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Key Wordscorrelation immunity, stream cipher, nonlinearity, Hadamard matrix, cryptography.1 IntroductionThe main component of a stream cipher is a key stream generator which producesfrom a random seed a sequence of pseudo-random bits. These pseudo-random bitsare added modulo 2 to bits in a plaintext and the resulting stream, a ciphertext, issent to a receiver. The receiver can recover the plaintext by adding modulo 2 to theciphertext the output of the stream generator with the same seed.A common method for obtaining key stream generators is to combine a set ofshift registers with a nonlinear function. Blaser and Heinzmann [1] observed that ifthe combining function leaks information about its component functions, then thework needed in attacking the cryptosystem can be signi�cantly reduced. This ideawas further developed by Siegenthaler in [8] where a new concept called correlationimmune functions was introduced. Since then the topic has been an active researcharea and correlation immunity has become one of the central design criteria for streamciphers based on shift registers [4, 5].For practical applications, �nding methods for easy construction of correlation im-mune functions is of most importance. In [8] Siegenthaler presented the �rst methodfor constructing (balanced) correlation immune functions. His method is recursive innature and hence not very satisfactory in practical applications. Camion et al stud-ied correlation immune functions from the point view of algebraic coding theory, andpresented a method for constructing correlation immune functions of any order [2].In this paper we study correlation immune functions using the theory of Hadamardmatrices. First we present a method for directly constructing balanced correlationimmune functions of any order. We then prove that our method generates exactlythe same set of correlation immune functions as that obtained using Camion et al'smethod. Advantages of our method over Camion et al's include that, in additionto their orders of correlation immunity and algebraic degrees, it gives the nonlinear-ity and propagation characteristics of the functions obtained. We also study meth-ods for constructing correlation immune functions on a higher dimensional space bycombining known correlation immune functions on a lower dimensional space. Thenonlinearity of functions thus constructed is also investigated.The organization of the rest of the paper is as follows. Section 2 introducesnotations and de�nitions that are needed in the paper. Section 3 reviews the previ-ous construction methods for correlation immune functions. Our new constructionmethod is described in Section 4. In the same section we also prove that the newconstruction method generates exactly the same set of correlation immune functionsas that by Camion et al's method. Section 5 discusses the algebraic degree, nonlin-earity and propagation characteristics of functions obtained using the new method.Two examples are shown in the same section. Section 6 is devoted to the combina-tion of known correlation immune functions. Three combination methods are shown2



in the section, among which the �rst one can be viewed as an extension of the newconstruction method described in Section 4. The paper concludes with some remarksin Section 7.2 PreliminariesWe consider Vm, the vector space of m tuples of elements from GF (2). Note thatthere is a natural one to one correspondence between vectors in Vm and integersin [0; 2m � 1]. This allows us to order the vectors according to their correspondinginteger values. For convenience, we denote by �i the vector in Vm whose integerrepresentation is i.Let f be a function from Vm to GF (2) (or simply a function on Vm). Since f canbe expressed as a unique polynomial in m coordinates x1; x2; : : : ; xm, we will identifyf with its unique multi-variable polynomial f (x) where x = (x1; x2; : : : ; xm). Todistinguish between a vector of coordinates and an individual coordinate, the formerwill be strictly denoted by w, x, y or z, while the later strictly by wi, xi, yi, zi or u,where i is an index. The algebraic degree of f is de�ned as the number of coordinatesin its longest term when it is represented in the algebraic normal form. f is calledan a�ne function if it takes the form of f (x) = a1x1� � � � � amxm� c, where aj, c 2GF (2). In particular, f is called a linear function if c = 0.The sequence of f on Vm is a (1;�1)-sequence de�ned by ((�1)f(�0), (�1)f(�1),: : :, (�1)f(�2m�1)), and the truth table of f is a (0 , 1)-sequence de�ned by (f(�0),f (�1), : : :, f (�2m�1)). f is said to be balanced if the truth table of f has 2m�1 zeros(ones).The following notation will be used in this paper. Let � = (a1; � � � ; am) and� = (b1; � � � ; bm) be two vectors (or sequences), the scalar product of � and �, denotedby h�;�i, is de�ned as the sum of the component-wise multiplications. In particular,when � and � are from Vm, h�; �i = a1b1 � � � � � ambm, where the addition andmultiplication are over GF (2), and when � and � are (1;�1)-sequences, h�; �i =Pmi=1 aibi, where the addition and multiplication are over the reals.Now we introduce the concept of correlation immune functions, the central topictreated in this paper. Let f be a function on Vm. Let X be a random variabletaking on values x 2 Vm with uniform probability 2�m, let Xi be the random variablecorresponding to the ith coordinate value xi 2 GF (2), and let Y be the randomvariable produced by the function f , i.e., Y = f(X). f is said to be a kth-ordercorrelation immune function if the random variable Y is statistically independent ofany subset Xi1 , Xi2 , : : :, Xik of k coordinates [8].Xiao and Massey gave an equivalent de�nition for correlation immunity in termsof Walsh transformations [3]. The Walsh transformation f̂ of a function f on Vm isde�ned as the real-valued functionf̂(�) = Xx2Vm f (x)(�1)h�;xi;where � 2 Vm. Note that in the sum, f(x) and h�;xi are regarded as real-valuedfunctions. 3



