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thaler [20] is a special case of resilient functions.Areas where resilient functions �nd their applica-tions include fault-tolerant distributed computing,quantum cryptographic key distribution and ran-dom sequence generation for stream ciphers.Researchers have concentrated themselves on lin-ear resilient functions, with only one exception be-ing the work by Stinson and Massey [22]. The tworesearchers' aim was solely to disprove a conjec-ture that if there exists a nonlinear resilient func-tion then there exists a linear resilient function withthe same parameters which was posed in [5], ratherthan to explore cryptographic merits of nonlinearresilient functions. Recent advances in cryptanaly-sis, in particular the discovery of the linear crypt-analytic attack [12], have shown the vital impor-tance of nonlinear functions in data encryption andone-way hashing algorithms. With the further rev-elation of the potential power of the linear attack,we might see its serious implications on the secu-rity of many other cryptographic routines, includ-ing those employing resilient functions. A relevantbut earlier development is the best a�ne approxi-mation (BAA) attack proposed by Ding, Xiao andShan in [6]. It has been shown in their book thatthe BAA attack can successfully break a numberof types of key stream generators that employ acombining or �ltering function which, though cor-relation immune, has a low nonlinearity. Success1



of these attacks clearly shows a need to investigatehighly nonlinear resilient functions.The rest of the paper is organized as follows: Sec-tion 2 introduces basic de�nitions. It also reviewsimportant properties of resilient functions, as wellas previous work in the area. Section 3 presents anumber of methods for constructing new resilientfunctions from old. Some of them signi�cantly gen-eralize methods known previously. An exceptionalfeature of these methods is that they can be appliedboth to linear and to nonlinear resilient functions.Section 4 shows how to turn a known resilient func-tion into a new one. As a result we can obtain alarge number of highly nonlinear resilient functionsfrom a linear one. Some miscellaneous results on re-silient functions, including a discussion on algebraicdegree, are included in Section 5, and the paper isclosed by some concluding remarks in Section 6.2 PreliminariesThe vector space of n tuples of elements fromGF (2) is denoted by Vn. These vectors, in ascend-ing alphabetical order, are denoted by �0, �1, : : :,�2n�1. As vectors in Vn and integers in [0;2n � 1]have a natural one-to-one correspondence, it allowsus to switch from a vector in Vn to its correspondinginteger in [0; 2n � 1], and vice versa.Let f be a (Boolean) function from Vn to GF (2)(or simply, a function on Vn). The sequence of f isde�ned as ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1)),while the truth table of f is de�ned as (f(�0), f(�1),: : :, f(�2n�1)). f is said to be balanced if its truthtable assumes an equal number of zeros and ones.We call h(x) = a1x1 � � � � � anxn � c an a�nefunction, where x = (x1; : : : ; xn) and aj ; c 2 GF (2).In particular, h will be called a linear function ifc = 0. The sequence of an a�ne (linear) functionwill be called an a�ne (linear) sequence.The algebraic degree deg(f) of a function f isthe size of the longest term in the algebraic nor-mal form representation of the function. TheHamming weight of a vector v, denoted by W (v),is the number of ones in v. Let f and g befunctions on Vn. Then d(f; g) = Pf(x) 6=g(x) 1,where the addition is over the reals, is calledthe Hamming distance between f and g. Let

'0; : : : ; '2n+1�1 be the a�ne functions on Vn. ThenNf = mini=0;:::;2n+1�1 d(f;'i) is called the nonlin-earity of f . It is well-known that the nonlinearity off on Vn satis�es Nf <= 2n�1 � 212n�1. An extensiveinvestigation of highly nonlinear balanced functionshas been carried out in [17].Algebraic degree and nonlinearity can also be de-�ned for mappings or tuples of Boolean functions.Let F = (f1; : : : ; fm) be a function from Vn to Vm(where each fi is a function on Vn). The alge-braic degree of F , denoted by deg(F ), is de�nedas the minimum among the algebraic degrees of allnonzero linear combinations of the component func-tions of F , namely,deg(F ) = ming fdeg(g)jg = mMj=1 cjfjg:Similarly the nonlinearity of F , denoted by NF , isde�ned as NF = ming fNgjg = mMj=1 cjfjg:This de�nition regarding NF was �rst introducedby Nyberg in [13].F = (f1; : : : ; fm) is said to be linear if all itscomponent functions are linear, and to be nonlinearotherwise. If F is linear, then deg(F ) = 1 andNF = 0. The converse, however, is not always true.2.1 Properties of Resilient FunctionsIn this sub-section we summarize a number of factsregarding resilient functions. Though most of theseresults are either previously known in, for instance,[1, 5, 3], or can be proven easily, they are collectedhere with the intention to help the reader in under-standing our results to be presented in the comingsections. We start with a formal de�nition of a re-silient function.De�nition 1 Let F = (f1; : : : ; fm) be a functionfrom Vn to Vn, where n >= m >= 1, and let x =(x1; : : : ; xn) 2 Vn.1. F is said to be unbiased with respect to a �xedsubset T = fj1; : : : ; jtg of f1; : : : ; ng, if for ev-ery (a1; : : : ; at) 2 Vt(f1(x); : : : ; fm(x))jxj1=a1 ;:::;xjt=at2



