
Construtions of Cheating Immune SeretSharingJosef Pieprzyk1 and Xian-Mo Zhang21 Department of ComputingMaquarie UniversitySydney , NSW 2109, AUSTRALIAjosef�is.mq.edu.au2 Shool of IT and CS, University of WollongongWollongong NSW 2522, AUSTRALIAxianmo�s.uow.edu.auAbstrat. The work addresses the problem of heating prevention in se-ret sharing. Two heating senarios are onsidered. In the �rst one, theheaters always submit invalid shares to the ombiner. In the seond one,the heaters olletively deide whih shares are to be modi�ed so theombiner gets a mixture of valid and invalid shares from the heaters.The seret sheme is said to be k-heating immune if any group of kheaters has no advantage over honest partiipants. The paper investi-gates ryptographi properties of the de�ning funtion of seret sharingso the sheme is k-heating immune. Construtions of seret sharing im-mune against k heaters are given.1 IntrodutionSeret sharing is the basi ryptographi tool that allows to de�ne an environ-ment in whih the ative entity is a group. A (t; n) threshold seret sharingsheme permits any group of t or more partiipants to aess the seret. Anygroup of t�1 or less partiipants annot reover the seret. The group operationis normally performed by a trusted ombiner who ollets shares from partii-pants, omputes the result and ommuniates it to the members of the ativegroup. Tompa and Woll [20℄ showed that a dishonest partiipant an heat byproviding an invalid share to the ombiner. If the seret sharing in use is lin-ear then the heater is able to reover the valid seret from an invalid seretreturned by the ombiner. In e�et, the heater holds the seret while other(honest) partiipants are left with an invalid seret.Cheating prevention beomes a major hallenge in the distributed environ-ment. Ideally, one would expet that a heater should gain no advantage overhonest partiipants. The problem an be addressed by foring the ombiner tohek validity of shares before they are used to reover the seret. In the ondi-tionally seure setting, shares an be heked using veri�able seret sharing (see[4, 8, 17, 13℄). In the unonditionally seure seret sharing, shares an be veri�ed



using a system of linear equations (see [11, 2, 1℄). Note that share veri�ationrequires the ombiner to be able to aess the additional information (whihalso needs to be authentiated). This introdues extra omplexity in the designand maintenane of seret sharing.An alternative approah removes the main inentive for heating. If one ormore shares are invalid, then the invalid seret reovered by the ombiner pro-vides no information about the valid seret. In a sense, the heaters position issimilar to that of the honest partiipants exept that the heater knows that thereovered seret is invalid (in pratie, the honest partiipants will learn aboutthis with some delay when they try to use the invalid seret with a preditablefailure).The work in this paper overs the ase where shares and the seret are binary.The non-binary ase when shares are from GF (pt), was onsidered in [9℄. Notethat for the binary ase, funtions display some \speial" harateristis notfound when p > 2. In e�et, onstrutions for binary ase do not follow thosefor the ase when shares are drawn from GF (pt). Moreover, design of stritlyheating immune seret sharing overGF (pt) is in general easier than overGF (2).This work uses a di�erent onept of heating prevention by removing themain inentive for heating. The seret sharing is design in suh a way thatthe group of heaters has no advantage over honest partiipants. In the ase ofheating, all partiipants (honest and dishonest) end up with an invalid seretand both honest and dishonest partiipants have the same probability of guessingthe valid seret. This di�erentiate our approah from others (suh as that in [3℄)in whih heating prevention is done by share veri�ation. In other words, theombiner will return seret only when all shares submitted are valid.The work is strutured as follows. Binary sequenes are introdued in Setion2. An initial model of heating is introdued in Setion 3 and a lower bound onthe probability of suessful heating is derived. The strengthened propagationis de�ned and its basi properties are investigated in Setion 3.1. Seret sharingimmune against k heaters is studied in Setion 3.2 and suh seret sharing isonstruted in Setion 3.3. A generalised model of heating where heaters maysubmit a mixture of their valid and invalid shares, is onsidered in Setion 4.Properties of seret sharing immune against the generalised heating are exam-ined in Setion 4.1 and onstrution for suh seret sharing is given in Setion4.2. In this paper we provide all proofs in the Appendix.2 Binary SequenesLet GF (2) denote the binary �eld and Vn denote the vetor spae of n tuples ofelements from GF (2). Then eah vetor � an be expressed as � = (a1; : : : ; an)where eah aj 2 GF (2). We onsider a mapping f from Vn to GF (2). f an bewritten as f(x) or f(x1; : : : ; xn), where x = (x1; : : : ; xn) and eah xj 2 GF (2).f is also alled a funtion on Vn. The truth table of f is a sequene de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :,�2n�1 = (1; : : : ; 1; 1). Eah �j is said to be the binary representation of integer j,



j = 0; 1; : : : ; 2n�1. A funtion f is said to be balaned if its truth table ontainsan equal number of zeros and ones.An aÆne funtion f on Vn is a funtion that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � , where � denotes the addition in GF (2), aj ;  2 GF (2),j = 1; 2; : : : ; n. Furthermore f is alled a linear funtion if  = 0. It is easy toverify that any nonzero aÆne funtion is balaned.The Hamming weight of a vetor � 2 Vn, denoted by HW (�), is the numberof nonzero oordinates of �. The Hamming weight of a funtion f , denoted byHW (f), is the number of nonzero terms in the truth table of f .Let f be a funtion on Vn. We say that f satis�es the propagation riterionwith respet to � 2 Vn if f(x) � f(x � �) is a balaned funtion, where x =(x1; : : : ; xn) 2 Vn and � = (a1; : : : ; an) 2 Vn. Furthermore f is said to satisfythe propagation riterion of degree k if it satis�es the propagation riterion withrespet to every nonzero vetor � whose Hamming weight is not larger thank [10℄. Note that the SAC (strit avalanhe riterion) [19℄ is the same as thepropagation riterion of degree one.Due to Lemma 3 of [22℄, we an give a k-resilient funtion an equivalent de�-nition. A funtion f on Vn is said to be k-resilient if for every subset fj1; : : : ; jkgof f1; : : : ; ng and every (a1; : : : ; ak) 2 Vk, f(x1; : : : ; xn)jxj1=a1;:::;xjk=ak is a bal-aned funtion on Vn�k. Additionally using Corollary 2 of [22℄, we an say thatf is k-resilient if it is also t-resilient for any t = 0; 1; : : : ; k.A vetor � 2 Vn is alled a linear struture of f if f(x) � f(x � �) is aonstant. For any funtion f , the zero vetor on Vn is a linear struture. It iseasy to verify that the set of all linear strutures of a funtion f form a linearsubspae of Vn, whose dimension is alled the linearity of f .Bent funtions reate a speial lass of funtions. The lass an be de�neddi�erently but all de�nitions are equivalent [12℄. A funtion f on Vn is said to bebent if f satis�es the propagation riterion with respet to every nonzero vetorin Vn. The sum of any bent funtion on Vn and any aÆne funtion on Vn is bent.Bent funtions are not balaned and bent funtions on Vn exist only when n iseven.3 Initial Model of CheatingWe see seret sharing as a set of distribution rules ombined into a single tableT (see [18℄) with binary entries. We also assume that we are dealing with (n; n)threshold sheme where any n partiipants are able to determine a single entryfrom T whih indiates the seret. Being more spei�, the sequene of sharesis x = (x1; : : : ; xn) and the seret is f(x) where f : Vn ! f0; 1g.Our onsiderations are restrited to the ase of (n; n) seret sharing. Thegeneral ase of (n;N) seret sharing an be seen as a onatenation of (n; n)seret sharing with a system of N \onsistent" linear equations. Shares are gen-erated for N partiipants using the linear equations. Any n partiipants an geta system of linear equations with a unique solution whih points out the uniquerow of the table T .



