Constructions of Cheating Immune Secret
Sharing

Josef Pieprzyk! and Xian-Mo Zhang?

! Department of Computing
Macquarie University
Sydney , NSW 2109, AUSTRALIA
josef@ics.mq.edu.an
2 School of IT and CS, University of Wollongong
Wollongong NSW 2522, AUSTRALIA

xianmo@cs.uow.edu.au

Abstract. The work addresses the problem of cheating prevention in se-
cret sharing. Two cheating scenarios are considered. In the first one, the
cheaters always submit invalid shares to the combiner. In the second one,
the cheaters collectively decide which shares are to be modified so the
combiner gets a mixture of valid and invalid shares from the cheaters.
The secret scheme is said to be k-cheating immune if any group of k
cheaters has no advantage over honest participants. The paper investi-
gates cryptographic properties of the defining function of secret sharing
so the scheme is k-cheating immune. Constructions of secret sharing im-
mune against k cheaters are given.

1 Introduction

Secret sharing is the basic cryptographic tool that allows to define an environ-
ment in which the active entity is a group. A (¢,n) threshold secret sharing
scheme permits any group of ¢ or more participants to access the secret. Any
group of t — 1 or less participants cannot recover the secret. The group operation
is normally performed by a trusted combiner who collects shares from partici-
pants, computes the result and communicates it to the members of the active
group. Tompa and Woll [20] showed that a dishonest participant can cheat by
providing an invalid share to the combiner. If the secret sharing in use is lin-
ear then the cheater is able to recover the valid secret from an invalid secret
returned by the combiner. In effect, the cheater holds the secret while other
(honest) participants are left with an invalid secret.

Cheating prevention becomes a major challenge in the distributed environ-
ment. Ideally, one would expect that a cheater should gain no advantage over
honest, participants. The problem can be addressed by forcing the combiner to
check validity of shares before they are used to recover the secret. In the condi-
tionally secure setting, shares can be checked using verifiable secret sharing (see
[4,8,17,13]). In the unconditionally secure secret sharing, shares can be verified



using a system of linear equations (see [11,2,1]). Note that share verification
requires the combiner to be able to access the additional information (which
also needs to be authenticated). This introduces extra complexity in the design
and maintenance of secret sharing.

An alternative approach removes the main incentive for cheating. If one or
more shares are invalid, then the invalid secret recovered by the combiner pro-
vides no information about the valid secret. In a sense, the cheaters position is
similar to that of the honest participants except that the cheater knows that the
recovered secret is invalid (in practice, the honest participants will learn about
this with some delay when they try to use the invalid secret with a predictable
failure).

The work in this paper covers the case where shares and the secret are binary.
The non-binary case when shares are from GF(p'), was considered in [9]. Note
that for the binary case, functions display some “special” characteristics not
found when p > 2. In effect, constructions for binary case do not follow those
for the case when shares are drawn from GF(p'). Moreover, design of strictly
cheating immune secret sharing over GF(p') is in general easier than over GF(2).

This work uses a different concept of cheating prevention by removing the
main incentive for cheating. The secret sharing is design in such a way that
the group of cheaters has no advantage over honest participants. In the case of
cheating, all participants (honest and dishonest) end up with an invalid secret
and both honest and dishonest participants have the same probability of guessing
the valid secret. This differentiate our approach from others (such as that in [3])
in which cheating prevention is done by share verification. In other words, the
combiner will return secret only when all shares submitted are valid.

The work is structured as follows. Binary sequences are introduced in Section
2. An initial model of cheating is introduced in Section 3 and a lower bound on
the probability of successful cheating is derived. The strengthened propagation
is defined and its basic properties are investigated in Section 3.1. Secret sharing
immune against k£ cheaters is studied in Section 3.2 and such secret sharing is
constructed in Section 3.3. A generalised model of cheating where cheaters may
submit a mixture of their valid and invalid shares, is considered in Section 4.
Properties of secret sharing immune against the generalised cheating are exam-
ined in Section 4.1 and construction for such secret sharing is given in Section
4.2. In this paper we provide all proofs in the Appendix.

2 Binary Sequences

Let GF(2) denote the binary field and V,, denote the vector space of n tuples of
elements from GF(2). Then each vector a can be expressed as a = (a1, ..., ay)
where each a; € GF(2). We consider a mapping f from V,, to GF(2). f can be
written as f(z) or f(z1,...,2,), where z = (21,...,2,) and each xz; € GF(2).
f is also called a function on V,,. The truth table of f is a sequence defined by
(f(aw), flan),..., flagn_1)), where ag = (0,...,0,0), a4 = (0,...,0,1), ...,
asn_1 = (1,...,1,1). Each «; is said to be the binary representation of integer j,



j=0,1,...,2"—1. A function f is said to be balanced if its truth table contains
an equal number of zeros and ones.

An affine function f on V,, is a function that takes the form of f(z1,...,z,) =
121 @ - - B ank, B ¢, where & denotes the addition in GF(2), aj,c € GF(2),
j =1,2,...,n. Furthermore f is called a linear function if ¢ = 0. It is easy to

verify that any nonzero affine function is balanced.

The Hamming weight of a vector a € V,,, denoted by HW («), is the number
of nonzero coordinates of a. The Hamming weight of a function f, denoted by
HW(f), is the number of nonzero terms in the truth table of f.

Let f be a function on V,,. We say that f satisfies the propagation criterion
with respect to o € V,, if f(x) ® f(x ® a) is a balanced function, where z =
(z1,...,2,) € Vi, and a = (ay,...,a,) € V,,. Furthermore f is said to satisfy
the propagation criterion of degree k if it satisfies the propagation criterion with
respect to every nonzero vector a whose Hamming weight is not larger than
k [10]. Note that the SAC (strict avalanche criterion) [19] is the same as the
propagation criterion of degree one.

Due to Lemma 3 of [22], we can give a k-resilient function an equivalent defi-
nition. A function f on Vj, is said to be k-resilient if for every subset {j1,...,jx}
of {1,...,n} and every (a1,...,ar) € Vi, f(x1,... ?‘Tn)|wj1:a17---7$jk:ak is a bal-
anced function on V,,_;. Additionally using Corollary 2 of [22], we can say that
f is k-resilient if it is also t-resilient for any ¢t = 0,1,..., k.

