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Abstract. Cheating detection in linear secret sharing is considered. The
model of cheating extends the Tompa-Woll attack and includes cheating
during multiple (unsuccessful) recovery of the secret. It is shown that
shares in most linear schemes can be split into subshares. Subshares can
be used by participants to trade perfectness of the scheme with cheating
prevention. Evaluation of cheating prevention is given in the context of
different strategies applied by cheaters.
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1 Introduction

Secret sharing was introduced by Shamir [14] and Blakley [3]. The main purpose
of secret sharing is to allow a group of participants to own a secret. The secret
is typically divided into shares and each principal has at least one share of
the secret. The ownership is collective, i.e. to recover the secret, a big enough
subgroup of participants must get together and pool their shares. The collection
of all subsets of participants authorised to recover the secret, is called the access
structure. Ito, Saito and Nishizeki [9] showed that there is a perfect secret sharing
for any access structure. Benaloh and Leichter [2] and Simmons, Jackson and
Martin [15] showed alternative constructions for perfect secret sharing.

Tompa and Woll [16] demonstrated that Shamir threshold secret sharing can
be subject to cheating by one or more dishonest participants. At the pooling
time, instead of valid shares, dishonest participants submit modified shares to
the combiner who recovers the matching polynomial. Knowing an invalid secret
returned from the combiner, dishonest participants can correct it and recover
the valid secret while honest ones are left with the invalid secret. In order to
prevent cheating, Tompa and Woll [16] suggested to make x co-ordinates of the
polynomial secret.

2 Results Achieved

The work generalises the TW attack for the broader class of linear secret sharing
and defines a new repeat recovery attack (RR attack). In the attack, it is assumed



that the currently active group is engaged in precisely two unsuccessful secret
recovery attempts. The RR attack works even if the underlying matrix and shares
are secret.

Linear secret sharing is introduced and it is shown that shares can be eas-
ily and efficiently converted into independent pieces (sub-shares). The model is
applicable to many known secret sharing schemes including the Shamir scheme
[14], the modular scheme [1], and the Karnin-Greene-Hellman scheme [10]. We
demonstrate how the linear secret sharing with sub-shares can be used to combat
cheating.

3 Model of Cheating

Consider a group of n participants P = {P1, . . . , Pn}. Given any GF(q). Denote
S = GF (q) as the set of secrets, Si – the set of shares assigned to the participant
Pi, and Γ – an access structure which consists of all subsets of participants who
are able to recover the secret by pooling their shares together. Secret sharing
scheme is a collection of two algorithms: distribution algorithm and recovery
algorithm. The distribution algorithm also called the dealer is a probabilistic
algorithm which takes access structure Γ , the secret s ∈ S and a random string
r ∈ R as an input and assigns shares si ∈ Si to participants Pi; i = 1, . . . , n.
This can be written as: DΓ : S ×R → S1 × S2 × · · · × Sn.

For a given access structure Γ , the recovery algorithm (also called combiner)
is a deterministic algorithm and accepts shares from participants and recovers
the secret s ∈ S only when the currently active collection A ∈ Γ of participants
belongs to the access structure. Otherwise, the algorithm fails with an over-
whelming probability. So knowing the active set A ⊂ Γ and the corresponding
set of shares SA, the recovery algorithm is RΓ : 2SA → S, where 2SA stands for
the collection of all subsets of shares that exist for the group A.

Threshold schemes constitute a very interesting class of secret sharing schemes.
Their access structure is particularly simple as any t out of n participants are
able to run successfully the recovery algorithm. The access structure of a (t, n)
threshold scheme is Γ = {A : |A| = t}, where |A| stands for cardinality of the
set A and A ⊂ P .

Definition 1. A linear (t, n) threshold scheme is a scheme for which the distri-
bution algorithm has the form

(s1, . . . , sn) = (r1, . . . , rt)A (1)

where A is a t × n matrix with entries from GF(q), whose any (t × t) matrix
is nonsingular, and each column is assigned to each share, i.e. si ↔ ηi where
ηi is a column vector of A. The vector r = (r1, . . . , rt) is selected at random so
ri ∈R GF (q) for i = 1, . . . , t. The secret s =

∑t

i=1 ri. Shares si are secret and
known to their owners Pi while the matrix A is public. The recovery algorithm
collects t shares and a corresponding (t × t) matrix and recovers the secret by
solving an appropriate collection of linear equations.



