
Some Orthogonal Matrices Constructed by StrongKronecker MultiplicationJennifer SeberryandXian-Mo ZhangDepartment of Computer ScienceUniversity CollegeUniversity of New South WalesAustralian Defence Force AcademyCanberra, ACT 2600, AUSTRALIAAbstractStrong Kronecker multiplication of two matrices is useful for con-structing new orthogonal matrices from known those. In this paperwe give strong Kronecker multiplication a general form and a shortproof. To show its applications, we prove that if there exists a com-plex Hadamard matrix of order 2c then there exists(i) a W (4nc;2kc), if there exists a W (2n;k),(ii) a complex Hadamardmatrix of order 4hc, if there exists an Hadamardmatrix of order 4h,(iii) Williamson matrices of order 2cn, if there exist Williamson matri-ces of order n,(iv) an OD(4cn; 2cs1; � � � ; 2csu), if there exists an OD(2n; s1; � � � ; su).Also we generalize the above results by using more complex orthogonalmatrices.1 Introduction and Basic De�nitionsDe�nition 1 Let C be a (1;�1; i;�i) matrix of order c satisfying CC� =cI, where C� is the Hermitian conjugate of C. We call C a complexHadamard matrix order c.From [6], any complex Hadamard matrix has order 1 or order divisible by2. Let C = X + iY , where X;Y consist of 1;�1; 0 and X ^ Y = 0 where^ is the Hadamard product. Clearly, if C is an complex Hadamard matrixthen XXT + Y Y T = cI , XY T = Y XT .1



De�nition 2 Let W be a (1;�1; 0) matrix of order n satisfying WWT =kIn. We call W a weighing matrix (see [3]) of order n with weight k,denoted by W = W (n; k).De�nition 3 A complex orthogonal design (see [2]) , of order n and type(s1; � � � ; su), denoted by COD(m; s1; s2; � � � ; su) on the commuting variablesx1; � � � ; xu is a matrix of order n, say X , consists of e1x1; � � � ; euxu; 0, wheree1; � � � ; eu 2 f1;�1; i;�ig; satisfyingXX� = ( uXj=1 sjx2j )InIn particular, if e1; � � � ; eu 2 f1;�1g, the complex orthogonal will be calledan orthogonal design denoted by OD(m; s1; s2; � � � ; su).De�nition 4 Four (1 , -1) matrices A1;A2;A3;A4 of order n satisfyingA1AT1 +A2AT2 +A3AT3 +A4AT4 = 4nInand UV T = V UT ;where U;V 2 fA1;A2;A3;A4g will be called Williamson type matrices oforder n (see [?]).Let M be a matrix of order tm. Then M can be expressed asM = 266664 M11 M12 � � � M1tM21 M22 � � � M2t...Mt1 Mt2 � � � Mtt 377775where Mij is of order m (i; j = 1; 2; � � � ; t). Analogously with Seberry andYamada [5], we call this a t2 block M-structure when M is an orthogonalmatrix.To emphasize the block structure , we use the notation M(t), whereM(t) =M but in the form of t2 blocks, each of which has order m.Let N be a matrix of order tn. Then, writeN(t) = 26664 N11 N12 � � � N1tN21 N22 � � � N2t� � �Nt1 Nt2 � � � Ntt 37775where Nij is of order n (i; j = 1; 2; � � � ; t).2



We now de�ne the operation  as the following:M(t)N(t) = 26664 L11 L12 � � � L1tL21 L22 � � � L2t� � �Lt1 Lt2 � � � Ltt 37775where Mij , Nij and Lij are of order of m;n and mn, respectively andLij =Mi1 �N1j +Mi2 �N2j + � � �+Mit �Ntj ;where � is Kronecker product, i; j = 1; 2; � � � ; t:We call this the strong Kro-necker multiplication of two matrices.2 Strong Kronecker ProductIn [?] the authors proveTheorem 1 Let A be an OD(tm; p1; � � � ; pu) with entries x1; � � � ; xu and Bbe an OD(tn; q1; � � � ; qs) with entries y1; � � � ; ys. Suppose all x1; � � � ; xu andy1; � � � ; ys are commutative then(A(t)B(t))(A(t)B(t))T = ( uXj=1 pjx2j )( sXj=1 qjy2j )Itmn:(A(t) B(t)is not an orthogonal design but an orthogonal matrix.)We now give Theorem 1 a more general form and a short proof.Theorem 2 Let P be a complex OD(tm; p1; � � � ; pu) with entries e1x1; � � � ; euxuand Q be a complex OD(tn; q1; � � � ; qs) with entries f1y1; � � � ; fsys , wheree1; � � � ; eu , f1; � � � ; fs 2 f 1, -1, i, -i g. Suppose all x1; � � � ; xu and y1; � � � ; ysare commutative then(P(t) Q(t))(P(t)Q(t))� = ( uXj=1 pjx2j )( sXj=1 qjy2j )Itmn:( P(t)  Q(t) is not a complex orthogonal design but a complex orthogonalmatrix.)Proof. Write P = [P1 � � �Pt] and Q = 264 Q1...Qt 375, where P1; � � � ; Pt are oforder tm�m, Q1; � � � ;Qt are of order n� tn From PP � = (Puj=1 pjx2j)Itm;3