De�nition 1 Let f be a function on Vm. f is a kth-order correlation immune func-tion if its Walsh transformation satis�es f̂(�) = 0 for all � 2 Vm with 1 � W (�) � k,where W (�) indicates the Hamming weight of, i.e., the number of the nonzero com-ponents in, a vector �.A relevant topic, correlation immune functions with memory, was studied in [4].The next lemma is useful for constructing correlation immune functions with a viewto using Hadamard matrices.Lemma 1 Let g be a function on Vm and let � be its sequence. Also let x =(x1; x2; : : : ; xm). Then g is a kth-order correlation immune function if and only ifh�; `i = 0 for any `, where ` is the sequence of a linear function h(x) = h�; xi on Vmconstrained by 1 <= W (�) <= k.Proof. Note thath�; `i = Xx2Vm(�1)g(x)(�1)h(x) = Xx2Vm(�1)g(x)+h�;xi= Xx2Vm(�1)h�;xi � 2 Xx2Vm g(x)(�1)h�;xi= �2ĝ(�):Thus h�; `i = 0 if and only if ĝ(�) = 0 (See also Section 4.2, [2]). utThe order k of correlation immunity of a function on Vm and its algebraic degree dare constrained by the relation k+d � m. The only functions on Vm that achieve themaximum (m�1)th-order correlation immunity are g(x1; : : : ; xm) = x1�� � ��xm andg(x1; : : : ; xm) = x1 � � � � � xm � 1, both of which are a�ne. For balanced functions,if k 6= 0 or m� 1, the relation becomes k + d � m� 1 [8].Next we introduce a fundamental combinatorial structure, the Hadamard matrix.Properties of Hadamard matrices will be very useful in our constructions of correlationimmune functions. A (1;�1)-matrix H of order m is called a Hadamard matrix ifHHT = mIm, where HT indicates the transpose of H and Im is the identity matrix oforder m. It is well known that the order m of an Hadamard matrix is 1, 2 or divisibleby 4 [9, 6]. In this paper we will use a special kind of Hadamard matrices calledSylvester-Hadamard matrices or Walsh-Hadamard matrices. A Sylvester-Hadamardmatrix (or Walsh-Hadamard matrix) of order 2m, denoted by Hm, is generated by thefollowing recursive relationH0 = 1;Hm = " 1 11 �1 # 
Hm�1;m = 1; 2; : : :where 
 denotes the Kronecker product. Note that Hm can be written as Hm =Hs 
Ht for any nonnegative integers s and t with s + t = m. Sylvester-Hadamardmatrices are closely related to linear functions, as is shown in the following lemma.4



Lemma 2 Write Hm = 266664 `0`1...̀2m�1 377775 where `i is a row of Hm. Then `i is the sequenceof a linear function hi = h�i; xi, where x = (x1; : : : ; xm) and �i is a vector in Vm asde�ned in the �rst paragraph of this Section. Conversely the sequence of any linearfunction on Vm is a row of Hm.A proof for the �rst half of the lemma can be found in [7]. The second half is trueby noting the fact that Hm has 2m distinct rows and that there are exactly 2m distinctlinear functions on Vm. Thus the rows of �Hm comprise all the a�ne sequences oflength 2m.Next we introduce a notation which is used throughout the rest of the paper.Given any vector � = (i1; : : : ; is) 2 Vs, we de�ne a function on Vs byD�(y) = (y1 � �i1) � � � (ys � �is)where y = (y1; : : : ; ys) and �i = 1� i indicates the binary complement of i. Note thatsince D�(y) = 1 if and only if y = �, a function f on Vs+t can be expressed asf(y; x) = M�2VsD�(y)f(�; x)where x = (x1; : : : ; xt).Lemma 3 Let f(y;x) = L�2VsD�(y)f�(x) and g(y;x) = L�2VsD�(y)g�(x) wherey = (y1; : : : ; ys),and x = (x1; : : : ; xt). Then f = g if and only if f� = g� for all � 2 Vs.Proof. f = g if and only if f(�; x) = g(�; x) for all � 2 Vs. Note that since D�(y) = 1if and only if y = �, we have f (�; x) = f�(x) and g(�; x) = g�(x) for all � 2 Vs. utThe following lemma can be found in [7].Lemma 4 Let �i1���ip, (i1; : : : ; ip) 2 Vp, be the sequence of a function fi1���ip(x1; : : : ; xq)on Vq. Let � be the concatenation of �0���00, �0���01, : : :, �1���11, namely, � = (�0���00; �0���01; : : : ; �1���11).Then � is the sequence of a function on Vq+p given byf(y1; : : : ; yp; x1; : : : ; xq) = M(i1���ip)2VpDi1���ip(y1; : : : ; yp)fi1���ip(x1; : : : ; xq):Let � = (a1; a2; : : : ; an) 2 Vn and � = (b1; b2; : : : ; bm) 2 Vm. The Kroneckerproduct of � and �, denoted by �
�, is de�ned as �
� = (a1�; a2�; : : : ; am�). Thefollowing lemma will be used in the rest of the paper.Lemma 5 Let � be the sequence (or truth table) of a function f on Vn and � be thesequence (or truth table) of a function g on Vm. Then � 
 � is the sequence (or truthtable) of the function '(y;x) = f(y)� g(x) on Vn+m.5



