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Abstract

A Boolean function is said to be correlation immune if its output leaks no
information about its input values. Such functions have many applications in
computer security practices including the construction of key stream generators
from a set of shift registers. Finding methods for easy construction of correla-
tion immune functions has been an active research area since the introduction
of the notion by Siegenthaler. In this paper we study balanced correlation im-
mune functions using the theory of Hadamard matrices. First we present a
simple method for directly constructing balanced correlation immune functions
of any order. Then we prove that our method generates exactly the same set
of functions as that obtained using a method by Camion, Carlet, Charpin and
Sendrier. Advantages of our method over Camion et al’s include (1) it allows us
to calculate the nonlinearity, which is a crucial criterion for cryptographically
strong functions, of the functions obtained, and (2) it enables us to discuss the
propagation characteristics of the functions. Two examples are given to illus-
trate our construction method. Finally, we investigate methods for obtaining
new correlation immune functions from known correlation immune functions.
These methods provide us with a new avenue towards understanding correlation
immune functions.

*The first author was supported in part by the Australian Research Council under the reference
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1 Introduction

The main component of a stream cipher is a key stream generator which produces
from a random seed a sequence of pseudo-random bits. These pseudo-random bits
are added modulo 2 to bits in a plaintext and the resulting stream, a ciphertext, is
sent to a receiver. The receiver can recover the plaintext by adding modulo 2 to the
ciphertext the output of the stream generator with the same seed.

A common method for obtaining key stream generators is to combine a set of
shift registers with a nonlinear function. Blaser and Heinzmann [1] observed that if
the combining function leaks information about its component functions, then the
work needed in attacking the cryptosystem can be significantly reduced. This idea
was further developed by Siegenthaler in [8] where a new concept called correlation
immune functions was introduced. Since then the topic has been an active research
area and correlation immunity has become one of the central design criteria for stream
ciphers based on shift registers [4, 5].

For practical applications, finding methods for easy construction of correlation im-
mune functions is of most importance. In [8] Siegenthaler presented the first method
for constructing (balanced) correlation immune functions. His method is recursive in
nature and hence not very satistactory in practical applications. Camion et al stud-
ied correlation immune functions from the point view of algebraic coding theory, and
presented a method for constructing correlation immune functions of any order [2].

In this paper we study correlation immune functions using the theory of Hadamard
matrices. First we present a method for directly constructing balanced correlation
immune functions of any order. We then prove that our method generates exactly
the same set of correlation immune functions as that obtained using Camion et al’s
method. Advantages of our method over Camion et al’s include that, in addition
to their orders of correlation immunity and algebraic degrees, it gives the nonlinear-
ity and propagation characteristics of the functions obtained. We also study meth-
ods for constructing correlation immune functions on a higher dimensional space by
combining known correlation immune functions on a lower dimensional space. The
nonlinearity of functions thus constructed is also investigated.

The organization of the rest of the paper is as follows. Section 2 introduces
notations and definitions that are needed in the paper. Section 3 reviews the previ-
ous construction methods for correlation immune functions. Our new construction
method is described in Section 4. In the same section we also prove that the new
construction method generates exactly the same set of correlation immune functions
as that by Camion et al’s method. Section 5 discusses the algebraic degree, nonlin-
earity and propagation characteristics of functions obtained using the new method.
Two examples are shown in the same section. Section 6 is devoted to the combina-
tion of known correlation immune functions. Three combination methods are shown



in the section, among which the first one can be viewed as an extension of the new
construction method described in Section 4. The paper concludes with some remarks
in Section 7.

2 Preliminaries

We consider V,,, the vector space of m tuples of elements from GF(2). Note that
there is a natural one to one correspondence between vectors in V,, and integers
in [0,2™ — 1]. This allows us to order the vectors according to their corresponding
integer values. For convenience, we denote by «; the vector in V,, whose integer
representation is .

Let f be a function from V,, to GF(2) (or simply a function on V,,). Since f can
be expressed as a unique polynomial in m coordinates xy, xa,...,,,, we will identify
f with its unique multi-variable polynomial f(x) where © = (21, 22,...,25,). To
distinguish between a vector of coordinates and an individual coordinate, the former
will be strictly denoted by w, x, y or z, while the later strictly by w;, x;, y;, z; or u,
where ¢ is an index. The algebraic degree of f is defined as the number of coordinates
in its longest term when it is represented in the algebraic normal form. f is called
an affine function if it takes the form of f(x) = @121 @ -+ - B apam & ¢, where a;, ¢ €
GF(2). In particular, f is called a linear function if ¢ = 0.

The sequence of f on V,, is a (1, —1)-sequence defined by ((—1)7(@0) (1))

, (=1)f(e2m=1)) “and the truth table of fis a (0, 1)-sequence defined by (f(ay),
fla), -y flagm_q)). f is said to be balanced if the truth table of f has 2™~ zeros
(ones).

The following notation will be used in this paper. Let a = (a1, --,a,) and
B = (b1, -, by) be two vectors (or sequences), the scalar product of o and /3, denoted
by (a, 3), is defined as the sum of the component-wise multiplications. In particular,
when « and f are from V,,, (a,8) = a1y & -+ & an by, where the addition and
multiplication are over GF(2), and when a and / are (1,—1)-sequences, (a, ) =
>, ab;, where the addition and multiplication are over the reals.