A vector a € V,, is called a linear structure of f if f(z) ® f(x ® «a) is a
constant. For any function f, the zero vector on V,, is a linear structure. It is
easy to verify that the set of all linear structures of a function f form a linear
subspace of V,,, whose dimension is called the linearity of f.

Bent functions create a special class of functions. The class can be defined
differently but all definitions are equivalent [12]. A function f on V, is said to be
bent if f satisfies the propagation criterion with respect to every nonzero vector
in V,,. The sum of any bent function on V;, and any affine function on V,, is bent.
Bent functions are not balanced and bent functions on V;, exist only when n is
even.

3 Initial Model of Cheating

We see secret sharing as a set of distribution rules combined into a single table
T (see [18]) with binary entries. We also assume that we are dealing with (n,n)
threshold scheme where any n participants are able to determine a single entry
from 7 which indicates the secret. Being more specific, the sequence of shares
is x = (21,...,%,) and the secret is f(z) where f : V,, = {0, 1}.

Our considerations are restricted to the case of (n,n) secret sharing. The
general case of (n, N) secret sharing can be seen as a concatenation of (n,n)
secret sharing with a system of N “consistent” linear equations. Shares are gen-
erated for N participants using the linear equations. Any n participants can get
a system of linear equations with a unique solution which points out the unique
row of the table T.



Letx = (z1,...,2n) and § = (41, ...,d,) be two vectors in V,,. Define a vector
in V,,, denoted by m;, whose j-th coordinate is x; if §; = 1, or 0 if §; = 0. In
addition, we denote a vector by x5 , whose j-th coordinate is 0 if ; = 1, or z; if
d; = 0. For example, let © = (21, 22, 23, 24,5, %6, 27), and 6 = (0,1,0,1,1,0,0)
then :L'5+ = (0,22,0,24,25,0,0) and z; = (2,0, 23,0, 0 TG, T7).

It is easy to verify the properties of operations z; and 1‘5 (i) (B 'y)f;t =
66 ® 75 holds for any two vectors 8 and v in V,, (i) 6f = &, ; = 0, (iii)
B5 @ B; = B holds for any 3 € V.

Given a function f on V,,. We introduce the following notations:

— Let a € V,, be the sequence of shares held by the group P = {P,..., Py} of
n participants and the secret K = f(a).

— The collection of cheaters is determined by the sequence 6 = (d1,d2,...,0,)
where P; is a cheater if and only if d; = 1.

— At the pooling time, the cheaters submit their shares. It is assumed that
cheaters always submit invalid shares. The honest participants always submit,
their valid shares. We consider the vector a @ §. From the properties of a:5+
and zj ,

a®d=a; O a; @I

Thus the combiner obtains a®4 that splits into two parts: ay — the part sub-
mitted by honest participants, and a; @ 6 — the part submitted by cheaters.
The combiner returns an invalid secret K* = f(a®d). Note that the cheaters
always change their shares.
— Let
050 = {25 | flo5 ®af ®0)=K"}

where a 5 determines valid shares held by the cheaters. The set .Q* repre-
sents the view of the cheater after getting back K* from the comblner The
set clearly includes also the vector a of all valid shares.

— The set

D50 = {25 | fzy ®af) =K}

determines a collection of rows of 7 with the correct secret K and valid
shares held by the cheaters.

Ezample 1. Let n = 7, f be a function on V7 and § = (0,1,0,1,1,0,0). Fur-
thermore let « = (a1, a2,as,a4,as5,a6,a7). Then o 6 = (a1,1 D as,a3,1 B
aq,1 ® as,a6,a7). Let K = f(a) and K* = f(a ® §). Write z = (xl,xg, T3,
T4, T, Tg, T7). Clearly xy eaad+ = (z1, 02,73, 04,05, %6, 27) and @aa D=
(21,1 ® as,x3,1® a4, 1 B as, x6, 7). Therefore 25, = = {(z1, 0, 23, 0, 0, xg, z7)
| f(z1, 1® as, z3, 1 a4, 1® a5, x6, ©7)= K*} and D50 = {(a:l, 0, z3, 0, 0,
xg, 27) | f(z1, as,x3, a4, as, x¢, x7) = K}. In this example, P, P, and Ps are
cheaters and they all submit invalid shares.

The function f is called the defining function as it determines the secret
sharing. The nonzero vector § = (d1,...,0,) is called the cheating vector, « is
called the original vector, and a @ ¢ is called the failure vector. The value of



ps,a = #(925, N 254)/ #1205, expresses the probability of successful cheating
with respect to § and a. As the original vector a is always in (25 , N (25 4, the
probability of successful cheating always satisfies ps o > 0. Clearly the number
of cheaters is equal to HWW (9).

Theorem 1. Given secret and its defining function f on V,. Then for any
cheating vector § € V,, with 0 < HW(0) < n and any vector o € V,,, there
exists a vector v € Vy, such that ps o + psy = 1 otherwise ps o = 1.

3.1 Strengthened Propagation

We introduce the concept of strengthened propagation that is useful further in
the paper. Let 7 = (t1,...,t,) and § = (d1,...,0,) be two vectors in V,,. We
write 7 < 0 to denote the property that if {; = 1 then §; = 1. In addition,
we write 7 < § to denote the property that 7 < § and 7 # §. For example,
(0,1,0,0,1) < (1,1,0,0,1) or precisely (0,1,0,0,1) < (1,1,0,0,1). Clearly if
T<dthenTdd <4.

A function f on V}, is said to satisfy the strengthened propagation with respect
to a nonzero vector § € V;, if for any vector 7 with 7 < 4, f(z; ®7)® f(x5; BT®I)
is balanced. If f satisfies the strengthened propagation with respect to every
0 € Vi, with 0 < HW (§) < k then f is said to satisfy the strengthened propagation
of degree k.

