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Abstract
We prove that the conjecture on bent sequences stated in “Generating and counting

bent sequences”, IEEE Transactions on Information Theory, IT-36 No. 5, 1990 by C.M.
Adams and S.E. Tavares is false.

Let V), be the vector space of n tuples of elements from GF(2). Any map from V,, to

GF(2), f, can be uniquely written as a polynomial in coordinates x1, ..., z, [3], [4]:
fler,...,z0) = @ ayxit - -xn
vEVR

where @ denotes the boolean addition, v = (v1,...,v,), a, € GF(2). Thus we identify the
function f with polynomial f. Note that there exists a natural one to one correspondence
between vectors in V,, and integers in {0,1,...,2" — 1}. This allows us to order all the
vectors according to their corresponding integer values. For convenience, we use a; to
denote the vector in V,, whose integer representation is ¢. Let f be a function on V,,. The
(1,—1)-sequence

(—=1)f o) (—yflen) o (—q)fean)
is called the sequence of f(z).
The function ¢(z1,...,2,) = @121 B -+ B anzy, B ¢, aj, ¢ € GF(2), is called an affine

function, on V,, in particular, a linear function if ¢ = 0. The sequence of an affine (a
linear) function is called an affine sequence (a linear sequence).

From [4] we can give an equivalent definition of bent functions. Let £ be the sequence
of a function fon V,,. We call f a bent function and £ a bent sequence, if the scalar product



(&, 0) = +25™ for any linear sequence £ of length 2. Obviously bent functions on V), exist
only for even n.

Consider all the (1,—1)-sequences of length four: £(+ 4+ ++), £(++ ——), £(+ —+-),
+(+ - —4), (+ ++-), £(+ + —+), £(+ — ++), £(— + ++), where + and — denote 1
and —1 respectively. Each of the first eight is an affine sequence. For example, (- + +—)
is the sequence p(x1,29) = 1@ 21 @ z9: (—=1)900) = —1, (=1)#OD) = 1, (=1)»(1.0) = 1,
(=1)#D) = —1. Note that a function on Vy is bent if and only if it is quadratic. Thus each
of the second eight is a bent sequence. For example, (— — +—) is the sequence g(z1,z2) =
1@z @ xey: (=1)900 = —1, (=1)90D) = —1, (=190 = 1, (=1)s(LD) = 1,

If a bent sequence of length 2" is a concatenation of 272 bent (affine) sequences of
length 4 we call it bent-based (linear-based) bent sequence. Adams and Tavares conjectured
that any bent sequence is either bent-based or linear-based [1]. We now prove that this
conjecture is true if only if any bent function is quadratic. However there exist infinitely
many bent functions with algebraic degree higher than two [2], [4]. This implies that the
conjecture is not true.

The next lemma follows directly from the definition of bent-based (linear-based) bent
sequences.

Lemma 1 Let £ be the sequence of a bent function, f, on'V,, (n > 2). Then £ is bent-based
(linear-based) if and only if f(29,...,2% 5, 2, 1,2,) is a bent (an affine) function on V;
for any fized vector (29,...,2° .)€ V,_,.

Note that any function on V,, can be written as

fler,..,zn) = (@1, @n_2) B p(@1,. . 80—2)Tn-1 D ¢@1,...,Tpn2)Tp

B al®1,.. ., Tp-2)Tp_1%p (1)
where p, g, r and a are functions on V,,_5. From Lemma 1, it is easy to verify

Lemma 2 Let £ be the sequence of a bent function, f, on V,, (n > 2). Then £ is bent-based
(linear-based) if and only if a(x1,...,2,—2) is the constant 1 (constant 0) in the expression

for fin (1).

Theorem 1 The conjecture of Adams and Tavares is true if only if every bent function is
quadratic.

Proof. Let £ be the sequence of an arbitrary bent function on V,, (n > 2), say f.

Suppose any bent function is quadratic. It is easy to see that a(z1,...,2,_2) is constant
in the expression for f as in (1). By Lemma 2, the conjecture is true.

Conversely, suppose the conjecture is true i.e. £ is either bent-based or linear based. By
Lemma 2, a(21,...,%,—2) is constant in the expression for f as in (1). Suppose f is not



quadratic. Then there exist two distinct indices ¢ and j such that the coefficient of z;z; in
the expression for f is not constant. Rewrite f(zq,...,2,) = g(z;,...,2;,_,,%;,x;), where
J1s-+»Jn—z2 is any permutation of {1,...,n} — {i,7}. Applying the conjecture to g leads a
contradiction.
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