Let x = (x1; : : : ; xn) and Æ = (Æ1; : : : ; Æn) be two vetors in Vn. De�ne a vetorin Vn, denoted by x+Æ , whose j-th oordinate is xj if Æj = 1, or 0 if Æj = 0. Inaddition, we denote a vetor by x�Æ , whose j-th oordinate is 0 if Æj = 1, or xj ifÆj = 0. For example, let x = (x1; x2; x3; x4; x5; x6; x7), and Æ = (0; 1; 0; 1; 1; 0; 0)then x+Æ = (0; x2; 0; x4; x5; 0; 0) and x�Æ = (x1; 0; x3; 0; 0; x6; x7).It is easy to verify the properties of operations x+Æ and x�Æ : (i) (� � )�Æ =��Æ � �Æ holds for any two vetors � and  in Vn, (ii) Æ+Æ = Æ, Æ�Æ = 0, (iii)�+Æ � ��Æ = � holds for any � 2 Vn.Given a funtion f on Vn. We introdue the following notations:{ Let � 2 Vn be the sequene of shares held by the group P = fP1; : : : ; Png ofn partiipants and the seret K = f(�).{ The olletion of heaters is determined by the sequene Æ = (Æ1; Æ2; : : : ; Æn)where Pi is a heater if and only if Æi = 1.{ At the pooling time, the heaters submit their shares. It is assumed thatheaters always submit invalid shares. The honest partiipants always submittheir valid shares. We onsider the vetor � � Æ. From the properties of x+Æand x�Æ , �� Æ = ��Æ � �+Æ � ÆThus the ombiner obtains ��Æ that splits into two parts: ��Æ { the part sub-mitted by honest partiipants, and �+Æ � Æ { the part submitted by heaters.The ombiner returns an invalid seretK� = f(��Æ). Note that the heatersalways hange their shares.{ Let 
�Æ;� = fx�Æ j f(x�Æ � �+Æ � Æ) = K�gwhere �+Æ determines valid shares held by the heaters. The set 
�Æ;� repre-sents the view of the heater after getting bak K� from the ombiner. Theset learly inludes also the vetor � of all valid shares.{ The set 
Æ;� = fx�Æ j f(x�Æ � �+Æ ) = Kgdetermines a olletion of rows of T with the orret seret K and validshares held by the heaters.Example 1. Let n = 7, f be a funtion on V7 and Æ = (0; 1; 0; 1; 1; 0; 0). Fur-thermore let � = (a1; a2; a3; a4; a5; a6; a7). Then � � Æ = (a1; 1 � a2; a3; 1 �a4; 1 � a5; a6; a7). Let K = f(�) and K� = f(� � Æ). Write x = (x1; x2, x3,x4, x5, x6, x7). Clearly x�Æ � �+Æ = (x1; a2; x3; a4; a5; x6; x7) and x�Æ � �+Æ � Æ =(x1; 1� a2; x3; 1� a4, 1� a5, x6, x7). Therefore 
�Æ;� = f(x1, 0, x3, 0, 0, x6, x7)j f(x1, 1 � a2, x3, 1� a4, 1� a5, x6, x7)= K�g and 
Æ;� = f(x1, 0, x3, 0, 0,x6, x7) j f(x1, a2; x3, a4, a5, x6, x7) = Kg. In this example, P2; P4 and P5 areheaters and they all submit invalid shares.The funtion f is alled the de�ning funtion as it determines the seretsharing. The nonzero vetor Æ = (Æ1; : : : ; Æn) is alled the heating vetor, � isalled the original vetor, and � � Æ is alled the failure vetor. The value of



�Æ;� = #(
�Æ;� \ 
Æ;�)=#
�Æ;� expresses the probability of suessful heatingwith respet to Æ and �. As the original vetor � is always in 
�Æ;� \ 
Æ;�, theprobability of suessful heating always satis�es �Æ;� > 0. Clearly the numberof heaters is equal to HW (Æ).Theorem 1. Given seret and its de�ning funtion f on Vn. Then for anyheating vetor Æ 2 Vn with 0 < HW (Æ) < n and any vetor � 2 Vn, thereexists a vetor  2 Vn suh that �Æ;� + �Æ; = 1 otherwise �Æ;� = 1.3.1 Strengthened PropagationWe introdue the onept of strengthened propagation that is useful further inthe paper. Let � = (t1; : : : ; tn) and Æ = (Æ1; : : : ; Æn) be two vetors in Vn. Wewrite � � Æ to denote the property that if tj = 1 then Æj = 1. In addition,we write � � Æ to denote the property that � � Æ and � 6= Æ. For example,(0; 1; 0; 0; 1) � (1; 1; 0; 0; 1) or preisely (0; 1; 0; 0; 1) � (1; 1; 0; 0; 1). Clearly if� � Æ then � � Æ � Æ.A funtion f on Vn is said to satisfy the strengthened propagation with respetto a nonzero vetor Æ 2 Vn if for any vetor � with � � Æ, f(x�Æ ��)�f(x�Æ ���Æ)is balaned. If f satis�es the strengthened propagation with respet to everyÆ 2 Vk with 0 < HW (Æ) � k then f is said to satisfy the strengthened propagationof degree k.We now illustrate the strengthened propagation. Let f be a funtion on V4suh that f(x1; x2; x3; x4) = x1x2 � x3x4 � x1x3. Let Æ = (1; 1; 0; 0). Choose� = (0; 0; 0; 0). Then f(x�Æ � �) = f(0; 0; x3; x4) = x3x4 and f(x�Æ � � � Æ) =f(1; 1; x3; x4) = 1�x3x4�x3. Thus f(x�Æ ��)�f(x�Æ ���Æ) = 1�x3 is balaned.Next we hoose � = (0; 1; 0; 0). Then f(x�Æ � �) = f(0; 1; x3; x4) = x3x4 andf(x�Æ � � �Æ) = f(1; 0; x3; x4) = x3x4�x3. Thus f(x�Æ � �)�f(x�Æ � � �Æ) = x3is balaned. We have proved that f satis�es the strengthened propagation withrespet to Æ = (1; 1; 0; 0).Proposition 1. Let f be a funtion on Vn. If f satis�es the strengthened prop-agation of degree k then f satis�es the propagation riterion of degree k.It should be notied that the onverse of Proposition 1 does not hold whenk � 2. For example, f(x1; x2; x3; x4) = x1x2 � x3x4 is a bent funtion on V4thus f satis�es the propagation riterion of degree 4. But f does not satisfythe strengthened propagation of degree 2. This an be seen from the follow-ing: f(0; 0; x3; x4) = x3x4 and f(1; 1; x3; x4) = 1 � x3x4, and f(0; 0; x3; x4) �f(1; 1; x3; x4) = 1. Therefore f does not satisfy the strengthened propagationwith respet to Æ = (1; 1; 0; 0). However we an state as follows.Proposition 2. A funtion f on Vn satis�es the strengthened propagation ofdegree 1 if and only if f satis�es the propagation riterion of degree 1 (the SAC).Lemma 1. If a funtion f on Vn satis�es the strengthened propagation of degreek then f �  also satis�es the strengthened propagation of degree k where  isany aÆne funtion on Vn.



