
ISIT 1998, Cambridge, MA, USA, August 16 { August 21Connections between Nonlinearity and Restrictions, Terms andHypergraphs of Boolean FunctionsXian-Mo ZhangDept of Computer ScienceUniversity of WollongongWollongong, NSW 2522AUSTRALIAEmail: xianmo@cs.uow.edu.au Yuliang ZhengSchool of Comp & Info TechMonash UniversityFrankston, MelbourneVIC 3199, AUSTRALIAEmail: yzheng@fcit.monash.edu.au Hideki ImaiInstitute of Industrial ScienceUniversity of Tokyo7-22-1 Roppongi, Minato-kuTokyo 106, JAPANEmail: imai@iis.u-tokyo.ac.jpAbstract | This paper studies nonlinear character-istics of (Boolean) functions which are important incryptography. Main contributions of this paper are:(1) we show that the restriction of a function on acoset has signi�cant in
uence on cryptographic prop-erties of the function, (2) we identify relationshipsbetween the nonlinearity of a function and the distri-bution of terms in the polynomial representation ofthe function, (3) we prove that cycles of odd lengthin the terms, as well as quadratic terms, in the poly-nomial representation of a function play an importantrole in determining the nonlinearity of the function.Results in this paper will contribute to the study ofnew cryptanalytic attacks on encryption algorithms,and more important, counter-measures against suchattacks. I. Definitions and NotationsWe consider functions from Vn to GF (2) (or simply func-tions on Vn), Vn is the vector space of n tuples of elementsfrom GF (2).An a�ne function f on Vn is a function that takes the formof f(x1; : : : ; xn) = a1x1�� � ��anxn� c, where aj; c 2 GF (2),j = 1; 2; : : : ; n. Furthermore f is called a linear function ifc = 0.The nonlinearity of f , denoted by Nf , is the minimal Ham-ming distance between f and all a�ne functions on Vn, i.e.,Nf = mini=1;2;::: ;2n+1 d(f;'i) where '1, '2, : : :, '2n+1 are allthe a�ne functions on Vn.The nonlinearity of functions on Vn coincides with the cov-ering radius of the �rst order binary Reed-Muller code R(1; n)of length 2n [2], and it is upper bounded by 2n�1� 2 12n�1 [6].If Nf = 2n�1 � 2 12n�1 then f is called a bent function. Bentfunctions on Vn exist only for even n.Let f be a function on Vn and U be an s-dimensional sub-space of Vn. The restriction of f to a coset �j = �j � U ,j = 0; 1; : : : ; 2n�s�1, denoted by f�j , is a function on U , andit is de�ned by f�j (�) = f(�j � �) for every � 2 U:II. Main ResultsTheorem 1 Let f be a function on Vn, W be a p-dimensional subspace of Vn, and � be a coset of W . Thenthe nonlinearity of f and the nonlinearity of f� satisfyNf �Nf� � 2n�1 � 2p�1Theorem 2 Let f be a function on Vn, W be a p-dimensional subspace of Vn, and � be a coset of W . If therestriction of f to �, f�, is an a�ne function on �, then thenonlinearity of f , Nf , satis�es Nf � 2n�1 � 2p�1.Theorem 3 Let f be a function on Vn and J be a subsetof f1; : : : ; ng such that f does not contain any term xj1 � � �xjt
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