Proof. For any �xed y = � 2 Vn, we have '(�; x) = f(�)� g(x). utThe propagation characteristic is another nonlinearity measure for cryptographicfunctions. A function satis�es the propagation criterion of order k if complementingk or less input coordinates results in the output being complemented half the timesover all input vectors. The formal de�nition for the propagation criterion follows.De�nition 2 Let f be a function on Vn. We say that f satis�es1. the propagation criterion with respect to a non-zero vector � in Vn if f (x) �f (x� �) is a balanced function.2. the propagation criterion of degree k if it satis�es the propagation criterion withrespect to all � 2 Vn with 1 <= W (�) <= k.3 Previous ConstructionsSiegenthaler presented a recursive construction in his pioneering work [8]. Let f1 andf2 be kth-order correlation immune functions on Vm. Then the concatenation of theirsequences results in a new correlation immune function, namely,f (u;x) = (u� 1)f1(x)� uf2(x) (1)is a kth-order correlation immune function on Vm+1, where u is a variable on GF (2)and x = (x1; x2; : : : ; xm).Camion et al [2] observed that in Siegenthaler's construction, if the Walsh trans-formations of f1 and f2 satisfy the conditionf̂1(�) + f̂2(�) = 0; for all � 2 Vm with W (�) = k;then f is (k + 1)th-order correlation immune function. In particular, they show thefollowing two pairs of functions satisfy the condition:1. g(x) and 1 � g(x);2. g(x) and g(�x), where �x = (1� x1;1 � x2; : : : ;1 � xm);where g is a kth-order correlation immune function on Vm. Note that 1 � g(x) com-plements the output, while g(�x) complements the input. Therefore, bothf(x) = (u� 1)g(x)� u(1� g(x)) = u� g(x) (2)and f(x) = (u� 1)g(x)� ug(�x) = g(x)� u(g(x)� g(�x)) (3)are (k + 1)th-order correlation immune functions on Vm+1.In the same paper, Camion et al also discovered a method for direct constructionof correlation immune functions. Let m and n be positive integers with m > n. Let6



r and pj , j = 1; 2; : : : ; n be arbitrary functions on Vm�n. Also let x = (x1; x2; : : : ; xn)and y = (y1; y2; : : : ; ym�n). Setf (y; x) = nMj=1 xjpj(y)� r(y): (4)Then the function f de�ned in (4) is a balanced kth-order correlation immune functionon Vm, where k is an integer satisfying k >= minfW (P (y))jy 2 Vm�ng � 1, andP (y) = (p1(y); p2(y); : : : ; pn(y)).4 A New ConstructionLetm and n be positive integers withm > n. Suppose that �m;n = f'0���0; '0���1; : : : ; '1���1gis a set containing 2m�n linear functions on Vn, each is indexed by a vector in Vm�n.�m;n can be a multi-set and hence a linear function is allowed to appear more thanonce in �m;n. Let x = (x1; x2; : : : ; xn), y = (y1; y2; : : : ; ym�n) and r be an arbitraryfunction on Vm�n. Set g(y; x) = M�2Vm�nD�(y)'�(x)� r(y) (5)The following corollary is a consequence of Theorem 1 and Corollary 2 to be statedbelow, though it can be proved directly.Corollary 1 The function g de�ned in (5) is a balanced kth-order correlation im-mune function on Vm, where k is an integer satisfying k >= minfW (�)j� 2 Vm�ng�1,'�(x) = h�; xi 2 �m;n and � 2 Vn.Theorem 1 The constructions (4) and (5) express the same set of functions.Proof. Let S1 be the set of functions generated by (4) and S2 the set of functionsgenerated by (5).First we prove that S1 � S2 by showing that a function obtained by (4) can alwaysbe represented in the form of (5). Letf(y; x) = nMj=1 xjpj(y)� r(y)be a function in S1. For any � 2 Vm�n we havef (�; x) = nMj=1 xjpj(�)� r(�):Since pj(�) 2 GF (2), j = 1; : : : ; n, Lnj=1 xjpj(�) is a linear function on Vn. Now let'�(x) = nMj=1 xjpj(�);7



and let g(y; x) = M�2Vm�nD�(y)'�(x)� r(y):Note that D�(y) = 1 if and only if y = �. Thus we haveg(�; x) = '�(x)� r(�) = f(�; x):Since � is arbitrary, by Lemma 3 we havef (y; x) = g(y; x):Consequently, f (y; x) can be represented in the form of (5). This means that S1 � S2.Next we show that a function obtained by (5) can be represented in the formof (4). This will prove that S2 � S1. Letg(y;x) = M�2Vm�nD�(y)'�(x)� r(y)be a function in S2. Let � be an arbitrary vector in Vm�n, and let'�(x) = a�;1x1 � � � � � a�;nxn (6)Now let pj , j = 1; 2; : : : ; n, be a function on Vm�n such thatpj(�) = a�;jfor all � 2 Vm�n. Also let P = (p1; : : : ; pn) be a mapping from Vm�n to Vn such thatP (�) = (p1(�); : : : ; pn(�)) (7)for all � 2 Vm�n. Now we de�ne a function on Vm in the following wayf(y; x) = nMj=1 xjpj(y)� r(y):Again since D�(y) = 1 if and only if y = �, we haveg(�; x) = '�(x)� r(�):By (6) and (7) we havef(�; x) = nMj=1 xjpj(�)� r(�) = nMj=1 xja�;j � r(�) = '�(x)� r(�) = g(�; x):Since � is arbitrary, by Lemma 3 we haveg(y; x) = f (y; x):This implies that g(y;x) can be presented in the form of (4) and thus S2 � S1. Thiscompletes the proof that S1 = S2. ut8



