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tWe study nonlinear Boolean fun
tions that are used in
ryptography, espe
ially in blo
k and stream 
iphers.We point out possible 
ryptographi
 weaknesses of theso-
alled separable fun
tions. A 
hara
teristi
 of thesefun
tions is that they 
an be transformed into onesthat are 
omposed of two \sub-fun
tions" with disjointvariables. We then pro
eed to 
onstru
t non-separablefun
tions that exhibit additional useful 
ryptographi
properties su
h as balan
e, high nonlinearity, 
orrela-tion immunity, and good propagation 
hara
teristi
s.1. Introdu
tionA fun
tions on Vn is a mapping from Vn to GF (2)where Vn is the ve
tor spa
e of n tuples of elementsfrom GF (2). We write a fun
tion f on Vn as f(x),where x = (x1; : : : ; xn) is the variable ve
tor in Vn.The truth table of a fun
tion f on Vn is a (0; 1)-sequen
e de�ned by (f(�0); f(�1); : : : ; f(�2n�1)), andthe sequen
e of f is a (1;�1)-sequen
e de�ned by((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)).f is said to be balan
ed if its truth table 
ontains anequal number of ones and zeros. We point out that bal-an
e is one of the most basi
 requirements of Booleanfun
tions used in 
ryptography.An aÆne fun
tion f on Vn is a fun
tion that takesthe form of f(x1; : : : ; xn) = a1x1�� � ��anxn�
, whereaj ; 
 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is 
alleda linear fun
tion if 
 = 0.The Hamming weight of a (0; 1) sequen
e, denotedby HW (�), is the number of ones in the sequen
e.Given two fun
tions f and g on Vn, the Hamming dis-tan
e d(f; g) between them is de�ned as the Hammingweight of the truth table of f(x)� g(x).The nonlinearity of a fun
tion f on Vn, de-noted by Nf , is the minimal Hamming distan
e be-tween f and all aÆne fun
tions on Vn, i.e., Nf =mini=0;1;:::;2n+1�1 d(f; 'i), where '0, '1, : : :, '2n+1�1are all the aÆne fun
tions on Vn. Nf is upper bounded

by 2n�1 � 2 12n�1. We note that nonlinearity is an im-portant 
ryptographi
 
riterion, and a high nonlinear-ity is a prerequisite to resist linear 
ryptanalyti
 at-ta
ks.We say that f satis�es the propagation 
riterionwith respe
t to � if f(x)� f(x��) is a balan
ed fun
-tion. Furthermore f is said to satisfy the propagation
riterion of degree k if it satis�es the propagation 
ri-terion with respe
t to every non-zero ve
tor � whoseHamming weight is not larger than k (see [6℄). Thestri
t avalan
he 
riterion (SAC) [9℄ is identi
al to thepropagation 
riterion of degree one. As yet another im-portant nonlinearity 
riterion, good propagation 
har-a
teristi
s are used to resist di�erential 
ryptanalyti
atta
ks.The 
on
ept of 
orrelation immune fun
tions wasintrodu
ed by Siegenthaler [8℄. Xiao and Massey gavean equivalent de�nition [4℄: a fun
tion f on Vn is 
alleda kth-order 
orrelation immune fun
tion if it satis�esthe 
ondition ofPx2Vn f(x)(�1)h�;xi = 0 for all � 2 Vnwith 1 � HW (�) � k, where in the the sum, f(x)and h�; xi are regarded as real-valued fun
tions. Cor-relation immune fun
tions are used in the design ofrunning-key generators in stream 
iphers that resistagainst 
orrelation atta
ks. Let � denote the sequen
eof f . Then from Se
tion 4.2 of [2℄, a fun
tion on Vnis kth-order 
orrelation immune fun
tion if and only ifh�; `i = 0 for every `, the sequen
e of a linear fun
tion'(x) = h�; xi on Vn 
onstrained by 1 � HW (�) � k.A ve
tor � in Vn is 
alled a linear stru
ture of afun
tion f on Vn if f(x)� f(x� �) is a 
onstant. It iseasy to verify that the set of all linear stru
tures of afun
tion f form a linear subspa
e of Vn, whose dimen-sion is 
alled the linearity of f . We note that non-zerolinear stru
tures are 
onsidered 
ryptographi
ally un-desirable.2. Separable and Non-Separable Fun
tionsDe�nition 1 A fun
tion f on Vn is said to be separable