Now we introduce the concept of correlation immune functions, the central topic
treated in this paper. Let f be a function on V,,. Let X be a random variable
taking on values # € V,,, with uniform probability 27, let X; be the random variable
corresponding to the ¢th coordinate value x; € GF(2), and let Y be the random
variable produced by the function f, ie., Y = f(X). f is said to be a kth-order
correlation timmune function if the random variable Y is statistically independent of
any subset X, , X,,, ..., X;, of k coordinates [8].

Xiao and Massey gave an equivalent definition for correlation immunity in terms
of Walsh transformations [3]. The Walsh transformation f of a function f on V,, is
defined as the real-valued function

8= fa)(—1)t0),

where 3 € V,,. Note that in the sum, f(x) and (,x) are regarded as real-valued
functions.



Definition 1 Let f be a function on V,,. f is a kth-order correlation immune func-

A

tion if its Walsh transformation satisfies f(3) =0 for all 3 € V,, with 1 < W(B) < k,
where W(3) indicates the Hamming weight of, i.e., the number of the nonzero com-
ponents in, a vector [3.

A relevant topic, correlation immune functions with memory, was studied in [4].
The next lemma is useful for constructing correlation immune functions with a view
to using Hadamard matrices.

Lemma 1 Let g be a function on V,, and let n be its sequence. Also let v =
(x1,%9,...,2m). Then g is a kth-order correlation immune function if and only if
(n,0) =0 for any {, where { is the sequence of a linear function h(x) = (o, x) on V,,
constrained by 1 = W(a) £ k.

Proof. Note that

i, 0) = 3 (=1 (=)o) = 37 (—q)eletas)

rEVim €V
= T2 B g
rEVim €V
= —2¢(a).
Thus (n,¢) = 0 if and only if g(a) = 0 (See also Section 4.2, [2]). 0

The order k of correlation immunity of a function on V,, and its algebraic degree d
are constrained by the relation k£ +d < m. The only functions on V,, that achieve the
maximum (m — 1)th-order correlation immunity are g(1,...,2,) = 21 & - B, and
g(x1,. . xm) =21 B - By & 1, both of which are affine. For balanced functions,
if k # 0 or m — 1, the relation becomes k +d < m — 1 [§].

Next we introduce a fundamental combinatorial structure, the Hadamard matrix.
Properties of Hadamard matrices will be very useful in our constructions of correlation
immune functions. A (1, —1)-matrix H of order m is called a Hadamard matrix if
HHT = ml,,, where HT indicates the transpose of H and I,, is the identity matrix of
order m. It is well known that the order m of an Hadamard matrix is 1, 2 or divisible
by 4 [9, 6]. In this paper we will use a special kind of Hadamard matrices called
Sylvester-Hadamard matrices or Walsh-Hadamard matrices. A Sylvester-Hadamard
matrix (or Walsh-Hadamard matrix) of order 2, denoted by H,,, is generated by the
following recursive relation

11

Hozl,Hm:ll _1

]@Hm_l,mzl,Q,...

where ® denotes the Kronecker product. Note that H,, can be written as H,, =
H; ® H; for any nonnegative integers s and ¢ with s +¢ = m. Sylvester-Hadamard
matrices are closely related to linear functions, as is shown in the following lemma.
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Lemma 2 Write H,, = | . where {; is a row of H,,. Then {; is the sequence
loym_q

of a linear function h; = (o, x), where © = (x1,...,2,) and «; is a vector in V,, as

defined in the first paragraph of this Section. Conversely the sequence of any linear
function on V,,, s a row of H,,.

A proof for the first half of the lemma can be found in [7]. The second half is true
by noting the fact that H,, has 2™ distinct rows and that there are exactly 2™ distinct
linear functions on V,,,. Thus the rows of £ H,, comprise all the affine sequences of

length 2.
Next we introduce a notation which is used throughout the rest of the paper.
Given any vector 6 = (iy,...,t5) € V;, we define a function on V; by

Ds(y) = (y1 B i1) - (ys D is)

where y = (y1,...,ys) and 7 = 1 &7 indicates the binary complement of 7. Note that
since Dg(y) = 1 if and only if y = 6, a function f on V4, can be expressed as

fly, ) = D Ds(y)f(5,)

5€Vs

where @ = (21, ..., 24).

Lemma 3 Let f(y,z) = @sev. Ds(y)fs(x) and g(y,z) = Bscy, Ds(y)gs(x) where
y="(y1,...,ys),and x = (x1,...,2). Then f =g if and only if fs = gs for all 6 € V.

Proof. f = gif and only if f(6,2) = g(6, ) for all 6 € V;. Note that since Ds(y) =1
if and only if y = ¢, we have f(é,2) = fs(x) and g(6,x) = gs(x) for all 6 € V. O

The following lemma can be found in [7].