Lemma 2. Let f1 and f2 be two funtions on Vp and Vq respetively. Set f(x) =f1(y) � f2(z) where x = (y; z), y 2 Vp and z 2 Vq. Then (i) f is balaned if f1or f2 is balaned, (ii) f satis�es the strengthened propagation of degree k if bothf1 and f2 satisfy the strengthened propagation of degree k.3.2 k-Cheating Immune Seret Sharing Sheme. Clearly it is desirable that maxf�Æ;�jÆ 2 Vn; Æ 6= 0; � 2 Vng is as small aspossible. However if �Æ;� < 12 for a nonzero vetor Æ and a vetor � 2 Vn, fromTheorem 1, there exists a vetor  2 Vn suh that �Æ;� + �Æ; = 1 and then�Æ; > 12 . This indiates that the ase of minf�Æ;�jÆ 2 Vn; Æ 6= 0; � 2 Vng < 12is not desirable. For this reason we introdue the onept of k-heating immuneseret sharing sheme.Given seret sharing with its de�ning funtion f on Vn. Let k be an integerwith 1 � k � n � 1. The seret sharing is said to be k-heating immune if�Æ;� = 12 holds for every Æ 2 Vn with 1 � HW (Æ) � k and every � 2 Vn. Theinteger k is alled the order of heating immunity of the seret sharing.1-heating immune seret sharing is also alled heating immune seret shar-ing in [21℄. The following is a haraterisation of 1-heating immune seret shar-ing [21℄:Theorem 2. Given seret sharing with its de�ning funtion f on Vn. Then thisseret sharing is 1-heating immune if and only if f is 1-resilient and satis�esthe SAC.The following result provides a relationship between k-heating immune se-ret sharing and (k � 1)-heating immune seret sharing:Lemma 3. Given seret sharing with its de�ning funtion f on Vn. Let thisseret sharing be (k� 1)-heating immune. Then it is k-heating immune if andonly if the following two onditions are satis�ed simultaneously: (i) f satis�esthe strengthened propagation with respet to every vetor in Vn with Hammingweight k, (ii) for any vetor � 2 Vn with HW (Æ) = k and any vetor � 2 Vnwith � � Æ, f(x�Æ � �) is balaned.Theorem 3. Given seret sharing with its de�ning funtion f on Vn. Then theseret sharing is k-heating immune if and only if f is k-resilient and satis�esthe strengthened propagation of degree k.3.3 Construtions of k-heating Immune Seret Sharing ShemeDue to Theorem 3, to onstrut a k-heating immune seret sharing, we needk-resilient funtions satisfying the strengthened propagation of degree k. In par-tiular we onsider quadrati funtions with suh properties.



Proposition 3. Let f(x1; : : : ; xn) be a quadrati funtion on Vn. Let Æ = (Æ1,: : : , Æn) be a nonzero vetor in Vn. Set JÆ = fj j Æj 6= 0; 1 � j � ng. For eahinteger i with 1 � i � n and i 62 JÆ, de�neDÆ(i) = fj j j 2 JÆ and xixj is a term of fg. Then f satis�es the strengthenedpropagation with respet to Æ if and only if there exists some i0 with 1 � i0 � nand i0 62 JÆ suh that #DÆ(i0) is odd.The following will be used in onstrutions of desirable funtions.Corollary 1. Let f(x1; : : : ; xn) be a quadrati funtion on Vn. Then(i) f satis�es the strengthened propagation with respet to Æ = (0; : : : ; 0; 1; 0; : : : ; 0)where only the j-th oordinate is nonzero, if and only if there exists some swith 1 � s � n and s 6= j suh that xsxj is a term of f ,(ii) f satis�es the strengthened propagation with respet toÆ = (0; : : : ; 0; 1; 0; : : : ; 0; 1; 0; : : : ; 0) where only the j-th and i-th oordinatesare nonzero, if and only if there exists some s with 1 � s � n and s 6= j; isuh that xsxj is a term of f and xsxi does not appear in f .The following is a restatement of a lemma in [7℄:Lemma 4. Let a quadrati funtion f on Vn do not have a nonzero onstantterm, in other words, f(0; : : : ; 0) = 0. Then f is balaned if and only if thereexists a nonzero linear struture � 2 Vn suh that f(�) 6= 0.The following Lemma an be found in [22℄:Lemma 5. Let fj be a tj-resilient funtion on Vnj , j = 1; : : : ; s. Then f1(y)�� � � � fs(z) is an (s� 1+ t1 + � � �+ ts)-resilient funtion on Vn1+���+ns , where fiand fj have disjoint variables if i 6= j.Lemma 6. De�ne two funtions as follows�2k+1(x1; : : : ; x2k+1) = x1x2 � x2x3 � � � � � x2kx2k+1 � x2k+1x1 (1)�2k(x1; : : : ; x2k) = x1 � x1x2 � x2x3 � � � � � x2k�1x2k � x2kx1 (2)Then(i) �2k+1 is balaned, satis�es the strengthened propagation of degree k,(ii) �2k is balaned, satis�es the strengthened propagation of degree (k � 1).Due to Theorem 3, the following onstrutions enable us to onstrut k-heating immune seret sharing sheme.Theorem 4. Let k and s be positive integers with s � k + 1. Let n1; : : : ; ns =2k + 1 or 2k + 2, and n = n1 + � � � + ns. De�ne a funtion on Vn suh asf(x) = �n1(y)�� � ���ns(z) where x = (y; : : : ; z), y 2 Vn1 ; : : : ; z 2 Vns , eah �njhas been de�ned in (1) or (2), and �n1 ; : : : ; �ns have disjoint variables mutually.Then the seret sharing with the de�ning funtion f is k-heating immune.



