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Abstract

Strong Kronecker multiplication of two matrices is useful for con-
structing new orthogonal matrices from known those. In this paper
we give strong Kronecker multiplication a general form and a short
proof. To show its applications, we prove that if there exists a com-
plex Hadamard matrix of order 2¢ then there exists
(i) a W(4nc,2kc), if there exists a W(2n, k),

(ii) a complex Hadamard matrix of order 4hc, if there exists an Hadamard
matrix of order 4h,

(iii) Williamson matrices of order 2¢n, if there exist Williamson matri-
ces of order n,

(iv) an OD(4en;2csy, - -+, 2¢sy), if there exists an OD(2n;s1, -+, 8y).
Also we generalize the above results by using more complex orthogonal
matrices.

1 Introduction and Basic Definitions

Definition 1 Let C' be a (1,—1,7,—¢) matrix of order ¢ satisfying CC* =
cl, where C* is the Hermitian conjugate of C'. We call C' a complex
Hadamard matriz order c.

From [6], any complex Hadamard matrix has order 1 or order divisible by
2. Let ¢ = X 4+ 4Y, where X,Y consist of 1,—1,0 and X AY = 0 where
A is the Hadamard product. Clearly, if (' is an complex Hadamard matrix
then XX7T +YYT =¢l, XYT =Y X7,



Definition 2 Let W be a (1, —1,0) matrix of order n satisfying W7 =
kl,. We call W a weighing matriz (see [3]) of order n with weight k,
denoted by W = W(n, k).

Definition 3 A complex orthogonal design (see [2]) , of order n and type
(81, ,84), denoted by COD(m;s1,52,---,,) on the commuting variables
X1, , 2, is a matrix of order n, say X , consists of e1x1,---,e,2,,0, where
€1, 6, € {1,—1,4,—1i}, satisfying

XX*= (> sz,
j=1

In particular, if ey,---,¢e, € {1,—1}, the complex orthogonal will be called
an orthogonal design denoted by OD(m;sy, 52, ,8,).

Definition 4 Four (1, -1) matrices Ay, A3, As, A4 of order n satisfying

A AT + A, AT + A5 AT + A AT = and,

and

vvt =vut,

where U,V € {Ay, A, A3, Ay} will be called Williamson type matrices of
order n (see [?]).

Let M be a matrix of order tm. Then M can be expressed as

Mll M12 Mlt

M21 M22 M2t
M= -

Mtl Mt2 Mtt

where M;; is of order m (¢,j = 1,2,---,¢). Analogously with Seberry and
Yamada [5], we call this a ¢ block M-structure when M is an orthogonal
matrix.

To emphasize the block structure , we use the notation My, where
My = M but in the form of t? blocks, each of which has order m.

Let N be a matrix of order tn. Then, write

Nll N12 Nlt
N(t) — N21 N22 N2t
Ntl Nt2 Ntt

where N;; is of order n (¢,5 = 1,2,---,1).



We now define the operation () as the following:

Lll L12 te th
My O Ny = | 12 2 b
Ltl Lt? te Ltt

where M;;, N;; and L;; are of order of m,n and mn, respectively and

Lij = My X Nyj+ Miy X Noj + -+ My X Nyj,

where x is Kronecker product, ¢,j = 1,2,---,t. We call this the strong Kro-
necker multiplication of two matrices.

2 Strong Kronecker Product

In [?] the authors prove

Theorem 1 Let A be an OD(tm;py,---,py) with entries x1,---,x, and B
be an OD(tn; q1,---,qs) with entries yy,---,ys. Suppose all x1,---,z, and
Y, . Ys are commutative then

(A O Biy)(Aw O By = O piz)(O~ 4597 ) i
7=1 7=1
(A(t) O Byyyis not an orthogonal design but an orthogonal matriz.)
We now give Theorem 1 a more general form and a short proof.

