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In this paper we carry on the investigation initiated in [21] and bring together nonlinearity and propa-gation characteristic of a Boolean function (quadratic or non-quadratic). These two cryptographic criteriaare seemly quite separate, in the sense that the former indicates the minimum distance between a Booleanfunction and all the a�ne functions whereas the latter forecasts the avalanche behavior of the functionwhen some input bits to the function are complemented.In particular we show that if f , a function on Vn, satis�es the propagation criterion with respect to allbut a subset < of Vn, then the nonlinearity of f satis�es Nf >= 2n�1 � 2n� 12 ��1, where � is the maximumdimension a linear subspace contained in f0g [ (Vn � <) can achieve.We also show that 2n�2 is the tight lower bound on the nonlinearity of f if f satis�es the propagationcriterion with respect to at least one vector in Vn. As an immediate consequence, the nonlinearity of afunction that ful�lls the SAC or strict avalanche criterion is at least 2n�2.Two techniques are employed in the proofs of our main results. The �rst technique is in regard tothe structure of <, the set of vectors where the function f does not satisfy the propagation criterion. Byconsidering a linear subspace with the maximum dimension contained in f0g [ (Vn � <), together withits complementary subspace, we will be able to identify how the vectors in < are distributed. The secondtechnique is based on a novel idea of re�ning Parseval's equation, a well-known relationship in the theory oforthogonal transforms. A combination of these two techniques together with some careful analyses provesto be a powerful tool in examining the relationship among nonlinearity criteria.The organization of the rest of the paper is as follows: Section 2 introduces basic notations andconventions, while Section 3 presents background information on the Walsh-Hadamard transform. Thedistribution of vectors where the propagation criterion is not satis�ed is discussed in Section 4. Thisresult is employed in Section 5 where a quantitative relationship between nonlinearity and propagationcharacteristics is derived. This relationship is further developed in Section 6 to identify a tight lower boundon nonlinearity of functions with propagation characteristics. The paper is closed by some concludingremarks in Section 7.2 Basic De�nitionsWe consider Boolean functions from Vn to GF (2) (or simply functions on Vn), Vn is the vector space ofn tuples of elements from GF (2). The truth table of a function f on Vn is a (0; 1)-sequence de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)),where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrixof order 2n de�ned by M = ((�1)f(�i��j)). f is said to be balanced if its truth table contains an equalnumber of ones and zeros.An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) = a1x1 � � � � � anxn � c,where aj ; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is called a linear function if c = 0.De�nition 1 The Hamming weight of a (0; 1)-sequence s, denoted by W (s), is the number of ones in thesequence. Given two functions f and g on Vn, the Hamming distance d(f; g) between them is de�ned asthe Hamming weight of the truth table of f(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of f ,denoted by Nf , is the minimal Hamming distance between f and all a�ne functions on Vn, i.e., Nf =mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�ne functions on Vn.Note that the maximum nonlinearity of functions on Vn coincides with the covering radius of the �rstorder binary Reed-Muller code RM(1; n) of length 2n, which is bounded from above by 2n�1 � 2 12n�1 (seefor instance [4]). Hence Nf <= 2n�1 � 2 12n�1 for any function on Vn. Next we introduce the de�nition ofpropagation criterion. 2