Corollary 2 In the proof of Theorem 1minfW (P (y))jy 2 Vm�ng � 1 = minfW (�)j� 2 Vm�ng � 1:where '�(x) = h�; xi = a�;1x1 � � � � � a�;nxn and � = (a�;1; : : : ; a�;n) are the same asin the proof of Theorem 1.Proof. From (7) we have P (�) = (a�;1; : : : ; a�;n), and from (6) we have '�(x) =a�;1x1� � � � � a�;nxn;= h�; xi. Thus we have P (�) = � and hence minfW (P (y))jy 2Vm�ng � 1 = minfW (�)j� 2 Vm�ng � 1: ut5 Applying the New ConstructionFor integers k and n with 0 <= k < n, let 
k;n denote the set of linear functions on Vnthat have k + 1 or more non-zero coe�cients, namely
k;n = f'j'(x) = h�; xi; � 2 Vn;W (�) >= k + 1g (8)where x = (x1; : : : ; xn). This set of functions will be used in our constructions ofcorrelation immune functions.5.1 Balanced Functions with Given ImmunityGiven two integers m and k with m >= 3 and 1 <= k < m � 1, balanced kth-ordercorrelation immune functions on Vm can be constructed in the following way.1. Fix an integer n such that k < n < m.2. Create a set �m;n by selecting linear functions strictly from 
k;n. Note that thesize of �m;n is 2m�n, and repetition is permitted in the selection.3. Construct a function by using the method (5).By Corollary 1, we haveTheorem 2 A function constructed according to the above three steps is a balancedkth-order correlation immune function on Vm.5.2 Algebraic DegreesLet k and m be integers with k >= 1 and m >= k + 2. As mentioned in Section 2,the algebraic degree of a balanced kth-order immune correlation functions on Vm isat most m� k � 1. We are interested in constructing balanced kth-order correlationimmune functions having the maximum algebraic degree m� k � 1.In order to discuss their algebraic degrees, we construct functions in the followingthree steps. 9



1. Fix an integer n such that m > n >= k + 2.2. Choose a multi-set �m;n = f'� : Vn ! GF (2)j� 2 Vm�ng of linear functions insuch a way that it satis�es the following three conditions:(C1) If ' 2 �m;n then ' 2 
k;n, where 
k;n is de�ned in (8),(C2) �m;n contains at least two distinct functions,(C3) there is a variable xj that appears in an odd number of functions in �m;n.Note that the repetition of functions is counted by the number of appear-ance.3. Employ the set �m;n in the construction (5).Since �m;n is a multi-set, the condition (C1) can be satis�ed. On the other hand,since n >= k + 2 and 
k;n contains more than two functions, the condition (C2) canalso be readily satis�ed.Once the conditions (C1) and (C2) are satis�ed, we check �m;n to see if it satis�esthe condition (C3). If not, we modify �m;n in the following way. Since �m;n satis�esthe condition (C2), there are two distinct functions '�1(x); '�2(x) 2 �m;n. Thusthere exists some xj that appears in '�1(x) but not in '�2(x). Now we replace '�2(x)by '�1(x). In this way we can modify the function set �m;n so that it satis�es thecondition (C3). When the condition (C3) is satis�ed, there is a term y1 � � � ym�nxj thatappears an odd number of times in a function g constructed according to the abovethree steps. This term survives in the �nal algebraic normal form representation ofg. In other words, the algebraic degree of g is m� n+ 1.>From Theorem 2 and the above discussions, we know that g is a balanced kth-order correlation immune function of algebraic degree m � n + 1. Thus we haveprovedTheorem 3 Let k, n and m be integers with k >= 1 and m > n >= k + 2. Then afunction constructed according to the above three steps is a balanced kth-order corre-lation immune function on Vm of algebraic degree m � n + 1. When n is chosen asn = k + 2, the function achieve the maximum algebraic degree m� k � 1.5.3 NonlinearityGiven two functions f and g on Vm, the Hamming distance between f and g isde�ned as d(f; g) = W (f(x) � g(x)). The nonlinearity of g is de�ned as Nf =mini=0;1;:::;2m+1�1 d(f; ') where '0, '1, : : :, '2m+1�1 comprise all the a�ne functionson Vm. It has been proved that Nf <= 2m�1 � 2m2 �1 for any function f on Vm [7].Nonlinearity is an crucial criterion for cryptographic functions and it measures theability of a cryptographic system using the functions to resist being expressed as aset of linear equations. If the system could be expressed as linear equations, it wouldbe easily breakable by various attacks.Let f1 and f2 be functions on Vm, �1 and �2 be the sequences of f1 and f2 respec-tively. Then h�f ; �gi = Pf(x)=g(x) 1�Pf(x) 6=g(x) 1 = 2m�2Pf(x) 6=g(x) 1 = 2m�2d(f; g).10