we have tXj=1PjP �j = ( uXj=1 pjx2j )Itm:Since QQ� = (Psj=1 qjy2j )Int;QiQ�j = ( (Psj=1 qjy2j )In if i = j;0 i 6= j:Then RR� = ( tXj=1Pj � Qj)( tXj=1P �j �Q�j )= tXj=1(PjP �j )� (QjQ�j )= tXj=1(PjP �j )� ( sXj=1 qjy2j )In= ( uXj=1 pjx2j)Imt � ( sXj=1 qjy2j )In= ( uXj=1 pjx2j )( sXj=1 qjy2j )Imnt:As required. 2Corollary 1 Let P and Q be the (�1;�i; 0) matrices of order tm and tnrespectively, satisfying PP � = pImt and QQ� = qInt. Then(P(t) Q(t))(P(t) Q(t))� = pqItmn:Proof. In this case, P is a complex design of order p and type (x1 = 1) andQ is a complex of order q and type ( y1 = 1). 2The strong Kronecker multiplication has potential to yield still more con-structionsfor new orthogonal matrices.3 Weighing MatricesTheorem 3 If there exist a W(2n , k) and a complex Hadamard matrix oforder 2c there exists a W(4nc , 2kc).4



Proof. Let W = W (2n; k) = " W1 W2W3 W4 # ; where W1, W2, W3, W4 are oforder n and C = X+iY be the complex Hadamard matrix of order 2c, whereX;Y are (1;�1; 0) matrices of order 2c satisfying X ^Y = 0, XY T = Y XT ,XXT + Y Y T = 2cI2c. Let U = " X YY �X # andV = " X YY �X # " W1 W2W3 W4 # :Then V is a (1;�1; 0) matrix of order 4cn. Since UUT = 2cI4c and WWT =kI2n, by Theorem 1, V V T = 2ckI4cn. Thus V is a W (4cn;2ck). 2Theorem 4 If there exist a W(2n , k) and an Hadamard matrix of order4h there exists a W(4nh , 2kh).Proof. Let H = " H1 H2H3 H4 # be the Hadamard matrix of order 4h, whereH1, H2, H3, H4 are of order 2h and W = " W1 W2W3 W4 # be the W (2n; c),where W1, W2, W3, W4 are of order n. LetN = 12 " H1 +H2 H1 �H2H3 +H4 H3 �H4 # :Then Z = N(2) W(2) is a (1;�1; 0) matrix of order 4hn. Note NNT =2hH4h and WWT = kI2n, by Theorem 1, ZZT = 2hkI4hn. Thus Z is aW (4nh; 2kh). 24 Complex Hadamard MatricesTheorem 5 If there exist an Hadamard matrix of order 4h and a complexHadamard matrix of order 2c there exists a complex Hadamard matrix oforder 4hc.Proof. Let H = " H1 H2H3 H4 # be the Hadamard matrix of order 4h, whereH1, H2, H3, H4 are of order 2h and C = " C1 C2C3 C4 # be the complexHadamard matrix of order 2c, where C1, C2, C3, C4 are of order c. LetE = 12 " H1 +H2 H1 �H2H3 +H4 H3 �H4 # " C1 C2C3 C4 # :5