3.1 The TW Attack on Linear Secret Sharing

Tompa and Woll [16] showed that a dishonest participant can modify their share
in such a way that the secret can be recovered only by the cheater leaving oth-
ers with an invalid value. The attack was shown for the Shamir scheme and
can be easily modified for any linear scheme. For the sake of clarity, assume
that participants use the linear (t, n) threshold scheme whose distribution algo-
rithm is defined by Equation (1). We also assume that the (n × t) matrix A is
publicly known. In Shamir schemes, this translates into the assumption that x
co-ordinates of underlying polynomial f(x) assigned to participants are public.
Let A = {P1, . . . , Pt} be the currently active group of participants who wish to
reveal the secret and P1 be a cheater.

During the pooling time, each participant Pi; i 6= 1, submits their correct
share si. The cheater P1 gives s̃1 = s1 − α where α ∈R GF (q) is a random
integer. The recovery algorithm takes shares and solves

(r1, r2, . . . , rt) = (s̃1, s2, . . . , st)A
−1
A

(2)

where AA is a t × t matrix derived from A by removing all columns for partici-
pants not in A. By design, the matrix AA is nonsingular so the vectors (r1, . . . , rt)
have a unique solution. Let it be (r̃1, . . . , r̃n). The recovery algorithm outputs
an invalid secret

s̃ =
t

∑

i=1

r̃i.

We follow Tompa and Woll and claim that P1 can recover the valid secret while
others are left with the invalid one s̃. To do so the cheater must know the
currently active group (the matrix AA). Note that

(r̃1, r̃2, . . . , r̃t) = (s1 − α, s2, . . . , st)A
−1
A

= (s1, s2, . . . , st)A
−1
A

− (α, 0, . . . , 0)A−1
A

The cheater can easily compute an error vector ∆ = (δ1, . . . , δt) caused by
the modification of his share by α. So if

(δ1, δ2, . . . , δt) = (α, 0, . . . , 0)A−1
A

then the cheater can recover the valid secret

s = s̃ +

t
∑

i=1

δi =

t
∑

i=1

(r̃i + δi)

by adding the correction ∆ = (δ1, . . . , δt). Note that even when the recovery
algorithm outputs the vector r̃ = (r̃1, . . . , r̃t), none of the active participants is
able to detect cheating as r̃AA gives the correct share for all active (and honest)
participants. The modification done by the cheater is obviously undetectable by
honest participants.

A secret sharing may offer a different degree of protection against cheaters
applying the TW attack. In general, a cheating participant P1 can try to achieve
the following goals:



– G1 – the cheater wants to recover the valid secret while the honest partici-
pants are unable to detect cheating,

– G2 – the cheater wants to recover the valid secret while the honest partici-
pants are able to detect cheating.

3.2 Practicality of One-time Recovery

In the unconditionally secure setting, it is customary to assume that secret shar-
ing is designed for a single recovery of the secret. We argue that this assumption
does not hold in many practical situations. In particular, consider the following
arguments.

Concurrent recovery. Given a group holding a secret using (t, n) where t is
smaller than n

2 . The necessity of recovery of the secret is in many cases triggered
by an event that is observed independently by all members of the group (say, a
stock exchange crash). It should be no surprise to see more than one subgroup
attempting to recover the secret roughly at the same time. There is no facility
built in secret sharing to prevent multiple key recovery. Even if it was one, it
would mean that recovery would go ahead only after checking whether the secret
had not been reconstructed by any subgroup. This is clearly unreasonable and it
will not work in cases when there some members of the group are not contactable
or simply ceased to exist.