Note that n = n1 + � � � + ns, de�ned in Theorem 4, an be expressed asn = (2k + 1)r + (2k + 2)q where r � 0 and q � 0 are integers. Sine 2k + 1 and2k+2 are relatively prime, any integer an also be written as (2k+1)r+(2k+2)qwhere r and q are integers. Furthermore it is easy to verify that any integer nwith n � (2k+1)2 an be expressed as n = (2k+1)r+(2k+2)q where r; q � 0.Sine n � (2k + 1)2, it is easy to verify that s = r + q > k + 1 where s wasmentioned in Theorem 4. Using Theorem 4, we an onstrut k-heating immuneseret sharing with n partiipants where n � (2k + 1)2.4 Generalised Model of CheatingAs before seret sharing is onsidered to be a set of distribution rules ombinedinto a single table T (see [18℄) with binary entries. We also assume that weare dealing with (n; n) threshold sheme where any n partiipants are able todetermine a single entry from T whih indiates the seret.Given a funtion f on Vn. We introdue the following notations:{ Let � 2 Vn be the sequene of shares held by the group P = fP1; : : : ; Png ofn partiipants and the seret K = f(�).{ The olletion of heaters is determined by the sequene Æ = (Æ1; Æ2; : : : ; Æn)where Pi is a heater if and only if Æi = 1.{ At the pooling time, the heaters submit their shares. This time it is assumedthat heaters may submit a mixture of valid and invalid shares. The honestpartiipants always submit their valid shares. De�ne � = (�1; : : : ; �n) suhthat�j = �0; if Pj is honest or Pj is a heater who submits a valid share1; if Pj a heater who submits an invalid shareClearly � � Æ. We assume that there exists at least one heater who submitsinvalid share, in other words, we only onsider the ase that � is nonzero orHW (�) > 0.We onsider the vetor � � � . Due to the properties of operations x+Æ andx�Æ , �� � = ��Æ � �+Æ � �The ombiner obtains � � � that splits into two parts: ��Æ { the part sub-mitted by honest partiipants and �+Æ � � the part submitted by heaters.The ombiner returns an invalid seret K� = f(�� �).{ Let 
�Æ;�;� = fx�Æ j f(x�Æ � �+Æ � �) = K�gwhere �+Æ determines valid shares held by the heaters. The set 
�Æ;�;� repre-sents the view of the heater after getting bak K� from the ombiner. Theset learly inludes also the vetor � of all valid shares.



{ The set 
Æ;�;� = fx�Æ j f(x�Æ � �+Æ ) = Kgdetermines a olletion of rows of T with the orret seret K and validshares held by the heaters.Example 2. Let n = 7, f be a funtion on V7 and Æ = (0; 1; 0; 1; 1; 0; 0) and� = (0; 0; 0; 1; 1; 0; 0). Furthermore let � = (a1; a2; a3; a4; a5; a6; a7). Then ��� =(a1; a2; a3; 1 � a4; 1 � a5; a6; a7). Let K = f(�) and K� = f(� � �). Writex = (x1; x2; x3; x4; x5; x6; x7). Clearly x�Æ � �+Æ = (x1; a2; x3; a4; a5; x6; x7) andx�Æ ��+Æ � � = (x1, a2, x3, 1� a4, 1� a5, x6; x7). Therefore 
�Æ;�;� = f(x1; 0; x3,0; 0, x6; x7) j f(x1; a2; x3; 1 � a4; 1 �a5; x6; x7) = K�g and 
Æ;�;� = f(x1; 0; x3,0; 0, x6; x7)jf(x1; a2; x3, a4; a5; x6; x7) = Kg. In this example P2, P4 and P5 areheaters but P2 submits valid share.From Examples 1 and 2, we an �nd a main di�erene between initial andgeneralised models of heating. Clearly P2, P4 and P5 are heaters in both ex-amples. However P2, P4 and P5 all submit invalid shares in Example 1 while P4,P5 submit invalid shares and P2 submits valid share in Example 2.The funtion f is alled the de�ning funtion as it determines the seretsharing. The nonzero vetor Æ = (Æ1; : : : ; Æn) is alled the heating vetor, thenonzero vetor � � Æ is alled ative heating vetor, � is alled the originalvetor, and � � � is alled the failure vetor. The value of �Æ;�;� = #(
�Æ;�;� \
Æ;�;�)=#
�Æ;�� expresses the probability of suessful heating with respet toÆ; � and �. As the original vetor � is always in 
�Æ;�;� \
Æ;�;�, the probabilityof suessful heating always satis�es �Æ;�;� > 0. Clearly the number of heatersis equal to HW (Æ) and the number of ative heaters is equal to HW (�). Inpartiular, if � = Æ, we regain the initial sheme. Therefore the initial model ofheating is a speial ase of the generalised model of heating. From now, weonsider seret sharing in the generalised model.4.1 Stritly k-heating Immune Seret Sharing ShemeBy using the same arguments as in the proof of Theorem 1, we an proveTheorem 5. Given seret sharing with its de�ning funtion f on Vn. Then forany heating vetor Æ 2 Vn, any ative heating vetor � � Æ with 1 � HW (�) �HW (Æ) < n, and any vetor � 2 Vn, there exists a vetor  2 Vn suh that�Æ;�;� + �Æ;�; = 1 otherwise �Æ;�;� = 1.For the same reason mentioned in Setion 3.2, we introdue the onept of k-heating immune seret sharing sheme.Given seret sharing with its de�ning funtion f on Vn. Let k be an integerwith 1 � k � n� 1. The seret sharing is said to be stritly k-heating immuneif the probability of suessful heating satis�es �Æ;�;� = 12 for every Æ 2 Vn andany � � Æ with 1 � HW (�) � HW (Æ) � k and every � 2 Vn. The integer k isalled the order of strit heating immunity of the seret sharing.



