
t, the 
heater holds the se
ret while other(honest) parti
ipants are left with an invalid se
ret.Cheating prevention be
omes a major 
hallenge in the distributed environ-ment. Ideally, one would expe
t that a 
heater should gain no advantage overhonest parti
ipants. The problem 
an be addressed by for
ing the 
ombiner to
he
k validity of shares before they are used to re
over the se
ret. In the 
ondi-tionally se
ure setting, shares 
an be 
he
ked using veri�able se
ret sharing (see[4, 8, 17, 13℄). In the un
onditionally se
ure se
ret sharing, shares 
an be veri�ed



using a system of linear equations (see [11, 2, 1℄). Note that share veri�
ationrequires the 
ombiner to be able to a

ess the additional information (whi
halso needs to be authenti
ated). This introdu
es extra 
omplexity in the designand maintenan
e of se
ret sharing.An alternative approa
h removes the main in
entive for 
heating. If one ormore shares are invalid, then the invalid se
ret re
overed by the 
ombiner pro-vides no information about the valid se
ret. In a sense, the 
heaters position issimilar to that of the honest parti
ipants ex
ept that the 
heater knows that there
overed se
ret is invalid (in pra
ti
e, the honest parti
ipants will learn aboutthis with some delay when they try to use the invalid se
ret with a predi
tablefailure).The work in this paper 
overs the 
ase where shares and the se
ret are binary.The non-binary 
ase when shares are from GF (pt), was 
onsidered in [9℄. Notethat for the binary 
ase, fun
tions display some \spe
ial" 
hara
teristi
s notfound when p > 2. In e�e
t, 
onstru
tions for binary 
ase do not follow thosefor the 
ase when shares are drawn from GF (pt). Moreover, design of stri
tly
heating immune se
ret sharing overGF (pt) is in general easier than overGF (2).This work uses a di�erent 
on
ept of 
heating prevention by removing themain in
entive for 
heating. The se
ret sharing is design in su
h a way thatthe group of 
heaters has no advantage over honest parti
ipants. In the 
ase of
heating, all parti
ipants (honest and dishonest) end up with an invalid se
retand both honest and dishonest parti
ipants have the same probability of guessingthe valid se
ret. This di�erentiate our approa
h from others (su
h as that in [3℄)in whi
h 
heating prevention is done by share veri�
ation. In other words, the
ombiner will return se
ret only when all shares submitted are valid.The work is stru
tured as follows. Binary sequen
es are introdu
ed in Se
tion2. An initial model of 
heating is introdu
ed in Se
tion 3 and a lower bound onthe probability of su

essful 
heating is derived. The strengthened propagationis de�ned and its basi
 properties are investigated in Se
tion 3.1. Se
ret sharingimmune against k 
heaters is studied in Se
tion 3.2 and su
h se
ret sharing is
onstru
ted in Se
tion 3.3. A generalised model of 
heating where 
heaters maysubmit a mixture of their valid and invalid shares, is 
onsidered in Se
tion 4.Properties of se
ret sharing immune against the generalised 
heating are exam-ined in Se
tion 4.1 and 
onstru
tion for su
h se
ret sharing is given in Se
tion4.2. In this paper we provide all proofs in the Appendix.2 Binary Sequen
esLet GF (2) denote the binary �eld and Vn denote the ve
tor spa
e of n tuples ofelements from GF (2). Then ea
h ve
tor � 
an be expressed as � = (a1; : : : ; an)where ea
h aj 2 GF (2). We 
onsider a mapping f from Vn to GF (2). f 
an bewritten as f(x) or f(x1; : : : ; xn), where x = (x1; : : : ; xn) and ea
h xj 2 GF (2).f is also 
alled a fun
tion on Vn. The truth table of f is a sequen
e de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :,�2n�1 = (1; : : : ; 1; 1). Ea
h �j is said to be the binary representation of integer j,



j = 0; 1; : : : ; 2n�1. A fun
tion f is said to be balan
ed if its truth table 
ontainsan equal number of zeros and ones.An aÆne fun
tion f on Vn is a fun
tion that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � 
, where � denotes the addition in GF (2), aj ; 
 2 GF (2),j = 1; 2; : : : ; n. Furthermore f is 
alled a linear fun
tion if 
 = 0. It is easy toverify that any nonzero aÆne fun
tion is balan
ed.The Hamming weight of a ve
tor � 2 Vn, denoted by HW (�), is the numberof nonzero 
oordinates of �. The Hamming weight of a fun
tion f , denoted byHW (f), is the number of nonzero terms in the truth table of f .Let f be a fun
tion on Vn. We say that f satis�es the propagation 
riterionwith respe
t to � 2 Vn if f(x) � f(x � �) is a balan
ed fun
tion, where x =(x1; : : : ; xn) 2 Vn and � = (a1; : : : ; an) 2 Vn. Furthermore f is said to satisfythe propagation 
riterion of degree k if it satis�es the propagation 
riterion withrespe
t to every nonzero ve
tor � whose Hamming weight is not larger thank [10℄. Note that the SAC (stri
t avalan
he 
riterion) [19℄ is the same as thepropagation 
riterion of degree one.Due to Lemma 3 of [22℄, we 
an give a k-resilient fun
tion an equivalent de�-nition. A fun
tion f on Vn is said to be k-resilient if for every subset fj1; : : : ; jkgof f1; : : : ; ng and every (a1; : : : ; ak) 2 Vk, f(x1; : : : ; xn)jxj1=a1;:::;xjk=ak is a bal-an
ed fun
tion on Vn�k. Additionally using Corollary 2 of [22℄, we 
an say thatf is k-resilient if it is also t-resilient for any t = 0; 1; : : : ; k.A ve
tor � 2 Vn is 
alled a linear stru
ture of f if f(x) � f(x � �) is a
onstant. For any fun
tion f , the zero ve
tor on Vn is a linear stru
ture. It iseasy to verify that the set of all linear stru
tures of a fun
tion f form a linearsubspa
e of Vn, whose dimension is 
alled the linearity of f .Bent fun
tions 
reate a spe
ial 
lass of fun
tions. The 
lass 
an be de�neddi�erently but all de�nitions are equivalent [12℄. A fun
tion f on Vn is said to bebent if f satis�es the propagation 
riterion with respe
t to every nonzero ve
torin Vn. The sum of any bent fun
tion on Vn and any aÆne fun
tion on Vn is bent.Bent fun
tions are not balan
ed and bent fun
tions on Vn exist only when n iseven.3 Initial Model of CheatingWe see se
ret sharing as a set of distribution rules 
ombined into a single tableT (see [18℄) with binary entries. We also assume that we are dealing with (n; n)threshold s
heme where any n parti
ipants are able to determine a single entryfrom T whi
h indi
ates the se
ret. Being more spe
i�
, the sequen
e of sharesis x = (x1; : : : ; xn) and the se
ret is f(x) where f : Vn ! f0; 1g.Our 
onsiderations are restri
ted to the 
ase of (n; n) se
ret sharing. Thegeneral 
ase of (n;N) se
ret sharing 
an be seen as a 
on
atenation of (n; n)se
ret sharing with a system of N \
onsistent" linear equations. Shares are gen-erated for N parti
ipants using the linear equations. Any n parti
ipants 
an geta system of linear equations with a unique solution whi
h points out the uniquerow of the table T .