We now illustrate the strengthened propagation. Let f be a function on Vj
such that f(x1,x2,23,24) = T122 O 324 ® z123. Let § = (1,1,0,0). Choose

= (0,0,0,0). Then f(z; & 1) = f(0,0,23,24) = z324 and f(z; ST D) =
f(1, 1,23, 24) = 1®z324®x3. Thus f(zy &7)D f(zy HTHS) = 1Pz is balanced.
Next we choose 7 = (0,1,0,0). Then f(z; & 7) = f(0,1,23,24) = 2324 and
f(z; ®7©6) = F(1,0,25,74) = 7524 5. Thus f(z; D7) ® f(x; ©7©3) = 5
is balanced. We have proved that f satisfies the strengthened propagation with
respect to 6 = (1,1,0,0).

Proposition 1. Let f be a function on V. If f satisfies the strengthened prop-
agation of degree k then f satisfies the propagation criterion of degree k.

It should be noticed that the converse of Proposition 1 does not hold when
k > 2. For example, f(z1,z2,23,24) = T122 O x324 is a bent function on Vj
thus f satisfies the propagation criterion of degree 4. But f does not satisfy
the strengthened propagation of degree 2. This can be seen from the follow-
ing: f(0,0,23,24) = 2374 and f(1,1,73,74) = 1 @ 2324, and f(0,0,73,74) ©
f(1,1,z3,24) = 1. Therefore f does not satisfy the strengthened propagation
with respect to ¢ = (1,1,0,0). However we can state as follows.

Proposition 2. A function f on V,, satisfies the strengthened propagation of
degree 1 if and only if [ satisfies the propagation criterion of degree 1 (the SAC).

Lemma 1. If a function f on 'V, satisfies the strengthened propagation of degree
k then f ® v also satisfies the strengthened propagation of degree k where 1) is
any affine function on V,.



Lemma 2. Let fi and f> be two functions on V), and V; respectively. Set f(z) =
fi(y) @ f2(z) where x = (y,2), y € V, and z € V. Then (i) f is balanced if f1
or fa is balanced, (i) f satisfies the strengthened propagation of degree k if both
f1 and f> satisfy the strengthened propagation of degree k.

3.2 k-Cheating Immune Secret Sharing Scheme

Clearly it is desirable that max{ps |0 € V,, § # 0, a € V,,} is as small as
possible. However if ps o < % for a nonzero vector § and a vector a € V,,, from
Theorem 1, there exists a vector v € V,, such that ps. + ps, = 1 and then
Poy > % This indicates that the case of min{ps 4|0 € V;,, 6 #0, a € V,,} < %
is not desirable. For this reason we introduce the concept of k-cheating immune
secret sharing scheme.

Given secret sharing with its defining function f on V. Let k be an integer
with 1 < k < n — 1. The secret sharing is said to be k-cheating immune if
Psa = % holds for every § € V,, with 1 < HW () < k and every a € V,,. The
integer k is called the order of cheating immunity of the secret sharing.

1-cheating immune secret sharing is also called cheating immune secret shar-
ing in [21]. The following is a characterisation of 1-cheating immune secret shar-
ing [21]:

Theorem 2. Given secret sharing with its defining function f on V. Then this

secret sharing is 1-cheating immune if and only if f is 1-resilient and satisfies
the SAC.

The following result provides a relationship between k-cheating immune se-
cret sharing and (k — 1)-cheating immune secret sharing:

Lemma 3. Given secret sharing with its defining function f on V,. Let this
secret sharing be (k — 1)-cheating immune. Then it is k-cheating immune if and
only if the following two conditions are satisfied simultaneously: (i) f satisfies
the strengthened propagation with respect to every vector in V, with Hamming
weight k, (ii) for any vector a € V,, with HW () = k and any vector 7 € V,
with T <6, f(zs; ® 1) is balanced.

Theorem 3. Given secret sharing with its defining function f on V,,. Then the
secret sharing is k-cheating immune if and only if f is k-resilient and satisfies
the strengthened propagation of degree k.

3.3 Constructions of k-cheating Immune Secret Sharing Scheme
Due to Theorem 3, to construct a k-cheating immune secret sharing, we need

k-resilient functions satisfying the strengthened propagation of degree k. In par-
ticular we consider quadratic functions with such properties.



Proposition 3. Let f(x1,...,2,) be a quadratic function on V,,. Let § = (41,
..., 0p) be a nonzero vector in V,,. Set Js = {j | 0; # 0, 1 < j < n}. For each
integer i with 1 <i <n and i & Js, define

Ds(i) ={j | j € Js and z;x; is a term of f}. Then f satisfies the strengthened
propagation with respect to 0 if and only if there exists some ig with 1 <ig <mn
and ig & Js such that #Ds(io) is odd.

The following will be used in constructions of desirable functions.
Corollary 1. Let f(z1,...,2z,) be a quadratic function on V,. Then

(i) [ satisfies the strengthened propagation with respect to § = (0,...,0,1,0,...,0)
where only the j-th coordinate is nonzero, if and only if there exists some s
with 1 < s <n and s # j such that x,x; is a term of f,

(ii) f satisfies the strengthened propagation with respect to
6 =1(0,...,0,1,0,...,0,1,0,...,0) where only the j-th and i-th coordinates
are nonzero, if and only if there exists some s with 1 < s < n and s # j,i
such that zsx; is a term of f and xsx; does not appear in f.

The following is a restatement of a lemma in [7]:

Lemma 4. Let a quadratic function f on V, do not have a nonzero constant
term, in other words, f(0,...,0) = 0. Then [ is balanced if and only if there
exists a nonzero linear structure a € Vy, such that f(a) # 0.

The following Lemma can be found in [22]:

Lemma 5. Let f; be a tj-resilient function on V,,, j =1,...,s. Then fi(y) ®
- ® fs(2) is an (s — L4ty + - - - + t5)-resilient function on V,, 4...4n,, where f;
and f; have disjoint variables if i # j.

Lemma 6. Define two functions as follows

X2k4+1(T15. 00, Topt1) = 122 D X223 B - - - D TopTokt1 D Takt1 21 (1)
ng(azl, .. ,.TQk) =21 DT1T2 DTox3 D -+ D Top—1T2k D TokTq (2)
Then

(1) X2r+1 is balanced, satisfies the strengthened propagation of degree k,
(#1) x2r is balanced, satisfies the strengthened propagation of degree (k — 1).