Lemma 7. Given seret sharing with its de�ning funtion f on Vn. Then theseret sharing is stritly k-heating immune if and only if for any integer t with0 � t � k � 1, any subset fj1; : : : ; jtg of f1; : : : ; ng and any a1; : : : ; at 2 GF (2),f(x1; : : : ; xn)jxj1=a1;:::;xjt=at , as a funtion on Vn�t with the variables xi1 , : : :,xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, is (k � t)-resilient andsatis�es the strengthened propagation of degree (k � t).Theorem 6. Given seret sharing with its de�ning funtion f on Vn. Then theseret sharing is stritly k-heating immune if and only if the following on-ditions are satis�ed simultaneously: (i) f is k-resilient, (ii) for any integer twith 0 � t � k � 1, any subset fj1; : : : ; jtg of f1; : : : ; ng and any a1; : : : ; at 2GF (2), f(x1; : : : ; xn)jxj1=a1;:::;xjt=at , as a funtion on Vn�t with the variablesxi1 ; : : : ; xin�t , where fi1; : : : ; in�tg[fj1; : : : ; jtg = f1; : : : ; ng, satis�es the strength-ened propagation of degree (k � t).We indiate that the ondition (ii) in Theorem 6 is more restritive thanthe strengthened propagation of degree k. For example, due to Lemma 6, �13satis�es the strengthened propagation of degree 6. However �13 does not satisfythe ondition (ii) in Theorem 6 with k = 3 and t = 2. This an be seen fromthe following: �13(0; x2; 0; x4; : : : x13) = x4x5 � x5x6 � � � � � x12x13, as a fun-tion on V11 with the variables x2; x4; x5; : : : ; x13, does not ontain x2. From (i)of Corollary 1, �13(0; x2; 0; x4; : : : x13), as a funtion on V11 with the variablesx2; x4; x5; : : : ; x13, does not satisfy the strengthened propagation of degree 1.Therefore �13 does not satisfy the ondition (ii) in Theorem 6 with k = 3 andt = 2.4.2 Constrution of Stritly k-heating Immune Seret SharingShemeIf f in Theorem 6 is quadrati, Theorem 6 an be simpli�ed as follows:Theorem 7. Given seret sharing with its de�ning funtion f on Vn. Let f bequadrati. Then the seret sharing is stritly k-heating immune if and only ifthe following two onditions are satis�ed simultaneously: (i) f is k-resilient, (ii)for any integer t with 0 � t � k � 1 and any subset fj1; : : : ; jtg of f1; : : : ; ng,f(x1; : : : ; xn)jxj1=0;:::;xjt=0, as a funtion on Vn�t with the variables xi1 , : : :,xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, satis�es the strengthenedpropagation of degree (k � t).Constrution of Stritly 2-heating Immune Seret Sharing ShemeLet s � 3 be an integer, n1; : : : ; ns = 5; 6 and n = n1 + � � � + ns. De�ne afuntion on Vn suh as f(x) = �n1(y)� � � � � �ns(z) where x = (y; : : : ; z), eah�nj has been de�ned in (1) or (2), and �ni , �nj have disjoint variables if i 6= j.Due to Theorem 4, the seret sharing with the de�ning funtion f is (s � 1)-heating immune, where s�1 � 2, and thus from Theorem 3, f is (s�1)-resilientand satis�es the strengthened propagation of degree s� 1. Therefore f satis�esthe ondition (i) of Theorem 7 with k = 2.



Next we verify that f satis�es the ondition (ii) of Theorem 7 with k = 2.Let t = 0 in the ondition (ii) of Theorem 7 with k = 2. Due to Lemma 6and Lemma 2, we know that f satis�es the strengthened propagation of degree2. Let t = 1 in the ondition (ii) of Theorem 7 with k = 2. Fix any j0 with1 � j0 � n. Note that eah 1 � i � n, xi appears in two quadrati terms in fthus for any i with 1 � i � n and i 6= j0, xi appears in at least one quadratiterm in f(x)jxj0=0. From (i) of Corollary 1, we know that f(x)jxj0=0 satis�esthe strengthened propagation of degree 1.We have proved that f satis�es the ondition (ii) of Theorem 7 with k = 2.Therefore if we plae f as the de�ning funtion of a seret sharing and then byTheorem 7 we onlude that this seret sharing is 2-heating immune.Note that 5 and 6 are relatively prime thus any integer an also be writtenas 5p+ 6q where p and q are integers. Furthermore it is easy to verify that anyinteger n � 20 an be expressed as n = 5p + 6q where p � 0 and q � 0 areintegers. As for n � 19, n an be expressed as n = 5p + 6q where p � 0 andq � 0 are integers when n = 5; 6; 11; 12, 15; 16; 17 and 18.Therefore we an onstrut 2-heating immune seret sharing with n parti-ipants where n � 20 or n = 5; 6; 11; 12, 15; 16; 17 and 18.Constrution of Stritly 3-heating Immune Seret Sharing ShemeSet h9(x1; x2; x3; x4; x5; x6; x7; x8; x9)= x1 � �9(x1; x2; x3; x4; x5; x6; x7; x8; x9)��3(x1; x4; x7)� �3(x2; x5; x8)� �3(x3; x6; x9)where eah �j has been de�ned in (1) or (2).Sine (1; 1; 1; 1; 1; 1; 1; 1; 1) 2 V9 is a nonzero linear struture of h9 andh9(1; 1; 1; 1; 1; 1; 1; 1; 1) 6= 0, from Lemma 4, we know that h9 is balaned.Set h10(x1; x2; x3; x4; x5; x6; x7; x8; x9; x10)= x1 � �10(x1; x2; x3; x4; x5; x6; x7; x8; x9; x10)��10(x1; x4; x7; x10; x3; x6; x9; x2; x5; x8)Sine (1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 2 V10 is a nonzero linear struture of h10 andh10(1; 1; 1; 1; 1; 1; 1; 1; 1; 1) 6= 0, from Lemma 4, we know that h10 is balaned.Let s � 4 be an integer, n1; : : : ; ns = 9; 10 and n = n1 + � � � + ns. De�nea funtion on Vn suh as f(x) = hn1(y) � � � � � hns(z) where hni and hnj havedisjoint variables if i 6= j.Sine both h9 and h10 are balaned, from Lemma 5, f is (s � 1)-resilient.Therefore f satis�es the ondition (i) of Theorem 7 with k = 3.Next we verify that f satis�es the ondition (ii) of Theorem 7 with k = 3.Let t = 0 in the ondition (ii) of Theorem 7 with k = 3. Using a straightfor-ward veri�ation, we know that h9 (h10) satis�es the ondition mentioned in