if there exist an n�n nonsingular matrix B over GF (2)and an integer p with 1 � p � n�1 su
h that f(xB) =g(y)� h(z) where x = (y; z), y 2 Vp, z 2 Vn�p, g is afun
tion on Vp and h is a fun
tion on Vn�p. Otherwisethe fun
tion is said to be non-separable.In parti
ular, if g or h is an aÆne fun
tion, then f ,undesirably, must have non-zero linear stru
tures. Onealso noti
es that for n > 2, all quadrati
 fun
tions onVn are separable.Write y = (y1; : : : ; yp) and z = (zp+1; : : : ; zn). We
an see that with a separable fun
tion f , yi and zj ,where 1 � i � p and p + 1 � j � n, do not appear inthe same term in the algebrai
 normal form of the fun
-tion f(xB). The fun
tion f is regarded 
ryptographi-
ally weak, in light of the following observation whi
hindi
ates that the fun
tion remains 
onstant with re-spe
t to \double" di�eren
e. The \double" di�eren
eis 
losely related to di�erential atta
ks on blo
k 
iphersdis
overed by Biham and Shamir [1℄.Theorem 1 A fun
tion f on Vn is separable if andonly if there exists an integer p with 1 � p � n� 1, ap-dimensional linear subspa
e W of Vn and a 
omple-mentary subspa
e U in Vn su
h that for every non-zerove
tor � 2 W and every non-zero ve
tor �0 2 U , wehave f(x)� f(x��)� f(x��0)� f(x����0) = 0.From these dis
ussions, it be
omes obvious that a non-separable fun
tion will never have a non-zero linearstru
ture. We further observe that the separabilityof a fun
tion is invariant under any nonsingular lineartransformation on the variables.Consider a fun
tion f on Vn whose algebrai
 de-gree is n. As the algebrai
 degree of a fun
tion is in-variant under a nonsingular linear transformation onthe variables, from De�nition 1, we 
an see that fis non-separable. Next we 
onsider the 
ase wheref has an algebrai
 degree of smaller than n. Setg(x1; : : : ; xn) = f(x1; : : : ; xn) � x1 � � �xn. Then resul-tant new fun
tion g is a degree n fun
tion. Followingthe dis
ussions above, g is non-separable. Note thatg(�) = � f(�) if � 6= (1; : : : ; 1)1� f(�) if � = (1; : : : ; 1)Thus we have d(g; f) = 1. Let  be an aÆne fun
tionon Vn. Then we have d(g;  )+d(g; f) � d(f;  ). Hen
ed(g;  ) + d(g; f) � Nf . Sin
e  is arbitrary, we haveshown that Ng � Nf � 1.While the above dis
ussions show that 
onstru
tinghighly nonlinear non-separable fun
tions from an ex-isting highly nonlinear, not ne
essarily non-separable,fun
tion is easy, we en
ounter a problem with the bal-an
e of the resultant fun
tion g. Sin
e g is a fun
tionon Vn whose algebrai
 degree is n, we have the term