Due to Theorem 3, the following constructions enable us to construct k-
cheating immune secret sharing scheme.

Theorem 4. Let k and s be positive integers with s > k + 1. Let ny,...,ng =
2k +1 or 2k + 2, and n = ny + --- + ng. Define a function on V, such as
f(x) = an(y)@@an(z) where © = (ya"'az)} /RS Vn17"'72 € Vns’ each Xn;
has been defined in (1) or (2), and Xn,, .- ., Xn, have disjoint variables mutually.
Then the secret sharing with the defining function f is k-cheating immune.



Note that n = ny + -+ + ng, defined in Theorem 4, can be expressed as
n = (2k + 1)r + (2k + 2)q where r > 0 and ¢ > 0 are integers. Since 2k + 1 and
2k +2 are relatively prime, any integer can also be written as (2k+1)r+(2k+2)q
where r and ¢ are integers. Furthermore it is easy to verify that any integer n
with n > (2k 4+ 1)2 can be expressed as n = (2k + 1)r + (2k + 2)q where r, ¢ > 0.
Since n > (2k + 1)2, it is easy to verify that s = r + ¢ > k + 1 where s was
mentioned in Theorem 4. Using Theorem 4, we can construct k-cheating immune
secret sharing with n participants where n > (2k + 1)2.

4 Generalised Model of Cheating

As before secret sharing is considered to be a set of distribution rules combined
into a single table 7 (see [18]) with binary entries. We also assume that we
are dealing with (n,n) threshold scheme where any n participants are able to
determine a single entry from 7 which indicates the secret.

Given a function f on V,,. We introduce the following notations:

— Let a € V, be the sequence of shares held by the group P = {P,..., Py} of
n participants and the secret K = f(«).

— The collection of cheaters is determined by the sequence 6 = (61,02, . ..,0,)
where P; is a cheater if and only if §; = 1.

— At the pooling time, the cheaters submit their shares. This time it is assumed
that cheaters may submit a mixture of valid and invalid shares. The honest
participants always submit their valid shares. Define 7 = (ry,...,7,) such
that

. 0, if P; is honest or P; is a cheater who submits a valid share
77| 1, if P; a cheater who submits an invalid share

Clearly 7 < 4. We assume that there exists at least one cheater who submits
invalid share, in other words, we only consider the case that 7 is nonzero or
HW(r) > 0.

We consider the vector a @ 7. Due to the properties of operations :U(S+ and
x5,

aEDrzaEEBa}'EDT

The combiner obtains o @ 7 that splits into two parts: a; — the part sub-
mitted by honest participants and a}' @ 7 the part submitted by cheaters.
The combiner returns an invalid secret K* = f(a & 7).

— Let

o =A{zy | flzy ®af ®71) = K*}

where a}' determines valid shares held by the cheaters. The set QE’T’Q repre-
sents the view of the cheater after getting back K* from the combiner. The
set clearly includes also the vector « of all valid shares.



— The set
Dsra ={z5 | flz; ® a}') = K}

determines a collection of rows of 7 with the correct secret K and valid
shares held by the cheaters.

Ezample 2. Let n = 7, f be a function on V7 and § = (0,1,0,1,1,0,0) and
7=1(0,0,0,1,1,0,0). Furthermore let &« = (a1, a2, as, a4, as, ag, ar). Then a®dT =
(a1,a2,a3,1 ® as,1 ® as,a6,a7). Let K = f(a) and K* = f(a ® 7). Write
T = ($1,I2,CL'3,CL'4,CL'5,I6,J?7)- Clearly ‘rd_ @ag_ = (xl,ag,xg,a4,a5,x6,x7) and
Ty @a}' &1 = (21, az, 73, 1 ® aq, 1 ® as, x6, 7). Therefore 25 = {(z1,0,z3,
0,0, zg,27) | f(w1,02,73,1 D ay,1 ®as,x6,27) = K*} and 250 = {(21,0, 23,
0,0, zg,27)|f(z1, a2, 23, as, a5, x6,x7) = K}. In this example P, Py, and Ps are
cheaters but P> submits valid share.

From Examples 1 and 2, we can find a main difference between initial and
generalised models of cheating. Clearly P;, P, and Ps are cheaters in both ex-
amples. However P», P, and Ps all submit invalid shares in Example 1 while Py,
Ps submit invalid shares and P, submits valid share in Example 2.

The function f is called the defining function as it determines the secret
sharing. The nonzero vector § = (d1,...,d,) is called the cheating vector, the
nonzero vector 7 < § is called active cheating vector, « is called the original
vector, and a @ 7 is called the failure vector. The value of ps - o = #(£25 N

4,T,a
2570)] #125 ., expresses the probability of successful cheating with respé(;t to
d,7 and a. As the original vector « is always in 25, N (25 4, the probability
of successful cheating always satisfies ps o > 0. Clearly the number of cheaters
is equal to HW () and the number of active cheaters is equal to HW (7). In
particular, if 7 = §, we regain the initial scheme. Therefore the initial model of
cheating is a special case of the generalised model of cheating. From now, we

consider secret sharing in the generalised model.

4.1 Strictly k-cheating Immune Secret Sharing Scheme
By using the same arguments as in the proof of Theorem 1, we can prove

Theorem 5. Given secret sharing with its defining function f on V,,. Then for
any cheating vector § € V,,, any active cheating vector 7 < 6 with 1 < HW(71) <
HW(§) < n, and any vector a € V,,, there exists a vector v € V,, such that
Ps, o + Psry = 1 otherwise ps o =1.

For the same reason mentioned in Section 3.2, we introduce the concept of k-
cheating immune secret sharing scheme.

Given secret sharing with its defining function f on V,,. Let k be an integer
with 1 < k <n — 1. The secret sharing is said to be strictly k-cheating immune
if the probability of successful cheating satisfies ps o = % for every § € V,, and
any 7 < d with 1 < HW (1) < HW(§) < k and every a € V,,. The integer k is
called the order of strict cheating immunity of the secret sharing.



