Comments on "Generating and Counting Binary Bent Sequences"

Claude Carlet
INRIA Rocquencourt, Domaine de Voluceau Bat 10, BP 105, 78153 Le Chesnay Cedex, France
Université de Picardie. France
Jennifer Seberry
and
Xian-Mo Zhang
Department of Computer Science
The University of Wollongong
Wollongong, NSW 2522, Australia

Abstract

We prove that the conjecture on bent sequences stated in "Generating and counting bent sequences", IEEE Transactions on Information Theory, IT-36 No. 5, 1990 by C.M. Adams and S.E. Tavares is false.

Let V_{n} be the vector space of n tuples of elements from $G F(2)$. Any map from V_{n} to $G F(2), f$, can be uniquely written as a polynomial in coordinates x_{1}, \ldots, x_{n} [3], [4]:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{v \in V_{n}} a_{v} x_{1}^{v_{1}} \cdots x_{n}^{v_{n}}
$$

where \oplus denotes the boolean addition, $v=\left(v_{1}, \ldots, v_{n}\right), a_{v} \in G F(2)$. Thus we identify the function f with polynomial f. Note that there exists a natural one to one correspondence between vectors in V_{n} and integers in $\left\{0,1, \ldots, 2^{n}-1\right\}$. This allows us to order all the vectors according to their corresponding integer values. For convenience, we use α_{i} to denote the vector in V_{n} whose integer representation is i. Let f be a function on V_{n}. The ($1,-1$)-sequence

$$
(-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}, \ldots,(-1)^{f\left(\alpha_{2}{ }^{n}-1\right)}
$$

is called the sequence of $f(x)$.
The function $\varphi\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n} \oplus \boldsymbol{c}, a_{j}, c \in G F(2)$, is called an affine function, on V_{n}, in particular, a linear function if $c=0$. The sequence of an affine (a linear) function is called an affine sequence (a linear sequence).

From [4] we can give an equivalent definition of bent functions. Let ξ be the sequence of a function f on V_{n}. We call f a bent function and ξ a bent sequence, if the scalar product
$\langle\xi, \ell\rangle= \pm 2^{\frac{1}{2} n}$ for any linear sequence ℓ of length 2^{n}. Obviously bent functions on V_{n} exist only for even n.

Consider all the $(1,-1)$-sequences of length four: $\pm(++++), \pm(++--), \pm(+-+-)$, $\pm(+--+), \pm(+++-), \pm(++-+), \pm(+-++), \pm(-+++)$, where + and - denote 1 and -1 respectively. Each of the first eight is an affine sequence. For example, $(-++-)$ is the sequence $\varphi\left(x_{1}, x_{2}\right)=1 \oplus x_{1} \oplus x_{2}:(-1)^{\varphi(0,0)}=-1,(-1)^{\varphi(0,1)}=1,(-1)^{\varphi(1,0)}=1$, $(-1)^{\varphi(1,1)}=-1$. Note that a function on V_{2} is bent if and only if it is quadratic. Thus each of the second eight is a bent sequence. For example, $(--+-)$ is the sequence $g\left(x_{1}, x_{2}\right)=$ $1 \oplus x_{1} \oplus x_{1} x_{2}:(-1)^{g(0,0)}=-1,(-1)^{g(0,1)}=-1,(-1)^{g(1,0)}=1,(-1)^{g(1,1)}=-1$.

If a bent sequence of length 2^{n} is a concatenation of 2^{n-2} bent (affine) sequences of length 4 we call it bent-based (linear-based) bent sequence. Adams and Tavares conjectured that any bent sequence is either bent-based or linear-based [1]. We now prove that this conjecture is true if only if any bent function is quadratic. However there exist infinitely many bent functions with algebraic degree higher than two [2], [4]. This implies that the conjecture is not true.

The next lemma follows directly from the definition of bent-based (linear-based) bent sequences.

Lemma 1 Let ξ be the sequence of a bent function, f, on $V_{n}(n>2)$. Then ξ is bent-based (linear-based) if and only if $f\left(x_{1}^{0}, \ldots, x_{n-2}^{0}, x_{n-1}, x_{n}\right)$ is a bent (an affine) function on V_{2} for any fixed vector $\left(x_{1}^{0}, \ldots, x_{n-2}^{0}\right) \in V_{n-2}$.

Note that any function on V_{n} can be written as

$$
\begin{align*}
f\left(x_{1}, \ldots, x_{n}\right) & =r\left(x_{1}, \ldots, x_{n-2}\right) \oplus p\left(x_{1}, \ldots, x_{n-2}\right) x_{n-1} \oplus q\left(x_{1}, \ldots, x_{n-2}\right) x_{n} \\
& \oplus a\left(x_{1}, \ldots, x_{n-2}\right) x_{n-1} x_{n} \tag{1}
\end{align*}
$$

where p, q, r and a are functions on V_{n-2}. From Lemma 1 , it is easy to verify

Lemma 2 Let ξ be the sequence of a bent function, f, on $V_{n}(n>2)$. Then ξ is bent-based (linear-based) if and only if a $\left(x_{1}, \ldots, x_{n-2}\right)$ is the constant 1 (constant 0) in the expression for f in (1).

Theorem 1 The conjecture of Adams and Tavares is true if only if every bent function is quadratic.

Proof. Let ξ be the sequence of an arbitrary bent function on $V_{n}(n>2)$, say f.
Suppose any bent function is quadratic. It is easy to see that $a\left(x_{1}, \ldots, x_{n-2}\right)$ is constant in the expression for f as in (1). By Lemma 2, the conjecture is true.

Conversely, suppose the conjecture is true i.e. ξ is either bent-based or linear based. By Lemma $2, a\left(x_{1}, \ldots, x_{n-2}\right)$ is constant in the expression for f as in (1). Suppose f is not
quadratic. Then there exist two distinct indices i and j such that the coefficient of $x_{i} x_{j}$ in the expression for f is not constant. Rewrite $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{j_{1}}, \ldots, x_{j_{n-2}}, x_{i}, x_{j}\right)$, where j_{1}, \ldots, j_{n-2} is any permutation of $\{1, \ldots, n\}-\{i, j\}$. Applying the conjecture to g leads a contradiction.

References

[1] C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, IT-36 No. 5:1170-1173, 1990.
[2] P. V. Kumar, R. A. Scholtz, and L. R. Welch. Generalized bent functions and their properties. Journal of Combinatorial Theory, Ser. A, 40:90-107, 1985.
[3] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. New York: North-Holland, 1977.
[4] O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory, Ser. A, 20:300305, 1976.