x1 � � �xn appearing in the algebrai
 normal form of g.Thus L�2Vn g(�) = 1 (see p. 372 of [5℄). This meansthat g is unbalan
ed, whi
h renders the fun
tion use-less in many 
ryptographi
 appli
ations. Furthermorewe should point out that a very high algebrai
 degreemay 
ontradi
t other 
ryptographi
 requirements, su
has 
orrelation immunity. These 
onsiderations moti-vate us to investigate methods for systemati
ally 
on-stru
ting non-separable fun
tions that satisfy variousother 
ryptographi
 requirements su
h as balan
e, highnonlinearity, good propagation 
hara
teristi
s and high
orrelation immunity. This problem is addressed in thenext se
tion.3. Constru
ting Non-Separable Fun
tionsFirst we give a suÆ
ient 
ondition for non-separablefun
tions.Theorem 2 Let f be a fun
tion on Vn, and W be ap-dimensional linear subspa
e of Vn, where p > n2 . Iffor every two non-zero ve
tors � 2 W and �0 62W , wehave f(x)� f(x� �)� f(x� �0)� f(x� �� �0) 6= 0,then f is non-separable.Proof. We prove the theorem by 
ontradi
tion. For thesake of 
onvenien
e, we write ��;�0 (x) = f(x) � f(x��)�f(x��0)�f(x����0). Assume for 
ontradi
tionthat f satisfying the property in the theorem is sepa-rable. From Theorem 1, there exist a q-dimensionallinear subspa
e W � of V n, where 1 � q � n� 1, and a
omplementary subspa
e U� ofW � in Vn, su
h that forevery non-zero ve
tor �� 2 W � and every non-zero ve
-tor 
� 2 U�, we have ���;
�(x) = 0. Sin
e W � and U�are 
omplementary to ea
h other, the dimension of U�is n� q. Note that either q � 12n or n� q � 12n. With-out loss of generality, we assume that q � n2 . Sin
e Wand W � have di�erent properties, we have W � 6= W .Hen
e there exists a ve
tor ��� su
h that ��� 2 W �but ��� 62 W . Furthermore, there must exist a non-zero ve
tor ���� 2 W \ W �. Two 
ases should be
onsidered: U� 6�W and U� �W .With the 
ase of U� 6� W , there exists a non-zerove
tor 
�� 2 U� but 
�� 62 W . From the property ofW , we have �����;
��(x) 6= 0. But, from the propertyof W �, we should have �����;
��(x) = 0 instead. Thuswe have a 
ontradi
tion.With the 
ase of U� � W , there must exist a non-zero ve
tor ��� 2 U� � W . Similarly to the previous
ase, we also a 
ontradi
tion, namely ����;���(x) 6= 0a

ording to W , but ����;���(x) = 0 a

ording to W �.Hen
e we have proved that f is indeed non-separable.The following result will be useful in 
onstru
ting



non-separable fun
tions.Theorem 3 Let g and h be two fun
tions on Vn�1satisfying(i) g has no non-zero linear stru
tures,(ii) for any �; �0 2 Vn�1, if g(x) � g(x � �) � g(x ��0)�g(x����0) = 0, then h(x)�h(x��)�h(x��0)� h(x� � � �0) = 
, where 
 is a 
onstant.Then f(x) = x1g(y)�h(y), where x = (x1; : : : ; xn) andy = (x2; : : : ; xn), is a non-separable fun
tion on Vn.Proof. Let W = f(0; a2; : : : ; an)j(0; a2; : : : ; an) 2 Vng.Note that W is an (n� 1)-dimensional subspa
e of VnFor any non-zero � 2 W and any �0 62 W , we 
anwrite � = (0; �) and �0 = (1; �0), where �; �0 2 Vn�1and � 6= 0. We now show that with W thus de�ned,f satis�es the 
ondition in Theorem 2. We noti
e thatf(x)�f(x��)�f(x��0)�f(x��0��) = x1(g(y)�g(y��)� g(y��0)� g(y��0��))� g(y��0)� g(y��0 � �)� h(y)� h(y � �)� h(y � �0)� h(y � �0 � �).There exist two 
ases to be 
onsidered: g(y)�g(y��)�g(y��0)�g(y��0��) 6= 0 and g(y)�g(y��)�g(y � �0)� g(y � �0 � �) = 0.In the �rst 
ase, it is obvious that f(x)�f(x��)�f(x� �0)� f(x� �0 � �) 6= 0.In the other 
ase, 
onsidering the se
ond 
onditionin the theorem, we have h(y)�h(y��)�h(y��0)�h(y��0��) = 
, where 
 is 
onstant. Hen
e f(x)�f(x��)�f(x��0)�f(x��0��) = g(y��0)�g(y��0��)� 
.Sin
e g has no non-zero linear stru
tures and � 6= 0,g(y � �0) � g(y � � � �0) 
annot be a 
onstant. Thisproves that f(x)�f(x��)�f(x��0)�f(x��0��) 6= 0.Noti
ing that the dimension of W is n � 1 > 12n, wehave proved that f does satisfy the 
ondition in Theo-rem 2. This proves the theorem.Next we introdu
e an auxiliary tool to be used in thedes
ription of methods for 
onstru
ting non-separablefun
tions.Lemma 1 Let �(x) = xp�ap�1xp�1�� � ��a1x�a0 bea primitive polynomial of degree p over GF (2). From�, we de�ne a p� p matrix � over GF (2) as follows:� = 2666664 0 0 0 � � � 0 a01 0 0 � � � 0 a10 1 0 � � � 0 a2... ... ... ... ...0 0 0 � � � 1 ap�1
3777775Then we have