Proxy recovery. Multiple recovery can be put into a good use in the case when
the combiner is not trusted. Consider first the case where the TW attack can be
actually useful in preventing the combiner from leaking the recovered secret to
outsiders. The combiner is normally implemented as a computer program which
is run under a watchful eye of a trusted operating system and using underlying
secure communication infrastructure to collect shares from participants. Even
if the participants are aware about security gaps in the implementation of the
combiner, they may still be tempted to use it as it offers communication and
computing facilities that otherwise may not be readily available. Assume that
the group delegates a member who is entrusted by the group to act on their be-
half. Note that this member is the real combiner who is using untrusted one to
quickly and efficiently use the (insecure) infrastructure. All participants submit
their shares to the untrusted combiner except the delegated member who submits
an incorrect share. The combiner recovers an incorrect secret and communicates
it to the group (and leaks it to outsiders). Only the delegated member is able
to recover the secret. Note that in the unconditionally secure setting, partici-
pants may use the untrusted combiner because of the accessible communication
infrastructure (they obviously could use authenticated broadcasting). In the con-
ditionally secure setting, participants may use untrusted combiner as a powerful
(and insecure) server. A multiple recovery could be useful if the participants are
allowed to lie about their shares by “small” modification of their shares.

Multiple recoveries. Multiple recovery can be used to get rid of combiner al-
together and the secret reconstruction can then be seen as a probabilistic game
with participants broadcasting their shares distorted by a small “noise”. It is



expected that if the entropy of noise is appropriately selected then the partic-
ipants have advantage over outsiders in finding the secret from many “noisy”
recoveries. Note that they know precise values of their individual shares while
outsiders do not.

3.3 A Repeat-Recovery Attack

To make the presentation clearer, we assume that the currently active subset of
participants is A = {P1, . . . , Pt} from which P1 is a cheater and P2, . . . , Pt are
honest. To prevent cheating, the dealer has distributed pairs (si, ηi) secretly to
each participant. In the repeat-recovery (RR) attack, any unsuccessful attempt
in secret recovery provides the cheater information about the secret. From a
point of view of the cheater, the matrix AA is seen as

(η1, η2, . . . , ηt)

where vectors η2, . . . , ηt are unknown. The recovery algorithm collects pairs
(si, ηi), constructs the matrix AA, computes its inverse A−1

A
and computes the

secret s =
∑t

i=1 ri where

(r1, r2, . . . , rt) = (s1, s2, . . . , st)A
−1
A

The secret is sent back to active participants via secure channels.
In the RR attack, the cheater modifies his share and sends the pair (s1 +

α1, A1) where α1 ∈R GF (q). Honest participants provide their pairs. The recov-
ery algorithm computes

(r
(1)
1 , r

(1)
2 , . . . , r

(1)
t ) = (s1 + α1, s2, . . . , st)A

−1
A

= (s1, s2, . . . , st)A
−1
A

+ (α1, 0, . . . , 0)A−1
A

The invalid secret s′ =
∑t

i=1 r
(1)
i is returned to all active participants. Next

the cheater publicly acknowledges that he has made a mistake while sending the
share and asks for another try. In the second attempt, the cheater modifies his
share using α2 ∈R GF (q) and sends (s1 +α2, A1) to the combiner. The recovery
algorithm again computes the vector r which is

(r
(2)
1 , r

(2)
2 , . . . , r

(2)
t ) = (s1 + α2, s2, . . . , st)A

−1
A

= (s1, s2, . . . , st)A
−1
A

+ (α2, 0, . . . , 0)A−1
A

The second invalid secret is s′′ =
∑t

i=1 r
(2)
i . After getting it, the cheater can

write a system of two equations with four known integers: s′, s′′, α1 and α2. The
system has the form:

s′ =
t

∑

i=1

r
(1)
i = s +

t
∑

i=1

(α1, 0, . . . , 0)η∗
i

s′′ =

t
∑

i=1

r
(2)
i = s +

t
∑

i=1

(α2, 0, . . . , 0)η∗
i



where η∗
i is the i-th column of the matrix A−1

A
. If the first equation is multiplied

by α2 and the second by α1, then the cheater obtains:

α2s
′ = α2s +

t
∑

i=1

(α1α2, 0, . . . , 0)η∗
i

α1s
′′ = α1s +

t
∑

i=1

(α1α2, 0, . . . , 0)η∗
i

The secret is

s =
α2s

′ − α1s
′′

α2 − α1

The cheater now knows the secret. The above considerations are summarised in
the following theorem.

