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Abstract— The focus of this paper is on nonlinear char-

acteristics of cryptographic Boolean functions. First, we

introduce the notion of plateaued functions that have many

cryptographically desirable properties. Second, we estab-

lish a sequence of strengthened inequalities on some of the

most important nonlinearity criteria, including nonlinear-

ity, avalanche and correlation immunity, and prove that

critical cases of the inequalities coincide with characteriza-

tions of plateaued functions. We then proceed to prove that

plateaued functions include as a proper subset all partially-

bent functions that were introduced earlier by Claude Car-

let. This solves an interesting problem that arises naturally

from previously known results on partially-bent functions.

In addition, we construct plateaued, but not partially-bent,

functions that have many properties useful in cryptography.
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I. Motivations

In the design of cryptographic functions, one often faces
the problem of fulfilling the requirements of a multiple
number of nonlinearity criteria. Some of the requirements
contradict others. The most notable example is perhaps
bent functions — while these functions achieve the high-
est possible nonlinearity and satisfy the avalanche crite-
rion with respect to every non-zero vector, they are not
balanced, not correlation immune and exist only when the
number of variables is even.

Another example that clearly demonstrates how some
nonlinear characteristics may impede others is partially-
bent functions introduced in [1]. These functions include
bent functions as a proper subset. Partially-bent func-
tions are interesting in that they can be balanced and also
highly nonlinear. However, except those that are bent,
all partially-bent functions have non-zero linear structures,
which are considered to be cryptographically undesirable.

The primary aim of this paper is to introduce a new
class of functions to facilitate the design of cryptographi-
cally good functions. It turns out that some of these cryp-
tographically good functions can maintain all the desir-
able properties of partially-bent functions while not pos-
sessing non-zero linear structures. This new class of func-
tions are called plateaued functions. To study the prop-
erties of plateaued functions, we establish a sequence of
inequalities concerning nonlinear characteristics. We show
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that plateaued functions can be characterized by the crit-
ical cases of these inequalities. In particular, we demon-
strate that plateaued functions reach the upper bound on
nonlinearity given by the inequalities.

We also examine relationships between plateaued func-
tions and partially-bent functions. We show that partially-
bent functions must be plateaued while the converse is not
true. Other useful properties of plateaued functions include
that they exist both for even and odd numbers of variables,
can be balanced and correlation immune.

The remaining part of the paper is organized as follows.
Section II introduces basic concepts on Boolean functions
that are used in this paper. Section III surveys prop-
erties of bent functions and partially-bent functions that
are relevant to this work. This is followed by Section IV
where the concept of plateaued functions is introduced.
Important properties of plateaued functions are studies
in Sections V and VI. Section VII investigates relation-
ships between plateaued functions and partially-bent func-
tions, while Section VIII shows methods for constructing
plateaued functions that have useful cryptographic prop-
erties, such as balance, high algebraic degree, SAC and
correlation immunity. Finally Section IX closes the paper
with a pointer to some latest developments in the research
into plateaued functions.

II. Boolean Functions

We consider functions from Vn to GF (2) (or simply
functions on Vn), where Vn is the vector space of n tu-
ples of elements from GF (2). Usually we write a func-
tion f on Vn as f(x), where x = (x1, . . . , xn) is the
variable vector in Vn. The truth table of a function f

on Vn is a (0, 1)-sequence defined by (f(α0), f(α1), . . . ,
f(α2n−1)), and the sequence of f is a (1,−1)-sequence
defined by ((−1)f(α0), (−1)f(α1), . . . , (−1)f(α2n

−1)), where
α0 = (0, . . . , 0, 0), α1 = (0, . . . , 0, 1), . . ., α2n−1 =
(1, . . . , 1, 1). The matrix of f is a (1,−1)-matrix of or-
der 2n defined by M = ((−1)f(αi⊕αj)) where ⊕ denotes
the addition in Vn. f is said to be balanced if its truth
table contains an equal number of ones and zeros.

Given two sequences ã = (a1, · · · , am) and b̃ =
(b1, · · · , bm), their component-wise product is defined by
ã ∗ b̃ = (a1b1, · · · , ambm) and the scalar product of ã and b̃,
denoted by 〈ã, b̃〉, is defined as the sum of the component-
wise multiplications, where the operations are defined in
the underlying field. In particular, if m = 2n and ã, b̃ are
the sequences of functions f and g on Vn respectively, then
ã ∗ b̃ is the sequence of f ⊕ g where ⊕ denotes the addition
in GF (2).

An affine function f on Vn is a function that takes the
form of f(x1, . . . , xn) = a1x1 ⊕ · · · ⊕ anxn ⊕ c, where ⊕
denotes the addition in GF (2) and aj , c ∈ GF (2), j =
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1, 2, . . . , n. Furthermore f is called a linear function if
c = 0.

A (1,−1)-matrix A of order m is called a Hadamard ma-
trix if AAT = mIm, where AT is the transpose of A and Im
is the identity matrix of order m. A Sylvester-Hadamard
matrix of order 2n, denoted by Hn, is generated by the
following recursive relation

H0 = 1, Hn =

[

Hn−1 Hn−1

Hn−1 −Hn−1

]

, n = 1, 2, . . . .

Let ℓi, 0 ≤ i ≤ 2n − 1, be the ith row of Hn. Then ℓi is
the sequence of a linear function ϕi(x) defined by the scalar
product ϕi(x) = 〈αi, x〉, where αi ∈ Vn corresponds to the
binary representation of an integer i, i = 0, 1, . . . , 2n − 1.

The Hamming weight of a (0, 1)-sequence ξ, denoted by
HW (ξ), is the number of ones in the sequence. Given two
functions f and g on Vn, the Hamming distance d(f, g)
between them is defined as the Hamming weight of the
truth table of f(x) ⊕ g(x), where x = (x1, . . . , xn).

Definition 1: The nonlinearity of a function f on Vn,
denoted by Nf , is the minimal Hamming distance be-
tween f and all affine functions on Vn, i.e., Nf =
mini=1,2,...,2n+1 d(f, ψi) where ψ1, ψ2, . . ., ψ2n+1 are all the
affine functions on Vn.