Lemma 7. Given secret sharing with its defining function f on V. Then the
secret sharing is strictly k-cheating immune if and only if for any integer t with
0<t<k-—1, any subset {j1,...,j:} of {1,...,n} and any a4,...,a; € GF(2),
f(zq,.. -axn)|mj1=a1,...,z,-t=au as a function on V,,_, with the variables x; , ...,
zi,_,, where {i1, ... in—t} U {j1,..., 5t} = {1,...,n}, is (k — t)-resilient and
satisfies the strengthened propagation of degree (k —t).

Theorem 6. Given secret sharing with its defining function f on V,,. Then the
secret sharing is strictly k-cheating immune if and only if the following con-
ditions are satisfied simultaneously: (i) f is k-resilient, (ii) for any integer t
with 0 <t < k —1, any subset {j1,...,j:} of {1,...,n} and any a1,...,a; €
GF(2), f(x1,--s2Zn)|e;, =ar,....25,=ar, 05 a function on Vi, with the variables
TiyyeyTi,_,, Where Li1, ..., in—t}U{j1,..., 5t} = {1,...,n}, satisfies the strength-
ened propagation of degree (k —t).

We indicate that the condition (ii) in Theorem 6 is more restrictive than
the strengthened propagation of degree k. For example, due to Lemma 6, x13
satisfies the strengthened propagation of degree 6. However 13 does not satisfy
the condition (ii) in Theorem 6 with & = 3 and ¢ = 2. This can be seen from
the following: x13(0, 22,0, 24, ...213) = TaT5 B T52T6 D - -+ & T12213, as a func-

tion on Vi1 with the variables s, 24, z5,. .., 213, does not contain xs. From (i)
of Corollary 1, x13(0,22,0,24,...213), as a function on Vj; with the variables
Xo,T4,T5,...,T13, does not satisfy the strengthened propagation of degree 1.

Therefore 13 does not satisfy the condition (ii) in Theorem 6 with k¥ = 3 and
t=2.

4.2 Construction of Strictly k-cheating Immune Secret Sharing
Scheme

If f in Theorem 6 is quadratic, Theorem 6 can be simplified as follows:

Theorem 7. Given secret sharing with its defining function f on V,,. Let f be
quadratic. Then the secret sharing is strictly k-cheating immune if and only if
the following two conditions are satisfied simultaneously: (i) f is k-resilient, (ii)
for any integer t with 0 <t < k — 1 and any subset {j1,...,5:} of {1,...,n},
f(l’1,---,?L‘n)|mj1:0,...,mjt:0, as a function on V,_, with the variables x;,, ...,
x;,_,, where {iy, ... in—t}U{j1,...,5t} = {1,...,n}, satisfies the strengthened
propagation of degree (k —t).

Construction of Strictly 2-cheating Immune Secret Sharing Scheme

Let s > 3 be an integer, ny,...,ns; = 5,6 and n = ny + --- 4+ ng. Define a
function on V;, such as f(z) = xn, (y) ® - -+ ® Xn,(z) where z = (y, ..., z), each
Xn; has been defined in (1) or (2), and xn;, xn; have disjoint variables if i # j.
Due to Theorem 4, the secret sharing with the defining function f is (s — 1)-
cheating immune, where s—1 > 2, and thus from Theorem 3, f is (s—1)-resilient
and satisfies the strengthened propagation of degree s — 1. Therefore f satisfies
the condition (i) of Theorem 7 with k = 2.



Next we verify that f satisfies the condition (ii) of Theorem 7 with k& = 2.
Let ¢ = 0 in the condition (ii) of Theorem 7 with k& = 2. Due to Lemma 6
and Lemma 2, we know that f satisfies the strengthened propagation of degree
2. Let t = 1 in the condition (ii) of Theorem 7 with k¥ = 2. Fix any jo with
1 < jo < n. Note that each 1 < i < n, z; appears in two quadratic terms in f
thus for any ¢ with 1 < i < n and i # jp, x; appears in at least one quadratic
term in f(z)|z;,—o. From (i) of Corollary 1, we know that f(z)|.; —o satisfies
the strengthened propagation of degree 1.

We have proved that f satisfies the condition (ii) of Theorem 7 with k = 2.
Therefore if we place f as the defining function of a secret sharing and then by
Theorem 7 we conclude that this secret sharing is 2-cheating immune.

Note that 5 and 6 are relatively prime thus any integer can also be written
as 5p + 6¢ where p and ¢ are integers. Furthermore it is easy to verify that any
integer n > 20 can be expressed as n = 5p + 6¢ where p > 0 and ¢ > 0 are
integers. As for n < 19, n can be expressed as n = 5p + 6¢ where p > 0 and
q > 0 are integers when n = 5,6,11,12, 15,16,17 and 18.

Therefore we can construct 2-cheating immune secret sharing with n partic-
ipants where n > 20 or n = 5,6,11,12, 15,16,17 and 18.

Construction of Strictly 3-cheating Immune Secret Sharing Scheme
Set

ho(z1,x2, 3,24, T5,T6, T7, T8, Tg)
=T ® Xg(.’El,ZE2,$3,$4,§1}'5,$6,$7,$8,(L’9)

®x3(®1, 24, 27) D X3(T2, T5,28) D X3(T3,T6,T0)

where each x; has been defined in (1) or (2).
Since (1,1,1,1,1,1,1,1,1) € V, is a nonzero linear structure of hg and
ho(1,1,1,1,1,1,1,1,1) # 0, from Lemma 4, we know that hg is balanced.
Set

h10($1,$2,§173,ZE4,ZE5,$6,$7,$8,ZE9,ZE10)
=1 ® x10(x1, T2, T3, T4, T5, Tg, T7, T8, L9, L10)

@Xlo(xlax47$77$1071‘37$67$97:L‘27:L‘57:L‘8)

Since (1,1,1,1,1,1,1,1,1,1) € Vg is a nonzero linear structure of hig and
h1o(1,1,1,1,1,1,1,1,1,1) # 0, from Lemma 4, we know that hjg is balanced.

Let s > 4 be an integer, ny,...,ns = 9,10 and n = ny + - - + ns. Define
a function on V, such as f(x) = hy, (y) ® -+ ® hy,(2) where hy, and h,, have
disjoint, variables if i # j.