Theorem 1. Given (t, n) threshold linear secret sharing with the matrix A. Let
each participant be assigned her secret pair (si, ηi) where si is her share and
ηi is the column vector of A assigned to Pi (see Equation (1)). Assume that
after having collected t pairs (si, ηi), the recovery algorithm returns the secret
to all active participants via secure channels. Let P1 be a cheater who modifies
his shares by choosing two random modifications α1 and α2 (α1 6= α2). Then
the cheater is able to recover the secret after two unsuccessful attempts. Honest
participants do not have any information about the secret except the information
provided by the combiner.

The only point we have not proved is the last statement. From an honest par-
ticipant point of view, invalid secrets s′ and s′′ are random variables controlled
by random variables α1 and α2, respectively. If α1 and α2 are two random vari-
ables (α1 6= α2) selected from all nonzero elements of GF (q), then so are s′ and
s′′. The only information accessible to honest participants is that the valid secret
must be different from both s′ and s′′.

How we can prevent linear secret sharing against the new attack ? The general
rule is Do not give the cheater another chance. More precisely, the RR attack
works only if the same matrix AA is used twice by the recovery algorithm. To
thwart the RR attack, it is enough to replace a single participant by a new one.
This changes the matrix and the cheater is unable to recover the valid secret.

Assume that participants have agreed for multiple recovery of the secret.
Again the currently active group is A = {P1, . . . , Pℓ} where P1 is cheating and
other participants are honest. The cheater may have the following goals:

– Goal G1RR – recovery of the valid secret while the cheater does not mind to
be identified by the honest participants,

– Goal G2RR – recovery of the valid secret while the cheater wants to remain
unidentified.



3.4 Previous Works

The Tompa-Woll attack put the cheating problem in the spot-light. The sug-
gestion of making x co-ordinates secret does not really address the problem but
rather removes the main incentive behind cheating. We are interested in cheating
detection in the unconditionally secure setting. Rabin and Ben-Or [13] used a
system of linear equations to validate shares before they are passed into the com-
biner. Carpentieri in [5] constructed a similar scheme but with shorter shares.
Carpentieri, De Santis and Vaccaro [6] argued that share expansion is unavoid-
able to detect cheating. They proved that any (t, n) threshold scheme must have
the size of share bigger by log 1

ε
than the size of the secret to detect cheating

with the probability better than 1 − ε.
Note that all solutions for cheating detection presented in the literature suffer

from a dramatic share expansion. So dramatic, in fact, that their practicality is
questionable. Note that the Rabin and Ben-Or solution requires (3n − 2) addi-
tional elements of the length of the secret per participant. Carpentieri managed
to reduce this to t + 2(n − 1) elements where t is the threshold parameter and
n is the number of participants in the group. The underlying secret sharing is
perfect and unconditionally secure. Some other methods of cheating detection
are considered in [4, 7, 8, 12].

The solution we propose does not need any share expansion and in fact, can
be applied to any linear secret sharing (including Shamir secret sharing). This
claim seems to be in odds with the finding of Carpentieri at al [6]. The solution
is built on the observation (see [11]) that it is possible to design Shamir secret
sharing with divisible shares. The divisibility of shares allowed the authors of
[11] to increase the effective threshold of secret sharing. Here we are using it to
trade perfectness of the scheme with the cheating detection. In other words, if
participants do not care about cheating, they treat their shares as atomic - the
scheme is perfect. If however, they choose to detect cheating, they donate a part
of their sub-shares to the combiner leaving some sub-shares to verify the correct-
ness of the returned structure. Note that in our solution, the cheating detection
is done individually by active participants after the combiner has returned the
secret together with additional information to the participants.