This proves the following result which is very useful in the study of the nonlinearityof functions.Lemma 6 Let f and g be functions on Vm whose sequences are �f and �g respectively.Then the distance between f and g can be calculated by d(f; g) = 2m�1 � 12h�f ; �gi.Theorem 4 Let m and n be integers with m > n > 2, and let g be a functionconstructed by (5). Denote by t� the number of times a linear function '� appearsin �m;n, and let t = maxft�j� 2 Vm�ng. Then the nonlinearity of g satis�es Ng >=2m�1 � t2n�1.Proof. For convenience a vector � 2 Vm�n will be denoted by its correspondinginteger between 0 and 2m�n � 1. In this way, a linear function '� 2 �m;n indexedby � is rewritten as 'j and t� is rewritten as tj, where t� is the number of times '�appears in �m;n and j is the integer representation of �. We �rst consider the casewhen r(y) = 0 in the construction (5), namelyg(y; x) = D0���0(y)'0(x)� � � � �D1���1(y)'2m�n�1(x) (9)where 'j 2 
k;n, y = (y1; : : : ; ym�n), x = (x1; : : : ; xn), and Dj1���jm�n is de�ned inSection 2.Let h be any a�ne function on Vm. By Lemma 2, the sequence of h, denotedby L, is a row of �Hm. Since Hm = Hm�n 
 Hn, L can be expressed as L =�`0 
 `00, the Kronecker product of `0 and `00, where `0 is a row of Hm�n while `00is a row of Hn. Write `0 as `0 = (c0; c1; : : : ; c2m�n�1). Then L can be rewritten asL = (c0`00; c1`00; : : : ; c2m�n�1`00). Note that by Lemma 2, `00 is the sequence of a linearfunction. We denote the linear function by '00.Now let �j be the sequence of 'j, j = 0; 1; : : : ; 2m�n � 1. By Lemma 4, � =(�0; �1; : : : ; �2m�n�1) is the sequence of g de�ned in (9). On the other hand, since therows of an Hadamard matrix are mutually orthogonal, we have the following result:h�j ; `00i = ( 2n; if 'j = '000; otherwise:Now we discuss h�; Li in the following two cases:Case 1: there exists a j such that 'j = '00 ; since 'j appears tj times in �m;n, thetotal number of times when 'j = '00 is also tj. Thus jh�; Lij <= tj2n:Case 2: there exists no j such that 'j = '00; in this case we have jh�; Lij = 0.Summarizing Cases 1 and 2, we have jh�; Lij <= t2n. By Lemma 6, d(g; h) >=2m�1 � t2n�1. Since h is arbitrary, we have Ng >= 2m�1 � t2n�1.Now consider the more general case when r(y) 6= 0 in the construction (5).Since r is a function of y but not x, the sequence of g takes the form of � =(e0�0; e1�1; : : : ; e2m�n�1�2m�n�1), where ei = (�1)r(�i) and �i is a vector in Vm�n whoseinteger representation is i. By a similar discussion to the case when r(y) = 0, we havejh�; Lij <= t2n for any a�ne sequence L, and hence Ng >= 2m�1 � t2n�1. ut11



5.4 Propagation CharacteristicsThis section discusses the propagation characteristics of functions obtained by (5).For convenience, the construction method is repeated here:g(y;x) = M�2Vm�nD�(y)'�(x)� r(y)In the following discussion, we assume that all linear functions '� in the constructionare distinct.It is easy to prove that D�(y � �) = D���(y):Let z = (y; x). Also let � 2 Vm�n, � 2 Vn and  = (�;�). Theng(z � ) = M�2Vm�nD�(y � �)'�(x� �)� r(y � �)= M�2Vm�n(y)D���(y)'�(x� �)� r(y � �)= M���2Vm�nD���(y)'�(x� �)� r(y � �)Set � = � � �, we haveg(z � ) = M�2Vm�nD�(y)'���(x� �)� r(y � �)and henceg(z)� g(z � ) = M�2Vm�nD�(y)('�(x)� '���(x� �))� r(y)� r(y � �):Note that for any �xed y = �(g(z)� g(z � ))jy=� = '�(x)� '���(x� �)� r(�)� r(� � �):Consider the case when � 6= (0; : : : ; 0). By assumption '�(x) and '���(x) aredistinct linear functions. Hence '�(x)� '���(x� �)) = '�(x)� '���(x)� '���(�)is a non-constant a�ne function which is balanced. This shows that g(z)� g(z � )is balanced for any  = (�; �) with � 6= (0; : : : ; 0). Thus we have provedTheorem 5 In the construction (5), if all '� are distinct linear functions on Vn, theng satis�es the propagation criterion with respect to all  with  = (�; �), � 2 Vm�n,� 2 Vn and � 6= 0.Note that there are 2m�n � 1 choices for � 6= 0 and 2n choices for all � 2 Vn.Therefore the total number of vectors with respect to which the function g satis�esthe propagation criterion is at least (2m�n � 1)2n = 2m � 2n.12