Since both hg and hig are balanced, from Lemma 5, f is (s — 1)-resilient.
Therefore f satisfies the condition (i) of Theorem 7 with k£ = 3.

Next we verify that f satisfies the condition (ii) of Theorem 7 with k& = 3.
Let t = 0 in the condition (ii) of Theorem 7 with k& = 3. Using a straightfor-
ward verification, we know that hg (hio) satisfies the condition mentioned in



Proposition 3 for every 6 € Vy (6§ € Vip) with HW () = 1,2,3. Thus both hg
and hio satisfy the strengthened propagation of degree 3. Due to Lemma 2, f
satisfies the strengthened propagation of degree 3. Let ¢ = 1 in the condition
(ii) of Theorem 7 with k£ = 3. Fix any j, with 1 < jo < n, it is easy to verify
that f(z)|.,,=o satisfies the condition mentioned in (ii) of Corollary 1, and thus
f(@)]z;, =0 satisfies the strengthened propagation of degree 2. Let ¢t = 2 in the
condition (ii) of Theorem 7 with k& = 3. Fix any jo and ip with 1 < jp < ig < n.
Note that each 1 < ¢ < n, x; appears in four quadratic terms in f thus for any
i with 1 < i < n and i # jo,i0, ¥; appears in at least two quadratic terms in
f(@)|z;,=0,2:,=0- From (i) of Corollary 1, we know that f(z)|., =0,z:,=0 satisfies
the strengthened propagation of degree 1.

We have proved that f satisfies Theorem 7 with k£ = 3. Therefore if we place f
as the defining function of a secret sharing and then by Theorem 7, we conclude
that this secret sharing is 3-cheating immune.

Note that 9 and 10 are relatively prime thus any integer can also be written
as 9p + 10g where p and ¢ are integers. Furthermore it is easy to verify that
any integer n > 72 can be expressed as n = 9p + 10g where p > 0 and ¢ > 0
are integers. As for n < 71, n can also be expressed as n = 9p + 10¢ where
p > 0 and ¢ > 0 are integers when n = 9,10, 18,19, 20, 27,28, 29, 30, 36, 37,
38, 39,40, 45,46,47,48,49, 50, 54,55, 56,57, 58,59, 60, 61,62,63, 64, 65, 66, 67,
68, 69, 70. Therefore we can construct 3-cheating immune secret sharing with n
participants where n > 72 or n = 9,10, 18,19, 20, 27, 28, 29, 30, 36, 37, 38, 39, 40,
45,46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,65, 66, 67, 68, 69,
70.

Based on Theorem 7 and Proposition 3, we can continue to construct strictly
k-cheating immune secret sharing scheme, &k = 4,5, .... Due to the page limita-
tion, this will be completed in the full paper.

5 Conclusions and Remarks

We have considered secret sharing and its resistance against cheating by a group
of k dishonest participants. We have proved that the probability of successful
cheating is always higher than % if the participants hold binary shares. The
secret scheme is said to be k-cheating immune if the probability of successful
cheating is % for any group of k or less participants. We have characterised
k-cheating immune secret sharing scheme by examining its defining function.
This characterisation enables us to construct k-cheating immune secret sharing
scheme. Being more precise, we have studied two cases. In the first case, the
group of cheaters always submit invalid shares. While in the second case, the
group is more flexible as they collectively decide which of their shares should be

modified and which should be submitted in their original form.
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Appendix: Proofs of Propositions, Lemmas and Theorems

The Proof of Theorem 1 Let f(a) = K and f(a ® §) = K*. Set 25 , = {z; |
flzy ®@af @6) =K*} and 25, = {z; | f(z; ®af) =K}
We partition (25 , into two parts: {25 , = 27 U {25 where

27 ={ay | flay @ af @0) =K*, flay ®af) =K}

and
25 ={a7 | flzj ©af ®6) = K*, flz; daf)=Kal}

Note that Qg’a N 25, = §27. Therefore

Pé,a = #(Qg,a n Qﬁ,a)/#“o(;a = #Qf/#gg,a (3)

There exist two cases to be considered: 25 # 0, where () denotes the empty
set, and 25 = 0.
Case 1: £25 # 0. Then there exists a vector 8 € 25. Thus

fBy @af ®0)=K*, f(B; @af) =Kol (4)

Set v = 85 @ af . Therefore (4) can be rewritten as f(y® ) = K*, f(y) =
K @ 1. Clearly 'y;' = a}' and vy; = 5 .

Next we choose v as the original vector. Therefore 25 . = {z; | f(z; Dy P
§) = K*} and 25, = {z; | f(z; ®v5) = K & 1}. Since 7§ = aff, we have
2., =A{zs | flzg @ af ©0) = K*} and 25, = {z; | f(z; ®ay) = K o 1}.
Clearly 25, N {25, = £25. Note that (25 _ is identified with (2§ ,. Therefore

Pory =25, N 026.5) [#125,, = #5 [#805,, = #5 [ #1025, (5)

Combining (3) and (5), and noticing #25 , = #027 + #23, we have ps o +

psy = 1.
Case 2: 25 = . Then 25 , = 2. From (3), we have ps, = 1. We have

proved the theorem.

The Proof of Proposition 1 Fix any § € V,, with 0 < HW (§) < k. Let 7 < 4.
Since f satisfies the strengthened propagation of degree k, f(z; ® 1) ® f(z; ®




T @ §) is balanced. Since 7 is an arbitrary vector with 7 < 4, z; @ 7 runs
through every vector in V;, while 7 and z are as changed as possible. Therefore
f(z)® f(z®d) is balanced, i.e., f satisfies the propagation criterion with respect
to d. Since ¢ is an arbitrary vector in V,, with 0 < HW (§) < k, we have proved
that f satisfies the propagation criterion of degree k.

The Proof of Proposition 2 The necessity is true due to Proposition 1. We
now prove the sufficiency. Assume that f satisfies the SAC. Fix j with 1 <j <mn
and set

g(xla sy L1, T, Tty e - ,an)

:f(iL'l,...,mj_l,wj,$j+1,...,$n)@f(l’l,...,:ﬂj_l,l']' @1,$j+1,...,$n)
Obviously g(z1,...,2;-1,0,2j41,...,Zn) = g(®1,...,&j-1,1,2j41,...,2,). Since
f satisfies the SAC, g(z1,...,2;-1,%;,Zj41,...,%,) is balanced. Thus both
g(z1,...,2;-1,0,2541,...,2,) and g(z1,...,2j-1,1,241,...,2,) are balanced.