Theorem 2 Let P be a complex O D(tm;py,---,py) with entries e1x1,- -, €,y
and Q be a complex OD(tn;q1,---,q5) with entries fiy,---, fsys , where
€1, ", €y, flv"'vfs € { 1; '1; i; 'Z} SUppOS@ (l”$1,"',$u andylv"'vys
are commutative then

(Piy O Q)(Piy O Q)" = O_piz) D 459 ) Limn-
7=1 7=1

(P(t) O Q) s not a complex orthogonal design but a complex orthogonal
matriz.)

@1

Proof.  Write P = [Py---P;] and () = : |, where Py,---, P; are of
Q+

order tm X m, Q1,--+,Q; are of order n X tn From PP* = (3%, pjx?)ftm,



we have

t U
Z PP; = (ijxﬁ)ftm.
j=1 j=1

Since QQ* = (3°7_, (]jy]z)lntv

o= ) Oy ifi=,
©iQj = { 0 i # .

Then

= (Z P; x Qy‘)(zpf x Q%)
ZPP* (Q;Q7)

= BB < (g

=1

ECH

IS

P ) It X Zq]y]
]=1

U

=" pie)O] 4595 e
=1 i=1

As required. a

Corollary 1 Let P and @ be the (£1,+4,0) matrices of order tm and tn
respectively, satisfying PP* = pl,; and QQ* = ql:. Then

(Piy O Quy)(Pey O Qo))" = pelimn.

Proof. In this case, P is a complex design of order p and type (21 = 1) and
@ is a complex of order ¢ and type ( y1 = 1). O

The strong Kronecker multiplication has potential to yield still more con-
structionsfor new orthogonal matrices.

3 Weighing Matrices

Theorem 3 If there exist a W(2n , k) and a complex Hadamard matriz of
order 2c there exists a W(4nc , 2kc).



Wy W,
Wi Wy
order n and C' = X +¢Y be the complex Hadamard matrix of order 2¢, where
X,Y are (1,—1,0) matrices of order 2¢ satisfying X AY =0, XYT = Yy X7,

Xy and
Y -X

| X Y Wi W,
Then V is a (1, —1,0) matrix of order 4cn. Since UUT = 2¢ly. and WWT =
kI,,, by Theorem 1, VVT = 2¢kly,,. Thus V is a W (4en,2¢k). O

Proof. Let W = W(2n,k) = , where Wy, Wy, W5, Wy are of

XXT 1 vyT = 9¢l,.. Let U = l

Theorem 4 If there exist a W(2n , k) and an Hadamard matriz of order
4h there exists a W(4nh , 2kh).

Hy Hy

Proof. Let H = [ .
3 Il

] be the Hadamard matrix of order 4h, where

Wy Wy

H,, Hy, Hs, Hy are of order 2h and W = W W,

] be the W(2n,¢),
where Wy, Wy, W3, W, are of order n. Let

N—l Hy+Hy H{—Hy
2| H3+ Hy Hs—Hy |~

Then Z = N3 O W) is a (1,—1,0) matrix of order 4hn. Note NNT =
2hHy, and WWT = kl,,, by Theorem 1, ZZT = 2hkl,. Thus Z is a
W (4nh,2kh). O

4 Complex Hadamard Matrices

Theorem 5 If there exist an Hadamard matriz of order 4h and a complex
Hadamard matriz of order 2c there exists a complex Hadamard matriz of
order 4he.

Proof. Let H = LSRNk be the Hadamard matrix of order 4h, where
Hs Hy
1 Oy
Hy, Hy, Hs, Hy are of order 2h and C' = . C be the complex
3 Oy

Hadamard matrix of order 2¢, where C'y, (o, (s, Cy are of order c. Let

E—l Hi+ Hy Hy— Hy O Cy Oy
2 Hs;+ Hy Hs;— H, 03 C4 )



Then F is a (1,—1,¢,—¢) matrix of order 4hc. By Theorem 2, EE* =
dhelyp.. O

In Theorem 5, if C' is a real Hadamard matrix, we have the following result
first found by Agayan [1]:

Corollary 2 If there exist Hadamard matrices of order 4u and 4v there
exists an Hadamard matriz of order 8uwv.