The following characterization of nonlinearity will be
useful (for a proof see for instance [2]).

Lemma 1: The nonlinearity of f can be expressed by

Nf = 2n−1 − 1

2
max{|〈ξ, ℓi〉|, 0 ≤ i ≤ 2n − 1}

where ξ is the sequence of f and ℓi is the ith row of Hn,
i = 0, 1, . . . , 2n − 1.

Definition 2: Let f be a function on Vn. For a vector
α ∈ Vn, denote by ξ(α) the sequence of f(x⊕α). Thus ξ(0)
is the sequence of f itself and ξ(0) ∗ ξ(α) is the sequence of
f(x)⊕f(x⊕α). Set ∆(α) = 〈ξ(0), ξ(α)〉, the scalar product
of ξ(0) and ξ(α). ∆(α) is also called the auto-correlation
of f with a shift α.

Definition 3: Let f be a function on Vn. We say that f
satisfies the avalanche criterion with respect to α if f(x)⊕
f(x⊕α) is a balanced function, where x = (x1, . . . , xn) and
α is a vector in Vn. Furthermore f is said to satisfy the
avalanche criterion of degree k if it satisfies the avalanche
criterion with respect to every non-zero vector α whose
Hamming weight is not larger than k (see [3]).

The strict avalanche criterion (SAC) [4] is the same as
the avalanche criterion of degree one.

Obviously, ∆(α) = 0 if and only if f(x)⊕f(x⊕α) is bal-
anced, i.e., f satisfies the avalanche criterion with respect
to α.

Definition 4: Let f be a function on Vn. α ∈ Vn is called
a linear structure of f if |∆(α)| = 2n.

For any function f , ∆(α0) = 2n, where α0 = 0, the zero
vector on Vn. Hence the zero vector is a linear structure
of every function on Vn. It is known that the set of all
linear structures of a function f form a subspace of Vn,
whose dimension is called the linearity of f . It is also well-
known that if f has non-zero linear structures, then there

exists a nonsingular n× n matrix B over GF (2) such that
f(xB) = g(y) ⊕ h(z), where x = (y, z), x ∈ Vn, y ∈ Vp,
z ∈ Vq, p+ q = n, g is a function on Vp that does not have
non-zero linear structures, and h is a linear function on Vq.
Hence q is equal to the linearity of f .

There exist a number of equivalent definitions of corre-
lation immune functions [5], [6]. The following definition is
closely related to Definition 2.1 of [5]:

Definition 5: Let f be a function on Vn and let ξ be its
sequence. Then f is called a kth-order correlation immune
function if 〈ξ, ℓ〉 = 0 for every ℓ, the sequence of a linear
function ϕ(x) = 〈α, x〉 on Vn constrained by 1 ≤W (α) ≤ k.

The following lemma is the re-statement of a relation
proved in Section 2 of [1].

Lemma 2: For every function f on Vn, we have

(∆(α0),∆(α1), . . . ,∆(α2n−1))Hn

= (〈ξ, ℓ0〉2, 〈ξ, ℓ1〉2, . . . , 〈ξ, ℓ2n−1〉2).

where ℓi is the ith row of Hn, j = 0, 1, . . . , 2n − 1.

III. Bent Functions and Partially-bent

Functions

Notation 1: Let f be a function on Vn, ξ the sequence
of f and ℓi denote the ith row of Hn, i = 0, 1, . . . , 2n − 1.
Set ℑ = {i | 0 ≤ i ≤ 2n − 1, 〈ξ, ℓi〉 6= 0}, ℜ = {α | ∆(α) 6=
0, α ∈ Vn}, and ∆M = max{|∆(α)|, α ∈ Vn − {0}}.

Note that to be more precise, ℑ, ℜ and ∆M should have
been written as ℑf , ℜf and ∆M,f respectively. The sub-
script is omitted when no confusion occurs.
ℑ, ℜ and ∆M share an interesting property. Namely,

#ℑ, #ℜ and ∆M are invariant under any nonsingular lin-
ear transformation on the variables, where # denotes the
cardinal number of a set.

Parseval’s equation states that
∑2n−1

j=0 〈ξ, ℓj〉2 = 22n

(Page 416, [7]). Noticing ∆(α0) = 2n, we can see that
neither ℑ nor ℜ is an empty set. ℑ reflects the correla-
tion immune property of f , while ℜ reflects its avalanche
characteristics and ∆M forecasts its avalanche property.
Therefore information on #ℑ, #ℜ and ∆M is useful in
investigating cryptographic characteristics of f .

Definition 6: A function f on Vn is called a bent function
[8] if 〈ξ, ℓi〉2 = 2n for every i = 0, 1, . . . , 2n − 1, where ℓi is
the ith row of Hn, i = 0, 1, . . . , 2n − 1.

A bent function on Vn exists only when n is even, and
it achieves the maximum nonlinearity 2n−1− 2

1
2
n−1. From

[8] and Parseval’s equation, we have the following:
Theorem 1: Let f be a function on Vn and ξ denote the

sequence of f . Then the following statements are equiva-
lent:

(i) f is bent,
(ii) for each i, 0 ≤ i ≤ 2n − 1, 〈ξ, ℓi〉2 = 2n where ℓi is the
ith row of Hn, i = 0, 1, . . . , 2n − 1,
(iii) #ℜ = 1,
(iv) ∆M = 0,

(v) the nonlinearity of f , Nf , satisfies Nf = 2n−1−2
1
2
n−1,

(vi) the matrix of f is an Hadamard matrix.
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An interesting theorem of [1] explores a relationship be-
tween #ℑ and #ℜ. This result can be expressed as follows.

Theorem 2: For any function f on Vn, we have
(#ℑ)(#ℜ) ≥ 2n, where the equality holds if and only if
there exists a nonsingular n× n matrix B over GF (2) and
a vector β ∈ Vn such that f(xB ⊕ β) = g(y)⊕ h(z), where
x = (y, z), x ∈ Vn, y ∈ Vp, z ∈ Vq, p + q = n, g is a bent
function on Vp and h is a linear function on Vq.

Based on the above theorem, the concept of partially-
bent functions was also introduced in the same paper [1].