Lemma 4 Let &, ..., (i1,...,1p) € Vp, be the sequence of a function fi ..i, (x1,...,2,)

on'V,. Let & be the concatenation of &o...00, Eo-015 - - -, €111, namely, &€ = (£o...00, €001 - - -

Then £ is the sequence of a function on Vyq, given by

TWise o yptiseonsz)) = B Digeiy (Y1se o ¥p) firiy (1, Tg).
(i1-+ip)EVp
Let o = (ay,az2,...,a,) € V, and = (b1,ba,...,b,) € V.. The Kronecker
product of o and 3, denoted by a ®@ 3, is defined as a ® 3 = (a1 3, asf3, ..., an/3). The

following lemma will be used in the rest of the paper.

Lemma 5 Let £ be the sequence (or truth table) of a function f on V, and n be the
sequence (or truth table) of a function g on V,,. Then £ @1 is the sequence (or truth

table) of the function o(y,x) = f(y) B g(x) on Viym.

5
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Proof. For any fixed y = a € V,,, we have (o, 2) = f(a) & g(z). O

The propagation characteristic is another nonlinearity measure for cryptographic
functions. A function satisfies the propagation criterion of order & if complementing
k or less input coordinates results in the output being complemented half the times
over all input vectors. The formal definition for the propagation criterion follows.

Definition 2 Let f be a function on V,,. We say that f satisfies

1. the propagation criterion with respect to a non-zero vector « in V,, if f(x) &
flx @ a) is a balanced function.

2. the propagation criterion of degree k if it satisfies the propagation criterion with
respect to all « € V,, with 1 £ W(a) £ k.

3 Previous Constructions

Siegenthaler presented a recursive construction in his pioneering work [8]. Let f; and
fa2 be kth-order correlation immune functions on V,,,. Then the concatenation of their
sequences results in a new correlation immune function, namely,

flu,e) = (w@ 1) fi(z) ® ufo(r) (1)

is a kth-order correlation immune function on V,, 11, where u is a variable on G'F'(2)
and © = (21,22,...,Tm).

Camion et al [2] observed that in Siegenthaler’s construction, if the Walsh trans-
formations of f; and f, satisfy the condition

AN + f2(X) = 0,for all A € V,,, with W(A) = k,

then fis (k + 1)th-order correlation immune function. In particular, they show the
following two pairs of functions satisfy the condition:

1. g(x) and 1 & g(2);
2. g(z) and ¢g(z), where &t = (1 B ay, 1 Baa, ..., 1 B ay);

where ¢ is a kth-order correlation immune function on V,,. Note that 1 & g(a) com-
plements the output, while g(%) complements the input. Therefore, both

fl@)=(ud )g(x) Bu(l @ g(z)) =udg(x) (2)
and
flx) = (ud )g(x) Bug(z) = g(x) ©ulg(r) & g(2)) (3)

are (k + 1)th-order correlation immune functions on V,, 4.
In the same paper, Camion et al also discovered a method for direct construction
of correlation immune functions. Let m and n be positive integers with m > n. Let



rand p;, j =1,2,...,n be arbitrary functions on V,,,_,,. Also let # = (@1, 22,...,2,)
and y = (Y1, Y2, -+ Ym—n). Set

) = Basmfo) & o), ()

Then the function f defined in (4) is a balanced kth-order correlation immune function
on V,,, where k is an integer satisfying & = min{W(P(y))|ly € Vi-n} — 1, and
Ply) = (p1(y), p2(y)s - - paly))-

4 A New Construction

Let m and n be positive integers with m > n. Suppose that ®,, ., = {@0..0, 0.1+, P11}
is a set containing 27" linear functions on V,,, each is indexed by a vector in V,,_,.
®,, ., can be a multi-set and hence a linear function is allowed to appear more than
once in @, .. Let v = (x1,29,...,2,), ¥y = (Y1,Y2, - -y Ym—n) and r be an arbitrary
function on V,,_,. Set

gy, 1) = B Dsly)es(z) & r(y) ()

§€Vim—n

The following corollary is a consequence of Theorem 1 and Corollary 2 to be stated
below, though it can be proved directly.

Corollary 1 The function g defined in (5) is a balanced kth-order correlation im-
mune function on V,,, where k is an integer satisfying k = min{W(vs)|6 € Viu_n}—1,
ws(x) = (vs, ) € Ppypy and v5 € V.

Theorem 1 The constructions (4) and (5) express the same set of functions.

Proof. Let S; be the set of functions generated by (4) and S the set of functions
generated by (5).

First we prove that S; C Sy by showing that a function obtained by (4) can always
be represented in the form of (5). Let

fly,z) = EE x;pi(y) & r(y)
i
be a function in S;. For any & € V,,,_,, we have
I0.2) = Paspi(e) & 6).
3
Since p;(8) € GF(2), j = 1,...,n, @, ;p;(8) is a linear function on V,. Now let

ps(e) = Drsps6),

7



and let

gy, 2) = D Ds(y)es(z) r(y).

§€Vim—n

Note that Ds(y) =1 if and only if y = &. Thus we have
9(é,2) = ps(x) ©r(d) = f(6, ).
Since § is arbitrary, by Lemma 3 we have
fly,x) = g(y, ).