De�nition 2 Let f be a function on Vn. We say that f satis�es1. the propagation criterion with respect to � if f(x) � f(x � �) is a balanced function, where x =(x1; : : : ; xn) and � is a vector in Vn.2. the propagation criterion of degree k if it satis�es the propagation criterion with respect to all � 2 Vnwith 1 <= W (�) <= k.f(x)� f(x � �) is also called the directional derivative of f in the direction �. The above de�nitionfor propagation criterion is from [15]. Further work on the topic can be found in [14]. Note that the strictavalanche criterion (SAC) introduced by Webster and Tavares [24, 25] is equivalent to the propagationcriterion of degree 1 and that the perfect nonlinearity studied by Meier and Sta�elbach [11] is equivalentto the propagation criterion of degree n where n is the number of the coordinates of the function.While the propagation characteristic measures the avalanche e�ect of a function, the linear structureis a concept that in a sense complements the former, namely, it indicates the straightness of a function.De�nition 3 Let f be a function on Vn. A vector � 2 Vn is called a linear structure of f if f(x)�f(x��)is a constant.By de�nition, the zero vector in Vn is a linear structure of all functions on Vn. It is not hard to seethat the linear structures of a function f form a linear subspace of Vn. The dimension of the subspaceis called the linearity dimension of f . We note that it was Evertse who �rst introduced the notion oflinear structure (in a sense broader than ours) and studied its implication on the security of encryptionalgorithms [6].A (1;�1)-matrix H of order m is called a Hadamard matrix if HH t = mIm, where H t is the transposeof H and Im is the identity matrix of order m. A Sylvester-Hadamard matrix of order 2n, denoted by Hn,is generated by the following recursive relationH0 = 1; Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : : (1)Let `i, 0 <= i <= 2n � 1, be the i row of Hn. By Lemma 2 of [20], `i is the sequence of a linear function'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where �i is the ith vector in Vn according to theascending alphabetical order.De�nition 4 Let f be a function on Vn. The Walsh-Hadamard transform of f is de�ned asf̂ (�) = 2�n2 Xx2Vn(�1)f(x)�h�;xiwhere � = (a1; : : : ; an) 2 Vn, x = (x1; : : : ; xn), h�; xi is the scalar product of � and x, namely, h�; xi =Lni=1 aixi, and f(x)� h�; xi is regarded as a real-valued function.The Walsh-Hadamard transform, also called the discrete Fourier transform, has numerous applicationsin areas ranging from physical science to communications engineering. It appears in several slightly di�erentforms [17, 10, 5]. The above de�nition follows the line in [17]. It can be equivalently written as(f̂(�0); f̂(�1); : : : ; f̂(�2n�1)) = 2�n2 �Hnwhere �i is the ith vector in Vn according to the ascending order, � is the sequence of f and Hn is theSylvester-Hadamard matrix of order 2n. 3



De�nition 5 A function f on Vn is called a bent function if its Walsh-Hadamard transform satis�esf̂(�) = �1for all � 2 Vn.Bent functions can be characterized in various ways [1, 5, 20, 26]. In particular the following fourstatements are equivalent:(i) f is bent.(ii) h�; `i = �2 12n for any a�ne sequence ` of length 2n, where � is the sequence of f .(iii) f satis�es the propagation criterion with respect to all non-zero vectors in Vn.(iv) M , the matrix of f , is a Hadamard matrix.Bent functions on Vn exist only when n is even [17]. Another important property of bent functions isthat they achieve the highest possible nonlinearity 2n�1 � 2 12n�1.3 More on Walsh-Hadamard transform and NonlinearityAs the Walsh-Hadamard transform plays a key role in the proofs of main results to be described in thefollowing sections, this section provides some background knowledge on the transform. More informationregarding the transform can be found in [10, 5]. In addition, Beauchamp's book [2] is a good source ofinformation on other related orthogonal transforms with their applications.Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise product is de�ned bya � b = (a1b1; : : : ; ambm). Let f be a function on Vn. For a vector � 2 Vn, denote by �(�) the sequence off(x� �). Thus �(0) is the sequence of f itself and �(0) � �(�) is the sequence of f(x)� f(x� �).Set �(�) = h�(0); �(�)i;the scalar product of �(0) and �(�). �(�) is also called the auto-correlation of f with a shift �. Obviously,�(�) = 0 if and only if f(x)�f(x��) is balanced, i.e., f satis�es the propagation criterion with respect to�. On the other hand, if j�(�)j = 2n, then f(x)� f(x� �) is a constant and hence � is a linear structureof f .Let M = ((�1)f(�i��j)) be the matrix of f and � be the sequence of f . Due to a very pretty result byR. L. McFarland (see Theorem 3.3 of [5]), M can be decomposed intoM = 2�nHn diag(h�; `0i; � � � ; h�; `2n�1i)Hn (2)where `i is the ith row of Hn, a Sylvester-Hadamard matrix of order 2n.Clearly MMT = 2�nHn diag(h�; `0i2; � � � ; h�; `2n�1i2)Hn: (3)On the other hand, we always have MMT = (�(�i � �j));where i; j = 0; 1; : : : ; 2n � 1.Compare the two sides of (3), we have(�(�0);�(�1); : : : ;�(�2n�1)) = 2�n(h�; `0i2; : : : ; h�; `2n�1i2)Hn:4



Equivalently we write(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; : : : ; h�; `2n�1i2): (4)In engineering, (4) is better known as (a special form of) the Wiener-Khintchine Theorem [2]. A closelyrelated result is Parseval's equation (Corollary 3, p. 416 of [10])2n�1Xj=0 h�; `ji2 = 22nwhich also holds for any function f on Vn.Let S be a set of vectors in Vn. The rank of S is the maximum number of linearly independent vectorsin S. Note that when S forms a linear subspace of Vn, its rank coincides with its dimension.The distance between two functions f1 and f2 on Vn can be expressed as d(f1; f2) = 2n�1 � 12h�1; �2i,where �1 and �2 are the sequences of f1 and f2 respectively. (For a proof see for instance Lemma 6 of [20].)Immediately we have:Lemma 1 The nonlinearity of a function f on Vn can be calculated byNf = 2n�1 � 12 maxfjh�; `iij; 0 <= i <= 2n � 1gwhere � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, the sequences of the linearfunctions on Vn.The next lemma regarding splitting the power of 2 can be found in [21]Lemma 2 Let n >= 2 be a positive integer and p2+ q2 = 2n where both p >= 0 and q >= 0 are integers. Thenp = 2 12n and q = 0 when n is even, and p = q = 2 12 (n�1) when n is odd.In the next section we examine the distribution of the vectors in <.4 Distribution of <Let f be a function on Vn. Assume that f satis�es the propagation criterion with respect to all but asubset < of Vn. Note that < always contains the zero vector 0. Write < = f0; 1; : : : ; sg. Thus j<j = s+1.Set <c = Vn �<. Then f satis�es the propagation criterion with respect to all vectors in <c.Consider the set of vectors f0g [ <c. Then f0g is a linear subspace contained in f0g [ <c. Whenjf0g [ <cj > 1, f0; g is a linear subspace for any nonzero vector in <c. We are particularly interested inlinear subspaces with the maximum dimension contained in f0g [ <c. For convenience, denote by � themaximum dimension and by W a linear subspace in f0g [ <c that achieves the maximum dimension.Obviously, f is bent if and only if � = n, and f does not satisfy the propagation criterion with respectto any vector if and only if � = 0. The case when 1 <= � <= n� 1 is especially interesting.Now let U be a complementary subspace of W , namely U �W = Vn. Then each vector  2 Vn can beuniquely expressed as  = �� �, where � 2 W and � 2 U . As the dimension of W is �, the dimension ofU is equal to n � �. Write U = f0; �1; : : : ; �2n���1g.Proposition 1 <\W = f0g and <\ (W ��j) 6= �, where W ��j = f���j j� 2Wg, j = 1; : : : ; 2n���1.5