Then E is a (1;�1; i;�i) matrix of order 4hc. By Theorem 2, EE� =4hcI4hc: 2In Theorem 5, if C is a real Hadamard matrix, we have the following result�rst found by Agayan [1]:Corollary 2 If there exist Hadamard matrices of order 4u and 4v thereexists an Hadamard matrix of order 8uv.Theorem 5 gives a series of new complex Hadamard matrices. For example,there exist Hadamardmatrices of order 4s, where s 2 S = f17; 19;23; 29; 31;41; 43; 53;61; 73g:On the other hand, there exists a complex Hadamard matrix of order 1024 =2 � 523, for which no symmetric conference matrix can exist (p.469, [6]).Then by Theorem 5, we have the new complex Hadamard matrices of order4 � 523 � s, where s 2 S. If let h = 2 in Theorem 6.1, [6] we also �nd newHadamard matrices of order of 8 � 523 � s, where s 2 S.5 Williamson Type MatricesTheorem 6 If there exist Williamson type matrices of order n and complexHadamard matrix of order 2c there exist Williamson type matrices of order2cn.Proof. Let C = X+iY be the complex Hadamard matrix of order 2c, whereX;Y are (1;�1; 0) matrices of order 2c satisfying X ^Y = 0, XY T = Y XT ,XXT + Y Y T = 2cI2c. Let A1;A2;A3;A4 be the Williamson type matricesof order n. We now give the theorem a direct proof without using Theorem1 or Theorem 2. De�neB1 = A1�X+A2�Y;B2 = A1�Y�A2�X;B3 = A3�X+A4�Y;B4 = A3�Y �A4�X:Then B1;B2; B3;B4 are (1;�1) matrices of order 2cn. It is easy to verifyB1BT1 +B2BT2 +B3BT3 +B4BT4 = 4nIn � 2cI2c = 8ncI2ncand UV T = V UT ;where U;V 2 fB1; B2;B3;B4g: Thus B1;B2;B3;B4 are Williamson typematrices of order 2nc. 2Theorem 6 gives a series of new Williamson type matrices. For ex-ample, there exist Williamson type matrices of order s, where s 2 S =f17; 19;23; 29; 31;41; 43;53; 61; 73g: On the other hand, there exists a com-plex Hadamard matrix of order 1024 = 2 � 523, for which no symmetricconference matrix can exist [ 7, p469 ]. Then by Theorem 6, we have thenew Williamson type matrices of order 2 � 523 � s, where s 2 S.6



6 Orthogonal DesignsTheorem 7 If there exists an OD(2n; s1; � � � ; su) and a complex Hadamardmatrix of order 2c there exists an OD(4cn; 2cs1; � � � ; 2csu):Proof. Let C = X+iY be the complex Hadamard matrix of order 2c, whereX;Y are (1;�1; 0) matrices of order 2c satisfying X ^Y = 0, XY T = Y XT ,XXT +Y Y T = 2cI2c. Let D = " D1 D2D3 D4 # be the OD(2n; s1; � � � ; su) withelements x1; � � � ; xu; 0, where D1;D2;D3;D4 are of order n. LetE = " X YY �X # " D1 D2D3 D4 # :Then E is of order 4cn and consits of x1; � � � ; xu; 0. Since" X YY �X #" X YY �X #T = 2cI4cand DDT = ( uXj=1 sjx2j )I2n:By Theorem 1, we have EET = ( uXj=1 2csjx2j)I4cn:Thus E is an OD(4cn; 2cs1; � � � ; 2csu): 2Let F = " X YY �X # " D1 D2�D3 �D4 # ;where X;Y;D1;D2; D3;D4 are de�ned as in the proof for Theorem 7. Bythe same reason, F is also an OD(4cn; 2cs1; � � � ; 2csu): Let P = 12(E + F )and Q = 12(E � F ). ThenP = " X YY �X # " D1 D20 0 #= " X �D1 X �D2Y �D3 Y �D4 #and Q = " X YY �X # " 0 0D3 D4 #7