Theorem 5 gives a series of new complex Hadamard matrices. For example,

there exist Hadamard matrices of order 45, where s € § = {17,19,23,29,31,41,43,53,61,73}.
On the other hand, there exists a complex Hadamard matrix of order 1024 =

2 - 523, for which no symmetric conference matrix can exist (p.469, [6]).

Then by Theorem 5, we have the new complex Hadamard matrices of order

4-523 -5, where s € 5. If let h = 2 in Theorem 6.1, [6] we also find new

Hadamard matrices of order of 8 - 523 - s, where s € 5.

5 Williamson Type Matrices

Theorem 6 If there exist Williamson type matrices of order n and complex
Hadamard matriz of order 2¢ there exist Williamson type matrices of order
2en.

Proof. Let C' = X 4+:¢Y be the complex Hadamard matrix of order 2¢, where
X,Y are (1,—1,0) matrices of order 2¢ satisfying X AY =0, XYT = Yy X7,
XXT4+yvYT = 2¢l,,. Let Ay, Ay, A3, Ay be the Williamson type matrices
of order n. We now give the theorem a direct proof without using Theorem
1 or Theorem 2. Define

B1 = Al XX—|—A2 XY, B2 = Al XY_A2 XX,Bg = A3XX—|-A4XY, B4 = A3XY—A4XX.
Then By, By, B3, By are (1, —1) matrices of order 2¢n. It is easy to verify
By BY 4+ ByBY + BsBT + ByBT = 4nl, x 2cly. = 8ncly,,

and

vvt =vut,
where U,V € {By, By, B3, B4}. Thus By, By, B3, By are Williamson type
matrices of order 2nc. a

Theorem 6 gives a series of new Williamson type matrices. For ex-
ample, there exist Williamson type matrices of order s, where s € 5 =
{17,19,23,29,31,41,43,53,61,73}. On the other hand, there exists a com-
plex Hadamard matrix of order 1024 = 2 . 523, for which no symmetric
conference matrix can exist [ 7, p469 ]. Then by Theorem 6, we have the
new Williamson type matrices of order 2 - 523 - s, where s € 5.



6 Orthogonal Designs

Theorem 7 If there exists an OD(2n;s1,--+,s,) and a complex Hadamard
matriz of order 2c¢ there exists an O D(4dcen;2¢sy, -+ ,2¢8,).

Proof. Let C' = X 4+:¢Y be the complex Hadamard matrix of order 2¢, where
X,Y are (1,—1,0) matrices of order 2¢ satisfying X AY =0, XYT =Y X7,

XXT4YYT = 2¢l,,.. Let D = Dy D, be the OD(2n;s1,---,s,) with
D3 Dy
elements x1,---,x,,0, where Dy, Dy, D3, Dy are of order n. Let
| X Y Dy Dy
Then F is of order 4¢n and consits of @, -+, 2,,0. Since
x v 1][x v 1
lY —XHY —X] = 2clac

and

DDT = (3" s;2%) .
=1
By Theorem 1, we have
EET = (Z QCij?)Lkn.
i=1
Thus E is an OD(4en;2esy,- -+, 2¢s,). O
| X Y Dy Dy
where X,Y, Dy, Dy, D3, Dy are defined as in the proof for Theorem 7. By

the same reason, F is also an OD(4cn;2¢sq,---,2¢s,). Let P = L(E 4+ F)
and Q = 3(E — F). Then

X VY D, D,
P:[Y —X]O[O 0]

. XXD1 XXD2
B YXDg YXD4

Let

and

X v 0 0
o-[3 Xols 5]



_ YXDl YXD2
o —XXD3 —XXD4 )

We note
ppT — XXT x(DyDF + DDy XYT x (DD + DyDT)
| YXT x (DD + DyDTY YYT x (D, DT + Dy,DT)
xxt xvt u
= [ vxT yyT ] X (Zij?)In.
=1
Similarly