Consequently, f(y, ) can be represented in the form of (5). This means that S; C 9.
Next we show that a function obtained by (5) can be represented in the form

of (4). This will prove that Sy C S;. Let
9y, 1) = D Ds(y)es(z) Briy)

§€Vim—n
be a function in S;. Let 6 be an arbitrary vector in V,,_,,, and let
ws(x) = ag101 P -+ D asx, (6)
Now let p;, y =1,2,...,n, be a function on V,,_,, such that
pi(8) = as,;
for all 6 € V,,_,,. Alsolet P = (p1,...,p,) be a mapping from V,,_,, to V,, such that
P(é) = (pr(6), .., pa(9)) (7)

for all 6 € V,,,_,,. Now we define a function on V,, in the following way
fly.x) = Dpi(y) @ r(y).
7=1

Again since Ds(y) = 1 if and only if y = 6, we have
9(6,x) = @s(x) Br(6).

By (6) and (7) we have
6,2) = Dspy(9) & 1(6) = B jas, & 7(6) = o) & 1(6) = g(8,),

Since ¢ is arbitrary, by Lemma 3 we have

g(y,z) = fly,z).

This implies that g(y,x) can be presented in the form of (4) and thus Sy C S;. This
completes the proof that S = 5. O



Corollary 2 In the proof of Theorem 1
min{W(P(y))ly € Vion} — 1 = min{W(y5)[6 € Vo) — 1.

where @s(x) = (ys, @) = ag101 P -+ B a5ty and vs = (asq, ..., as,) are the same as
in the proof of Theorem 1.

Proof.  From (7) we have P(6) = (as1,...,as5,), and from (6) we have ps(x) =
asat1 BB asptn, = (s, 2). Thus we have P(6) = 5 and hence min{ W (P(y))|y €
Vien t — L =min{W(y)|6 € Viuon} — 1. O

5 Applying the New Construction

For integers k and n with 0 £ k < n, let 4, denote the set of linear functions on V,
that have & + 1 or more non-zero coefficients, namely

D = {plo(x) = (B,2), B € Vi, W(B) 2 k + 1} (8)

where @ = (21,...,2,). This set of functions will be used in our constructions of
correlation immune functions.

5.1 Balanced Functions with Given Immunity

Given two integers m and k with m = 3 and 1 £ k < m — 1, balanced kth-order
correlation immune functions on V,,, can be constructed in the following way.

1. Fix an integer n such that £k <n < m.

2. Create a set @, , by selecting linear functions strictly from €2 ,,. Note that the

2m—n

size of @, ,, is , and repetition is permitted in the selection.

3. Construct a function by using the method (5).

By Corollary 1, we have

Theorem 2 A function constructed according to the above three steps is a balanced
kth-order correlation timmune function on V,,.

5.2 Algebraic Degrees

Let k& and m be integers with & =2 1 and m = k + 2. As mentioned in Section 2,
the algebraic degree of a balanced kth-order immune correlation functions on V,, is
at most m — k — 1. We are interested in constructing balanced kth-order correlation
immune functions having the maximum algebraic degree m — k — 1.

In order to discuss their algebraic degrees, we construct functions in the following
three steps.



1. Fix an integer n such that m >n 2 k + 2.

2. Choose a multi-set ¢, ., = {ps : V,, = GF(2)|6 € V,,_,} of linear functions in
such a way that it satisfies the following three conditions:

(Cl) If ¢ € D, then ¢ € Qp ., where Qy,, is defined in (8),
(C2) ®,,, contains at least two distinct functions,

C3) there is a variable x; that appears in an odd number of functions in ®,, ,,.
J pp :
Note that the repetition of functions is counted by the number of appear-
ance.

3. Employ the set ®,,,, in the construction (5).

Since @, ,, is a multi-set, the condition (C1) can be satisfied. On the other hand,
since n 2 k + 2 and Q,, contains more than two functions, the condition (C2) can
also be readily satisfied.

Once the conditions (C1) and (C2) are satisfied, we check ®,, ,, to see if it satisfies
the condition (C3). If not, we modify ®,,,, in the following way. Since @, ,, satisfies
the condition (C2), there are two distinct functions s, (@), ps,(2) € . Thus
there exists some x; that appears in s, (2) but not in ¢g, (2). Now we replace ¢s, ()
by s (). In this way we can modify the function set ®,,, so that it satisfies the
condition (C3). When the condition (C3) is satisfied, there is a term yy - - - Y, —p; that
appears an odd number of times in a function ¢ constructed according to the above
three steps. This term survives in the final algebraic normal form representation of
g. In other words, the algebraic degree of g is m —n + 1.

JFrom Theorem 2 and the above discussions, we know that ¢ is a balanced kth-
order correlation immune function of algebraic degree m — n 4+ 1. Thus we have
proved

Theorem 3 Let k, n and m be integers with k =2 1 and m > n =2 k+ 2. Then a
function constructed according to the above three steps is a balanced kth-order corre-
lation tmmune function on V,, of algebraic degree m —n + 1. When n is chosen as
n =k + 2, the function achieve the marimum algebraic degree m — k — 1.

5.3 Nonlinearity

Given two functions f and ¢ on V,,, the Hamming distance between f and g is
defined as d(f,g) = W(f(x) & g(x)). The nonlinearity of g is defined as N; =
min;_q 1 gm+1_1 d(f, ) where @o, @1, ..., @am+1_1 comprise all the affine functions
on V,,. It has been proved that N; < 27~' — 25! for any function f on V,, [7].
Nonlinearity is an crucial criterion for cryptographic functions and it measures the
ability of a cryptographic system using the functions to resist being expressed as a
set of linear equations. If the system could be expressed as linear equations, it would
be easily breakable by various attacks.