Proposition 3 for every Æ 2 V9 (Æ 2 V10) with HW (Æ) = 1; 2; 3. Thus both h9and h10 satisfy the strengthened propagation of degree 3. Due to Lemma 2, fsatis�es the strengthened propagation of degree 3. Let t = 1 in the ondition(ii) of Theorem 7 with k = 3. Fix any j0 with 1 � j0 � n, it is easy to verifythat f(x)jxj0=0 satis�es the ondition mentioned in (ii) of Corollary 1, and thusf(x)jxj0=0 satis�es the strengthened propagation of degree 2. Let t = 2 in theondition (ii) of Theorem 7 with k = 3. Fix any j0 and i0 with 1 � j0 < i0 � n.Note that eah 1 � i � n, xi appears in four quadrati terms in f thus for anyi with 1 � i � n and i 6= j0; i0, xi appears in at least two quadrati terms inf(x)jxj0=0;xi0=0. From (i) of Corollary 1, we know that f(x)jxj0=0;xi0=0 satis�esthe strengthened propagation of degree 1.We have proved that f satis�es Theorem 7 with k = 3. Therefore if we plae fas the de�ning funtion of a seret sharing and then by Theorem 7, we onludethat this seret sharing is 3-heating immune.Note that 9 and 10 are relatively prime thus any integer an also be writtenas 9p + 10q where p and q are integers. Furthermore it is easy to verify thatany integer n � 72 an be expressed as n = 9p + 10q where p � 0 and q � 0are integers. As for n � 71, n an also be expressed as n = 9p + 10q wherep � 0 and q � 0 are integers when n = 9; 10; 18; 19; 20, 27; 28; 29; 30, 36; 37,38; 39; 40, 45; 46; 47; 48; 49; 50, 54; 55; 56; 57; 58; 59; 60, 61; 62; 63, 64, 65, 66, 67,68, 69, 70. Therefore we an onstrut 3-heating immune seret sharing with npartiipants where n � 72 or n = 9; 10; 18; 19; 20, 27; 28; 29; 30, 36; 37; 38; 39; 40,45; 46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64; 65; 66, 67, 68, 69,70. Based on Theorem 7 and Proposition 3, we an ontinue to onstrut stritlyk-heating immune seret sharing sheme, k = 4; 5; : : :. Due to the page limita-tion, this will be ompleted in the full paper.5 Conlusions and RemarksWe have onsidered seret sharing and its resistane against heating by a groupof k dishonest partiipants. We have proved that the probability of suessfulheating is always higher than 12 if the partiipants hold binary shares. Theseret sheme is said to be k-heating immune if the probability of suessfulheating is 12 for any group of k or less partiipants. We have haraterisedk-heating immune seret sharing sheme by examining its de�ning funtion.This haraterisation enables us to onstrut k-heating immune seret sharingsheme. Being more preise, we have studied two ases. In the �rst ase, thegroup of heaters always submit invalid shares. While in the seond ase, thegroup is more exible as they olletively deide whih of their shares should bemodi�ed and whih should be submitted in their original form.AknowledgementsThe �rst author was supported by the Large ARC Grant A00103078. The seondauthor was supported by a Queen Elizabeth II Fellowship (227 23 1002).
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�Æ;� = fx�Æ jf(x�Æ � �+Æ � Æ) = K�g and 
Æ;� = fx�Æ j f(x�Æ � �+Æ ) = Kg.We partition 
�Æ;� into two parts: 
�Æ;� = 
�1 [
�2 where
�1 = fx�Æ j f(x�Æ � �+Æ � Æ) = K�; f(x�Æ � �+Æ ) = Kgand 
�2 = fx�Æ j f(x�Æ � �+Æ � Æ) = K�; f(x�Æ � �+Æ ) = K � 1gNote that 
�Æ;� \
Æ;� = 
�1 . Therefore�Æ;� = #(
�Æ;� \
Æ;�)=#
�Æ;� = #
�1=#
�Æ;� (3)There exist two ases to be onsidered: 
�2 6= ;, where ; denotes the emptyset, and 
�2 = ;.Case 1: 
�2 6= ;. Then there exists a vetor � 2 
�2 . Thusf(��Æ � �+Æ � Æ) = K�; f(��Æ � �+Æ ) = K � 1 (4)Set  = ��Æ � �+Æ . Therefore (4) an be rewritten as f( � Æ) = K�; f() =K � 1. Clearly +Æ = �+Æ and �Æ = ��Æ .Next we hoose  as the original vetor. Therefore 
�Æ; = fx�Æ j f(x�Æ �+Æ �Æ) = K�g and 
Æ; = fx�Æ j f(x�Æ � +Æ ) = K � 1g. Sine +Æ = �+Æ , we have
�Æ; = fx�Æ j f(x�Æ � �+Æ � Æ) = K�g and 
Æ; = fx�Æ j f(x�Æ � �+Æ ) = K � 1g.Clearly 
�Æ; \
Æ; = 
�2 . Note that 
�Æ; is identi�ed with 
�Æ;�. Therefore�Æ; = #(
�Æ; \
Æ;)=#
�Æ; = #
�2=#
�Æ; = #
�2=#
�Æ;� (5)Combining (3) and (5), and notiing #
�Æ;� = #
�1 +#
�2 , we have �Æ;� +�Æ; = 1.Case 2: 
�2 = ;. Then 
�Æ;� = 
�1 . From (3), we have �Æ;� = 1. We haveproved the theorem.The Proof of Proposition 1 Fix any Æ 2 Vn with 0 < HW (Æ) � k. Let � � Æ.Sine f satis�es the strengthened propagation of degree k, f(x�Æ � �) � f(x�Æ �



� � Æ) is balaned. Sine � is an arbitrary vetor with � � Æ, x�Æ � � runsthrough every vetor in Vn while � and x�Æ are as hanged as possible. Thereforef(x)�f(x�Æ) is balaned, i.e., f satis�es the propagation riterion with respetto Æ. Sine Æ is an arbitrary vetor in Vn with 0 < HW (Æ) � k, we have provedthat f satis�es the propagation riterion of degree k.The Proof of Proposition 2 The neessity is true due to Proposition 1. Wenow prove the suÆieny. Assume that f satis�es the SAC. Fix j with 1 � j � nand setg(x1; : : : ; xj�1; xj ; xj+1; : : : ; xn)= f(x1; : : : ; xj�1; xj ; xj+1; : : : ; xn)� f(x1; : : : ; xj�1; xj � 1; xj+1; : : : ; xn)Obviously g(x1; : : : ; xj�1; 0; xj+1; : : : ; xn) = g(x1; : : : ; xj�1; 1; xj+1; : : : ; xn). Sinef satis�es the SAC, g(x1; : : : ; xj�1; xj ; xj+1; : : : ; xn) is balaned. Thus bothg(x1; : : : ; xj�1; 0; xj+1; : : : ; xn) and g(x1; : : : ; xj�1; 1; xj+1; : : : ; xn) are balaned.This proves that f satis�es the strengthened propagation of degree 1.The Proof of Lemma 1 In fat, sine  is aÆne,  (x�Æ � �) �  (x�Æ � � � Æ)is onstant, where Æ is any nonzero vetor in Vn and � is any vetor in Vn with� � Æ. Thus the lemma holds.The Proof of Lemma 2 The part (i) an be found from Lemma 12 of [15℄. Byusing (i) of the Lemma, we an verify the part (ii) of the lemma.The Proof of Lemma 3 Let Æ 2 Vn be the heating vetor with HW (Æ) = k.Let � be a vetor in Vn with � � Æ. Clearly Æ+Æ = Æ, �+Æ = � and � � Æ+Æ = � � Æ.Write x = (x1; : : : ; xn). SetR0 = fx�Æ j f(x�Æ � �) = 0; f(x�Æ � � � Æ) = 0gR1 = fx�Æ j f(x�Æ � �) = 0; f(x�Æ � � � Æ) = 1gR2 = fx�Æ j f(x�Æ � �) = 1; f(x�Æ � � � Æ) = 0gR3 = fx�Æ j f(x�Æ � �) = 1; f(x�Æ � � � Æ) = 1g (6)Write #Ri = ri, i = 0; 1; 2; 3. Sine HW (Æ) = k, it is easy to see thatr1 + r2 + r3 + r4 = 2n�k. By de�nition, it is easy to verify that��;Æ =8>><>>: r0r0+r2 if f(� � Æ) = 0, f(�) = 0r2r0+r2 if f(� � Æ) = 0, f(�) = 1r1r1+r3 if f(� � Æ) = 1, f(�) = 0r3r1+r3 if f(� � Æ) = 1, f(�) = 1 (7)Similarly, ���Æ;Æ = 8>><>>: r0r0+r1 if f(�) = 0, f(� � Æ) = 0r1r0+r1 if f(�) = 0, f(� � Æ) = 1r2r2+r3 if f(�) = 1, f(� � Æ) = 0r3r2+r3 if f(�) = 1, f(� � Æ) = 1 (8)



Assume that the seret sharing is k-heating immune. Let Æ be the heatingvetor and � be the original vetor. Sine the sheme is k-heating immune andHW (Æ) = k, we have ��;Æ = 12 . Due to (7), r0r0+r2 = r2r0+r2 and r1r1+r3 = r3r1+r3 .It follows that r0 = r2 and r1 = r3. On the other hand, sine ���Æ;Æ = 12 , dueto (8), r0r0+r1 = r1r0+r1 and r2r2+r3 = r3r2+r3 . It follows that r0 = r1 and r2 = r3.Therefore we have proved that r0 = r1 = r2 = r3.Note that #fx�Æ j f(x�Æ � �) � f(x�Æ � � � Æ) = 0g = r0 + r3 and #fx�Æ jf(x�Æ � �)� f(x�Æ � � � Æ) = 1g = r1 + r2. Thus#fx�Æ j f(x�Æ � �)� f(x�Æ � � � Æ) = 0g= #fx�Æ j f(x�Æ � �) � f(x�Æ � � � Æ) = 1g (9)From (9), f(x�Æ � �) � f(x�Æ � � � Æ) is balaned. Sine � is an arbitraryvetor in Vn with � � Æ, f satis�es the strengthened propagation with respetto Æ, where Æ is an arbitrary vetor in Vn with HW (Æ) = k. This proves that theondition (i) is satis�ed.We now onsider the ondition (ii). Note that #fx�Æ j f(x�Æ ��) = 0g = r0+r1and #fx�Æ j f(x�Æ � �) = 1g = r2 + r3. Sine r0 = r1 = r2 = r3, we have#fx�Æ j f(x�Æ � �) = 0g = #fx�Æ j f(x�Æ � �) = 1g. This proves that f(x�Æ � �)is balaned, where Æ is an arbitrary vetor in Vn and � is any vetor in Vn with� � Æ. Therefore the ondition (ii) is satis�ed.Conversely assume that f satis�es (i) and (ii).From the ondition (i), for any vetor Æ 2 Vn with HW (Æ) = k and anyvetor � 2 Vn with � � Æ, f(x�Æ � �) is balaned, thus we have r0+ r3 = r1+ r2.From the ondition (ii), f(x�Æ � �) is balaned, thus r0+ r1 = r2+ r3. By thesame reasoning, f(x�Æ � � � Æ) is also balaned, thus r0 + r2 = r1 + r3.Therefore we onlude that r0 = r1 = r2 = r3. Due to (7), it follows that��;Æ = 12 (10)Next we prove that �Æ;� = 12 for every � 2 Vn. Clearly �+Æ � Æ, �+Æ � Æ � Æ.Replaing � and � � Æ by �+Æ and �+Æ � Æ in (6) respetively, and using the samearguments for (10), we an prove that �Æ;� = 12 .The Proof of Theorem 3 We prove the theorem by indution on k. Due toTheorem 2, the theorem is true when k = 1. Assume that the theorem is truewhen 1 � k � s� 1. Consider the ase of k = s.We now prove the neessity. Assume that the seret sharing is s-heatingimmune. Then it is also (s � 1)-heating immune. Due to the assumption thatthe theorem is true when 1 � k � s � 1, f is (s � 1)-resilient and satis�esthe strengthened propagation of degree (s � 1). Sine the seret sharing is s-heating immune, from the ondition (i) of Lemma 3, f satis�es the strengthenedpropagation with respet to any vetor in Vn with Hamming weight s. Thereforef satis�es the strengthened propagation of degree s. On the other hand, due tothe ondition (ii) of Lemma 3, for any vetor � 2 Vn with HW (Æ) = k and any