007 = YYT x (DsDI + DyDTY  —YXT x (D3DY + DyDT)
| = XYT x(D3DY + DyDT) XXT x(D3DY 4+ D,DT)

yy?r _yxT “
— [ xyT  xxT ] X (Zij?)In.
=1
Then

XxT yyy? 0 -
T T _ 2
PP +QQ _[ 0 <XXT:YYT]X(Z;%%ﬂﬁ

= 2¢ly. X (Z ij?)fn = 2¢ X (Z 5]'96?)]4@1.
i=1 i=1

On the other hand, it is to check PQT = @QPT = 0. Finally, note EFT =
(P+Q(P - = PPT —QQT = (P-Q)P+Q) = FET. Thus we

have the following result:

Theorem 8 If there exists an OD(2n;s1,--+,s,) and a complex Hadamard
matriz of order 2c¢ there exist
(i) matrices P and Q of order nc with elements x1,---,x,,0, satesfying

PPT +QQT = 2¢ x (Y 50 Lien
J=1

and PQT = QPT =0,
(ii) two O D(4en;2csy,---,2¢s,), say E and F, satisfying EFT = FET,

Corollary 3 If there exist Hadamard matrices of order 4hi and 4hs there
exists an O D(8hyhg;4hihasy, - -, 4h1hgs,), when an OD(2n;s1,- -, 5,) €x-
151s.

Proof. By Theorem 3, [?], there exists a complex Hadamard matrix of order
4hihy. By Theorem 7, we have an O D(8hyhg;4h1hasy,- -+, 4h1has,). O



Theorem 9 If there exists an OD(2n;s1,--+,s,) and a complex Hadamard

matriz of order 2c¢ there exists an O D(4dcen;2¢sy, -+ ,2¢8,).
Hy Hy .
Proof. Let H = be the Hadamard matrix of order 4h,
Hs Hy
Dy Dy
where Hy, Hy, Hs, H, are of order 2h and D = be the
D3 Dy

OD(2n;s1,---,5,) with elements 21, -+, 2,0, where Dy, Dy, D3, Dy are of
order n. Let

F—l Hy+H, Hy - Hy O Dy Dy
2| H3+ Hy Hs— Hy Ds Dy |~

Then F'is of order 4hn and consists of zq,---,z,. By Theorem 1, we have

[
FFT = (D 2hs;a?) Lipn.

i=1

Thus F'is an OD(4hn;2hsy,---,2hs,). O

7 Specialized Results

Complex Hadamard matrices are often used in this paper. We ellustrate the
power of our results by noting some classes of complex Hadamard matrices.

Lemma 1 If there exists a conference matrix of order n then there is sym-
metric Hadamard matriz of order 2n and a skew complex Hadamard matriz
of order n. Symmeltric coference matrices are knowen for the following or-
ders:

i p+1 p" =1 (mod 4) is a prime power
ca (h—1)2+1 h isthe order of a skew Hadamard matriz

3 ¢*(g—2)+1 ¢q=3 (mod4) is a prime power
g — 2 is a prime power rll

¢y 59241 >0

s (n—1)"4+1 n isthe order of a conference matriz
s> 2



Note: a conference matrix of order n exists only if n — 1 is the sum of two

squares. Skew Hadamard matrices for the following orders:

S1

SIT

SIIT

SIV

SV

SVI

SVII

SVIII

SIX

SX

SXI

21k,

(p—1)"+1

2(q+1)

2(q+1)

4m

mn(n — 1)

4(g+1)

(Il +1)(¢ + 1)

A +q+1)

2lq

hm

t,r;, all non-negative positive integers
k; —1 =3 (mod 4) a prime power.

p the order of a skew-Hadamard matrix,
u > 0 an odd integer.

¢ =5 (mod 8) a prime power.

is a prime power with
(mod 8) and ¢ = 2 (mod 4).

m € {odd integers between 3 and 31 inclusive}

n the order of amicable orthogonal designs of
types ((1,n — 1);(n)) and nm the order of an
orthogonal design of type (1,m,mn —m — 1).