Let f; and f5 be functions on V,,, & and & be the sequences of f; and f; respec-

tively. Then (7,¢5) = Xs(o)mg(e) 1 = Esoyta) 1 = 2" =2 X () 1 = 2" —2d(/, 9).

10



This proves the following result which is very useful in the study of the nonlinearity
of functions.

Lemma 6 Letl f and g be functions on V,,, whose sequences are £ and £, respectively.
Then the distance between f and g can be calculated by d(f,g) = 2"~ — L(&;,¢,).

Theorem 4 Let m and n be integers with m > n > 2, and let g be a function
constructed by (5). Denote by ts the number of times a linear function ps appears
in ®,,.,, and let t = max{ts|6 € Vi,_n}. Then the nonlinearity of g satisfies N, 2
2m—1 _ t2n—1.

Proof.  For convenience a vector 6 € V,,_, will be denoted by its corresponding
integer between 0 and 277" — 1. In this way, a linear function ¢s € ®,,, indexed
by ¢ is rewritten as ¢; and {4 is rewritten as ¢;, where {5 is the number of times s
appears in @, , and j is the integer representation of 6. We first consider the case
when r(y) = 0 in the construction (5), namely

9(y,x) = Doo(y)po(z) & -+ & Dyt (y)pam—n_y(x) (9)

where ¢; € Qs ¥ = (Y1, -y Ym—n), T = (T1,...,2,), and D; is defined in
Section 2.

Let h be any affine function on V,,. By Lemma 2, the sequence of h, denoted

1 ]m—n

by L, is a row of £H,,. Since H,, = H,_, @ H,, L can be expressed as [ =
+0 ® (", the Kronecker product of ¢ and (", where (' is a row of H,,_, while ¢’
is a row of H,. Write {' as (' = (co,¢1,...,¢gm-n_1). Then L can be rewritten as
L= (col",cnl",. .. cam—n_1{"). Note that by Lemma 2, ¢" is the sequence of a linear
function. We denote the linear function by ¢”.

Now let (; be the sequence of ¢;, 7 = 0,1,...,2"7" — 1. By Lemma 4, n =
(Co,C1y- -y Cam-n_y) is the sequence of ¢ defined in (9). On the other hand, since the
rows of an Hadamard matrix are mutually orthogonal, we have the following result:

n .
i = {2 o=

otherwise.

Now we discuss (1, L) in the following two cases:

Case 1: there exists a j such that ¢; = ¢" ; since p; appears t; times in @, ,,, the
total number of times when ¢; = ¢” is also t;. Thus |[(n, L)| < t,2".

Case 2: there exists no j such that ¢; = ¢"; in this case we have |(n, L)| = 0.

Summarizing Cases 1 and 2, we have |(n,L)] < ¢2". By Lemma 6, d(g,h) =
2m=t — 27=1 Since h is arbitrary, we have N, = 2m~1 — 2=t

Now consider the more general case when r(y) # 0 in the construction (5).
Since r is a function of y but not x, the sequence of ¢g takes the form of n =

(e0Coy€1C1s ..y Eqm—n_y(om—n_1), Where e; = (—1)7"(“") and «; is a vector in V,,,_,, whose
integer representation is ¢. By a similar discussion to the case when r(y) = 0, we have
|(n, L)| < 2" for any affine sequence L, and hence N, = 2™~! —¢2n=1, a

11



5.4 Propagation Characteristics

This section discusses the propagation characteristics of functions obtained by (5).
For convenience, the construction method is repeated here:

9(y,x) = @ Ds(y)ps(x) S r(y)

§€Vim—n

In the following discussion, we assume that all linear functions s in the construction
are distinct.
It is easy to prove that

Ds(y & B) = Dsap(y)-
Let z = (y,x). Alsolet € V., a € V,, and v = (,«). Then
9z87) = P DslyeBeszda)dr(y® s

§€Vim—n

= D W) Dsap(y)ps(z @ o) Dr(y @ p)

§€Vim—n

= B Dsaply)es(z @) Dr(y @ p)
SBOEVim—n

Set 0 = 6 & 3, we have

9z®7)= D Do(y)peas(z @ a)dr(y s B)

0EVm—_n

and hence

92)@g(zB7) = B Do(y)(o(z) ® oap(z & a)) @r(y) &r(y s f).

0EVm—_n

Note that for any fixed y = o

(9(2) ® 9(z B 7))ly=s = o () B pogp(z B a) Br(o) B r(c® f).

Consider the case when 3 # (0,...,0). By assumption p,(z) and p,ap(z) are
distinct linear functions. Hence ¢, (1) & voas(x & a)) = 0o () B oap(®) B psapa)
is a non-constant affine function which is balanced. This shows that ¢(z) & g(z & 7)
is balanced for any v = (3, &) with 8 # (0,...,0). Thus we have proved

Theorem 5 [n the construction (5), if all ps are distinet linear functions on'V,,, then
g satisfies the propagation criterion with respect to all v with v = (8, «), € Vien,
a €V, and f #0.