Let x = (x1; : : : ; xn) and Æ = (Æ1; : : : ; Æn) be two ve
tors in Vn. De�ne a ve
torin Vn, denoted by x+Æ , whose j-th 
oordinate is xj if Æj = 1, or 0 if Æj = 0. Inaddition, we denote a ve
tor by x�Æ , whose j-th 
oordinate is 0 if Æj = 1, or xj ifÆj = 0. For example, let x = (x1; x2; x3; x4; x5; x6; x7), and Æ = (0; 1; 0; 1; 1; 0; 0)then x+Æ = (0; x2; 0; x4; x5; 0; 0) and x�Æ = (x1; 0; x3; 0; 0; x6; x7).It is easy to verify the properties of operations x+Æ and x�Æ : (i) (� � 
)�Æ =��Æ � 
�Æ holds for any two ve
tors � and 
 in Vn, (ii) Æ+Æ = Æ, Æ�Æ = 0, (iii)�+Æ � ��Æ = � holds for any � 2 Vn.Given a fun
tion f on Vn. We introdu
e the following notations:{ Let � 2 Vn be the sequen
e of shares held by the group P = fP1; : : : ; Png ofn parti
ipants and the se
ret K = f(�).{ The 
olle
tion of 
heaters is determined by the sequen
e Æ = (Æ1; Æ2; : : : ; Æn)where Pi is a 
heater if and only if Æi = 1.{ At the pooling time, the 
heaters submit their shares. It is assumed that
heaters always submit invalid shares. The honest parti
ipants always submittheir valid shares. We 
onsider the ve
tor � � Æ. From the properties of x+Æand x�Æ , �� Æ = ��Æ � �+Æ � ÆThus the 
ombiner obtains ��Æ that splits into two parts: ��Æ { the part sub-mitted by honest parti
ipants, and �+Æ � Æ { the part submitted by 
heaters.The 
ombiner returns an invalid se
retK� = f(��Æ). Note that the 
heatersalways 
hange their shares.{ Let 
�Æ;� = fx�Æ j f(x�Æ � �+Æ � Æ) = K�gwhere �+Æ determines valid shares held by the 
heaters. The set 
�Æ;� repre-sents the view of the 
heater after getting ba
k K� from the 
ombiner. Theset 
learly in
ludes also the ve
tor � of all valid shares.{ The set 
Æ;� = fx�Æ j f(x�Æ � �+Æ ) = Kgdetermines a 
olle
tion of rows of T with the 
orre
t se
ret K and validshares held by the 
heaters.Example 1. Let n = 7, f be a fun
tion on V7 and Æ = (0; 1; 0; 1; 1; 0; 0). Fur-thermore let � = (a1; a2; a3; a4; a5; a6; a7). Then � � Æ = (a1; 1 � a2; a3; 1 �a4; 1 � a5; a6; a7). Let K = f(�) and K� = f(� � Æ). Write x = (x1; x2, x3,x4, x5, x6, x7). Clearly x�Æ � �+Æ = (x1; a2; x3; a4; a5; x6; x7) and x�Æ � �+Æ � Æ =(x1; 1� a2; x3; 1� a4, 1� a5, x6, x7). Therefore 
�Æ;� = f(x1, 0, x3, 0, 0, x6, x7)j f(x1, 1 � a2, x3, 1� a4, 1� a5, x6, x7)= K�g and 
Æ;� = f(x1, 0, x3, 0, 0,x6, x7) j f(x1, a2; x3, a4, a5, x6, x7) = Kg. In this example, P2; P4 and P5 are
heaters and they all submit invalid shares.The fun
tion f is 
alled the de�ning fun
tion as it determines the se
retsharing. The nonzero ve
tor Æ = (Æ1; : : : ; Æn) is 
alled the 
heating ve
tor, � is
alled the original ve
tor, and � � Æ is 
alled the failure ve
tor. The value of



�Æ;� = #(
�Æ;� \ 
Æ;�)=#
�Æ;� expresses the probability of su

essful 
heatingwith respe
t to Æ and �. As the original ve
tor � is always in 
�Æ;� \ 
Æ;�, theprobability of su

essful 
heating always satis�es �Æ;� > 0. Clearly the numberof 
heaters is equal to HW (Æ).Theorem 1. Given se
ret and its de�ning fun
tion f on Vn. Then for any
heating ve
tor Æ 2 Vn with 0 < HW (Æ) < n and any ve
tor � 2 Vn, thereexists a ve
tor 
 2 Vn su
h that �Æ;� + �Æ;
 = 1 otherwise �Æ;� = 1.3.1 Strengthened PropagationWe introdu
e the 
on
ept of strengthened propagation that is useful further inthe paper. Let � = (t1; : : : ; tn) and Æ = (Æ1; : : : ; Æn) be two ve
tors in Vn. Wewrite � � Æ to denote the property that if tj = 1 then Æj = 1. In addition,we write � � Æ to denote the property that � � Æ and � 6= Æ. For example,(0; 1; 0; 0; 1) � (1; 1; 0; 0; 1) or pre
isely (0; 1; 0; 0; 1) � (1; 1; 0; 0; 1). Clearly if� � Æ then � � Æ � Æ.A fun
tion f on Vn is said to satisfy the strengthened propagation with respe
tto a nonzero ve
tor Æ 2 Vn if for any ve
tor � with � � Æ, f(x�Æ ��)�f(x�Æ ���Æ)is balan
ed. If f satis�es the strengthened propagation with respe
t to everyÆ 2 Vk with 0 < HW (Æ) � k then f is said to satisfy the strengthened propagationof degree k.We now illustrate the strengthened propagation. Let f be a fun
tion on V4su
h that f(x1; x2; x3; x4) = x1x2 � x3x4 � x1x3. Let Æ = (1; 1; 0; 0). Choose� = (0; 0; 0; 0). Then f(x�Æ � �) = f(0; 0; x3; x4) = x3x4 and f(x�Æ � � � Æ) =f(1; 1; x3; x4) = 1�x3x4�x3. Thus f(x�Æ ��)�f(x�Æ ���Æ) = 1�x3 is balan
ed.Next we 
hoose � = (0; 1; 0; 0). Then f(x�Æ � �) = f(0; 1; x3; x4) = x3x4 andf(x�Æ � � �Æ) = f(1; 0; x3; x4) = x3x4�x3. Thus f(x�Æ � �)�f(x�Æ � � �Æ) = x3is balan
ed. We have proved that f satis�es the strengthened propagation withrespe
t to Æ = (1; 1; 0; 0).Proposition 1. Let f be a fun
tion on Vn. If f satis�es the strengthened prop-agation of degree k then f satis�es the propagation 
riterion of degree k.It should be noti
ed that the 
onverse of Proposition 1 does not hold whenk � 2. For example, f(x1; x2; x3; x4) = x1x2 � x3x4 is a bent fun
tion on V4thus f satis�es the propagation 
riterion of degree 4. But f does not satisfythe strengthened propagation of degree 2. This 
an be seen from the follow-ing: f(0; 0; x3; x4) = x3x4 and f(1; 1; x3; x4) = 1 � x3x4, and f(0; 0; x3; x4) �f(1; 1; x3; x4) = 1. Therefore f does not satisfy the strengthened propagationwith respe
t to Æ = (1; 1; 0; 0). However we 
an state as follows.Proposition 2. A fun
tion f on Vn satis�es the strengthened propagation ofdegree 1 if and only if f satis�es the propagation 
riterion of degree 1 (the SAC).Lemma 1. If a fun
tion f on Vn satis�es the strengthened propagation of degreek then f �  also satis�es the strengthened propagation of degree k where  isany aÆne fun
tion on Vn.