¢ =9 (mod 16) a prime power.

q = s>+ 4t =5 (mod 8) a prime power
and |t]| +1 the order of a skew- Hadamard matrix

q a prime power and ¢° + ¢+ 1=3,5
or 7 (mod 8) a prime power or 2(¢* + ¢+ 1) + 1
a prime power

q=s?+4r* =5 (mod 8) a prime power and

an orthogonal design O D(2%;1,a,b,c,c+ |r]) exists
where 1+ a + b+ 2¢+ |r|= 2% and

alg+ 1)+ b(qg—4) =2

h the order of a skew-Hadamard matrix, m
the order of amicable Hadamard matrices.

By Lemma 1, these conference matrices and skew Hadamard matrices

yield complex Hadamard matrices that give the following corollary of The-
orem 3, Theorem 5, Theorem 6 and Theorem 7 :

Corollary 4 Suppose 2c¢ is the order of a symmetric conference matriz.
Then there exist
(1) a W(4ne,2uc), whenever W(2n,u) exist,

(ii) complex Hadamard matrices of order 4hc, whenever Hadamard matrices
of order 4h exist,

10



(1ii) Williamson type matrices of order 2nc, whenever Williamson type ma-
trices of order n exist,
(iv) an O D(4cen;2¢sy, - -+, 2¢s,,), whenever OD(2n;s1,--+,8,) exist.

Proof. Use Theorem 3, 5, 6, 7 and Lemma 1. a

Kharagani and Seberry [4] have found complex Hadamard matrices in many
other cases. For example, from Corollary 18, [4] there exists a complex
Hadamard matrix of order p/(p 4+ 1), when p = 1 (mod 4) or p + 1 is
the order of a symmetric conference matrices. Seberry also found complex
Hadamard matrices of order w(w — 1) whenever there is a skew complex
Hadamard matrix of order w ( see [?] ).

8 Remark

Actually most of the above constructions rely on two (1,—1,0) matrices, say
X and Y of order n satisfying XAY =0, XY =YX XXT4+yY" = kI,.
In this case, X + 1Y can be called a complex weighing matriz ( see [2] ) of
order n and weight k, denoted by CW(n, k).

Theorem 10 Suppose there exists a CW(2¢ | r), then there exists
(i) a W(4nc , rk) if W(2n , k) exists,

(ii) a CW(jhc , 2hc) if an Hadamard matriz of order 4h exists,
(1ii) an O D(4en;rsy, -+, rsy) if an OD(2n;s1,- -+, 8, ) exists.

(iv) CW(4ne , kr) if CW(2n , k) exists.

Proof.  The proofs for (i), (ii), (iii) are the same as the proofs for Theorem
3, Theorem 5, Theorem 7. As for (iv), by simple verification, we have

CW(2n,k) x CW(2¢c,r) = CW (4dnc, kr).

Theorem 11 If there exist a COD(m;s1,52,--+,8,) and a W (2n, k) there
exists an OD(2mn;ksy, ksa, -+, ksy).

proof. Let A = U + ¢V be the COD(m;s1,52,-+,5,) where U, V are

matrices of order m with elements 1, - -, z,, 0 satisfying UAV =0, UVT =
Wy W,
T T T _ u , - - 1 2
VU, vut + vvt = (30 sjad) . Let W = W(2n,k) = Ws W, ] )
where Wy, Wy, W3, W, are of order n. Set

U Vv Wy, W-
=V N ]ol e W]

11



Then B consists of @1, -+, 2,,0. Note

v ovi]lv v 1" &,
[v —U] [v —U] :(;Wj)fzm-

and by Theorem 2,
BB* = k(> s5;2%) Izmn-
J=1

Then B is an OD(2mn;ksy, ksa, -, ksy). O

Corollary 5 Ifthere exists a COD(m;s1,S2,-+,8,) and an Hadamard ma-
triz of order 4h then there exists an O D(4hm;4hsy,4hsg, -+, 4hsy).

Proof. In Theorem 11, let W(2n,k) = W(4h,4h). o
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