Definition 7: A function on Vn is called a partially-bent
function if (#ℑ)(#ℜ) = 2n.

One can see that partially-bent functions include both
bent functions and affine functions. Applying Theorem 2
together with properties of linear structures, or using The-
orem 2 of [9] directly, we have

Proposition 1: A function f on Vn is a partially-bent
function if and only if each |∆(α)| takes the value of 2n

or 0 only. Equivalently, f is a partially-bent function if
and only if ℜ is composed of linear structures.

Some partially-bent functions are highly nonlinear and
satisfy the SAC. Furthermore, some partially-bent func-
tions are balanced. All these properties are useful in cryp-
tography.

IV. Plateaued Functions

Now we introduce a new class of functions called
plateaued functions. Here is the definition.

Definition 8: Let f be a function on Vn and ξ denote
the sequence of f . If there exists an even number r, 0 ≤
r ≤ n, such that #ℑ = 2r and each 〈ξ, ℓj〉2 takes the value
of 22n−r or 0 only, where ℓj denotes the jth row of Hn,
j = 0, 1, . . . , 2n − 1, then f is called an rth-order plateaued
function on Vn. f is also simply called a plateaued function
on Vn if we ignore the particular order r.

Due to Parseval’s equation, the condition that #ℑ = 2r

can be obtained from the condition that “each 〈ξ, ℓj〉2 takes
the value of 22n−r or 0 only, where ℓj denotes the jth row
of Hn, j = 0, 1, . . . , 2n − 1”. For the sake of convenience,
however, we have mentioned both conditions in Definition
8.

The following result can be obtained immediately from
Definition 8.

Proposition 2: Let f be a function on Vn. Then we have

(i) if f is an rth-order plateaued function then r must be
even,

(ii) f is an nth-order plateaued function if and only if f is
bent,

(iii) f is a 0th-order plateaued function if and only if f is
affine.

To help understand the definition of plateaued functions
together with their relationships with affine and bent func-
tions, profiles of |〈ξ, ℓj〉|, j = 0, 1, . . . , 2n − 1, of plateaued
functions are depicted in Figure ??. The following is a
consequence of Theorem 3 of [9].

Proposition 3: Every partially-bent function is a plateaued
function.

An interesting question that arises naturally from Propo-
sition 3 is whether a plateaued function is also partially-
bent. In the coming sections we characterize plateaued
functions and disprove the converse of the proposition.

V. Characterizations of Plateaued Functions

Notation 2: Let f be a function on Vn and ξ denote
the sequence of f . Let χ denote the real valued (0, 1)-
sequence defined as χ = (c0, c1, . . . , c2n−1) where cj =
{

1 if j ∈ ℑ
0 otherwise

and αj ∈ Vn is the binary representation

of an integer j. Write

χHn = (s0, s1, . . . , s2n−1) (1)

where each sj is an integer.

We note that χ











〈ξ, ℓ0〉2
〈ξ, ℓ1〉2

...
〈ξ, ℓ2n−1〉2











=
∑2n−1

j=0 〈ξ, ℓj〉2 = 22n,

where the second equality holds thanks to Parseval’s equa-

tion. By using Lemma 2, we have χHn











∆(α0)
∆(α1)

...
∆(α2n−1)











=

22n. Noticing ∆(α0) = 2n, we obtain s02
n +

∑2n−1
j=1 sj∆(αj) = 22n. Since

∆(αj) = 0 if αj 6∈ ℜ (2)

we have s02
n +

∑

αj∈ℜ,j>0 sj∆(αj) = 22n. As s0 = #ℑ,

where # denotes the cardinal number of a set, we have
∑

αj∈ℜ,j>0 sj∆(αj) = 2n(2n − #ℑ). Note that

2n(2n − #ℑ) =
∑

αj∈ℜ,j>0

sj∆(αj)

≤
∑

αj∈ℜ,j>0

|sj∆(αj)|

≤ sM∆M (#ℜ − 1) (3)

where sM = max{|sj |, 0 < j ≤ 2n−1}. Hence the following
inequality holds.

sM∆M (#ℜ − 1) ≥ 2n(2n − #ℑ) (4)

From (1), we obtain

#ℑ · 2n =

2n−1
∑

j=0

s2j

or #ℑ(2n − #ℑ) =
2n−1
∑

j=1

s2j (5)

Now we prove the first inequality that helps us under-
stand properties of plateaued functions.
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Theorem 3: Let f be a function on Vn and ξ denote the
sequence of f . Then

2n−1
∑

j=0

∆2(αj) ≥
23n

#ℑ

where the equality holds if and only if f is a plateaued
function.

Proof: By using (3), the property of Hölder’s Inequal-
ity [10], and (5), we obtain

22n =
∑

αj∈ℜ

sj∆(αj) ≤
∑

αj∈ℜ

|sj∆(αj)|

≤
√

(
∑

αj∈ℜ

s2j)
∑

αj∈ℜ

∆2(αj))

≤

√

√

√

√(

2n−1
∑

j=0

s2j)(

2n−1
∑

j=0

∆2(αj))

=

√

√

√

√#ℑ2n

2n−1
∑

j=0

∆2(αj) (6)

Hence 23n

#ℑ ≤
∑2n−1

j=0 ∆2(αj). We have proved the inequal-
ity in the theorem.