4 Linear Secret Sharing with Sub-shares

Consider an ideal and linear (t, n) threshold scheme and Pi holds the share si.
Assume that S = Si = GF (q) for i = 1, . . . , n. Shares held by participants
are normally atomic – either withheld or given out in their totality. Suppose
further that GF (q) = GF (pv), σ be a root of a primitive polynomial p(y) =
a0 + a1y + · · · + av−1y

v−1 + yv of degree v over GF (p). Then any element in
τ ∈ GF (pv) can be expressed as τ = b0 + b1σ + · · · + bv−1σ

v−1 where each
bj ∈ GF (p). We call the vector (b0, b1, . . . , bv−1) the vector representation of τ .

Now consider a (t, n) threshold scheme described by Equation (1). This equa-
tion can be equivalently presented as

(ε1, . . . , εnv) = (ρ1, . . . , ρvt)B (3)



where ε = (ε1, . . . , εnv) and τ = (ρ1, . . . , ρtv) are created from vectors (s1, . . . , sn)
and (r1, . . . , rt) respectively by replacing each entry by its vector representations,
and B is an tv×nv matrix over GF (p) obtained from the matrix A in the follow-
ing way. We take the unit vector ρ(i) = (0, . . . , 0, 1, 0, . . . , 0) which has all zero
co-ordinates except the i-th co-ordinate that is “1”. Next we find the vector r(i)

such that r(i) and ρ(i) present the same integer, in other words, r(i) = (r1, . . . , rt)
where each rj ∈ GF (pv), and ρ(i) = (ρ1, . . . , ρtv) where each ρj ∈ GF (p), satisfy
∑t

j=1 rjq
t−j =

∑tv

j=1 ρjp
tv−j where q = pv. Then we compute s(i) = r(i)A. The

vector s(i) is translated into its equivalent ε(i) – this is the i-th row of B. If we
continue this process for all unit vectors ρ(i); i = 1, . . . , vt, we get explicit form
of the matrix B with tv rows and nt columns. So we have proved the following.

Lemma 1. Given a perfect and linear (t, n) threshold scheme whose shares are
computed according to Equation (1) where A is the t × n matrix over GF (q) =
GF (pv), then shares can be equivalently computed by Equation (3) where B is
the tv × nv matrix over GF (p), obtained from the matrix A.

We further notice that the matrix B in (3) can also be constructed immedi-
ately from the matrix A as follows. Define a v × v matrix D over GF (p) such
that:

D =















0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −av−2 −av−1















(4)

Lemma 2. Let σ be a root of a primitive polynomial p(y) = a0 + a1y + · · · +
av−1y

v−1 + yv of degree v over GF (p). Then (c0 + c1σ + · · · + cv−1σ
v−1)(b0 +

b1σ + · · · + bv−1σ
v−1) = (d0 + d1σ + · · · + dv−1σ

v−1), where each bj, cj and dj

are elements in GF (p), if and only if

(c0, c1, . . . , cv−1)(b0Iv + b1D + · · · + bv−1D
v−1) = (d0, d1, . . . , dv−1)

where D has been defined in (4) and Iv denotes the v × v identity matrix.

We reconsider a (t, n) threshold scheme described by Equation (1). Due to
Lemma 2, Equation (1) can be equivalently presented as

(ε1, . . . , εnv) = (ρ1, . . . , ρtv)B (5)

where ε = (ε1, . . . , εnv) and τ = (ρ1, . . . , ρtv) are created from vectors (s1, . . . , sn)
and (r1, . . . , rt) respectively by replacing each entry by its vector representations,
and B is an tv×nv matrix over GF (p) obtained from the matrix A by changing
σi into the matrix Di (σ0 = 1 and D0 = Iv is the v × v identity matrix).

A (t, n) Shamir Secret Sharing with v Sub-shares ([11])
Let sub-shares be chosen from GF (p) and create shares with v elements. A single



share consists of v sub-shares. The group P = {P1, . . . , Pn} collectively holds
the secret.

Dealer

– chooses at random a polynomial f(x) of degree tv − 1 with elements from
GF (p),

– defines the secret s = (f(−v), . . . , f(−1)),
– communicates shares si = (εi,1, . . . , εi,v) to the participant Pi via a secure

channel, where εi,j = f(xi,j) and xi,j are public co-ordinates assigned to Pi.