(i) �2p�1 = I, where I denotes the p � p identitymatrix, and �k 6= I, for all k with 0 � k � 2p�2,(ii) ea
h �k is a non-zero linear 
ombination of�0;�1; : : : ;�p�1, where �0 = I, and ea
h non-zero linear 
ombination of �0;�1; : : : ;�p�1 isidenti�ed with a �k, 0 � k � 2p � 2.Let �0 be an arbitrary non-zero ve
tor in Vp. De�neve
tor �k as �k = �0�k , k = 0; 1; 2 : : : The following the-orem demonstrates how to 
onstru
t highly nonlinear,balan
ed, non-separable fun
tions that also exhibit agood propagation 
hara
teristi
.Theorem 4 Let p and s be integers with 0 < s < p, andP be a mapping from Vs to Vp de�ned by P (Æ) = �k,where Æ 2 Vs is the binary representation of an integerk, k = 0; 1; : : : ; 2s � 1. De�ne a fun
tion f on Vs+pas follows: f(x) = f(y; z) = P (y)zT , where x = (y; z),y 2 Vs and z 2 Vp. Then f satis�es the followingproperties:(i) f is non-separable,(ii) f is balan
ed,(iii) the nonlinearity of f satis�es Nf = 2s+p�1 �2p�1,(iv) there exists an n� n nonsingular matrix B overGF (2) su
h that g(x) = f(xB) satis�es the SAC.Proof. First we de�ne a subspa
e W of Vs+pby W = f(0; : : : ; 0; b1; : : : ; bp)j(0; : : : ; 0; b1; : : : ; bp) 2Vs+pg, where ea
h bj 2 GF (2). Let � 2 W and�0 62 W be two non-zero ve
tors. Write � = (0; 
)and �0 = (�0; 
0), where 0 denotes the zero ve
tor inVs, 
; 
0 2 Vp, �0 2 Vs, 
 6= 0 and �0 6= 0. We noti
ethat f(x) � f(x � �) � f(x � �0) � f(x � �0 � �) =(P (y) � P (y � �0))
T . Sin
e �0 6= 0, from Lemma 1,we have P (y) 6= P (y � �0), as well as the fa
t thatP (y)�P (y��0) is nonsingular. As 
 6= 0, we 
on
ludethat f(x) � f(x � �) � f(x � �0) � f(x � �0 � �) =(P (y) � P (y � �0))
T 6= 0. Considering the dimensionp ofW satisfying p > 12 (s+p), and Theorem 2, we haveproved (i).For a �xed Æ 2 Vs, sin
e P (Æ) 6= 0, f(Æ; z) = P (Æ)zTis a non-zero linear fun
tion on Vp and hen
e it is bal-an
ed. We have now proved (ii).(iii) follows from Theorem 5 of [3℄.Finally, let � = (�; 
) where � 2 Vs, 
 2 Vp and � 6=0. Noti
e that f(x)�f(x��) = P (y)zT �P (y��)(z�
)T= (P (y)�P (y��))zT �P (y��)
T . For ea
h �xedÆ 2 Vs, sin
e P (Æ)�P (Æ��) 6= 0, (P (Æ)�P (Æ��))zTis a non-zero linear fun
tion on Vp, and hen
e it is bal-an
ed. This shows that f(x)�f(x��) is balan
ed when