Note that there are 277" — 1 choices for § # 0 and 2" choices for all o € V.
Therefore the total number of vectors with respect to which the function ¢ satisfies
the propagation criterion is at least (2™~" — 1)2" = 2™ — 2",
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5.5 Examples

Theorem 3 gives us a general method to construct balanced correlation immune func-
tions having any given immunity. The construction method allows us to easily calcu-
late the algebraic degree and the nonlinearity of the functions, which is very desirable
in designing cryptographic systems. Two concrete examples follow.

Let n =4 and k£ = 2. Then

Doy = {ple(z) = (p.x),p € Vi, W(B) 23}
= {o1BraDas, o1 Dra@ag, 1 Brs® gy, oD as Dy, ¥1 D xe D as® gl

where @ = (21, g, 3, T4).

Example 1 We construct a balanced 2nd-order immune function f on V7, which
achieves the maximum algebraic degree of 4. We also calculate the nonlinearity of
the function.

Set
p1(z) =71 D a2 B as, ws(x) = @1(2)
pa() = 71 D a2 B a4y P6(T) = 02(7)
pa(z) = 71 D a3 B ag, r(7) = wa(7)
pa(z) = 22 D a3 B 74, 08(7) = 03(7)
and

D7y = {©1, 02,03, P4, 95, V6, 7, P8}

®; 4 is a multi-set whose elements are all taken from ;4. In addition, it contains
four different functions, and x; appears in seven functions. Thus the three conditions

(C1), (C2) and (C3) are all satisfied.

To complete the construction, let

fly,2) = Dooo(y)p1(x) & Door(y)e2(x) & Doro(y)es(x) & Dori(y)pa(v) &
Dioo(y)es(x) & Dion(y)pe(x) & Diio(y)er(z) & Dini(y)es(z)
= (1B yays & yryays)er B (1 B y2 S yays B y1y2y3)x2 S
(1 ya @ y2ya)vs D (y2 B ys D yays)a

where Yy = (y17y27y3) and v = ($1,$2,$3,$4)-
By Theorem 3, f is a balanced 2nd-order correlation immune function on V; o

N

algebraic degree 4. To calculate the nonlinearity of the function, note that ¢; =
@7 = s and hence t = max{t;|j = 1,...,8} = 3. By Theorem 4, we have N; =
27-1 _3.2171 = 40. Note that the upper bound of the nonlinearity of balanced
functions on V7 is 56 (see Corollary 17 of [7].

Example 2 In this example, we construct a balanced 2nd-order immune function ¢
on V. Let

o1(x) = 21 B 2y B a3,
wa(x) = 1 B 2y B 24,
w3(x) = 21 B 3 B 24,
wa(x) = 21 B 9 B 3 D 24,
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and
(I)6,4 = {9917 ¥2,¥3, 994}'

Obviously ®g 4 satisfies the three conditions (C1), (C2) and (C3).
Let

9(y,x) = Doo(y)pi(x) & Dor(y)pa(z) © Dio(y)pa(z) & Dii(y)ea()
= 1B (1 Dy ©yiyz)rr D
(1 y2 @ yry2)es D (Y1 S Y2 D y1y2)s

where y = (y1,y2) and © = (1, 2, T3, T4q).

g is a balanced 2nd-order correlation immune function on Vs. It satisfies the
propagation criterion with respect to all @ = (ay, az, as, as, as, ag) € Vg with aq # 0 or
az # 0. The algebraic degree of ¢ is 3 and the nonlinearity of ¢ is N, = 2671 — 241 =
24. For comparison, note that the upper bound for the nonlinearity of balanced
functions on Vg is 26 (see [7]).

6 Combination of Correlation Immune Functions

The construction (5) described in Section 4 presents a method for directly constructing
correlation immune functions of any order. In this section we discuss three methods
for constructing correlation immune functions on a higher dimensional space from
existing such functions on a lower dimensional space.

6.1 An Extension of the New Construction

The construction (5) can be extended. Let m,n,k and s be positive integers, where
m >mn >k, and let w = (y,2,2), ¥y = (Y1, Ym—n), © = (x1,...,2,) and z =
(z15...,25). Alsolet @, , = {¢o,...,pam—n_1} be a set of linear functions on V,,
each of which is selected from Q. Repetition is permitted in selecting the linear
functions. Set

91(y,7) = Do.o(y)po(7) &+ & Dia(y)pam—n_1(x) S ri(y) (10)

where ry is an arbitrary function on V,,,_,. By Corollary 1, ¢; is a balanced kth-order
correlation immune functions on V,,.

Now let {fo,..., fam—n_1} be a set of pth-order correlation immune functions on
Vi. Functions in the set need not be mutually distinct. Set

G2(y,2) = Do.o(y) fo(2) ® -+ - @ Dr.a(y) fam—n_1(2) @ r2(y) (11)

where ry is an arbitrary function on V,,_,. We further set

9y, v, 2) = gi(y, x)  g2(y, 2) (12)

14



Theorem 6 The function g(y,x,z) = g1(y,x) B g2(y,z) is a balanced (k + p + 1)th-
order correlation immune function on V,,1s. The nonlinearity of g satisfies

N, 2 9m7t . 9n(257L N

where t = max{t;|j = 0,1,...,2"™" — 1}, t; denotes the number of times that p;
appears in O, ., and N = min{NfJ 7 =0,1,...,277" — 1},

Proof. We first consider the case when r(y) = r1(y) @ r2(y) = 0. Note that

9, 2,2) = Do..o(y)(po(x) & fo(2)) & - B Dia(y)(pam-n_1(x) B fam-n_1(2)).