Assume that the equality in the theorem holds, i.e.,
∑2n−1

j=0 ∆2(αj) = 23n

#ℑ . This implies that all the equalities

in (6) hold. Hence

22n =
∑

αj∈ℜ

sj∆(αj) =
∑

αj∈ℜ

|sj∆(αj)|

=

√

(
∑

αj∈ℜ

s2j)(
∑

αj∈ℜ

∆2(αj))

=

√

√

√

√(

2n−1
∑

j=0

s2j)(

2n−1
∑

j=0

∆2(αj))

=

√

√

√

√#ℑ2n

2n−1
∑

j=0

∆2(αj) (7)

Applying the property of Hölder’s Inequality to (7), we
conclude that

|∆(αj)| = ν|sj |, αj ∈ ℜ (8)

where ν > 0 is a constant. Applying (8) and (5) to (7), we
have

22n =
∑

αj∈ℜ

|sj∆(αj)| =

√

√

√

√#ℑ2nν2

2n−1
∑

j=0

s2j = ν#ℑ2n (9)

From (7), we have
∑

αj∈ℜ sj∆(αj) =
∑

αj∈ℜ |sj∆(αj)|.
Hence (8) can be expressed more accurately as follows

∆(αj) = νsj , αj ∈ ℜ (10)

where ν > 0 is a constant. From (7), it is easy to see that
∑

αj∈ℜ s
2
j =

∑2n−1
j=0 s2j . Hence

sj = 0 if αj 6∈ ℜ (11)

Combining (10), (11) and (2), we have

ν(s0, s1, . . . , s2n−1)

= (∆(α0),∆(α1), . . . ,∆(α2n−1)) (12)

Noting (1), we obtain

νχHn = (∆(α0),∆(α1), . . . ,∆(α2n−1)) (13)

Furthermore noting the equation in Lemma 2, we obtain

2nνχ = (〈ξ, ℓ0〉2, . . . , 〈ξ, ℓ2n−1〉2) (14)

It should be pointed out that χ is a real valued (0, 1)-
sequence, containing #ℑ ones. By using Parseval’s equa-
tion, we obtain 2nν(#ℑ) = 22n. Hence ν(#ℑ) = 2n,
and there exists an integer r with 0 ≤ r ≤ n such that
#ℑ = 2r and ν = 2n−r. From (14) it is easy to see that
〈ξ, ℓj〉2 = 22n−r or 0. Hence r must be even. This proves
that f is a plateaued function.

Conversely assume that f is a plateaued function. Then
there exists an even number r, 0 ≤ r ≤ n, such that
#ℑ = 2r and 〈ξ, ℓj〉2 = 22n−r or 0. Considering

Lemma 2, we have
∑2n−1

j=0 ∆2(αj) = 2−n
∑2n−1

j=0 〈ξ, ℓj〉4 =

2−n · 2r · 24n−2r = 23n−r. Hence we have proved that
∑2n−1

j=0 ∆2(αj) = 23n

#ℑ .
Lemma 3: Let f be a function on Vn and ξ denote the

sequence of f . Then the nonlinearityNf of f satisfies Nf ≤
2n−1 − 2n−1√

#ℑ
, where the equality holds if and only if f is a

plateaued function.
Proof: Set pM = max{|〈ξ, ℓj〉|, j = 0, 1, . . . , 2n − 1},

where ℓj is the jth row of Hn. Using Parseval’s equation,
we obtain p2

M#ℑ ≥ 22n. Due to Lemma 1, we obtain

Nf ≤ 2n−1 − 2n−1√
#ℑ

.

Assume that f is a plateaued function. Then there exists
an even number r, 0 ≤ r ≤ n, such that #ℑ = 2r and each
〈ξ, ℓj〉2 takes either the value of 22n−r or 0 only, where ℓj
denotes the jth row of Hn, j = 0, 1, . . . , 2n − 1. Hence
pM = 2n− 1

2
r. Once again noting Lemma 1, we have Nf =

2n−1 − 2n− 1
2
r−1 = 2n−1 − 2n−1√

#ℑ
.

Conversely assume that Nf = 2n−1 − 2n−1√
#ℑ

. From

Lemma 1, we have also Nf = 2n−1 − 1
2pM . Hence

pM

√
#ℑ = 2n. Since both pM and

√
#ℑ are inte-

gers and, more importantly, powers of two, we can let
#ℑ = 2r, where r is an integer with 0 ≤ r ≤ n. Hence
pM = 2n− r

2 . Obviously r is even. From Parseval’s equa-
tion,

∑

j∈ℑ〈ξ, ℓj〉2 = 22n, together with the fact that

p2
M#ℑ = 22n, we conclude that 〈ξ, ℓj〉2 = 22n−r for all
j ∈ ℑ. This proves that f is a plateaued function.

From the proof of Lemma 3, we can see that Lemma 3
can be stated in a different way as follows.
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Lemma 4: Let f be a function f on Vn and ξ denote the
sequence of f . Set pM = max{|〈ξ, ℓj〉|, j = 0, 1, . . . , 2n−1},
where ℓj is the jth row of Hn. Then pM

√
#ℑ ≥ 2n where

the equality holds if and only if f is a plateaued function.

Summarizing Theorem 3, Lemmas 3 and 4, we conclude

Theorem 4: Let f be a function on Vn and ξ denote the
sequence of f . Set pM = max{|〈ξ, ℓj〉|, j = 0, 1, . . . , 2n −
1}, where ℓj is the jth row of Hn. Then the following
statements are equivalent:

(i) f is a plateaued function on Vn,

(ii)
∑2n−1

j=0 ∆2(αj) = 23n

#ℑ ,

(iii) the nonlinearity of f , Nf , satisfies Nf = 2n−1− 2n−1√
#ℑ

,

(iv) pM

√
#ℑ = 2n,

(v) Nf = 2n−1 − 2−
n
2
−1

√

∑2n−1
j=0 ∆2(αj).

Proof: Due to Theorem 3, Lemmas 3 and 4, (i), (ii),
(iii) and (iv) hold. (v) follows from (ii) and (iii).

We now proceed to prove the second inequality that re-
lates ∆(αj) to nonlinearity.

Theorem 5: Let f be a function on Vn and ξ denote the
sequence of f . Then the nonlinearity Nf of f satisfies

Nf ≤ 2n−1 − 2−
n
2
−1

√

√

√

√

2n−1
∑

j=0

∆2(αj)

where the equality holds if and only if f is a plateaued
function on Vn.

Proof: Set pM = max{|〈ξ, ℓj〉|, j = 0, 1, . . . , 2n − 1}.
Multiplying the equality in Lemma 2 by itself, we have

2n

2n−1
∑

j=0

∆2(αj) =

2n−1
∑

j=0

〈ξ, ℓj〉4 ≤ p2
M

2n−1
∑

j=0

〈ξ, ℓj〉2.