5.5 ExamplesTheorem 3 gives us a general method to construct balanced correlation immune func-tions having any given immunity. The construction method allows us to easily calcu-late the algebraic degree and the nonlinearity of the functions, which is very desirablein designing cryptographic systems. Two concrete examples follow.Let n = 4 and k = 2. Then
2;4 = f'j'(x) = h�; xi; � 2 V4;W (�) >= 3g= fx1 � x2 � x3; x1 � x2 � x4; x1 � x3 � x4; x2 � x3 � x4; x1 � x2 � x3 � x4g:where x = (x1; x2; x3; x4).Example 1 We construct a balanced 2nd-order immune function f on V7, whichachieves the maximum algebraic degree of 4. We also calculate the nonlinearity ofthe function.Set '1(x) = x1 � x2 � x3; '5(x) = '1(x)'2(x) = x1 � x2 � x4; '6(x) = '2(x)'3(x) = x1 � x3 � x4; '7(x) = '3(x)'4(x) = x2 � x3 � x4; '8(x) = '3(x)and �7;4 = f'1; '2; '3; '4; '5; '6; '7; '8g:�7;4 is a multi-set whose elements are all taken from 
2;4. In addition, it containsfour di�erent functions, and x1 appears in seven functions. Thus the three conditions(C1), (C2) and (C3) are all satis�ed.To complete the construction, letf (y; x) = D000(y)'1(x)�D001(y)'2(x)�D010(y)'3(x)�D011(y)'4(x)�D100(y)'5(x)�D101(y)'6(x)�D110(y)'7(x)�D111(y)'8(x)= (1� y2y3 � y1y2y3)x1 � (1 � y2 � y2y3 � y1y2y3)x2 �(1� y3 � y2y3)x3 � (y2 � y3 � y2y3)x4where y = (y1; y2; y3) and x = (x1; x2; x3; x4).By Theorem 3, f is a balanced 2nd-order correlation immune function on V7 ofalgebraic degree 4. To calculate the nonlinearity of the function, note that '3 ='7 = '8 and hence t = maxftjjj = 1; : : : ; 8g = 3. By Theorem 4, we have Nf >=27�1 � 3 � 24�1 = 40. Note that the upper bound of the nonlinearity of balancedfunctions on V7 is 56 (see Corollary 17 of [7].Example 2 In this example, we construct a balanced 2nd-order immune function gon V6. Let '1(x) = x1 � x2 � x3;'2(x) = x1 � x2 � x4;'3(x) = x1 � x3 � x4;'4(x) = x1 � x2 � x3 � x4;13



and �6;4 = f'1; '2; '3; '4g:Obviously �6;4 satis�es the three conditions (C1), (C2) and (C3).Let g(y; x) = D00(y)'1(x)�D01(y)'2(x)�D10(y)'3(x)�D11(y)'4(x)= x1 � (1 � y1 � y1y2)x2 �(1 � y2 � y1y2)x3 � (y1 � y2 � y1y2)x4where y = (y1; y2) and x = (x1; x2; x3; x4).g is a balanced 2nd-order correlation immune function on V6. It satis�es thepropagation criterion with respect to all � = (a1; a2; a3; a4; a5; a6) 2 V6 with a1 6= 0 ora2 6= 0. The algebraic degree of g is 3 and the nonlinearity of g is Ng >= 26�1�24�1 =24. For comparison, note that the upper bound for the nonlinearity of balancedfunctions on V6 is 26 (see [7]).6 Combination of Correlation Immune FunctionsThe construction (5) described in Section 4 presents a method for directly constructingcorrelation immune functions of any order. In this section we discuss three methodsfor constructing correlation immune functions on a higher dimensional space fromexisting such functions on a lower dimensional space.6.1 An Extension of the New ConstructionThe construction (5) can be extended. Let m;n; k and s be positive integers, wherem > n > k, and let w = (y; x; z), y = (y1; : : : ; ym�n), x = (x1; : : : ; xn) and z =(z1; : : : ; zs). Also let �m;n = f'0; : : : ; '2m�n�1g be a set of linear functions on Vn,each of which is selected from 
k;n. Repetition is permitted in selecting the linearfunctions. Setg1(y;x) = D0���0(y)'0(x)� � � � �D1���1(y)'2m�n�1(x)� r1(y) (10)where r1 is an arbitrary function on Vm�n. By Corollary 1, g1 is a balanced kth-ordercorrelation immune functions on Vm.Now let ff0; : : : ; f2m�n�1g be a set of pth-order correlation immune functions onVs. Functions in the set need not be mutually distinct. Setg2(y; z) = D0���0(y)f0(z) � � � � �D1���1(y)f2m�n�1(z)� r2(y) (11)where r2 is an arbitrary function on Vm�n. We further setg(y; x; z) = g1(y; x)� g2(y; z) (12)14