Lemma 2. Let f1 and f2 be two fun
tions on Vp and Vq respe
tively. Set f(x) =f1(y) � f2(z) where x = (y; z), y 2 Vp and z 2 Vq. Then (i) f is balan
ed if f1or f2 is balan
ed, (ii) f satis�es the strengthened propagation of degree k if bothf1 and f2 satisfy the strengthened propagation of degree k.3.2 k-Cheating Immune Se
ret Sharing S
heme. Clearly it is desirable that maxf�Æ;�jÆ 2 Vn; Æ 6= 0; � 2 Vng is as small aspossible. However if �Æ;� < 12 for a nonzero ve
tor Æ and a ve
tor � 2 Vn, fromTheorem 1, there exists a ve
tor 
 2 Vn su
h that �Æ;� + �Æ;
 = 1 and then�Æ;
 > 12 . This indi
ates that the 
ase of minf�Æ;�jÆ 2 Vn; Æ 6= 0; � 2 Vng < 12is not desirable. For this reason we introdu
e the 
on
ept of k-
heating immunese
ret sharing s
heme.Given se
ret sharing with its de�ning fun
tion f on Vn. Let k be an integerwith 1 � k � n � 1. The se
ret sharing is said to be k-
heating immune if�Æ;� = 12 holds for every Æ 2 Vn with 1 � HW (Æ) � k and every � 2 Vn. Theinteger k is 
alled the order of 
heating immunity of the se
ret sharing.1-
heating immune se
ret sharing is also 
alled 
heating immune se
ret shar-ing in [21℄. The following is a 
hara
terisation of 1-
heating immune se
ret shar-ing [21℄:Theorem 2. Given se
ret sharing with its de�ning fun
tion f on Vn. Then thisse
ret sharing is 1-
heating immune if and only if f is 1-resilient and satis�esthe SAC.The following result provides a relationship between k-
heating immune se-
ret sharing and (k � 1)-
heating immune se
ret sharing:Lemma 3. Given se
ret sharing with its de�ning fun
tion f on Vn. Let thisse
ret sharing be (k� 1)-
heating immune. Then it is k-
heating immune if andonly if the following two 
onditions are satis�ed simultaneously: (i) f satis�esthe strengthened propagation with respe
t to every ve
tor in Vn with Hammingweight k, (ii) for any ve
tor � 2 Vn with HW (Æ) = k and any ve
tor � 2 Vnwith � � Æ, f(x�Æ � �) is balan
ed.Theorem 3. Given se
ret sharing with its de�ning fun
tion f on Vn. Then these
ret sharing is k-
heating immune if and only if f is k-resilient and satis�esthe strengthened propagation of degree k.3.3 Constru
tions of k-
heating Immune Se
ret Sharing S
hemeDue to Theorem 3, to 
onstru
t a k-
heating immune se
ret sharing, we needk-resilient fun
tions satisfying the strengthened propagation of degree k. In par-ti
ular we 
onsider quadrati
 fun
tions with su
h properties.



Proposition 3. Let f(x1; : : : ; xn) be a quadrati
 fun
tion on Vn. Let Æ = (Æ1,: : : , Æn) be a nonzero ve
tor in Vn. Set JÆ = fj j Æj 6= 0; 1 � j � ng. For ea
hinteger i with 1 � i � n and i 62 JÆ, de�neDÆ(i) = fj j j 2 JÆ and xixj is a term of fg. Then f satis�es the strengthenedpropagation with respe
t to Æ if and only if there exists some i0 with 1 � i0 � nand i0 62 JÆ su
h that #DÆ(i0) is odd.The following will be used in 
onstru
tions of desirable fun
tions.Corollary 1. Let f(x1; : : : ; xn) be a quadrati
 fun
tion on Vn. Then(i) f satis�es the strengthened propagation with respe
t to Æ = (0; : : : ; 0; 1; 0; : : : ; 0)where only the j-th 
oordinate is nonzero, if and only if there exists some swith 1 � s � n and s 6= j su
h that xsxj is a term of f ,(ii) f satis�es the strengthened propagation with respe
t toÆ = (0; : : : ; 0; 1; 0; : : : ; 0; 1; 0; : : : ; 0) where only the j-th and i-th 
oordinatesare nonzero, if and only if there exists some s with 1 � s � n and s 6= j; isu
h that xsxj is a term of f and xsxi does not appear in f .The following is a restatement of a lemma in [7℄:Lemma 4. Let a quadrati
 fun
tion f on Vn do not have a nonzero 
onstantterm, in other words, f(0; : : : ; 0) = 0. Then f is balan
ed if and only if thereexists a nonzero linear stru
ture � 2 Vn su
h that f(�) 6= 0.The following Lemma 
an be found in [22℄:Lemma 5. Let fj be a tj-resilient fun
tion on Vnj , j = 1; : : : ; s. Then f1(y)�� � � � fs(z) is an (s� 1+ t1 + � � �+ ts)-resilient fun
tion on Vn1+���+ns , where fiand fj have disjoint variables if i 6= j.Lemma 6. De�ne two fun
tions as follows�2k+1(x1; : : : ; x2k+1) = x1x2 � x2x3 � � � � � x2kx2k+1 � x2k+1x1 (1)�2k(x1; : : : ; x2k) = x1 � x1x2 � x2x3 � � � � � x2k�1x2k � x2kx1 (2)Then(i) �2k+1 is balan
ed, satis�es the strengthened propagation of degree k,(ii) �2k is balan
ed, satis�es the strengthened propagation of degree (k � 1).Due to Theorem 3, the following 
onstru
tions enable us to 
onstru
t k-
heating immune se
ret sharing s
heme.Theorem 4. Let k and s be positive integers with s � k + 1. Let n1; : : : ; ns =2k + 1 or 2k + 2, and n = n1 + � � � + ns. De�ne a fun
tion on Vn su
h asf(x) = �n1(y)�� � ���ns(z) where x = (y; : : : ; z), y 2 Vn1 ; : : : ; z 2 Vns , ea
h �njhas been de�ned in (1) or (2), and �n1 ; : : : ; �ns have disjoint variables mutually.Then the se
ret sharing with the de�ning fun
tion f is k-
heating immune.