Proof. <\W = f0g follows from the fact thatW is a subspace of f0g[<c. Next we consider <\(W��j).Clearly, Vn = W [ (W � �1) [ � � � [ (W � �2n���1):In addition, W \ (W � �j) = �for j = 1; : : : ; 2n�� � 1, and (W � �j) \ (W � �i) = �for any j 6= i. Assume for contradiction that < \ (W � �j0) = � for some j0, 1 <= j0 <= 2n�� � 1. Then wehave W ��j0 � <c. In this case W [ (W ��j0) must form a subspace of Vn. This contradicts the de�nitionthat W is a linear subspace with the maximum dimension in f0g [ <c. This completes the proof. utThe next corollary follows directly from the above proposition.Corollary 1 The size of < satis�es j<j >= 2n�� and hence the rank of < is at least n � �, where � is themaximum dimension a linear subspace in f0g [ <c can achieve.5 Relating Nonlinearity to Propagation CharacteristicsWe proceed to the discussion of the nonlinearity of f . The main di�culty lies in �nding a good approxi-mation of h�; `ii for each i = 0; : : : ; 2n � 1, where � is the sequence of f and �i is a row of Hn.First we assume that W = fj = (a1; : : : ; a�; 0; : : : ; 0); ai 2 GF (2)g (5)U = fj = (0; : : : ; 0; a�+1; : : : ; an); ai 2 GF (2)g (6)whereW is a linear subspace in f0g[<c that achieves the maximum dimension � and U is a complementarysubspace of W . The more general case where (5) or (6) is not satis�ed can be dealt with after employinga nonsingular transform on the input of f . This will be discussed in the later part of this section.Recall that < = f0; 1; : : : ; sg and �(�) = h�(0); �(�)i, where �(�) is the sequence of f(x� �). Since�() 6= 0 for each  2 < while �() = 0 for each  2 <c = Vn �<, (4) is specialized as(�(0);�(1); : : : ;�(s))Q = (h�; `0i2; : : : ; h�; `2n�1i2): (7)where � is the sequence of f , `i is the ith row of Hn and Q comprises the 0th, 1th, : : :, sth rows of Hn.Note that Q is an (s+ 1)� 2n matrix.Let ` be the th row of Hn, where  2 <. Note that  can be uniquely expressed as  = �� �, where� 2 W and � 2 U . Let `0 be the �th row of H� and `00 be the �th row of Hn��. As Hn = H� �Hn��, `can be represented by ` = `0 � `00, where � denotes the Kronecker product.From the construction of Hn��, we can see that the �th row of Hn�� is an all-one sequence of length2n�� if � = 0, and a balanced (1;�1)-sequence of length 2n�� if � 6= 0.Recall that <\W = f0g (see also Proposition 1). There are two cases associated with  = �� � 2 <: = 0 and  6= 0. In the �rst case, ` = `0� `00 is the all-one sequence of length 2n, while in the second case,we have � 6= 0 which implies that `00 is a balanced (1;�1)-sequence of length 2n�� and hence ` = `0 � `00 isa concatenation of 2� balanced (1;�1)-sequences of length 2n��.Therefore we can write Q = (Q0; Q1; : : : ; Q2��1), where each Qi is a (1;�1)-matrix of order (s+1)�2n�� .It is important to note that the top row of each Qi is the all-one sequence, while the rest are balanced(1;�1)-sequences of length 2n��. 6



With Q0, we have (�(0);�(1); : : : ;�(s))Q0 = (h�; `0i2; : : : ; h�; `2n���1i2):Let �0 be the all-one sequence of length 2n��. Then(�(0);�(1); : : : ;�(s))Q0�T0 = (h�; `0i2; : : : ; h�; `2n���1i2)�T0 :This causes (�(0);�(1); : : : ;�(s))266664 2n��0...0 377775 = 2n���1Xj=0 h�; `ji2and 2n���1Xj=0 h�; `ji2 = 2n���(0) = 2n��+n = 22n��:Similarly, with Qi, i = 1; : : : ; 2� � 1, we have2n���1Xj=0 h�; `j+i2n��i2 = 22n��:Thus we have the following result:Lemma 3 Assume that f , a function on Vn, satisfy the propagation criterion with respect to all but asubset < of vectors in Vn. Set <c = Vn � < and let W be a linear subspace with the maximum dimension�, in f0g [ <c, and U be a complementary subspace of W . Assume that W and U satisfy (5) and (6)respectively. Then 2n���1Xj=0 h�; `j+i2n��i2 = 22n��for all i = 0; 1; : : : ; 2� � 1, where � is the sequence of f and each `k is a row of Hn.Lemma 3 can be viewed as a re�nement of Parseval's equation P2n�1j=0 h�; `ji2 = 22n. It implies thatjh�; `jij <= 2n� 12� for all j = 0; : : : ; 2n � 1. Therefore by Lemma 1 we have Nf >= 2n�1 � 2n� 12��1.So far we have assumed that W and U satisfy (5) and (6) respectively. When it is not the case, we canalways �nd a nonsingular n � n matrix A whose entries are from GF (2) such that the subspaces W 0 andU 0 associated with f 0(x) = f(xA) have the required forms. f 0 and f have the same algebraic degree andnonlinearity (see Lemma 10 of [18]). This shows that the following theorem is true.Theorem 1 For any function on Vn, the nonlinearity of f satis�es Nf >= 2n�1 � 2n� 12��1, where � is themaximum dimension of the linear subspaces in f0g [ <c.Theorem 1 indicates that the nonlinearity of a function is determined by the maximum dimension thata linear subspaces in f0g [ <c can achieve, but not by the size of <c.In [22], we have proved that Nf >= 2n�1 � 2 12 (n+t)�1, where t is the rank of <. By Corollary 1, we havet >= n � �. This implies that 2n�1 � 2n� 12��1 >= 2n�1 � 2 12 (n+t)�1. Thus Theorem 1 is an improvement tothe result in [22]. This improvement can be demonstrated by a concrete example. In [22] a function f5 on7



V5 is constructed that satis�es the propagation criterion with respect to all but the following �ves vectorsin V5: < = f(0; 0; 0; 0; 0); (0; 0; 0; 0; 1); (0; 0; 0; 1; 0); (0; 0; 1; 0; 0); (0; 0; 1; 1; 1)g:The rank t of < is equal to 3. By using the result of [22], Nf5 >= 25�1 � 2 12 (5+3)�1 = 24 � 23 = 8. On theother hand, we can set W = f(a1; a2; a3; a4; a5)jai 2 GF (2); a1 � a2 � a3 = 0g. W is a four-dimensionalsubspace in f0g [ <c. Using Theorem 1 with � = 4, we have Nf5 >= 25�1 � 25� 12��1 = 24 � 22 = 12 > 8.According to [4], 12 is the maximum nonlinearity a function on V5 can achieve.6 A Tight Lower Bound on Nonlinearity of Functions with PropagationCharacteristicsBy Theorem 1, Nf >= 2n�1 � 2n� 32 if f , a function on Vn, satis�es the propagation criterion with respectto some vectors. This section shows that this lower bound can be signi�cantly improved. Indeed we provethat Nf >= 2n�2 and also show that it is tight.Theorem 2 If f , a function on Vn, satis�es the propagation criterion with respect to one or more vectorsin Vn, then the nonlinearity of f satis�es Nf >= 2n�2.Proof. As in the previous sections, we denote by < the set of vectors in Vn with respect to which thepropagation criterion is not satis�ed by f . We also let <c = Vn�<, and W be a linear subspace in f0g[<cthat achieves the maximum dimension �.By Theorem 1, the theorem is trivially true when � > 1. Next we consider the case when � = 1. Weprove this part by further re�ning the Parseval's equation.As in the proof of Lemma 3, without loss of generality, we can assume thatW = fj = (a1; 0; : : : ; 0); a1 2 GF (2)g (8)U = fj = (0; a2; : : : ; an); ai 2 GF (2)g (9)Similarly to Lemma 3, we have 2n�1�1Xj=0 h�; `j+i22n�1 i2 = 22n�1; i = 0; 1; (10)where � is the sequence of f and `k is a row of Hn.Compare the �rst row of (2), we have(a0; a1; : : : ; a2n�1) = 2�n(h�; `0i; � � � ; h�; `2n�1i)Hnor equivalently, 2n(a0; a1; : : : ; a2n�1) = (h�; `0i; � � � ; h�; `2n�1i)Hn (11)where each aj = �1 and (a0; a1; : : : ; a2n�1) is the �rst row of the matrix M described in (2).Rewrite `i, the ith row of Hn, as `(�i), where �i is the binary representation of an integer i in theascending alphabetical order. SetN = (h�; `(�i � �j)i); 0 <= i; j <= 2n � 1:8



N is a symmetric matrix of order 2n with integer entries. In [17], Rothaus has shown that NN = NNT =22nI2n . We can split N into four submatrices of equal size, namelyN = " N1 N2N2 N1 #where each Nj is a matrix of order 2n�1. As NN = 22nI2n, we have N1N2 = 0.Let (c(�0); c(�1); : : : ; c(�2n�1�1)) be an arbitrary linear sequence of length 2n�1. Then(c(�0); c(�1); : : : ; c(�2n�1�1); c(�0); c(�1); : : : ; c(�2n�1�1))is a linear sequence of length 2n, and hence a row of Hn. Thus from (11), we have2n�1�1Xj=0 c(�j)h�; `(�j)i+ 2n�1�1Xj=0 c(�j)h�; `(�j � 2n�1)i = �2n:Hence (2n�1�1Xj=0 c(�j)h�; `(�j)i+ 2n�1�1Xj=0 c(�j)h�; `(�j � �2n�1)i)2 = 22n: (12)Rewrite the left hand side of (12) as(2n�1�1Xj=0 c(�j)h�; `(�j)i)2 + (2n�1�1Xj=0 c(�j)h�; `(�j � �2n�1)i)2+ 2(2n�1�1Xj=0 c(�j)h�; `(�j)i)(2n�1�1Xj=0 c(�j)h�; `(�j � �2n�1)i)where (2n�1�1Xj=0 c(�j)h�; `(�j)i)(2n�1�1Xj=0 c(�j)h�; `(�j � �2n�1)i)= 2n�1�1Xt=0 2n�1�1Xj=0 c(�j)h�; `(�j)ic(�j � �t)h�; `(�j � �t � �2n�1)i: (13)As (c(�0); c(�1); : : : ; c(�2n�1�1)) is a linear sequence, c(�j)c(�j��t) = c(�t). Hence (13) can be writtenas 2n�1�1Xt=0 c(�t) 2n�1�1Xj=0 h�; `(�j)ih�; `(�j � �t � �2n�1)i:Since N1N2 = 0, 2n�1�1Xj=0 h�; `(�j)ih�; `(�j � �t � �2n�1)i = 0:This proves that (13) is equal to zero and hence(2n�1�1Xj=0 c(�j)h�; `(�j)i)2+ (2n�1�1Xj=0 c(�j)h�; `(�j � �2n�1)i)2 = 22n:9