Theorem 6 The function g(y; x; z) = g1(y; x)� g2(y; z) is a balanced (k + p+ 1)th-order correlation immune function on Vm+s. The nonlinearity of g satis�esNg >= 2m�1 � t � 2n(2s�1 �N )where t = maxftjjj = 0; 1; : : : ; 2m�n � 1g, tj denotes the number of times that 'jappears in �m;n, and N = minfNfj jj = 0; 1; : : : ;2m�n � 1g.Proof. We �rst consider the case when r(y) = r1(y)� r2(y) = 0. Note thatg(y; x; z) = D0���0(y)('0(x)� f0(z))� � � � �D1���1(y)('2m�n�1(x)� f2m�n�1(z)):Since each 'j is balanced, each 'j(x)� fj(z) is also balanced (see Lemma 20 of [7]).Hence g(y; x; z) is balanced.Now we show that g is a (k + p+ 1)th-order correlation immune function. Let �jand �j be the sequences of 'j and fj respectively, j = 0; 1; : : : ; 2m�n�1. By Lemma 5�j 
 �j is the sequence of 'j(x) � fj(z), and � = (�0 
 �0; : : : ; �2m�n�1 
 �2m�n�1) isthe sequence of g(y;x; z) (see Lemma 4).Let h be a linear function on Vm+s. By Lemma 2, the sequence of h, denoted by L,is a row ofHm+s. SinceHm+s = Hm�n
Hn
Hs, L can be expressed as L = `1
`2
`3,where `1 is a row of Hm�n, `2 is a row of Hn, and `3 is a row of Hs. Write `1 =(c0; c1; : : : ; c2m�n�1). Then L can be rewritten as L = (c0`2 
 `3; : : : ; c2m�n�1`2 
 `3).Let � be the sequence of g. Thenh�; Li = c0h�0 
 �0; `2 
 `3i+ � � �+ c2m�n�1h�2m�n�1 
 �2m�n�1; `2 
 `3i= c0h�0; `2ih�0; `3i+ � � �+ c2m�n�1h�2m�n�1; `2ih�2m�n�1; `3i:Write h(w) = h;wi = h�; yi � h�; xi � h�; zi, where  = (�;�; �), � 2 Vm�n,� 2 Vn and � 2 Vs. By the de�nition of the sequence of a function, `1; `2 and `3 arethe sequences of h�; yi, h�; xi and h�; zi respectively.Suppose that W () <= k + p + 1. Since W () = W (�) +W (�) +W (�), we haveW (�) +W (�) <= k + p+ 1, which implies that either W (�) <= k or W (�) <= p. Recallthat 'j 2 
k;n. If W (�) <= k, �j and `2 must be orthogonal, and hence h�j ; `2i = 0.Otherwise if W (�) <= p, h�j ; `3i = 0, since each fj is a pth-order correlation immunefunction. Thus h�; Li = 0. By Lemma 1, g(y; x; z) is a (k+ p+1)th-order correlationimmune function on Vm+s.To obtain the nonlinearity of the function g, we assume that in the above discussionh is an arbitrary a�ne function on Vm+s. Then L, the sequence of h, can be expressedas L = �`1 
 `2 
 `3, and henceh�; Li = �(c0h�0; `2ih�0; `3i+ � � �+ c2m�n�1h�2m�n�1; `2ih�2m�n�1; `3i):By Lemma 5 h�j ; `3i <= 2s � 2Nfj <= 2s � 2N:On the other hand, since the rows of an Hadamardmatrix are mutually orthogonal,we have the following result:h�j ; `2i = ( 2n if �j = `2,0 otherwise:15



When there is a j such that �j = `2, we have jh�; Lij <= t � 2n(2s � 2N ). Otherwiseif there is no j such that �j = `2, jh�; Lij = 0. In summary, we have jh�; Lij <=t � 2n(2s � 2N). By Lemma 5, d(g; h) >= 2m�1 � t � 2n(2s�1 �N). Since h is arbitrary,Ng >= 2m�1 � t � 2n(2s�1 �N).By a similar discussion as in the last part of the proof of Theorem 4, the theoremis true for the more general case when r(y) = r1(y)� r2(y) 6= 0. utThe construction (12) can be considered as an extension of the construction (5),in the sense that if s = 0 and each function fj is de�ned as a constant, the former isreduced to the latter.6.2 Direct Sum of Two Correlation Immune FunctionsLemma 7 Let f1 be a k1th-order correlation immune function on Vn1 , f2 be a k2th-order correlation immune function on Vn2 . Then g(x; y) = f1(x) � f2(y) is a (k1 +k2 + 1)th-order correlation immune function on Vn1+n2 , where x = (x1; x2; : : : ; xn1)and y = (y1; y2; : : : ; yn2).Proof. Let �1 and �2 be the sequences of f1 and f2 respectively. Then by Lemma 5,� = �1 
 �2 is the sequence of g.Let ' be a linear function on Vn1+n2 . Then ' can be written as ' = h; zi =h�; xi�h�; yi, where z = (x; y);  = (�; �) 2 Vn1+n2 , � 2 Vn1 and � 2 Vn2 . Now let Lbe the sequence of '. By Lemma 2, L is a row of Hn1+n2 . Since Hn1+n2 = Hn1 
Hn2 ,L can be expressed as L = `1 
 `2, where `1 is a row of Hn1 and `2 is a row of Hn2 .Now we show that `1 matches the sequence of h�; xi, and `2 matches the sequenceof h�; yi. Assume that `01 is the sequence of h�;xi, and `02 is the sequence of h�; yi.By Lemma 5, `01 
 `02 is the sequence of '. Thus L = `1 
 `2 = `01 
 `02. By Lemma 2,`01 is a row of Hn1 and `02 is a row of Hn2 . This means that `1 = `01 and `2 = `02. Putit in another way, `1 is the sequence of h�; xi, and `2 is the sequence of h�; yi.Now consider  with W () <= k1 + k2 + 1. In this case we have either W (�) <= k1or W (�) <= k2. Thush�; Li = h�1 
 �2; `1 
 `2i = h�1; `1ih�2; `2i = 0:By Lemma 1, g is indeed a (k1 + k2 + 1)th-order correlation immune function onVn1+n2 . utLemma 8 Let f1 be a function on Vn1 and f2 be a function on Vn2 . Suppose thattheir nonlinearities are Nf1 = d1 and Nf2 = d2 respectively. Then the nonlinearity ofg(x; y) = f1(x)� f2(y) satis�es Ng >= d12n2 + d22n1 � 2d1d2.Proof. Let �1, �2, �, L, `1, `2, ' be the same as in the proof of Lemma 7. Let'1 = h�; xi and '2 = h�; yi.By Lemma 6, we haved1 = Nf1 <= d(f1; '1) = 2n1�1 � 12h�1; `1i:16