Note that n = n1 + � � � + ns, de�ned in Theorem 4, 
an be expressed asn = (2k + 1)r + (2k + 2)q where r � 0 and q � 0 are integers. Sin
e 2k + 1 and2k+2 are relatively prime, any integer 
an also be written as (2k+1)r+(2k+2)qwhere r and q are integers. Furthermore it is easy to verify that any integer nwith n � (2k+1)2 
an be expressed as n = (2k+1)r+(2k+2)q where r; q � 0.Sin
e n � (2k + 1)2, it is easy to verify that s = r + q > k + 1 where s wasmentioned in Theorem 4. Using Theorem 4, we 
an 
onstru
t k-
heating immunese
ret sharing with n parti
ipants where n � (2k + 1)2.4 Generalised Model of CheatingAs before se
ret sharing is 
onsidered to be a set of distribution rules 
ombinedinto a single table T (see [18℄) with binary entries. We also assume that weare dealing with (n; n) threshold s
heme where any n parti
ipants are able todetermine a single entry from T whi
h indi
ates the se
ret.Given a fun
tion f on Vn. We introdu
e the following notations:{ Let � 2 Vn be the sequen
e of shares held by the group P = fP1; : : : ; Png ofn parti
ipants and the se
ret K = f(�).{ The 
olle
tion of 
heaters is determined by the sequen
e Æ = (Æ1; Æ2; : : : ; Æn)where Pi is a 
heater if and only if Æi = 1.{ At the pooling time, the 
heaters submit their shares. This time it is assumedthat 
heaters may submit a mixture of valid and invalid shares. The honestparti
ipants always submit their valid shares. De�ne � = (�1; : : : ; �n) su
hthat�j = �0; if Pj is honest or Pj is a 
heater who submits a valid share1; if Pj a 
heater who submits an invalid shareClearly � � Æ. We assume that there exists at least one 
heater who submitsinvalid share, in other words, we only 
onsider the 
ase that � is nonzero orHW (�) > 0.We 
onsider the ve
tor � � � . Due to the properties of operations x+Æ andx�Æ , �� � = ��Æ � �+Æ � �The 
ombiner obtains � � � that splits into two parts: ��Æ { the part sub-mitted by honest parti
ipants and �+Æ � � the part submitted by 
heaters.The 
ombiner returns an invalid se
ret K� = f(�� �).{ Let 
�Æ;�;� = fx�Æ j f(x�Æ � �+Æ � �) = K�gwhere �+Æ determines valid shares held by the 
heaters. The set 
�Æ;�;� repre-sents the view of the 
heater after getting ba
k K� from the 
ombiner. Theset 
learly in
ludes also the ve
tor � of all valid shares.



{ The set 
Æ;�;� = fx�Æ j f(x�Æ � �+Æ ) = Kgdetermines a 
olle
tion of rows of T with the 
orre
t se
ret K and validshares held by the 
heaters.Example 2. Let n = 7, f be a fun
tion on V7 and Æ = (0; 1; 0; 1; 1; 0; 0) and� = (0; 0; 0; 1; 1; 0; 0). Furthermore let � = (a1; a2; a3; a4; a5; a6; a7). Then ��� =(a1; a2; a3; 1 � a4; 1 � a5; a6; a7). Let K = f(�) and K� = f(� � �). Writex = (x1; x2; x3; x4; x5; x6; x7). Clearly x�Æ � �+Æ = (x1; a2; x3; a4; a5; x6; x7) andx�Æ ��+Æ � � = (x1, a2, x3, 1� a4, 1� a5, x6; x7). Therefore 
�Æ;�;� = f(x1; 0; x3,0; 0, x6; x7) j f(x1; a2; x3; 1 � a4; 1 �a5; x6; x7) = K�g and 
Æ;�;� = f(x1; 0; x3,0; 0, x6; x7)jf(x1; a2; x3, a4; a5; x6; x7) = Kg. In this example P2, P4 and P5 are
heaters but P2 submits valid share.From Examples 1 and 2, we 
an �nd a main di�eren
e between initial andgeneralised models of 
heating. Clearly P2, P4 and P5 are 
heaters in both ex-amples. However P2, P4 and P5 all submit invalid shares in Example 1 while P4,P5 submit invalid shares and P2 submits valid share in Example 2.The fun
tion f is 
alled the de�ning fun
tion as it determines the se
retsharing. The nonzero ve
tor Æ = (Æ1; : : : ; Æn) is 
alled the 
heating ve
tor, thenonzero ve
tor � � Æ is 
alled a
tive 
heating ve
tor, � is 
alled the originalve
tor, and � � � is 
alled the failure ve
tor. The value of �Æ;�;� = #(
�Æ;�;� \
Æ;�;�)=#
�Æ;�� expresses the probability of su

essful 
heating with respe
t toÆ; � and �. As the original ve
tor � is always in 
�Æ;�;� \
Æ;�;�, the probabilityof su

essful 
heating always satis�es �Æ;�;� > 0. Clearly the number of 
heatersis equal to HW (Æ) and the number of a
tive 
heaters is equal to HW (�). Inparti
ular, if � = Æ, we regain the initial s
heme. Therefore the initial model of
heating is a spe
ial 
ase of the generalised model of 
heating. From now, we
onsider se
ret sharing in the generalised model.4.1 Stri
tly k-
heating Immune Se
ret Sharing S
hemeBy using the same arguments as in the proof of Theorem 1, we 
an proveTheorem 5. Given se
ret sharing with its de�ning fun
tion f on Vn. Then forany 
heating ve
tor Æ 2 Vn, any a
tive 
heating ve
tor � � Æ with 1 � HW (�) �HW (Æ) < n, and any ve
tor � 2 Vn, there exists a ve
tor 
 2 Vn su
h that�Æ;�;� + �Æ;�;
 = 1 otherwise �Æ;�;� = 1.For the same reason mentioned in Se
tion 3.2, we introdu
e the 
on
ept of k-
heating immune se
ret sharing s
heme.Given se
ret sharing with its de�ning fun
tion f on Vn. Let k be an integerwith 1 � k � n� 1. The se
ret sharing is said to be stri
tly k-
heating immuneif the probability of su

essful 
heating satis�es �Æ;�;� = 12 for every Æ 2 Vn andany � � Æ with 1 � HW (�) � HW (Æ) � k and every � 2 Vn. The integer k is
alled the order of stri
t 
heating immunity of the se
ret sharing.