This proves that f satisfies the strengthened propagation of degree 1.

The Proof of Lemma 1 In fact, since ¢ is affine, ¢(z; & 7) (x5 &7 H9)
is constant, where § is any nonzero vector in V,, and 7 is any vector in V,, with
7 < 4. Thus the lemma holds.

The Proof of Lemma 2 The part (i) can be found from Lemma 12 of [15]. By
using (i) of the Lemma, we can verify the part (ii) of the lemma.

The Proof of Lemma 3 Let § € V;, be the cheating vector with HW (§) = k.
Let T be a vector in V,, with 7 < §. Clearly 65 =4, 7] =7 and 7 ® 6 =7®4.

Write = (z1,...,Ty,). Set

Ro={zy | f(zy &71) =0, f(z; &7®I) =0}
Ry ={z5 | flzy ®71) =0, f(z; ®T®HI) =1}
Ry ={z5 | flzy &71) =1, f(z; ®T®I) =0}
Ry =A{z; | f(zs ®&71) =1, f(z; @786 =1} (6)

Write #R; = r;, 1 = 0,1,2,3. Since HW(§) = k, it is easy to see that
r1 4+ 1y + 13 + 14 = 2" F. By definition, it is easy to verify that

i i f(r©0) =0, f(r) =

— ro rlff( )—O,f(‘l')
Prs = rlirg if f(rpd)=1, f(r) = 0 (7)
7‘1+7‘3 lff(TEB(S) =1, f(T) =1
Similarly,

roz?rl lff(T) :07 f(TEB5) =0

o if f(r) =0, f(r®d) =1
profs =\ DB i f(r) = 1, f(r @) = 0 (8)

S if f(r) =1, f(red) =1



Assume that the secret sharing is k-cheating immune. Let ¢ be the cheating
vector and 7 be the original vector. Since the scheme is k-cheating immune and

— — 1 — —
HW(0) = k, we have p, 5 = 5. Due to (7), - = 22~ and - = L.
It follows that ro = r2 and r; = r3. On the other hand, since prqs5s5 = %, due
to (8), ro’fﬁrl = ro’fﬁﬁ and T;frg = T;fTS. It follows that rg = r; and ry = r3.

Therefore we have proved that rg = r; =rs = rs.
Note that #{z; | f(z; ® 1) ® f(xzy ®T®F) = 0} = ro + r3 and #{z; |
flzg &1)® flzy 7 D) =1} =11 +ra. Thus

#{zy | flxy &7)® f(xy ®TD® ) =0}
=#{zy | flzy &7)® f(zy D7D ) =1} 9)

From (9), f(zy & 1) ® f(zy; & 7 @ d) is balanced. Since 7 is an arbitrary
vector in V,, with 7 < ¢, f satisfies the strengthened propagation with respect
to &, where 0 is an arbitrary vector in V;, with HW (J) = k. This proves that the
condition (i) is satisfied.

We now consider the condition (ii). Note that #{zy | f(z; 1) =0} = ro+r;
and #{zy | f(xry ®71) = 1} = ry +r3. Since ry = 1y = ry = r3, we have
#{zy5 | f(xy ®7) =0} = #{z; | f(x; ®7) = 1}. This proves that f(z; @& 7)
is balanced, where § is an arbitrary vector in V,, and 7 is any vector in V,, with
7 < 4. Therefore the condition (ii) is satisfied.

Conversely assume that f satisfies (i) and (ii).

From the condition (i), for any vector 6 € V,, with HW(d) = k and any
vector 7 € V;, with 7 <4, f(z5 @ 7) is balanced, thus we have ro +r3 =7 +rs.

From the condition (ii), f(z; @ 7) is balanced, thus ro 4+r; = r2 +73. By the
same reasoning, f(xg ® 7 @ ) is also balanced, thus ro + 7o = r; + 3.

Therefore we conclude that ro = r; = ro = r3. Due to (7), it follows that

1
Prg = ) (10)
Next we prove that ps ., = % for every a € V,,. Clearly a; <4, a; @ <4

Replacing 7 and 7 & é by a}' and a}' @ ¢ in (6) respectively, and using the same
arguments for (10), we can prove that ps o =

o= —

The Proof of Theorem 3 We prove the theorem by induction on k. Due to
Theorem 2, the theorem is true when & = 1. Assume that the theorem is true
when 1 < k£ < s — 1. Consider the case of k = s.

We now prove the necessity. Assume that the secret sharing is s-cheating
immune. Then it is also (s — 1)-cheating immune. Due to the assumption that
the theorem is true when 1 < k < s — 1, f is (s — 1)-resilient and satisfies
the strengthened propagation of degree (s — 1). Since the secret sharing is s-
cheating immune, from the condition (i) of Lemma 3, f satisfies the strengthened
propagation with respect to any vector in V;, with Hamming weight s. Therefore
f satisfies the strengthened propagation of degree s. On the other hand, due to
the condition (ii) of Lemma 3, for any vector a € V,, with HW (§) = k and any




vector 7 € V,, with 7 <6, f(z; @ 1) is balanced. Combing this property and the
fact that f is (s — 1)-resilient, we conclude that f is s-resilient.

Conversely assume that f is s-resilient and satisfies the strengthened prop-
agation of degree s. Due to the assumption that the theorem is true when
1 < k < s — 1, the secret sharing is (s — 1)-cheating immune. Since f satis-
fies the conditions (i) and (ii), due to Lemma 3, the secret sharing is s-cheating
immune. We have proved the theorem when k = s. The proof is completed.

The Proof of Proposition 3 We generalise the notations Js and Ds(i). For
any 7 = (T1,...,7) X d,set Jr = {j | 15 #0, 1 < j < n}. For any i with
1<i<nandi¢Js, define D, (i) ={j | j € J; and z;z; is a term of f}.