Combiner

– is activated by a subgroup A ⊆ P ,
– collects t shares (or alternatively tv sub-shares) from a currently active group

A, applies the Lagrange interpolation and recovers the polynomial f(x),
– recovers the secret s = (f(−v), . . . , f(−1)) and distributes it to the group A

via secure channels.

5 Cheating Detection in Linear Secret Sharing with

Sub-shares

If a linear (t, n) threshold scheme allows to use sub-shares, there are new possi-
bilities for cheating prevention including the following:

1. non-atomic submission of shares with public matrix B. A participant pools
a collection of sub-shares leaving the unused ones for verification purposes,

2. non-atomic submission of shares with partially secret matrix B. A partici-
pant submits sub-shares whose corresponding columns of matrix B are pub-
lic. The columns related to sub-shares used by the participants for verifica-
tion purposes, are private,

3. submission of sub-shares with secret matrix B.

The linear (t, n) threshold scheme with v sub-shares assigned to each partic-
ipant according to Formula (3) allows to trade cheating detection ability with
the threshold value ℓ. In particular,

– the threshold value is ℓ = t, then the participants pool all their sub-shares so
they collectively provide tv sub-shares (or alternatively t shares) and recover
the secret. In this case there is no cheating detection,

– the threshold value ℓ > t and each participant submits k sub-shares such
that ℓk = tv. A participant can use v − k unused sub-shares for verification
of the recovered secret.

Before we describe the new scheme, we introduce the following notation. Given
a linear secret sharing scheme (t, n) with v sub-shares assigned to participants
according to Formula (3). Then



(a) B denotes a tv × nv matrix such that any tv × tv sub-matrix (obtained by
removing the suitable number of columns) is nonsingular,

(b) BPi
denotes a tv × v sub-matrix of B that contains columns corresponding

to all sub-shares assigned to the participant Pi,
(c) BA denotes a tv×av sub-matrix of B that contains all columns corresponding

to the group A of a participants,
(d) BA(k) denotes a tv × ak sub-matrix of BA that is obtained by removing

(v − k) columns corresponding to participant Pi ∈ A. This matrix defines
columns related to sub-shares provides by the participants of the group A.

A (ℓ, n) Secret Sharing with Cheating Detection

Dealer

– constructs a (t, n) Shamir secret sharing with v sub-shares such that there
is an integer k (k < v) such that kℓ = tv. The scheme is described by
Formula (3) where Pi is assigned a share si = (ε(i−1)v+1, . . . , εiv) which
consists of v sub-shares. All sub-shares create the vector ε = (ε1, . . . , εnv).
The vector ρ = (ρ1, . . . , ρtv) is typically selected at random while the secret
s = (ρ1, . . . , ρv),

– communicates the shares to participants via confidential channel (the matrix
B is public).

Combiner

– is activated by a collection A of ℓ active participants,
– collects k sub-shares from each participant Pi ∈ A and determines the matrix

BA(k),
– computes the vector ρ = (ρ1, . . . , ρtv),
– communicates the vector ρ to active participants via secure channel.

Verification - Each participant Pi ∈ A

– takes the vector ρ and checks

(ε(i−1)v+1, . . . , εiv)
?
= (ρ1, . . . , ρtv)BPi

If the check holds, the participant computes the secret from the vector ρ.
Otherwise, Pi aborts the scheme and announces a cheating attempt to the
other participants.

Lemma 3. Given a system of n equations in t unknowns (n ≥ t) generated from
a linear (t, n) threshold scheme described by

(α1, 0, . . . , 0, αt+1, . . . , αn) = (r1, r2, . . . , rt)A

where co-ordinates α2 = 0, . . . , αt = 0. Assume also that the solution for the
vector r = (r1, . . . rt) is different from zero. Then co-ordinates α1, αt+1, . . . , αn

are different from zero.