Lemma 7. Given se
ret sharing with its de�ning fun
tion f on Vn. Then these
ret sharing is stri
tly k-
heating immune if and only if for any integer t with0 � t � k � 1, any subset fj1; : : : ; jtg of f1; : : : ; ng and any a1; : : : ; at 2 GF (2),f(x1; : : : ; xn)jxj1=a1;:::;xjt=at , as a fun
tion on Vn�t with the variables xi1 , : : :,xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, is (k � t)-resilient andsatis�es the strengthened propagation of degree (k � t).Theorem 6. Given se
ret sharing with its de�ning fun
tion f on Vn. Then these
ret sharing is stri
tly k-
heating immune if and only if the following 
on-ditions are satis�ed simultaneously: (i) f is k-resilient, (ii) for any integer twith 0 � t � k � 1, any subset fj1; : : : ; jtg of f1; : : : ; ng and any a1; : : : ; at 2GF (2), f(x1; : : : ; xn)jxj1=a1;:::;xjt=at , as a fun
tion on Vn�t with the variablesxi1 ; : : : ; xin�t , where fi1; : : : ; in�tg[fj1; : : : ; jtg = f1; : : : ; ng, satis�es the strength-ened propagation of degree (k � t).We indi
ate that the 
ondition (ii) in Theorem 6 is more restri
tive thanthe strengthened propagation of degree k. For example, due to Lemma 6, �13satis�es the strengthened propagation of degree 6. However �13 does not satisfythe 
ondition (ii) in Theorem 6 with k = 3 and t = 2. This 
an be seen fromthe following: �13(0; x2; 0; x4; : : : x13) = x4x5 � x5x6 � � � � � x12x13, as a fun
-tion on V11 with the variables x2; x4; x5; : : : ; x13, does not 
ontain x2. From (i)of Corollary 1, �13(0; x2; 0; x4; : : : x13), as a fun
tion on V11 with the variablesx2; x4; x5; : : : ; x13, does not satisfy the strengthened propagation of degree 1.Therefore �13 does not satisfy the 
ondition (ii) in Theorem 6 with k = 3 andt = 2.4.2 Constru
tion of Stri
tly k-
heating Immune Se
ret SharingS
hemeIf f in Theorem 6 is quadrati
, Theorem 6 
an be simpli�ed as follows:Theorem 7. Given se
ret sharing with its de�ning fun
tion f on Vn. Let f bequadrati
. Then the se
ret sharing is stri
tly k-
heating immune if and only ifthe following two 
onditions are satis�ed simultaneously: (i) f is k-resilient, (ii)for any integer t with 0 � t � k � 1 and any subset fj1; : : : ; jtg of f1; : : : ; ng,f(x1; : : : ; xn)jxj1=0;:::;xjt=0, as a fun
tion on Vn�t with the variables xi1 , : : :,xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, satis�es the strengthenedpropagation of degree (k � t).Constru
tion of Stri
tly 2-
heating Immune Se
ret Sharing S
hemeLet s � 3 be an integer, n1; : : : ; ns = 5; 6 and n = n1 + � � � + ns. De�ne afun
tion on Vn su
h as f(x) = �n1(y)� � � � � �ns(z) where x = (y; : : : ; z), ea
h�nj has been de�ned in (1) or (2), and �ni , �nj have disjoint variables if i 6= j.Due to Theorem 4, the se
ret sharing with the de�ning fun
tion f is (s � 1)-
heating immune, where s�1 � 2, and thus from Theorem 3, f is (s�1)-resilientand satis�es the strengthened propagation of degree s� 1. Therefore f satis�esthe 
ondition (i) of Theorem 7 with k = 2.



Next we verify that f satis�es the 
ondition (ii) of Theorem 7 with k = 2.Let t = 0 in the 
ondition (ii) of Theorem 7 with k = 2. Due to Lemma 6and Lemma 2, we know that f satis�es the strengthened propagation of degree2. Let t = 1 in the 
ondition (ii) of Theorem 7 with k = 2. Fix any j0 with1 � j0 � n. Note that ea
h 1 � i � n, xi appears in two quadrati
 terms in fthus for any i with 1 � i � n and i 6= j0, xi appears in at least one quadrati
term in f(x)jxj0=0. From (i) of Corollary 1, we know that f(x)jxj0=0 satis�esthe strengthened propagation of degree 1.We have proved that f satis�es the 
ondition (ii) of Theorem 7 with k = 2.Therefore if we pla
e f as the de�ning fun
tion of a se
ret sharing and then byTheorem 7 we 
on
lude that this se
ret sharing is 2-
heating immune.Note that 5 and 6 are relatively prime thus any integer 
an also be writtenas 5p+ 6q where p and q are integers. Furthermore it is easy to verify that anyinteger n � 20 
an be expressed as n = 5p + 6q where p � 0 and q � 0 areintegers. As for n � 19, n 
an be expressed as n = 5p + 6q where p � 0 andq � 0 are integers when n = 5; 6; 11; 12, 15; 16; 17 and 18.Therefore we 
an 
onstru
t 2-
heating immune se
ret sharing with n parti
-ipants where n � 20 or n = 5; 6; 11; 12, 15; 16; 17 and 18.Constru
tion of Stri
tly 3-
heating Immune Se
ret Sharing S
hemeSet h9(x1; x2; x3; x4; x5; x6; x7; x8; x9)= x1 � �9(x1; x2; x3; x4; x5; x6; x7; x8; x9)��3(x1; x4; x7)� �3(x2; x5; x8)� �3(x3; x6; x9)where ea
h �j has been de�ned in (1) or (2).Sin
e (1; 1; 1; 1; 1; 1; 1; 1; 1) 2 V9 is a nonzero linear stru
ture of h9 andh9(1; 1; 1; 1; 1; 1; 1; 1; 1) 6= 0, from Lemma 4, we know that h9 is balan
ed.Set h10(x1; x2; x3; x4; x5; x6; x7; x8; x9; x10)= x1 � �10(x1; x2; x3; x4; x5; x6; x7; x8; x9; x10)��10(x1; x4; x7; x10; x3; x6; x9; x2; x5; x8)Sin
e (1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 2 V10 is a nonzero linear stru
ture of h10 andh10(1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 6= 0, from Lemma 4, we know that h10 is balan
ed.Let s � 4 be an integer, n1; : : : ; ns = 9; 10 and n = n1 + � � � + ns. De�nea fun
tion on Vn su
h as f(x) = hn1(y) � � � � � hns(z) where hni and hnj havedisjoint variables if i 6= j.Sin
e both h9 and h10 are balan
ed, from Lemma 5, f is (s � 1)-resilient.Therefore f satis�es the 
ondition (i) of Theorem 7 with k = 3.Next we verify that f satis�es the 
ondition (ii) of Theorem 7 with k = 3.Let t = 0 in the 
ondition (ii) of Theorem 7 with k = 3. Using a straightfor-ward veri�
ation, we know that h9 (h10) satis�es the 
ondition mentioned in