It is easy to see that z;z; is a quadratic term of f(z; @ 7) if and only if
zjz; is a quadratic term of f with j,¢ ¢ J5. Similarly z;z; is a quadratic term
of f(xzy @ 7 ®4) if and only if z;2; is a quadratic term of f with j,i & Js.
Therefore f(zy; ® 7) and f(z; ® 7 ® §) have the same quadratic terms. Thus
flzg ®71)® f(xy; ®7DJ) does not contain any quadratic term and thus we only
need to consider affine terms in f(z; @ 7) and f(z; &7 @ 9).

First we assume that there exists some iy with 1 < ig < n and ig &€ Js such
that #Ds (i) is odd. Since iy & Js5, we know that ig € J. and ig € J-gs- Note
that x;, appears linearly in f(zy @ 7) if and only if #D; (i) is odd. Similarly
z;, appears linearly in f(zy ® 7 @ 6) if and only if #D;gs(io) is odd. Note
that for ig & Js5, we have #D, (i) + #Drqs(io) = #Ds(io). Since #Djs(ig) is
odd, z;, must appear linearly in f(zy @ 7) ® f(xy; & 7 @® ). This proves that
flzy &1)® f(z; &7 @ J) is non-constant affine and then balanced. We have
proved the sufficiency.

Conversely assume that f satisfies the strengthened propagation with respect
to §. We now prove the necessity by contradiction. Assume that #Ds(7) is even
for each i ¢ J5. From the proof of the sufficiency, for each ¢ ¢ Js5, z; cannot
appear in f(zy ®7)® f(x; ®7®0). This implies that f(zy & 7)® f(z; &TDI)
is constant and then unbalanced. This contradicts the assumption that assume
that f satisfies the strengthened propagation with respect to 4. The contradiction
proves the necessity.

The Proof of Lemma 6 (i) Since (1,...,1) € Va1 is a nonzero linear struc-
ture of Xor4+1 and xop+1(l,...,1) # 0, from Lemma 4, we know that y2pt+1
is balanced. Let 6 be a nonzero vector in Vayy; with 0 < HW(J) < k. Since
1< #Js = HW(§) < k, where J5 has been defined in Proposition 3, there must
exist an integer s with 1 < s <2k + 1 such that s € Js and s + 1,5 + 2 & J5 (if
s = 2k then s+2 = 2k +2isregarded as 1, and if s = 2k + 1 then s+ 1 =2k +2
and s+2 = 2k + 3 are regarded as 1 and 2 respectively). Clearly #Ds(s+1) = 1.
From Proposition 3, we know that yopy1 satisfies the strengthened propagation
respect to 4. Since § is an arbitrary nonzero vector in Vaj41 with 0 < HW (4) < k.
We have proved the part (i) of the lemma.




(ii) Since (1,...,1) € Vo is a nonzero linear structure of y2 and x2x(1,...,1)
# 0, from Lemma 4, we know that xo is balanced. Using the same arguments
in the proof of the part (i), we complete the proof of the part (ii).

The Proof of Theorem 4 Due to Lemma 6, each x,,; is balanced. From Lemma
2, f is (s — 1)-resilient, where s — 1 > k. Using Lemma 6 and Lemma 2, we know
that f satisfies the strengthened propagation of degree k. Using Theorem 3, we
have proved that the secret sharing is k-immune.

The Proof of Lemma 7 Assume that the secret sharing is strictly k-cheating
immune. Let g be a function on V,,_; given by g = f(z1,-..,%n)|e;, =as,....2;,=a: -
Since f is the defining function on V,, of a strictly k-cheating immune secret
sharing in generalised model of cheating, we know that ¢ is the defining function
on V,,_; of a (k —t)-cheating immune secret sharing in initial model of cheating.
Applying Theorem 3 to g, we conclude that g is (k — t)-resilient and satisfies
the strengthened propagation of degree (k — t). We have proved the necessity.
Comparing generalised model of cheating with initial model of cheating, we can
invert the above reasoning and then prove the sufficiency.

The Proof of Theorem 6 Comparing Theorem 6 with Lemma 7, due to a
definition of k-resilient functions mentioned in Section 2, it is easy to see the
equivalence between Theorem 6 and Lemma 7.

The Proof of Theorem 7 Due to Theorem 6, we only need to prove the fol-
lowing lemma called Lemma (C): “let f be a quadratic function on V,,, ¢ be an
integer with 0 < ¢ < n and {j1,...,/:} be a subset of {1,...,n}. Then for any

ai,-.-,a; € GF(2), f(z1,-.-,%n)|e;,=as ... .2;,=a, » @8 & function on Vj,_; with the
variables x;,,...,2;,_,, where {i1,...,in—t} U {j1,...,Jt} = {1,...,n}, satisfies
the strengthened propagation of degree s if and only if f(z1,...,%n)|s; =0, ..2;,=0

satisfies the strengthened propagation of degree s”.
Since the necessity is obvious, we only need to prove the sufficiency. It is

easy to verify that z;z; is a quadratic term of f(z1,... ,mn)|xh:ah___7%:at if
and only if z;z; is a quadratic term of f with j,i & {ji1,...,J;}. Similarly
zjr; is a quadratic term of f(z1,...,%n)|e; =0, 2;,=0 if and only if z;z; is
a quadratic term of f with j,i & {j1,...,j:}. Then f(z1,...,2n)|z; =ay,....25,=a
and f(zq,... ,:L'n)|JE].1:0’,“,,E].75 —o have the same quadratic terms. Therefore
flze,..., xn)|zj1=a1,...,zjt=at can be expressed as

f(xla e 7xn)|Ij1:a1,...,Ijt:[Lt - f(xla e axn)|z]‘1 =0,...,z;, =0 b w(l’iu e axin,t)

where ¢ is an affine function on V,,_;.

Assume that f(z1,-..,%n)|e;, =0, .. 2;,=0, as a function on V,,_; with the vari-
ables z;,,...,x;,_,, where {i1,...,in—t} U{j1,..., 5t} = {1,...,n}, satisfies the
strengthened propagation of degree s. By using Lemma 1, we conclude that
f(x1,- - %n)le;, =ar,... 2, =a, » Satisfies the strengthened propagation of degree s.
We have proved Lemma, (C) and thus the theorem is true.