A cheating participant clearly controls his own sub-shares but has no influ-
ence on the sub-shares owned by the other active participants. Unlike in the
original TW attack, the cheater this time has a limited knowledge about which
sub-shares are actually submitted to the combiner. As a result, he does not know
which columns of the matrix BA are used by the combiner. In other words, the
cheater knows BA but does not know BA(k). In general, a cheating participant
P1 can try to achieve the following goals:

– G1 – the cheater wants to recover the valid vector ρ (or the valid secret)
while leaving the honest participants with the invalid vector ρ that passes
the verification for all honest participants P2, . . . , Pℓ,

– G2 – the cheater wants to recover the valid vector ρ (or the valid secret)
while leaving the honest participants with the invalid vector ρ that fails
verification for some honest participants,

Theorem 2. Given (ℓ, n) secret sharing with cheating detection based on (t, n)
scheme with v sub-shares. Assume that the active group A = {P1, . . . , Pℓ} in-
cludes a single cheater P1. Then P1 attains the goal

– G1 only if λ = v, where λ = kℓ−1
ℓ−1 ,

– G2 if k ≤ λ < v and the probability of success is smaller than or equal to

(

λ
k

)ℓ−1

/

(

v
k

)ℓ−1

Assume that there are multiple cheaters who collectively create a group B =
{P1, . . . , Pm} within the group A = {P1, . . . , Pℓ}. The cheaters now control mk
positions. They also know the a part of the matrix B which corresponds to the
currently active group A. By a manipulation of their own mk sub-shares they
can easily target any tv − 1 sub-shares of honest participants so they will not
change their values after cheating (see Lemma (3)). Note that the parameter

λ =
kℓ − 1

ℓ − m

denotes the average numbers of zeroes available for the group to be added to
honest participant contributions. The conclusions obtained in Theorem 2 are
still valid after rather trivial adjustments.

6 Prevention against the RR Attack

Consider a (ℓ, n) secret sharing with cheating detection. Assume that partici-
pants have agreed for multiple recovery of the secret. Again the currently active
group is A = {P1, . . . , Pℓ} where P1 is cheating and other participants are honest.
The cheater may have the following goals:

– Goal G1RR – recovery of the valid vector ρ (and the secret) while the cheater
does not mind to be identified by the honest participants,



– Goal G2RR – recovery of the valid vector ρ (and the secret) while the cheater
wants to remain unidentified.

Honest participants are likely to have a single goal in mind, namely, they
wish to detect cheating and identify the cheater so they can create a new active
group without the cheater and recover the secret.

To achieve their goals both parties may choose different strategies. The
cheater may use

– Strategy S1c – the cheater modifies the sub-share vector ε by designing a
vector α of the length ℓv with kℓ − 1 zeros distributed evenly among ℓ − 1
honest participants. The vector α is fixed for the duration of all recoveries.
At the pooling stage, the cheater selects her k sub-shares at random.

– Strategy S2c – as the strategy S1c except the cheater chooses α independently
for each recovery.

Honest participants may apply

– Strategy S1h – for each recovery, an honest participant chooses at random
k sub-shares.

– Strategy S2h – for the first recovery, an honest participant chooses at random
k sub-shares and then keeps re-sending them for other recoveries.

Note that if the cheater applies the strategy S2c while honest ones behave
according to the strategy S2h, then the cheater will always succeed (recovers the
correct vector ρ and the secret) while the honest ones have no knowledge about
the secret. In other words, the cheater applies the RR attack and achieves G1RR.
Clearly, the honest participants are able to identify the cheater.

It is most likely that both parties (the honest participants and the cheater)
will use strategies S1h and S1c, respectively. As the two strategies are identical
we call them the strategy S1. To achieve the goal G2RR, the cheater must use
this strategy so her behaviour is identical to behaviour of honest participants.
On the other hand, honest participants are discouraged to use the strategy S2h

as this strategy makes them vulnerable to the RR attack.
So all participants use the strategy S1 and obviously, they agreed for mul-

tiple recovery. In practice, however, it is reasonable to assume that after two
unsuccessful recoveries, some participants may not wish to take part in further
attempts or more likely, the active group may wish to replace some participants
by the new ones. In any case, every unsuccessful recovery reveals an incorrect
vector ρ′ which permits active participants to recover the vector ε′ (by multi-
plying ρ′ by the public BA). A part of ε′ corresponding to Pi contains at last
k sub-shares that have been indeed submitted by them the other v − k vary
depending on how particular participants selected their sub-shares.