Applying Parseval’s equation to the above equality,

we have
∑2n−1

j=0 ∆2(αj) ≤ 2np2
M . Hence pM ≥

2−
n
2

√

∑2n−1
j=0 ∆2(αj). Thanks to Lemma 1, we have proved

the inequality Nf ≤ 2n−1 − 2−
n
2
−1

√

∑2n−1
j=0 ∆2(αj). The

rest part of the theorem can be proved by using Theorem
4.

Theorem 3, Lemmas 3 and 4 and Theorem 4 represent
characterizations of plateaued functions.

To close this section, let us note that since ∆(α0) = 2n

and #ℑ ≤ 2n, we have 2n−1 − 2−
n
2
−1

√

∑2n−1
j=0 ∆2(αj) ≤

2n−1 − 2
n
2
−1 and 2n−1 − 2n−1√

#ℑ
≤ 2n−1 − 2

n
2
−1. Hence

both inequalities Nf ≤ 2n−1 − 2−
n
2
−1

√

∑2n−1
j=0 ∆2(αj) and

Nf ≤ 2n−1− 2n−1√
#ℑ

are improvements on a more commonly

used inequality Nf ≤ 2n−1 − 2
n
2
−1.

VI. Other Cryptographic Properties of

Plateaued Functions

Lemma 1 implies that the following statement holds:

Proposition 4: Let f be an rth-order plateaued function
on Vn. Then the nonlinearityNf of f satisfies Nf = 2n−1−
2n− r

2
−1.

The following result is the same as Theorem 18 of [11].
Lemma 5: Let f be a function on Vn (n ≥ 2), ξ be

the sequence of f , and p is an integer, 2 ≤ p ≤ n. If
〈ξ, ℓj〉 ≡ 0 (mod 2n−p+2), where ℓj is the jth row of Hn,
j = 0, 1, . . . , 2n − 1, then the algebraic degree of f is at
most p− 1.
Using Lemma 5, we obtain

Proposition 5: Let f be an rth-order plateaued function
on Vn. Then the algebraic degree of f , denoted by deg(f),
satisfies deg(f) ≤ r

2 + 1.
We note that the upper bound on algebraic degree in

Proposition 5 is tight for r < n. For the case of r = n,
the nth-order plateaued function is a bent function on Vn.
[8] gives a better upper bound on the algebraic degree of a
bent function on Vn. That bound is n

2 .
The following property of plateaued functions can be ver-

ified by noting their definition.
Proposition 6: Let f be an rth-order plateaued function

on Vn, B be any nonsingular n×n matrix over GF (2) and
α be any vector in Vn. Then f(xB⊕α) is also an rth-order
plateaued function on Vn.

Next we show that rth-order plateaued functions have
the property that their linearity is bounded from above by
n− r.

Theorem 6: Let f be an rth-order plateaued function on
Vn. Then the linearity of f , denoted by q, satisfies q ≤ n−r,
where the equality holds if and only if f is partially-bent.

Proof: There exists a nonsingular n×nmatrix B over
GF (2) such that f(xB) = g(y) ⊕ h(z), where x = (y, z),
y ∈ Vp, z ∈ Vq, p + q = n, g is a function on Vp that
does not have non-zero linear structures, and h is a linear
function on Vq. Hence q is equal to the linearity of f . Set
f∗(x) = f(xB).

Let ξ, η and ζ denote the sequences of f∗, g and h re-
spectively. Then ξ = η×ζ, where × denotes the Kronecker
product [12]. From the structure of Hn, we know that each
row L of Hn can be expressed as L = ℓ × e, where ℓ is a
row of Hp and e is a row of Hq. Then we have

〈ξ, L〉 = 〈η, ℓ〉〈ζ, e〉 (15)

Since h is linear, ζ must be a row of Hq. Replacing e by ζ
in (15), we have

〈ξ, L′〉 = 〈η, ℓ〉〈ζ, ζ〉 = 2q〈η, ℓ〉 (16)

where L′ = ℓ× ζ is still a row of Hn.
Note that f∗ is also an rth-order plateaued function on

Vn. Hence 〈ξ, L〉 takes the value of ±2n− 1
2

r or 0 only. Due

to (16), 〈η, ℓ〉 takes the value of ±2n− 1
2
r−q = ±2p− 1

2
r or 0

only. This proves that g is an rth-order plateaued function
on Vp. Hence r ≤ p and r ≤ n− q, i.e., q ≤ n− r.

Assume that q = n − r. Then p = r. From (16), each
〈η, ℓ〉 takes the value of ±2

r
2 = ±2

p

2 or 0 only, where ℓ is
any row of Hp. Hence applying Parseval’s equation to g,
we can conclude that for each row ℓ of Hp, 〈η, ℓ〉 cannot
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take the value of zero. In other words, for each row ℓ of Hp,

〈η, ℓ〉 takes the value of ±2
p

2 only. Hence we have proved
that g is a bent function on Vp. Due to Theorem 2, f is
partially-bent. Conversely, assume that f is partially-bent.
Due to Theorem 2, g is a bent function on Vp. Hence each

〈η, ℓ〉 takes the value of ±2
p

2 only, where ℓ is any row of Hp.
As both ζ and e are rows of Hq, 〈ζ, e〉 takes the value 2q or
0 only. From (15), we conclude that 〈ξ, L〉 takes the value
±2q+ p

2 or 0 only. Recall that f is an rth-order plateaued
function on Vn. Hence q + p

2 = n − r
2 . This implies that

r = p, i.e., q = n− r.

VII. Relationships between Partially-bent

Functions and Plateaued Functions

To examine more profound relationships between
partially-bent functions and plateaued functions, we intro-
duce a new characterization of partially-bent functions as
follows.

Theorem 7: For every function f on Vn, we have

2n − #ℑ
#ℑ ≤ ∆M

2n
(#ℜ − 1)

where the equality holds if and only if f is partially-bent.
Proof: From Notation 2, we have sM ≤ s0 = #ℑ.