= " Y �D1 Y �D2�X �D3 �X �D4 # :We notePPT = " XXT � (D1DT1 +D2DT2 ) XY T � (D1DT1 +D2DT2 )Y XT � (D1DT1 +D2DT2 ) Y Y T � (D1DT1 +D2DT2 ) #= " XXT XY TY XT Y Y T #� ( uXj=1 sjx2j)In:SimilarlyQQT = " Y Y T � (D3DT3 +D4DT4 ) �Y XT � (D3DT3 +D4DT4 )�XY T � (D3DT3 +D4DT4 ) XXT � (D3DT3 +D4DT4 ) #= " Y Y T �Y XT�XY T XXT #� ( uXj=1 sjx2j)In:Then PP T + QQT = " XXT + Y Y T 00 XXT = Y Y T # � ( uXj=1 sjx2j )In= 2cI4c � ( uXj=1 sjx2j )In = 2c� ( uXj=1 sjx2j )I4cn:On the other hand, it is to check PQT = QPT = 0. Finally, note EFT =(P + Q)(P � Q)T = PPT � QQT = (P � Q)(P + Q)T = FET . Thus wehave the following result:Theorem 8 If there exists an OD(2n; s1; � � � ; su) and a complex Hadamardmatrix of order 2c there exist(i) matrices P and Q of order 4nc with elements x1; � � � ; xu; 0, satesfyingPPT +QQT = 2c� ( uXj=1 sjx2j)I4cnand PQT = QPT = 0,(ii) two OD(4cn; 2cs1; � � � ; 2csu); say E and F , satisfying EFT = FET .Corollary 3 If there exist Hadamard matrices of order 4h1 and 4h2 thereexists an OD(8h1h2; 4h1h2s1; � � � ; 4h1h2su), when an OD(2n; s1; � � � ; su) ex-ists.Proof. By Theorem 3, [?], there exists a complex Hadamard matrix of order4h1h2. By Theorem 7, we have an OD(8h1h2; 4h1h2s1; � � � ; 4h1h2su). 28



Theorem 9 If there exists an OD(2n; s1; � � � ; su) and a complex Hadamardmatrix of order 2c there exists an OD(4cn; 2cs1; � � � ; 2csu):Proof. Let H = " H1 H2H3 H4 # be the Hadamard matrix of order 4h,where H1, H2, H3, H4 are of order 2h and D = " D1 D2D3 D4 # be theOD(2n; s1; � � � ; su) with elements x1; � � � ; xu; 0, where D1;D2; D3;D4 are oforder n. Let F = 12 " H1 +H2 H1 �H2H3 +H4 H3 �H4 # " D1 D2D3 D4 # :Then F is of order 4hn and consists of x1; � � � ; xu. By Theorem 1, we haveFF T = ( lXj=1 2hsjx2j)I4hn:Thus F is an OD(4hn; 2hs1; � � � ; 2hsu): 27 Specialized ResultsComplex Hadamard matrices are often used in this paper. We ellustrate thepower of our results by noting some classes of complex Hadamard matrices.Lemma 1 If there exists a conference matrix of order n then there is sym-metric Hadamard matrix of order 2n and a skew complex Hadamard matrixof order n. Symmetric coference matrices are knowen for the following or-ders:c1 pr + 1 pr � 1 (mod 4) is a prime powerc2 (h� 1)2 + 1 h is the order of a skew Hadamard matrixc3 q2(q � 2) + 1 q � 3 (mod 4) is a prime powerq � 2 is a prime powerc4 5 � 92t+1 + 1 t � 0c5 (n� 1)s + 1 n is the order of a conference matrixs � 2 rll
9



Note: a conference matrix of order n exists only if n � 1 is the sum of twosquares. Skew Hadamard matrices for the following orders:SI 2t�ki t; ri, all non-negative positive integerski � 1 � 3 (mod 4) a prime power.SII (p� 1)u + 1 p the order of a skew-Hadamard matrix,u > 0 an odd integer.SIII 2(q + 1) q � 5 (mod 8) a prime power.SIV 2(q + 1) q = pt is a prime power withp � 5 (mod 8) and t � 2 (mod 4).SV 4m m 2 fodd integers between 3 and 31 inclusivegSVI mn(n� 1) n the order of amicable orthogonal designs oftypes ((1; n � 1); (n)) and nm the order of anorthogonal design of type (1;m;mn�m� 1).SVII 4(q + 1) q � 9 (mod 16) a prime power.SVIII (jt j +1)(q + 1) q = s2 + 4t2 � 5 (mod 8) a prime powerand j t j +1 the order of a skew- Hadamard matrixSIX 4(q2 + q + 1) q a prime power and q2 + q + 1 � 3; 5or 7 (mod 8) a prime power or 2(q2 + q + 1) + 1a prime powerSX 2tq q = s2 + 4r2 � 5 (mod 8) a prime power andan orthogonal design OD(2t; 1; a; b; c; c+ jr j) existswhere 1 + a + b+ 2c+ jr j= 2t anda(q + 1) + b(q � 4) = 2t.SXI hm h the order of a skew-Hadamard matrix, mthe order of amicable Hadamard matrices.By Lemma 1, these conference matrices and skew Hadamard matricesyield complex Hadamard matrices that give the following corollary of The-orem 3, Theorem 5, Theorem 6 and Theorem 7 :Corollary 4 Suppose 2c is the order of a symmetric conference matrix.Then there exist(i) a W (4nc; 2uc), whenever W (2n; u) exist,(ii) complex Hadamard matrices of order 4hc, whenever Hadamard matricesof order 4h exist, 10