� = (�; 
) satis�es � 2 Vs, 
 2 Vp and � 6= 0. Notethat there exist 2s+p � 2p su
h ve
tors as � = (�; 
)satisfying � 2 Vs, 
 2 Vp and � 6= 0. This implies thatthere are at least 2s+p�2p non-zero ve
tors � su
h thatf(x)� f(x��) is balan
ed. Sin
e 2s+p� 2p > 2s+p�1,by using Theorem 7 of [7℄, we have proved (iv).Next we present a method for 
onstru
ting non-separable fun
tions that are highly nonlinear, balan
edand 
orrelation immune.Theorem 5 Let p, s and r be integers with 0 < s; r <p. Set �(p; r) = � p1 � + � p2 � + � � � + � pr �. If2p�s > 1+ �(p; r), then we 
an �nd an integer k0 with0 < k0 < 2p � 2s, that allows us to de�ne a mappingQ from Vs to Vp su
h that Q(Æ) = �k+k0 , where Æ 2Vs and Æ is the binary representation of an integer k,k = 0; 1; : : : ; 2s�1. Based on Q, we 
an then 
onstru
ta fun
tion f(x) = f(y; z) = Q(y)zT on Vs+p, wherex = (y; z), y 2 Vs and z 2 Vp, su
h that f has thefollowing useful properties:(i) f is non-separable,(ii) f is balan
ed,(iii) the nonlinearity of f satis�es Nf = 2s+p�1 �2p�1, and(iv) f is an rth-order 
orrelation immune fun
tion.Proof. Set 
 = f
j
 2 Vp; 0 < HW (
) � rg. Thus#
 = �(p; r), where #X denotes the number of ele-ments in a set X . Sin
e 2p�s > 1+�(p; r), one 
an ver-ify that there exists an integer k0 with 0 < k0 < 2p�2s,satisfyingf�k0 ; �k0+1; : : : ; �k0+2s�1g \ 
 = ; (1)where ; denotes the empty set. De�ne a mappingQ from Vs to Vp as Q(Æ) = �k+k0 , where Æ 2 Vsand Æ is the binary representation of an integer k,k = 0; 1; : : : ; 2s � 1, and 
onstru
t a fun
tion f(x) =f(y; z) = Q(y)zT on Vs+p, where x = (y; z), y 2 Vsand z 2 Vp.Let L be the sequen
e of a linear fun
tion  on Vs+p, de�ned by  (x) = h�; xi where � =(�; 
) and x = (y; z), y; � 2 Vs and z; 
 2Vp. Hen
e  (x) = h�; yi � h
; zi, from whi
h wehave h�; Li = Py2Vs;z2Vp(�1)Q(y)zT�h�;yi�h
;zi =Py2Vs(�1)h�;yiPz2Vp(�1)(Q(y)�
)zT .Note that if Q�1(
) does not exist, then we havePz2Vp(�1)(Q(y)�
)zT = 0 and hen
e h�; Li = 0. Wenow 
onsider L with HW (�) � r. Obviously we have

HW (
) � r. Due to (1), Q�1(
) does not exist. So wemust have h�; Li = 0. This proves (iv).Detailed proofs for Lemma 1 and Theorems 1, to-gether with some other results, will appear in the fullversion of the paper.A
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