A probabilistic model of multiple recovery can be as follows. Given a field
GF (q) from which all sub-shares are chosen and a fixed and unknown vector
β = (β1, . . . , βv) (it contains all sub-shares of a given participant whose sub-
shares are to be identified); βi ∈ GF (q). To identify the vector, one queries a
probabilistic oracle (the combiner). For each enquire, the oracle returns a vector
γ = (γ1, . . . , γv) which



– contains at least k correct co-ordinates. The oracle selects randomly one

pattern of k correct co-ordinates out of

(

v
k

)

possible ones.

– contains at most v − k co-ordinates which are chosen randomly, uniformly
and independently from the set GF (q).

Note that each co-ordinate in the vector β is in fact, a random variable X with
the probability distribution of the following form:

P (X = a) =

{

k
v

+ (1 − k
v
)1

q
if a is the correct sub-share;

(1 − k
v
)1

q
otherwise.

To justify this, it is enough to observe that the given co-ordinate with the correct

sub-share occurs

(

v − 1
k − 1

)

/

(

v
k

)

= k
v

times assuming the the oracle chooses k

out of v position at random. The correct sub-share may also happen if the co-
ordinate has not been chosen and the correct sub-share has been selected from
GF (q). The wrong value of sub-share occurs when the co-ordinate has not been
selected to the subset of k out of v correct sub-shares and the random element
tossed from all GF (q) is different from the correct sub-share.

Identification of correct sub-shares can be accomplished using standard sta-
tistical tools such as hypothesis testing. We can put forward two hypotheses
related to the binary random variable X ∈ {0, 1}. The first one

H0 7→ P (X = a) =

{

k
v

+ (1 − k
v
)1

q
if a = 0;

(1 − k
v
) q−1

q
otherwise.

and its alternative

H1 7→ P (X = a) =

{

(1 − k
v
)1

q
if a = 0;

k
v

+ (1 − k
v
) q−1

q
otherwise.

7 Conclusions

Tompa and Woll were first to demonstrate how a dishonest participant can
cheat others during the recovery of secret. The TW attack is applicable if the
recovery algorithm is run once only. We have argued that in many applications
the assumption about single recovery is not reasonable and there is no mechanism
incorporated into secret sharing which would prevent it from multiple recoveries.
If we allow multiple recoveries than a new threat called the repeat recovery attack
emerges. Unlike the TW attack, the RR attack can be successful even if the x
co-ordinates are secret. Note that this is a surprising result as the cheater does
not have any information about x co-ordinates while being able to determine the
valid secret ! The RR attack can be put to a good use so an active group can
recover secret after the combiner has been compromised. A trusted participant
plays the role of combiner using the compromised combiner.



A (ℓ, n) secret sharing scheme with cheater detection is built on the basis
of (t, n) threshold scheme with v sub-shares. Unlike in standard secret sharing,
participants are expected to split their sub-shares into two subsets. One subset is
submitted to the combiner while the other is left for verification purposes. The
combiner returns the vector ρ (instead of the recovered secret) which further
is used by participants to check its validity. The sharing scheme with cheater
detection has the following properties:

– The scheme can be used as a standard (t, n) secret sharing with atomic
shares.

– Cheating according to the TW attack (the goal G1) is only successful if the
parameters v = λ (λ specifies the number of sub-shares per participants
which could be manipulated by cheater by putting zeroes in her α vector).
For any v > λ, the goal G1 cannot be achieved.

– The recovery of the valid secret by the cheater while the honest participants
detect cheating (the goal G2) can be achieved with the probability of guessing
the subset of sub-shares submitted to the combiner.

The secret sharing scheme with cheater detection is also investigated in the
context of the RR attack. We argued that if the cheater wishes not to be iden-
tified then she must fix her (modified) sub-shares for the duration of multiple
recoveries. The cheater and honest participants are now trying to identify their
sub-shares. This scenario resembles the TW attack if the number of recoveries
is big enough so everybody can correctly identify sub-shares. Note, however,
that honest participants may wish to refuse to participate after some number
of recoveries when the probability of guessing of correct secret by the cheater
becomes too high.
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