Since each ; is balanced, each ¢;(x) & f;(z) is also balanced (see Lemma 20 of [7]).
Hence g(y, x,z) is balanced.

Now we show that ¢ is a (k4 p + 1)th-order correlation immune function. Let (;
and ¢ be the sequences of p; and f; respectively, y = 0,1,...,2"7" —1. By Lemma 5
(; @ & is the sequence of ¢;(x) & fi(2), and n = ((o @ €oy ...y Com—rn_y @ Egm—n_q) 18
the sequence of ¢g(y,x,z) (see Lemma 4).

Let A be a linear function on V,,4s. By Lemma 2, the sequence of h, denoted by L,
isarowof H,,,. Since H,,., = H,,_,QH,®H,, L can be expressed as L. = ({1 Q{,& {3,
where (1 is a row of H,,_,, {5 is a row of H,, and (3 is a row of H,. Write {; =
(co,¢1y...,Cam-n_y). Then L can be rewritten as L = (coly @ {3, ..., com—n_1ly @ l3).
Let 1 be the sequence of g. Then

(n, L) = colCo @ &o,ly @Lls) + -+ + cgmn_1{(am-n_1 @ Egm-n_q1,l3 @ {3)
= ¢o(Co,l2) (€0, ls) + -+ + cam—n_1{Com—n_1,L3)(Egm-n_1, l5).

Write h(w) = (v,w) = (B,y) & (a,x) & (0,z), where v = (8,a,0), 8 € Vi,
a €V, and o € V,. By the definition of the sequence of a function, {1, and (3 are
the sequences of (3,y), (a,x) and (o, z) respectively.

Suppose that W(y) £ k+ p+ 1. Since W(y) = W(8) + W(a) + W (o), we have
Wi(a)+ W(o) £ k+p+ 1, which implies that either W(a) = k or W(o) £ p. Recall
that ¢; € Q. If W(a) £k, (; and {5 must be orthogonal, and hence ((;, l5) = 0.
Otherwise if W (o) = p, (¢;,05) = 0, since each f; is a pth-order correlation immune
function. Thus (n, L) = 0. By Lemma 1, g(y, x,2) is a (k4 p+ 1)th-order correlation
immune function on V,, 4.

To obtain the nonlinearity of the function ¢, we assume that in the above discussion
h is an arbitrary affine function on V,,,1;. Then L, the sequence of h, can be expressed

as L = +0; ® {5 ® (3, and hence

(n, Ly = £(co(Co, l2) (€0, ls) + -+ - + comn_1(Com=n_1,L3)(Eam-n_q, l3)).

By Lemma 5
(6,0:) €2 — 2N, <2° 2N

On the other hand, since the rows of an Hadamard matrix are mutually orthogonal,
we have the following result:

(G l2) = { 0 otherwise.
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When there is a j such that (; = {3, we have [(n, L)| £ ¢-2"(2° — 2N). Otherwise
if there is no j such that (; = 3, |(n,L)| = 0. In summary, we have |[(n,L)| <
t-2"(2° —2N). By Lemma 5, d(g, h) = 2™t —¢-2"(25"t — N). Since h is arbitrary,
N, z2m=t —¢. 27257t — N).

By a similar discussion as in the last part of the proof of Theorem 4, the theorem
is true for the more general case when r(y) = r1(y) & ra(y) # 0. 0

The construction (12) can be considered as an extension of the construction (5),
in the sense that if s = 0 and each function f; is defined as a constant, the former is
reduced to the latter.

6.2 Direct Sum of Two Correlation Immune Functions

Lemma 7 Let fi be a kyth-order correlation immune function on V,,, fi be a kyth-
order correlation immune function on V,,. Then g(z,y) = fi(x) & faly) is a (k1 +
ky + 1)th-order correlation immune function on Vi 4n,, where v = (1, 22,..., %)

and ¥y = (y17y27---7yn2)-

Proof. Let & and & be the sequences of f; and f; respectively. Then by Lemma 5,
n =& @ & is the sequence of g.

Let ¢ be a linear function on V,, 1,,. Then ¢ can be written as ¢ = (v,z) =
(o, ) B (B, y), where z = (z,y),y = (o, ) € Viy4ny, @ € Vypy and g € V,,,. Now let L
be the sequence of . By Lemma 2, L is a row of H,, 4,,. Since H,, y,, = H,, @ H,,,
L can be expressed as L = {1 @ {5, where {1 is a row of H,, and {3 is a row of H,,.

Now we show that ¢; matches the sequence of (o, x), and {3 matches the sequence
of (8,y). Assume that (] is the sequence of («,x), and (} is the sequence of (3, y).
By Lemma 5, #; @ (), is the sequence of ¢. Thus L = ¢, ® {, = ] @ {,. By Lemma 2,
01 is a row of H,, and 0} is a row of H,,. This means that ¢; = ¢} and (, = (. Put
it in another way, {4 is the sequence of (a, x), and (5 is the sequence of (3,y).