By Lemma 2, 2n�1�1Xj=0 c(�j)h�; `(�j)i = 0 or �2n: (14)Since (c(�0); c(�1); : : : ; c(�2n�1�1)) is an arbitrary linear sequence of length 2n�1 and each linear se-quence of length 2n�1 is a column of Hn�1, from (14) we have(h�; `0i; : : : ; h�; `2n�1i)Hn�1 = 2n(b0; : : : ; b2n�1�1) (15)where bj = 0 or �1. Therefore(h�; `0i; : : : ; h�; `2n�1i)2 12 (n�1)Hn�1 = 2 12 (n+1)(b0; : : : ; b2n�1�1):Recall that a matrix A of order s is said to be orthogonal if AAT = Is. It is easy to verify that 2 12 (n�1)Hn�1is an orthogonal matrix. Thus 2n�1Xj=0 h�; `�ji2 = 2n+1 2n�1�1Xj=0 b2j :On the other hand, by (10) we have 2n�1Xj=0 h�; `�ji2 = 22n�1:Hence 2n�1�1Xj=0 b2j = 2n�1�1Xj=0 jbjj = 2n�2:Now let �(�i) denote the ith row of Hn�1, where �i 2 Vn�1 is the binary representation of i, i =0; 1; : : : ; 2n�1 � 1. From (15),(h�; `0i; � � � ; h�; `2n�1i)Hn�1�(�i)T = 2n(b0; : : : ; b2n�1�1)�(�i)T : (16)Note that h�(�i); �(�j)i = ( 2n�1 if j = i0 if j 6= iThus Hn�1�(�i)T = 2666666666664 0...02n�10...0 3777777777775 (17)where 2n�1 is on the ith position of the column vector.Write �(�i) = (d0; d1; : : : ; d2n�1�1). Then(b0; : : : ; b2n�1�1)�(�i)T = 2n�1�1Xj=0 djbj :10



As dj = �1, we have j 2n�1�1Xj=0 djbj j <= 2n�1�1Xj=0 jbjj = 2n�2: (18)From (16), (17) and (18) 2n�1jh�; `iij <= 2n 2n�1�1Xj=0 jbjj = 22n�2and hence jh�; `iij <= 2n�1where i is an arbitrary integer in [0; : : : ; 2n�1 � 1]. Similarly,jh�; `iij <= 2n�1holds for all i = 2n�1; 2n�1 + 1; : : : ; 2n � 1. By Lemma 1, the nonlinearity of f satis�esNf >= 2n�1 � 2n�2 = 2n�2:This completes the proof. utAs an immediate consequence, we haveCorollary 2 Let f be a function on Vn. Then the following statements hold:1. if the nonlinearity of f satis�es Nf < 2n�2, then f does not satisfy the propagation criterion withrespect to any vector in Vn.2. if f satis�es the SAC, then the nonlinearity of f satis�es Nf >= 2n�2.Finally we show that the lower bound 2n�2 is tight. We achieve the goal by demonstrating a functionon Vn whose nonlinearity is equal to 2n�2. Let g(x1; x2) = x1x2 be a function on V2. Then the nonlinearityof g is Ng = 1. Now let f(x1; : : : ; xn) = x1x2 be a function on Vn. Then the nonlinearity of f isNf = 2n�2Ng = 2n�2 (see for instance Lemma 8 of [19]). f satis�es the propagation criterion with respectto all vectors in Vn whose �rst two bits are nonzero, which count for three quarters of the vectors in Vn.It is not hard to verify thatf(0; 0; 0; : : : ; 0); (1; 0; 0; : : : ; 0); (0; 1; 0; : : : ; 0); (1; 1; 0; : : : ; 0)gis the linear subspace that achieves the maximum dimension � = 2.Thus we have a result described as follows:Lemma 4 The lower bound 2n�2 as stated in Theorem 2 is tight.7 ConclusionWe have shown quantitative relationships between nonlinearity, propagation characteristics and the SAC.A tight lower bound on the nonlinearity of a function with propagation characteristics is also presented.This research has also introduced a number of interesting problems yet to be resolved. One of theproblems is regarding the size and distribution of <c, the set of vectors where the propagation criterion issatis�ed by a function on Vn. For all the functions we know of, <c is either an empty set or a set withat least 2n�1 vectors. We believe that any further understanding of this problem will contribute to theresearch into the design and analysis of cryptographically strong nonlinear functions.11
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