Thus h�1; `1i <= 2n1 � 2d1: (13)Similarly h�2; `2i <= 2n2 � 2d2: (14)Note that the right sides of (13) and (14) are both positive. Thush�; Li = h�1 
 �2; `1 
 `2i = h�1; `1ih�2; `2i <= (2n1 � 2d1)(2n2 � 2d2): (15)Again by Lemma 6,d(g;') = 2n1+n2�1 � 12 h�; Li >= d12n2 + d22n1 � 2d1d2:It is easy to see that the right side of (15) is also positive. Thus if L is an a�nesequence (i.e. ' is an a�ne function) (15) still holds. Since ' is an arbitrary a�nefunction we have Ng >= d12n2 + d22n1 � 2d1d2:Therefore the lemma is true. utCombining Lemmas 7 and 8 and using Lemma 20 of [7] we haveTheorem 7 Let f1 be a k1th-order correlation immune function on Vn1 and f2 bea k2th-order correlation immune function on Vn2 . Also suppose that Nf1 = d1 andNf2 = d2. Then g(x; y) = f1(x)� f2(y) is a (k1+ k2+1)th-order correlation immunefunction on Vn1+n2 whose nonlinearity satis�esNg >= d12n2 + d22n1 � 2d1d2;where x = (x1; x2; : : : ; xn1) and y = (y1; y2; : : : ; yn2). In particular g is balanced ifeither f1 or f2 is balanced.6.3 Combination of Four Correlation Immune FunctionsThis section show that from four correlation immune functions, we can obtain a newfunctions that achieves a higher order of correlation immunity.Theorem 8 Let f1 and f2 be pth-order correlation immune functions on Vm, and leth1 and h2 be qth-order correlation immune functions on Vn. Let �1, �2, �1 and �2 bethe sequences of f1, f2, h1 and h2 respectively. Let � be a (1;�1)-sequence obtainedfrom �1, �2, �1 and �2 in the following way:� = 12(�1 + �2)
 �1 + 12(�1 � �2)
 �2 (16)where + denotes the component-wise addition and 
 denotes the Kronecker product.Then the function corresponding to � is a (p + q + 1)th-order correlation immunefunction on Vm+n. 17



Proof. Similarly to the proof of Lemma 7, we let ' be a linear function on Vm+nand L be the sequence of '. By Lemma 2, L is a row of Hm+n. In addition, 'can be written as ' = h; zi = h�; xi � h�; yi, where  = (�; �) 2 Vm+n, � 2 Vm,� 2 Vn, z = (x1; : : : ; xm; y1 : : : ; yn), x = (x1; x2; : : : ; xm) and y = (y1; y2; : : : ; yn).Since Hm+n = Hm 
Hn L can be expressed as L = `1 
 `2, where `1 is a row of Hm,and `2 is a row of Hn. By the same reasoning as in the proof of Lemma 7, it can beshown that `1 is the sequence of h�; xi, and `2 is the sequence of h�; yi. Thus we haveh�; Li = 12h(�1 + �2)
 �1; `1 
 `2i + 12h(�1 � �2)
 �2; `1 
 `2i= 12h(�1 + �2); `1ih�1; `2i + 12h(�1 � �2); `1ih�2; `2i: (17)For  2 Vm+n with W () <= p + q + 1, we have either W (�) <= p or W (�) <= q.This implies that either of the following two situations occurs: (1) h�1; `1i = 0 andh�2; `1i = 0, and (2) h�1; `2i = 0 and h�2; `2i = 0. As a consequence, we haveh�; Li = 0. utNote that a similar technique to the construction (16) has been used in obtaininghigher order Hadamard matrices from lower order Hadamard matrices [6].7 ConclusionWe have studied correlation immune functions using the theory of Hadamard ma-trices. In particular, we have presented a new method for directly constructing cor-relation immune functions. It is shown that the method generates the same set offunctions as that by a method of Camion et al. The new method is more conve-nient for use in practice since it allows one to calculate the nonlinearity of functionsobtained and to discuss the algebraic degrees and propagation characteristics of thefunctions. Three methods for obtaining correlation immune functions on a higherdimensional space from known correlation immune functions on a lower dimensionalspace are also presented. We believe that these various methods of generating corre-lation immune functions, by direct construction or by combining known correlationimmune functions, will �nd a wide range of applications in computer security.References[1] W. Blaser and P. Heinzmann. New cryptographic device with high security usingpublic key distribution. In Proceedings of IEEE Student Paper Contest 1979-1980,pages 145{153, 1982.[2] P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation-immune func-tions. In Advances in Cryptology - CRYPTO'91, volume 576, Lecture Notes inComputer Science, pages 87{100. Springer-Verlag, Berlin, Heidelberg, New York,1991. 18
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