Now consider v with W(~) £ k; 4+ ko + 1. In this case we have either W(a) = ky
or W(3) £ ky. Thus

(n, L) = (& @&, 4 @ Ly) = (&, 0,) (&, () = 0.
By Lemma 1, ¢ is indeed a (k1 4+ ko + 1)th-order correlation immune function on

Vo s - O

Lemma 8 Let f, be a function on V,, and fy be a function on V,,. Suppose that
their nonlinearities are Ny = dy and Ny, = dy respectively. Then the nonlinearily of

g(x,y) = filz) @ f2(y) satisfies N, 2 d12" + dy2™ — 2d1ds.
Proof.  Let &, &, n, L, {1, {5, © be the same as in the proof of Lemma 7. Let

Y1 = <Oé,$> and Y2 = <67y>
By Lemma 6, we have

1
di = Ny, S d(fr00) =271 = Sl ).
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Thus
(&, 0) = 2™ —2d,. (13)
Similarly
(€2,02) =2 — 2dy. (14)
Note that the right sides of (13) and (14) are both positive. Thus
(n, L) = (& @ &2, 60 @ by) = (&1, 1) (&as 2) S (2™ = 2d1)(2" — 2d). (15)

Again by Lemma 6,
1
d(g,g@) = 2n1+n2—1 — §<77,L> g d12n2 —|— d22n1 — ledg.

It is easy to see that the right side of (15) is also positive. Thus if L is an affine
sequence (i.e. @ is an affine function) (15) still holds. Since ¢ is an arbitrary affine
function we have

N, = 2" + dy2™ — 2dydy.

Therefore the lemma is true. O

Combining Lemmas 7 and 8 and using Lemma 20 of [7] we have

Theorem 7 Let f, be a kyth-order correlation immune function on V,, and fy be
a kath-order correlation timmune function on V,,. Also suppose that Ny = dy and
Ny, = dy. Then g(x,y) = fi(2) @ foly) is a (ki + ko + 1)th-order correlation immune

function on V,, 1., whose nonlinearity satisfies
N, 2 di2" + dy2™ — 2dyds,

where © = (x1,22,...,%5) and y = (Y1,Y2,- -, Yny). In particular g is balanced if
either fi or fy is balanced.

6.3 Combination of Four Correlation Immune Functions

This section show that from four correlation immune functions, we can obtain a new
functions that achieves a higher order of correlation immunity.

Theorem 8 Let f; and f; be pth-order correlation immune functions on V,,, and let
hi and hy be gth-order correlation immune functions on V,,. Let &, &, 11 and ny be
the sequences of fi, f2, b1 and hy respectively. Let ( be a (1, —1)-sequence obtained
from &1, &, m oand ny in the following way:

(= 6+ 6)Om+ 56— &) O (16)

where + denotes the component-wise addition and @ denotes the Kronecker product.
Then the function corresponding to ( is a (p + ¢ + 1)th-order correlation immune
function on V1, .
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Proof.  Similarly to the proof of Lemma 7, we let ¢ be a linear function on V1,
and L be the sequence of ¢. By Lemma 2, L is a row of H,;,. In addition, ¢
can be written as ¢ = (v,2) = (o, ) & (8,y), where v = (o, 3) € Vign, @ € Vo,
BE Vi, z = (21,0 s Ty Y1y Yn), & = (¥1,22,...,25) and ¥y = (y1,¥2, .., Yn)-
Since H,,4, = H,, ® H, L can be expressed as L = {1 @ {5, where {4 is a row of H,,,
and (5 1s a row of H,. By the same reasoning as in the proof of Lemma 7, it can be
shown that {4 is the sequence of («, ), and {; is the sequence of (/3,y). Thus we have

¢,L) = %<(51 + &) @m, bl @ 0) + %<(f1 —&3) @M, b @ )
= {6+ &) B o) + (6 — &), ) s, ), (1)

For v € Vi with W(y) £ p+ ¢ + 1, we have either W(a) < p or W(p) £ g.
This implies that either of the following two situations occurs: (1) (&,¢;) = 0 and

(&3,0) = 0, and (2) (n1,ls) = 0 and (n2,¢2) = 0. As a consequence, we have
(¢, L)=0. 0

Note that a similar technique to the construction (16) has been used in obtaining
higher order Hadamard matrices from lower order Hadamard matrices [6].

7 Conclusion

We have studied correlation immune functions using the theory of Hadamard ma-
trices. In particular, we have presented a new method for directly constructing cor-
relation immune functions. It is shown that the method generates the same set of
functions as that by a method of Camion et al. The new method is more conve-
nient for use in practice since it allows one to calculate the nonlinearity of functions
obtained and to discuss the algebraic degrees and propagation characteristics of the
functions. Three methods for obtaining correlation immune functions on a higher
dimensional space from known correlation immune functions on a lower dimensional
space are also presented. We believe that these various methods of generating corre-
lation immune functions, by direct construction or by combining known correlation
immune functions, will find a wide range of applications in computer security.
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