(iii) Williamson type matrices of order 2nc, whenever Williamson type ma-trices of order n exist,(iv) an OD(4cn; 2cs1; � � � ; 2csu), whenever OD(2n; s1; � � � ; su) exist.Proof. Use Theorem 3, 5, 6, 7 and Lemma 1. 2Kharagani and Seberry [4] have found complex Hadamard matrices in manyother cases. For example, from Corollary 18, [4] there exists a complexHadamard matrix of order pj(p + 1), when p � 1 (mod 4) or p + 1 isthe order of a symmetric conference matrices. Seberry also found complexHadamard matrices of order w(w � 1) whenever there is a skew complexHadamard matrix of order w ( see [?] ).8 RemarkActually most of the above constructions rely on two (1;�1; 0) matrices, sayX and Y of order n satisfying X^Y = 0, XY T = Y XT ; XXT+Y Y T = kIn.In this case, X + iY can be called a complex weighing matrix ( see [2] ) oforder n and weight k, denoted by CW (n; k).Theorem 10 Suppose there exists a CW(2c , r), then there exists(i) a W(4nc , rk) if W(2n , k) exists,(ii) a CW(4hc , 2hc) if an Hadamard matrix of order 4h exists,(iii) an OD(4cn; rs1; � � � ; rsu) if an OD(2n; s1; � � � ; su) exists.(iv) CW(4nc , kr) if CW(2n , k) exists.Proof. The proofs for (i), (ii), (iii) are the same as the proofs for Theorem3, Theorem 5, Theorem 7. As for (iv), by simple veri�cation, we haveCW (2n; k)� CW (2c; r) = CW (4nc;kr): 2Theorem 11 If there exist a COD(m; s1; s2; � � � ; su) and a W (2n;k) thereexists an OD(2mn;ks1; ks2; � � � ; ksu).proof. Let A = U + iV be the COD(m;s1; s2; � � � ; su) where U , V arematrices of orderm with elements x1; � � � ; xu; 0 satisfying U^V = 0, UV T =V UT , UUT + V V T = (Puj=1 sjx2j)In: Let W = W (2n; k) = " W1 W2W3 W4 # ;where W1, W2, W3, W4 are of order n. SetB = " U VV �U # " W1 W2W3 W4 # :11



Then B consists of x1; � � � ; xu; 0. Note" U VV �U # " U VV �U #T = ( uXj=1 sjx2j )I2m:and by Theorem 2, BB� = k( uXj=1 sjx2j)I2mn:Then B is an OD(2mn;ks1; ks2; � � � ; ksu). 2Corollary 5 If there exists a COD(m; s1; s2; � � � ; su) and an Hadamard ma-trix of order 4h then there exists an OD(4hm; 4hs1; 4hs2; � � � ; 4hsu).Proof. In Theorem 11, let W (2n; k) = W (4h;4h). 2References[1] Agayan, S. S. Hadamard Matrices and Their Applications, vol. 1168of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg,New York, 1985.[2] Geramita, A. V., and Geramita, J. M. Complex orthogonal designs.J. Comb. Theory Ser. A, 25 (1978), 211{225.[3] Geramita, A. V., and Seberry, J. Orthogonal Designs: QuadraticForms and Hadamard Matrices. Marcel Dekker, New York-Basel, 1979.[4] Kharaghani, H., and Seberry, J. Regular complex Hadamard ma-trices. Congress. Num. 24 (1990), 149{151.[5] Seberry, J., and Yamada, M. On the products of Hadamard ma-trices, Williamson matrices and other orthogonal matrices using M-structures. JCMCC 7 (1990), 97{137.[6] Wallis, W. D., Street, A. P., and Wallis, J. S. Combinatorics:Room Squares, sum-free sets, Hadamard Matrices, vol. 292 of LectureNotes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York,1972. 12