vetor � 2 Vn with � � Æ, f(x�Æ � �) is balaned. Combing this property and thefat that f is (s� 1)-resilient, we onlude that f is s-resilient.Conversely assume that f is s-resilient and satis�es the strengthened prop-agation of degree s. Due to the assumption that the theorem is true when1 � k � s � 1, the seret sharing is (s � 1)-heating immune. Sine f satis-�es the onditions (i) and (ii), due to Lemma 3, the seret sharing is s-heatingimmune. We have proved the theorem when k = s. The proof is ompleted.The Proof of Proposition 3 We generalise the notations JÆ and DÆ(i). Forany � = (�1; : : : ; �n) � Æ, set J� = fj j �j 6= 0; 1 � j � ng. For any i with1 � i � n and i 62 JÆ, de�ne D� (i) = fj j j 2 J� and xixj is a term of fg.It is easy to see that xjxi is a quadrati term of f(x�Æ � �) if and only ifxjxi is a quadrati term of f with j; i 62 JÆ. Similarly xjxi is a quadrati termof f(x�Æ � � � Æ) if and only if xjxi is a quadrati term of f with j; i 62 JÆ .Therefore f(x�Æ � �) and f(x�Æ � � � Æ) have the same quadrati terms. Thusf(x�Æ � �)�f(x�Æ � � �Æ) does not ontain any quadrati term and thus we onlyneed to onsider aÆne terms in f(x�Æ � �) and f(x�Æ � � � Æ).First we assume that there exists some i0 with 1 � i0 � n and i0 62 JÆ suhthat #DÆ(i0) is odd. Sine i0 62 JÆ , we know that i0 62 J� and i0 62 J��Æ. Notethat xi0 appears linearly in f(x�Æ � �) if and only if #D� (i0) is odd. Similarlyxi0 appears linearly in f(x�Æ � � � Æ) if and only if #D��Æ(i0) is odd. Notethat for i0 62 JÆ , we have #D� (i0) + #D��Æ(i0) = #DÆ(i0). Sine #DÆ(i0) isodd, xi0 must appear linearly in f(x�Æ � �) � f(x�Æ � � � Æ). This proves thatf(x�Æ � �) � f(x�Æ � � � Æ) is non-onstant aÆne and then balaned. We haveproved the suÆieny.Conversely assume that f satis�es the strengthened propagation with respetto Æ. We now prove the neessity by ontradition. Assume that #DÆ(i) is evenfor eah i 62 JÆ . From the proof of the suÆieny, for eah i 62 JÆ, xj annotappear in f(x�Æ � �)�f(x�Æ � � �Æ). This implies that f(x�Æ � �)�f(x�Æ � � �Æ)is onstant and then unbalaned. This ontradits the assumption that assumethat f satis�es the strengthened propagation with respet to Æ. The ontraditionproves the neessity.The Proof of Lemma 6 (i) Sine (1; : : : ; 1) 2 V2k+1 is a nonzero linear stru-ture of �2k+1 and �2k+1(1; : : : ; 1) 6= 0, from Lemma 4, we know that �2k+1is balaned. Let Æ be a nonzero vetor in V2k+1 with 0 < HW (Æ) � k. Sine1 � #JÆ = HW (Æ) � k, where JÆ has been de�ned in Proposition 3, there mustexist an integer s with 1 � s � 2k + 1 suh that s 2 JÆ and s+ 1; s+ 2 62 JÆ (ifs = 2k then s+2 = 2k+2 is regarded as 1, and if s = 2k+1 then s+1 = 2k+2and s+2 = 2k+3 are regarded as 1 and 2 respetively). Clearly #DÆ(s+1) = 1.From Proposition 3, we know that �2k+1 satis�es the strengthened propagationrespet to Æ. Sine Æ is an arbitrary nonzero vetor in V2k+1 with 0 < HW (Æ) � k.We have proved the part (i) of the lemma.



(ii) Sine (1; : : : ; 1) 2 V2k is a nonzero linear struture of �2k and �2k(1; : : : ; 1)6= 0, from Lemma 4, we know that �2k is balaned. Using the same argumentsin the proof of the part (i), we omplete the proof of the part (ii).The Proof of Theorem 4 Due to Lemma 6, eah �nj is balaned. From Lemma2, f is (s�1)-resilient, where s�1 � k. Using Lemma 6 and Lemma 2, we knowthat f satis�es the strengthened propagation of degree k. Using Theorem 3, wehave proved that the seret sharing is k-immune.The Proof of Lemma 7 Assume that the seret sharing is stritly k-heatingimmune. Let g be a funtion on Vn�t given by g = f(x1; : : : ; xn)jxj1=a1;:::;xjt=at .Sine f is the de�ning funtion on Vn of a stritly k-heating immune seretsharing in generalised model of heating, we know that g is the de�ning funtionon Vn�t of a (k� t)-heating immune seret sharing in initial model of heating.Applying Theorem 3 to g, we onlude that g is (k � t)-resilient and satis�esthe strengthened propagation of degree (k � t). We have proved the neessity.Comparing generalised model of heating with initial model of heating, we aninvert the above reasoning and then prove the suÆieny.The Proof of Theorem 6 Comparing Theorem 6 with Lemma 7, due to ade�nition of k-resilient funtions mentioned in Setion 2, it is easy to see theequivalene between Theorem 6 and Lemma 7.The Proof of Theorem 7 Due to Theorem 6, we only need to prove the fol-lowing lemma alled Lemma (C): \let f be a quadrati funtion on Vn, t be aninteger with 0 � t < n and fj1; : : : ; jtg be a subset of f1; : : : ; ng. Then for anya1; : : : ; at 2 GF (2), f(x1; : : : ; xn)jxj1=a1;:::;xjt=at , as a funtion on Vn�t with thevariables xi1 ; : : : ; xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, satis�esthe strengthened propagation of degree s if and only if f(x1; : : : ; xn)jxj1=0;:::;xjt=0satis�es the strengthened propagation of degree s".Sine the neessity is obvious, we only need to prove the suÆieny. It iseasy to verify that xjxi is a quadrati term of f(x1; : : : ; xn)jxj1=a1;:::;xjt=at ifand only if xjxi is a quadrati term of f with j; i 62 fj1; : : : ; jtg. Similarlyxjxi is a quadrati term of f(x1; : : : ; xn)jxj1=0;:::;xjt=0 if and only if xjxi isa quadrati term of f with j; i 62 fj1; : : : ; jtg. Then f(x1; : : : ; xn)jxj1=a1;:::;xjt=atand f(x1; : : : ; xn)jxj1=0;:::;xjt=0 have the same quadrati terms. Thereforef(x1; : : : ; xn)jxj1=a1;:::;xjt=at an be expressed asf(x1; : : : ; xn)jxj1=a1;:::;xjt=at = f(x1; : : : ; xn)jxj1=0;:::;xjt=0 �  (xi1 ; : : : ; xin�t)where  is an aÆne funtion on Vn�t.Assume that f(x1; : : : ; xn)jxj1=0;:::;xjt=0, as a funtion on Vn�t with the vari-ables xi1 ; : : : ; xin�t , where fi1; : : : ; in�tg [ fj1; : : : ; jtg = f1; : : : ; ng, satis�es thestrengthened propagation of degree s. By using Lemma 1, we onlude thatf(x1; : : : ; xn)jxj1=a1;:::;xjt=at , satis�es the strengthened propagation of degree s.We have proved Lemma (C) and thus the theorem is true.