Proposition 3 for every Æ 2 V9 (Æ 2 V10) with HW (Æ) = 1; 2; 3. Thus both h9and h10 satisfy the strengthened propagation of degree 3. Due to Lemma 2, fsatis�es the strengthened propagation of degree 3. Let t = 1 in the 
ondition(ii) of Theorem 7 with k = 3. Fix any j0 with 1 � j0 � n, it is easy to verifythat f(x)jxj0=0 satis�es the 
ondition mentioned in (ii) of Corollary 1, and thusf(x)jxj0=0 satis�es the strengthened propagation of degree 2. Let t = 2 in the
ondition (ii) of Theorem 7 with k = 3. Fix any j0 and i0 with 1 � j0 < i0 � n.Note that ea
h 1 � i � n, xi appears in four quadrati
 terms in f thus for anyi with 1 � i � n and i 6= j0; i0, xi appears in at least two quadrati
 terms inf(x)jxj0=0;xi0=0. From (i) of Corollary 1, we know that f(x)jxj0=0;xi0=0 satis�esthe strengthened propagation of degree 1.We have proved that f satis�es Theorem 7 with k = 3. Therefore if we pla
e fas the de�ning fun
tion of a se
ret sharing and then by Theorem 7, we 
on
ludethat this se
ret sharing is 3-
heating immune.Note that 9 and 10 are relatively prime thus any integer 
an also be writtenas 9p + 10q where p and q are integers. Furthermore it is easy to verify thatany integer n � 72 
an be expressed as n = 9p + 10q where p � 0 and q � 0are integers. As for n � 71, n 
an also be expressed as n = 9p + 10q wherep � 0 and q � 0 are integers when n = 9; 10; 18; 19; 20, 27; 28; 29; 30, 36; 37,38; 39; 40, 45; 46; 47; 48; 49; 50, 54; 55; 56; 57; 58; 59; 60, 61; 62; 63, 64, 65, 66, 67,68, 69, 70. Therefore we 
an 
onstru
t 3-
heating immune se
ret sharing with nparti
ipants where n � 72 or n = 9; 10; 18; 19; 20, 27; 28; 29; 30, 36; 37; 38; 39; 40,45; 46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64; 65; 66, 67, 68, 69,70. Based on Theorem 7 and Proposition 3, we 
an 
ontinue to 
onstru
t stri
tlyk-
heating immune se
ret sharing s
heme, k = 4; 5; : : :. Due to the page limita-tion, this will be 
ompleted in the full paper.5 Con
lusions and RemarksWe have 
onsidered se
ret sharing and its resistan
e against 
heating by a groupof k dishonest parti
ipants. We have proved that the probability of su

essful
heating is always higher than 12 if the parti
ipants hold binary shares. These
ret s
heme is said to be k-
heating immune if the probability of su

essful
heating is 12 for any group of k or less parti
ipants. We have 
hara
terisedk-
heating immune se
ret sharing s
heme by examining its de�ning fun
tion.This 
hara
terisation enables us to 
onstru
t k-
heating immune se
ret sharings
heme. Being more pre
ise, we have studied two 
ases. In the �rst 
ase, thegroup of 
heaters always submit invalid shares. While in the se
ond 
ase, thegroup is more 
exible as they 
olle
tively de
ide whi
h of their shares should bemodi�ed and whi
h should be submitted in their original form.A
knowledgementsThe �rst author was supported by the Large ARC Grant A00103078. The se
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-tions on Information Theory, 43(5):1740{1747, 1997.Appendix: Proofs of Propositions, Lemmas and TheoremsThe Proof of Theorem 1 Let f(�) = K and f(� � Æ) = K�. Set 
�Æ;� = fx�Æ jf(x�Æ � �+Æ � Æ) = K�g and 
Æ;� = fx�Æ j f(x�Æ � �+Æ ) = Kg.We partition 
�Æ;� into two parts: 
�Æ;� = 
�1 [
�2 where
�1 = fx�Æ j f(x�Æ � �+Æ � Æ) = K�; f(x�Æ � �+Æ ) = Kgand 
�2 = fx�Æ j f(x�Æ � �+Æ � Æ) = K�; f(x�Æ � �+Æ ) = K � 1gNote that 
�Æ;� \
Æ;� = 
�1 . Therefore�Æ;� = #(
�Æ;� \
Æ;�)=#
�Æ;� = #
�1=#
�Æ;� (3)There exist two 
ases to be 
onsidered: 
�2 6= ;, where ; denotes the emptyset, and 
�2 = ;.Case 1: 
�2 6= ;. Then there exists a ve
tor � 2 
�2 . Thusf(��Æ � �+Æ � Æ) = K�; f(��Æ � �+Æ ) = K � 1 (4)Set 
 = ��Æ � �+Æ . Therefore (4) 
an be rewritten as f(
 � Æ) = K�; f(
) =K � 1. Clearly 
+Æ = �+Æ and 
�Æ = ��Æ .Next we 
hoose 
 as the original ve
tor. Therefore 
�Æ;
 = fx�Æ j f(x�Æ �
+Æ �Æ) = K�g and 
Æ;
 = fx�Æ j f(x�Æ � 
+Æ ) = K � 1g. Sin
e 
+Æ = �+Æ , we have
�Æ;
 = fx�Æ j f(x�Æ � �+Æ � Æ) = K�g and 
Æ;
 = fx�Æ j f(x�Æ � �+Æ ) = K � 1g.Clearly 
�Æ;
 \
Æ;
 = 
�2 . Note that 
�Æ;
 is identi�ed with 
�Æ;�. Therefore�Æ;
 = #(
�Æ;
 \
Æ;
)=#
�Æ;
 = #
�2=#
�Æ;
 = #
�2=#
�Æ;� (5)Combining (3) and (5), and noti
ing #
�Æ;� = #
�1 +#
�2 , we have �Æ;� +�Æ;
 = 1.Case 2: 
�2 = ;. Then 
�Æ;� = 
�1 . From (3), we have �Æ;� = 1. We haveproved the theorem.The Proof of Proposition 1 Fix any Æ 2 Vn with 0 < HW (Æ) � k. Let � � Æ.Sin
e f satis�es the strengthened propagation of degree k, f(x�Æ � �) � f(x�Æ �



� � Æ) is balan
ed. Sin
e � is an arbitrary ve
tor with � � Æ, x�Æ � � runsthrough every ve
tor in Vn while � and x�Æ are as 
hanged as possible. Thereforef(x)�f(x�Æ) is balan
ed, i.e., f satis�es the propagation 
riterion with respe
tto Æ. Sin
e Æ is an arbitrary ve
tor in Vn with 0 < HW (Æ) � k, we have provedthat f satis�es the propagation 
riterion of degree k.The Proof of Proposition 2 The ne
essity is true due to Proposition 1. Wenow prove the suÆ
ien
y. Assume that f satis�es the SAC. Fix j with 1 � j � nand setg(x1; : : : ; xj�1; xj ; xj+1; : : : ; xn)= f(x1; : : : ; xj�1; xj ; xj+1; : : : ; xn)� f(x1; : : : ; xj�1; xj � 1; xj+1; : : : ; xn)Obviously g(x1; : : : ; xj�1; 0; xj+1; : : : ; xn) = g(x1; : : : ; xj�1; 1; xj+1; : : : ; xn). Sin
ef satis�es the SAC, g(x1; : : : ; xj�1; xj ; xj+1; : : : ; xn) is balan
ed. Thus bothg(x1; : : : ; xj�1; 0; xj+1; : : : ; xn) and g(x1; : : : ; xj�1; 1; xj+1; : : : ; xn) are balan
ed.This proves that f satis�es the strengthened propagation of degree 1.The Proof of Lemma 1 In fa
t, sin
e  is aÆne,  (x�Æ � �) �  (x�Æ � � � Æ)is 
onstant, where Æ is any nonzero ve
tor in Vn and � is any ve
tor in Vn with� � Æ. Thus the lemma holds.The Proof of Lemma 2 The part (i) 
an be found from Lemma 12 of [15℄. Byusing (i) of the Lemma, we 
an verify the part (ii) of the lemma.The Proof of Lemma 3 Let Æ 2 Vn be the 
heating ve
tor with HW (Æ) = k.Let � be a ve
tor in Vn with � � Æ. Clearly Æ+Æ = Æ, �+Æ = � and � � Æ+Æ = � � Æ.Write x = (x1; : : : ; xn). SetR0 = fx�Æ j f(x�Æ � �) = 0; f(x�Æ � � � Æ) = 0gR1 = fx�Æ j f(x�Æ � �) = 0; f(x�Æ � � � Æ) = 1gR2 = fx�Æ j f(x�Æ � �) = 1; f(x�Æ � � � Æ) = 0gR3 = fx�Æ j f(x�Æ � �) = 1; f(x�Æ � � � Æ) = 1g (6)Write #Ri = ri, i = 0; 1; 2; 3. Sin
e HW (Æ) = k, it is easy to see thatr1 + r2 + r3 + r4 = 2n�k. By de�nition, it is easy to verify that��;Æ =8>><>>: r0r0+r2 if f(� � Æ) = 0, f(�) = 0r2r0+r2 if f(� � Æ) = 0, f(�) = 1r1r1+r3 if f(� � Æ) = 1, f(�) = 0r3r1+r3 if f(� � Æ) = 1, f(�) = 1 (7)Similarly, ���Æ;Æ = 8>><>>: r0r0+r1 if f(�) = 0, f(� � Æ) = 0r1r0+r1 if f(�) = 0, f(� � Æ) = 1r2r2+r3 if f(�) = 1, f(� � Æ) = 0r3r2+r3 if f(�) = 1, f(� � Æ) = 1 (8)



Assume that the se
ret sharing is k-
heating immune. Let Æ be the 
heatingve
tor and � be the original ve
tor. Sin
e the s
heme is k-
heating immune andHW (Æ) = k, we have ��;Æ = 12 . Due to (7), r0r0+r2 = r2r0+r2 and r1r1+r3 = r3r1+r3 .It follows that r0 = r2 and r1 = r3. On the other hand, sin
e ���Æ;Æ = 12 , dueto (8), r0r0+r1 = r1r0+r1 and r2r2+r3 = r3r2+r3 . It follows that r0 = r1 and r2 = r3.Therefore we have proved that r0 = r1 = r2 = r3.Note that #fx�Æ j f(x�Æ � �) � f(x�Æ � � � Æ) = 0g = r0 + r3 and #fx�Æ jf(x�Æ � �)� f(x�Æ � � � Æ) = 1g = r1 + r2. Thus#fx�Æ j f(x�Æ � �)� f(x�Æ � � � Æ) = 0g= #fx�Æ j f(x�Æ � �) � f(x�Æ � � � Æ) = 1g (9)From (9), f(x�Æ � �) � f(x�Æ � � � Æ) is balan
ed. Sin
e � is an arbitraryve
tor in Vn with � � Æ, f satis�es the strengthened propagation with respe
tto Æ, where Æ is an arbitrary ve
tor in Vn with HW (Æ) = k. This proves that the
ondition (i) is satis�ed.We now 
onsider the 
ondition (ii). Note that #fx�Æ j f(x�Æ ��) = 0g = r0+r1and #fx�Æ j f(x�Æ � �) = 1g = r2 + r3. Sin
e r0 = r1 = r2 = r3, we have#fx�Æ j f(x�Æ � �) = 0g = #fx�Æ j f(x�Æ � �) = 1g. This proves that f(x�Æ � �)is balan
ed, where Æ is an arbitrary ve
tor in Vn and � is any ve
tor in Vn with� � Æ. Therefore the 
ondition (ii) is satis�ed.Conversely assume that f satis�es (i) and (ii).From the 
ondition (i), for any ve
tor Æ 2 Vn with HW (Æ) = k and anyve
tor � 2 Vn with � � Æ, f(x�Æ � �) is balan
ed, thus we have r0+ r3 = r1+ r2.From the 
ondition (ii), f(x�Æ � �) is balan
ed, thus r0+ r1 = r2+ r3. By thesame reasoning, f(x�Æ � � � Æ) is also balan
ed, thus r0 + r2 = r1 + r3.Therefore we 
on
lude that r0 = r1 = r2 = r3. Due to (7), it follows that��;Æ = 12 (10)Next we prove that �Æ;� = 12 for every � 2 Vn. Clearly �+Æ � Æ, �+Æ � Æ � Æ.Repla
ing � and � � Æ by �+Æ and �+Æ � Æ in (6) respe
tively, and using the samearguments for (10), we 
an prove that �Æ;� = 12 .The Proof of Theorem 3 We prove the theorem by indu
tion on k. Due toTheorem 2, the theorem is true when k = 1. Assume that the theorem is truewhen 1 � k � s� 1. Consider the 
ase of k = s.We now prove the ne
essity. Assume that the se
ret sharing is s-
heatingimmune. Then it is also (s � 1)-
heating immune. Due to the assumption thatthe theorem is true when 1 � k � s � 1, f is (s � 1)-resilient and satis�esthe strengthened propagation of degree (s � 1). Sin
e the se
ret sharing is s-
heating immune, from the 
ondition (i) of Lemma 3, f satis�es the strengthenedpropagation with respe
t to any ve
tor in Vn with Hamming weight s. Thereforef satis�es the strengthened propagation of degree s. On the other hand, due tothe 
ondition (ii) of Lemma 3, for any ve
tor � 2 Vn with HW (Æ) = k and any