As a consequence of (4), we obtain the inequality in the
theorem. Next we consider the equality in the theorem.
Assume that the equality holds, i.e.,

∆M (#ℜ− 1)#ℑ = 2n(2n − #ℑ) (17)

From (3), we have

2n(2n − #ℑ) ≤
∑

αj∈ℜ,j>0

|sj∆(αj)|

≤ ∆M

∑

αj∈ℜ,j>0

|sj |

≤ ∆M (#ℜ − 1)#ℑ (18)

From (17), we can see that all the equalities in (18) hold.
Hence

∆M (#ℜ− 1)#ℑ =
∑

αj∈ℜ,j>0

|sj∆(αj)| (19)

Note that |sj | ≤ #ℑ and |∆(αj)| ≤ ∆M , for j > 0. Hence
from (19), we obtain

|sj| = #ℑ whenever αj ∈ ℜ and j > 0 (20)

and |∆(αj)| = ∆M for all αj ∈ ℜ with j > 0.
Applying (20) to (5), and noticing that s0 = #ℑ, we ob-

tain #ℑ · 2n =
∑2n−1

j=0 s2j ≥ ∑

αj∈ℜ s
2
j = (#ℜ)(#ℑ)2. This

results in 2n ≥ (#ℜ)(#ℑ). Together with the inequality
in Theorem 2, it proves that (#ℜ)(#ℑ) = 2n, i.e., f is a
partially-bent function.

Conversely assume that f is a partially-bent function,
i.e., (#ℑ)(#ℜ) = 2n. Then the inequality in the theorem
is specialized as

∆M (2n − #ℑ) ≥ 2n(2n − #ℑ) (21)

We need to examine two cases. Case 1: #ℑ = 2n. Obvi-
ously the equality in (21) holds. Case 2: #ℑ 6= 2n. From
(21), we have ∆M ≥ 2n. Thus ∆M = 2n. This completes
the proof.

Next we consider a non-bent function f . With such a
function we have ∆M 6= 0. Thus from Theorem 7, we have
the following result.

Corollary 1: For every non-bent function f on Vn, we
have

(#ℑ)(#ℜ) ≥ 2n(2n − #ℑ)

∆M

+ #ℑ

where the equality holds if and only if f is partially-bent
(but not bent).

Proposition 7: For every non-bent function f , we have

2n(2n − #ℑ)

∆M

+ #ℑ ≥ 2n

where the equality holds if and only if #ℑ = 2n or f has a
non-zero linear structure.

Proof: Since ∆M ≤ 2n, the inequality is obvious. On
the other hand, it is easy to see that the equality holds if
and only if (2n − ∆M )(2n − #ℑ) = 0.

From Proposition 7, one observes that for any non-bent
function f , Corollary 1 implies Theorem 2.

Theorem 8: Let f be an rth-order plateaued function.
Then the following statements are equivalent:
(i) f is a partially-bent function,
(ii) #ℜ = 2n−r,
(iii) ∆M (#ℜ − 1) = 22n−r − 2n,
(iv) the linearity q of f satisfies q = n− r.

Proof: (i) =⇒ (ii). Since f is a partially-bent func-
tion, we have (#ℑ)(#ℜ) = 2n. As f is also an rth-order
plateaued function, #ℑ = 2r and hence #ℜ = 2n−r.

(ii) =⇒ (iii). When r = n, we have #ℜ = 1 and hence
(iii) holds. For the case of r < n, using Theorem 7, we

have 2n−#ℑ
#ℑ ≤ ∆M

2n (#ℜ − 1) which is specialized as

2n−r − 1 ≤ ∆M

2n
(2n−r − 1) (22)

From (22) and the fact that ∆M ≤ 2n, we obtain 2n−r−1 ≤
∆M

2n (2n−r−1) ≤ 2n−r−1. Hence ∆M = 2n. Since (ii) holds,
we have ∆M (#ℜ− 1) = 22n−r − 2n.

(iii) =⇒ (i). Note that (iii) implies 2n−#ℑ
#ℑ = ∆M

2n (#ℜ−
1) where #ℑ = 2r. By Theorem 7, f is partially-bent.

Due to Theorem 6, we have (iv) ⇐⇒ (i).

VIII. Construction of Plateaued Functions and

Disproof of the Converse of Proposition 3

A. Existence of Balanced rth-order Plateaued Functions
and Disproof of The Converse of Proposition 3

Lemma 6: For any integer k with k ≥ 2, there ex-
ist k + 1 non-zero vectors in Vk, say γ0, γ1, . . .,
γk, such that for any non-zero vector γ ∈ Vk,
we have (〈γ0, γ〉, 〈γ1, γ〉, . . . , 〈γk, γ〉) 6= (0, 0, . . . , 0) and
(〈γ0, γ〉, 〈γ1, γ〉, . . . , 〈γk, γ〉) 6= (1, 1, . . . , 1).

Proof: We choose k linearly independent vectors
in Vk, say γ1, . . . , γk. From linear algebra, (〈γ1, γ〉, . . .,
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〈γk, γ〉) goes through all the non-zero vectors in Vk exactly
once while γ goes through all the non-zero vectors in Vk.

Hence there exists a unique γ∗ satisfying

(〈γ1, γ
∗〉, . . . , 〈γk, γ

∗〉) = (1, . . . , 1)

As a consequence, for any non-zero vector γ ∈ Vk with
γ 6= γ∗, {〈γ1, γ〉, . . . , 〈γk, γ〉} contains both one and zero.

Let γ0 be a non-zero vector in Vk, such that 〈γ0, γ
∗〉 = 0.

Obviously γ0 6∈ {γ1, . . . , γk}. It is easy to see that γ0, γ1,
. . ., γk satisfy the property in the lemma.

Let t and k be positive integers with k < 2t < 2k. Set
n = t + k and r = 2n − 2k = 2t. We now prove the
existence of balanced rth-order plateaued functions on Vn

and disproves the converse of Proposition 3. In this sec-
tion, we will not discuss nth-order and 0th-order plateaued
function on Vn as they are simply bent and affine functions
respectively.

Since t < k, there exists a mapping P from Vt to Vk

satisfying
(i) P (β) 6= P (β′) if β 6= β′,
(ii) γ0, γ1, . . . , γk ∈ P (Vt), where P (Vt) = {P (β)|β ∈ Vt},
(iii) 0 6∈ P (Vt) where 0 denotes the zero vector in Vk.

We define a function f on Vt+k as follows

f(x) = f(y, z) = P (y)zT (23)

where x = (y, z), y ∈ Vt and z ∈ Vk. Denote the sequence
of f by ξ.

Let L be a row of Ht+k. Hence L = e×ℓ where e is a row
of Ht and ℓ is a row of Hk. Once again from the properties
of Sylvester-Hadamard matrices, L is the sequence of a
linear function Vt+k, denoted by ψ, ψ(x) = 〈α, x〉, α =
(β, γ) and x = (y, z) where y, β ∈ Vt and z, γ ∈ Vk. Hence
ψ(x) = 〈β, y〉 ⊕ 〈γ, z〉.

Note that

〈ξ, L〉 =
∑

y∈Vt,z∈Vk

(−1)P (y)zT ⊕〈β,y〉⊕〈γ,z〉

=
∑

y∈Vt

(−1)〈β,y〉
∑

z∈Vk

(−1)(P (y)⊕γ)zT

= 2k
∑

P (y)=γ

(−1)〈β,y〉

=

{

2k(−1)〈β,P−1(γ)〉 if P−1(γ) exists
0 otherwise

(24)

Thus f is an rth-order plateaued function on Vn.
Next we prove that f has no non-zero linear structures.

Let α = (β, γ) be a non-zero vector in Vt+k where β ∈ Vt

and γ ∈ Vk.

∆(α)

= 〈ξ, ξ(α)〉
=

∑

y∈Vt,z∈Vk

(−1)P (y)zT⊕P (y⊕β)(z⊕γ)T

=
∑

y∈Vt

(−1)P (y⊕β)γT
∑

z∈Vk

(−1)(P (y)⊕P (y⊕β))zT

(25)

There exist two cases to be considered: β 6= 0 and β = 0.
When β 6= 0, due to the property (i) of P , we have P (y) 6=
P (y ⊕ β). Hence we have

∑

z∈Vk
(−1)(P (y)⊕P (y⊕β))zT

= 0
from which it follows that ∆(α) = 0. On the other

hand, when β = 0, we have ∆(α) = 2k
∑

y∈Vt
(−1)P (y)γT

.

Due to Lemma 6, P (y)γT cannot be a constant. Hence
∑

y∈Vt
(−1)P (y)γT 6= ±2t which implies that ∆(α) 6= 2t+k.

Thus we can conclude that f has no non-zero linear struc-
tures.

Finally, due to the property (iii) of P , f must be bal-
anced. Therefore we have

Lemma 7: Let k, t be possible integers with k < 2t < 2k,
n = t + k and r = 2t. Then there exists a balanced rth-
order plateaued function on Vn that does not have a non-
zero linear structure.

Lemma 7 not only indicates the existence of balanced
plateaued function of any order r with 0 < r < n, but also
shows that the converse of Proposition 3 is not true.

f has some other interesting properties. In particular,
due to Proposition 4, the nonlinearity Nf of f satisfies
Nf = 2n−1 − 2n− r

2
−1. Since f is not partially-bent, The-

orem 2 tells us that (#ℑ)(#ℜ) > 2n. This proves that
#ℜ > 2n−r. On the other hand, from (25), we have

#ℜ ≤ 2k = 2n− 1
2

r. Thus we have 2n−r < #ℜ ≤ 2n− 1
2
r. It

is important to note that such functions as f exist on Vn

both for n even and odd.

Now we summarize the relationships among bent,
partially-bent and plateaued functions. Let Bn denote
the set of bent functions on Vn, Pn denote the set of
partially-bent functions on Vn and Fn denote the set of
plateaued functions on Vn. Then the above results imply
that Bn ⊂ Pn ⊂ Fn, where ⊂ denotes the relationship
of proper subset. We further let Gn denote the set of
plateaued functions on Vn that are not bent and do not
have non-zero linear structures. The relationships among
these classes of functions are shown in Figure ??. Lemma 7
ensures that Gn is non-empty.

B. Constructing Balanced rth-order Plateaued Functions
Satisfying SAC

Next we consider how to improve the function in the
proof of Lemma 7 so as to obtain an rth-order plateaued
function on Vn satisfying the strictly avalanche criterion
(SAC), in addition to all the properties mentioned in Sec-
tion VIII-A.

Note that if r > 2, i.e., t > 1, then from Section VIII-A,
we have #ℜ ≤ 2n− 1

2
r < 2n−1. In other words, #ℜc > 2n−1

where ℜc denotes the complementary set of ℜ. Hence there
exist n linearly independent vectors in ℜc. In other words,
there exist n linearly independent vectors with respect to
which f satisfies the avalanche criterion. Hence we can
choose a nonsingular n×n matrix A over GF (2) such that
g(x) = f(xA) satisfies the SAC (see [13]). The nonsingular
linear transformationA does not alter any of the properties
of f discussed in Section VIII-A. Thus we have

Lemma 8: Let n be a positive number and r be any even
number with 0 < r < n. Then there exists a balanced
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rth-order plateaued function on Vn that does not have a
non-zero linear structure and satisfies the SAC.

C. Constructing Balanced rth-order Plateaued Functions
Satisfying SAC and Having Maximum Algebraic Degree

We can further improve the function described in Section
VIII-B so as to obtain an rth-order plateaued functions on
Vn that have the highest algebraic degree and satisfy all
the properties mentioned in Section VIII-B.

Theorem 1 in Chapter 13 of [7] allows us to verify that
the following lemma is true.

Lemma 9: Let g be a function on Vn. Then the degree
of g is equal to n if and only if #{α|g(α) = 1, α ∈ Vn} is
odd.

As k > t, it is easy to construct two mappings P ′ and
P ′′ from Vt to Vk such that both satisfy properties (i),
(ii) and (iii), mentioned in Section VIII-A, furthermore,
P ′(α) = P ′′(α) for α 6= 0, and P ′(0) 6= P ′′(0).