ve
tor � 2 Vn with � � Æ, f(x�Æ � �) is balan
ed. Combing this property and thefa
t that f is (s� 1)-resilient, we 
on
lude that f is s-resilient.Conversely assume that f is s-resilient and satis�es the strengthened prop-agation of degree s. Due to the assumption that the theorem is true when1 � k � s � 1, the se
ret sharing is (s � 1)-
heating immune. Sin
e f satis-�es the 
onditions (i) and (ii), due to Lemma 3, the se
ret sharing is s-
heatingimmune. We have proved the theorem when k = s. The proof is 
ompleted.The Proof of Proposition 3 We generalise the notations JÆ and DÆ(i). Forany � = (�1; : : : ; �n) � Æ, set J� = fj j �j 6= 0; 1 � j � ng. For any i with1 � i � n and i 62 JÆ, de�ne D� (i) = fj j j 2 J� and xixj is a term of fg.It is easy to see that xjxi is a quadrati
 term of f(x�Æ � �) if and only ifxjxi is a quadrati
 term of f with j; i 62 JÆ. Similarly xjxi is a quadrati
 termof f(x�Æ � � � Æ) if and only if xjxi is a quadrati
 term of f with j; i 62 JÆ .Therefore f(x�Æ � �) and f(x�Æ � � � Æ) have the same quadrati
 terms. Thusf(x�Æ � �)�f(x�Æ � � �Æ) does not 
ontain any quadrati
 term and thus we onlyneed to 
onsider aÆne terms in f(x�Æ � �) and f(x�Æ � � � Æ).First we assume that there exists some i0 with 1 � i0 � n and i0 62 JÆ su
hthat #DÆ(i0) is odd. Sin
e i0 62 JÆ , we know that i0 62 J� and i0 62 J��Æ. Notethat xi0 appears linearly in f(x�Æ � �) if and only if #D� (i0) is odd. Similarlyxi0 appears linearly in f(x�Æ � � � Æ) if and only if #D��Æ(i0) is odd. Notethat for i0 62 JÆ , we have #D� (i0) + #D��Æ(i0) = #DÆ(i0). Sin
e #DÆ(i0) isodd, xi0 must appear linearly in f(x�Æ � �) � f(x�Æ � � � Æ). This proves thatf(x�Æ � �) � f(x�Æ � � � Æ) is non-
onstant aÆne and then balan
ed. We haveproved the suÆ
ien
y.Conversely assume that f satis�es the strengthened propagation with respe
tto Æ. We now prove the ne
essity by 
ontradi
tion. Assume that #DÆ(i) is evenfor ea
h i 62 JÆ . From the proof of the suÆ
ien
y, for ea
h i 62 JÆ, xj 
annotappear in f(x�Æ � �)�f(x�Æ � � �Æ). This implies that f(x�Æ � �)�f(x�Æ � � �Æ)is 
onstant and then unbalan
ed. This 
ontradi
ts the assumption that assumethat f satis�es the strengthened propagation with respe
t to Æ. The 
ontradi
tionproves the ne
essity.The Proof of Lemma 6 (i) Sin
e (1; : : : ; 1) 2 V2k+1 is a nonzero linear stru
-ture of �2k+1 and �2k+1(1; : : : ; 1) 6= 0, from Lemma 4, we know that �2k+1is balan
ed. Let Æ be a nonzero ve
tor in V2k+1 with 0 < HW (Æ) � k. Sin
e1 � #JÆ = HW (Æ) � k, where JÆ has been de�ned in Proposition 3, there mustexist an integer s with 1 � s � 2k + 1 su
h that s 2 JÆ and s+ 1; s+ 2 62 JÆ (ifs = 2k then s+2 = 2k+2 is regarded as 1, and if s = 2k+1 then s+1 = 2k+2and s+2 = 2k+3 are regarded as 1 and 2 respe
tively). Clearly #DÆ(s+1) = 1.From Proposition 3, we know that �2k+1 satis�es the strengthened propagationrespe
t to Æ. Sin
e Æ is an arbitrary nonzero ve
tor in V2k+1 with 0 < HW (Æ) � k.We have proved the part (i) of the lemma.



(ii) Sin
e (1; : : : ; 1) 2 V2k is a nonzero linear stru
ture of �2k and �2k(1; : : : ; 1)6= 0, from Lemma 4, we know that �2k is balan
ed. Using the same argumentsin the proof of the part (i), we 
omplete the proof of the part (ii).The Proof of Theorem 4 Due to Lemma 6, ea
h �nj is balan
ed. From Lemma2, f is (s�1)-resilient, where s�1 � k. Using Lemma 6 and Lemma 2, we knowthat f satis�es the strengthened propagation of degree k. Using Theorem 3, wehave proved that the se
ret sharing is k-immune.The Proof of Lemma 7 Assume that the se
ret sharing is stri
tly k-
heatingimmune. Let g be a fun
tion on Vn�t given by g = f(x1; : : : ; xn)jxj1=a1;:::;xjt=at .Sin
e f is the de�ning fun
tion on Vn of a stri
tly k-
heating immune se
retsharing in generalised model of 
heating, we know that g is the de�ning fun
tionon Vn�t of a (k� t)-
heating immune se
ret sharing in initial model of 
heating.Applying Theorem 3 to g, we 
on
lude that g is (k � t)-resilient and satis�esthe strengthened propagation of degree (k � t). We have proved the ne
essity.Comparing generalised model of 
heating with initial model of 
heating, we 
aninvert the above reasoning and then prove the suÆ
ien
y.The Proof of Theorem 6 Comparing Theorem 6 with Lemma 7, due to ade�nition of k-resilient fun
tions mentioned in Se
tion 2, it is easy to see theequivalen
e between Theorem 6 and Lemma 7.The Proof of Theorem 7 Due to Theorem 6, we only need to prove the fol-lowing lemma 
alled Lemma (C): \let f be a quadrati
 fun
tion on Vn, t be aninteger with 0 � t < n and fj1; : : : ; jtg be a subset of f1; : : : ; ng. Then for anya1; : : : ; at 2 GF (2), f(x1; : : : ; xn)jxj1=a1;:::;xjt=at , as a fun
tion on Vn�t with thevariables xi1 ; : : : ; xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, satis�esthe strengthened propagation of degree s if and only if f(x1; : : : ; xn)jxj1=0;:::;xjt=0satis�es the strengthened propagation of degree s".Sin
e the ne
essity is obvious, we only need to prove the suÆ
ien
y. It iseasy to verify that xjxi is a quadrati
 term of f(x1; : : : ; xn)jxj1=a1;:::;xjt=at ifand only if xjxi is a quadrati
 term of f with j; i 62 fj1; : : : ; jtg. Similarlyxjxi is a quadrati
 term of f(x1; : : : ; xn)jxj1=0;:::;xjt=0 if and only if xjxi isa quadrati
 term of f with j; i 62 fj1; : : : ; jtg. Then f(x1; : : : ; xn)jxj1=a1;:::;xjt=atand f(x1; : : : ; xn)jxj1=0;:::;xjt=0 have the same quadrati
 terms. Thereforef(x1; : : : ; xn)jxj1=a1;:::;xjt=at 
an be expressed asf(x1; : : : ; xn)jxj1=a1;:::;xjt=at = f(x1; : : : ; xn)jxj1=0;:::;xjt=0 �  (xi1 ; : : : ; xin�t)where  is an aÆne fun
tion on Vn�t.Assume that f(x1; : : : ; xn)jxj1=0;:::;xjt=0, as a fun
tion on Vn�t with the vari-ables xi1 ; : : : ; xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, satis�es thestrengthened propagation of degree s. By using Lemma 1, we 
on
lude thatf(x1; : : : ; xn)jxj1=a1;:::;xjt=at , satis�es the strengthened propagation of degree s.We have proved Lemma (C) and thus the theorem is true.