Note that P ′(α) = P ′′(α) if α 6= 0, and P ′(0) 6= P ′′(0).
Due to Lemma 9, it is easy to see that a component function
of P ′ ⊕ P ′′ has degree t, and hence a component function
of P ′ or P ′′ has degree t. Without loss of generality, we
assume that a component function of P ′ has degree t, also
P ′ is identified with P , which we used in Sections VIII-A
and VIII-B. Hence the function f has degree t+ 1.

We have now constructed an rth-order plateaued func-
tion with algebraic degree r

2 + 1. Applying the discussions
in Sections VIII-A and VIII-B, we can obtain an rth-order
plateaued function on Vn having algebraic degree r

2 +1 and
satisfying all the properties of the function constructed in
Section VIII-A and VIII-B. It should be noted that the
function constructed in this subsection achieves the high-
est possible algebraic degree given in Proposition 5. Thus
the upper bound on the algebraic degree of plateaued func-
tions, mentioned in Proposition 5, is tight. Hence we have
the following result

Theorem 9: Let k, t be possible integers with k < 2t <

2k, n = t + k and r = 2t. Then there exists a balanced
rth-order plateaued function on Vn that does not have a
non-zero linear structure, satisfies the SAC and has the
highest possible algebraic degree r

2 + 1.

D. Constructing Balanced rth-order Plateaued and Corre-
lation Immune Functions

Let f be a function on Vn, ξ be the sequence of f and ℓi
denote the ith row of Hn, i = 0, 1, . . . , 2n − 1. Recall that
in Notation 1, we defined ℑf = {i | 0 ≤ i ≤ 2n−1, 〈ξ, ℓi〉 6=
0}. Now let ℵf = {αi | 0 ≤ i ≤ 2n − 1, i ∈ ℑf}. ℵf will be
used in the following description of constructing plateaued
functions that are correlation immune.

Lemma 10: Let f be a function on Vn, ξ be the sequence
of f , and ℓi denote the ith row of Hn. Also let W be an
r-dimensional linear subspace of Vn such that ℵf ⊆ W ,
and s = ⌊n

r
⌋ where ⌊n

r
⌋ denotes the maximum integer not

larger than n
r
. Then there exists a nonsingular n×nmatrix

B on GF (2) such that h(y) = f(yB) is an (s− 1)th-order
correlation immune function.

Proof: For the sake of convenience, let 0i denote
the all-zero sequence of length i and 1i denote the all-one
sequence of length i. Define σj ∈ Vn, j = 1, . . . , r, as
follows:

σ1 = (1s, 0s, . . . , 0s, 0n−(r−1)s),

σ2 = (0s, 1s, 0s, . . . , 0s, 0n−(r−1)s),

. . .

σr−1 = (0s, . . . , 0s, 1s, 0n−(r−1)s),

σr = (0s, . . . , 0s, 1n−(r−1)s).

Since n ≥ rs, the length of 1n−(r−1)s is at least s. Note that
the linear combinations of σ1, . . . , σr form an r-dimensional
linear subspace U of Vn, and each non-zero vector in U has
a Hamming weight of at least s. Since both W and U are
r-dimensional, there exists a nonsingular n × n matrix B

on GF (2) satisfying UB = W , where UB = {γB|γ ∈ U}.
Define a function h on Vn such that h(y) = f(yB). Since
ℵf ⊆ W , we have ℵh ⊆ U . Let α be a non-zero vector
in Vn whose Hamming weight is at most s− 1. Obviously
α 6∈ U and hence α 6∈ ℵh. Therefore for any sequence ℓ
of a linear function ϕ(x) = 〈α, x〉 on Vn, constrained by
1 ≤ W (α) ≤ s − 1, we have 〈η, ℓi〉 = 0, where η denotes
the sequence of h. This proves that h(y) = f(yB) is an
(s− 1)th-order correlation immune function.

By using the method described in Section VIII-A, we
can construct plateaued functions that are correlation im-
mune, highly nonlinear and do not have non-zero linear
structures. More specifically, since k ≥ t + 1, there exists
a (t+ 1)-dimensional subspace of Vk. Denote the subspace
by W . In the proof of Lemma 6, we can impose on the
mapping P a condition that P (Vt) ⊂ W . From (24), we
have α = (β, γ) ∈ ℵf if and only if P−1(γ) exists, where
β ∈ Vt and γ ∈ Vk. In other words, ℵf = (Vt, P (Vt))
where (Vt, P (Vt)) = {(β, γ)|β ∈ Vt, γ ∈ P (Vt)}. Hence
ℵf ⊂ (Vt,W ). Note that (Vt,W ) is a (2t+ 1)-dimensional
subspace of Vt+k. From Lemma 10, we know that there
exists a nonsingular n × n matrix B on GF (2) such that
h(y) = g(yB) is an (s − 1)th-order correlation immune
function, where s = ⌊ t+k

2t+1⌋ or s = ⌊ n
r+1⌋. The func-

tion h satisfies all the other useful properties mentioned
in Section VIII-A. That is, in addition to being correla-
tion immune, h is balanced, highly nonlinear, and does not
have non-zero linear structures. Furthermore h satisfies
2n−r < #ℜh ≤ 2n− 1

2
r. Hence we have proved

Theorem 10: Let t and k be positive integers with k <

2t < 2k. Let n = k + t and r = 2t. Then there exists an
rth-order plateaued function on Vn that is also an (s−1)th-
order correlation immune function, where s = ⌊ n

r+1⌋ or

s = ⌊ t+k
2t+1⌋, and does not have a non-zero linear structure.

IX. Conclusions

We have introduced and characterized a new class of
functions called plateaued functions. These functions bring
together various nonlinear characteristics. We have also
shown that partially-bent functions are a proper subset of
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plateaued functions. We have further demonstrated meth-
ods for constructing plateaued functions that have many
cryptographically desirable properties including balance,
SAC, high algebraic degree, high nonlinearity and corre-
lation immunity.

Building on the results obtained in this work, more re-
cently we have introduced complementary plateaued func-
tions. These functions have made it possible for us to dis-
cover new methods for constructing bent functions, as well
as highly nonlinear balanced functions. Details on these
new developments can be found in [14]. Finally, we note
that a close relationship between plateaued functions and
highly nonlinear correlation immune functions has recently
been identified in [15].
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