runs through all the vectors in Vm each 2n�m�ttimes while (xi1 ; : : : ; xin�t) runs through Vnonce, where t >= 0, fi1; : : : ; in�tg =f1; : : : ; ng � fj1; : : : ; jtg and i1 < � � � < in�t.2. F is said to be a (n;m; t)-resilient function ifF is unbiased with respect to every T � Vn withjT j = t. The parameter t is called the resiliencyof the function.Obviously, n � m >= t holds for each (n;m; t)-resilient function.Resilient functions are closely related to cor-relation immune functions introduced by Siegen-thaler [20]. As was noticed by Stinson and co-workers, a (n; 1; t)-resilient function is the same asa balanced tth-order correlation immune Booleanfunction. We will come back to this issue shortly.The following lemma is helpful in understand-ing the relationship between a resilient function andits component functions. It has been called XORLemma and expressed in terms of independence ofrandom variables in [5, 1]. Here we follow the ver-sion described in [19].Lemma 1 A function (f1; : : : ; fm), where each fiis a function on Vn and n >= m, is unbiased, namely,it runs through all the vectors in Vm each 2n�mtimes while x runs through Vn once, if and onlyif each nonzero linear combinations of f1, : : : , fmare balanced.Hence we haveLemma 2 Let F = (f1; : : : ; fm) be a function fromVn to Vn, where n and m are integers with n >= m >=1 and each fj is a function on Vn. Then F is unbi-ased with respect to T = fj1; : : : ; jtg, a �xed subsetof f1; : : : ; ng, if and only if every nonzero linearcombination of f1; : : : ; fm, f (x) = Lmj=1 cjfj(x),is unbiased (i.e., balanced) with respect to T =fj1; : : : ; jtg, where x = (x1; : : : ; xn) 2 Vn.As an immediate consequence, we haveTheorem 1 Let F = (f1; : : : ; fm) be a functionfrom Vn to Vm, where n and m are integers withn >= m >= 1 and each fj is a function on Vn.Then F is a (n;m; t)-resilient function if and only

if every nonzero linear combination of f1; : : : ; fm,f(x) = Lmj=1 cjfj(x), is a (n; 1; t)-resilient func-tion, where x = (x1; : : : ; xn) 2 Vn.It follows from Theorem 1 that if F =(f1; : : : ; fm) is a (n;m; t)-resilient function, thenG = (f1; : : : ; fs) is a (n; s; t)-resilient function foreach integer 1 <= s <= m.Theorem 1 shows that each (n;m; t)-resilientfunction gives 2m � 1 distinct balanced tth-ordercorrelation immune functions on Vn. It also in-dicates that we can study (n;m; t)-resilient func-tions, including their properties and constructions,through investigating the correlation immune char-acteristics of their component functions.To facilitate our investigations, we introduce thefollowing lemma.Lemma 3 A function f on Vn is unbiased withrespect to T = fj1; : : : ; jtg, a �xed subset off1; : : : ; ng, if and only if for each linear function'(x) = cj1xj1 � � � � � cjtxjt on Vn, where x =(x1; : : : ; xn), f(x)� '(x) is balanced.Proof. First we consider the simplest case whereT = f1; : : : ; tg. Let (a1; : : : ; at) be an arbitrary but�xed vector in Vt. Then(f(x)� '(x))jx1=a1;:::;xt=at= f(a1; : : : ; at; xt+1; : : : ; xn)�'(a1; : : : ; at; xt+1; : : : ; xn):Now suppose that f is unbiased with respect toT = f1; : : : ; tg. Thenf (a1; : : : ; at; xt+1; : : : ; xn)is balanced. Note that'(a1; : : : ; at; xt+1; : : : ; xn)is a constant. Thus(f(x)� '(x))jx1=a1;:::;xt=atis balanced. As (a1; : : : ; at) is arbitrary, f (x)�'(x)is a balanced function on Vn.Conversely, suppose that f (x)�'(x) is balancedfor an arbitrary '(x) = c1x1 � � � � � ctxt.3



Let �a1���at be the sequence off(a1; : : : ; at; xt+1; : : : ; xn):By Lemma 1 of [16],� = �0���0; �0���1; : : : ; �1���1is the sequence of f(x1; : : : ; xn).Recall that a (1;�1)-matrix H of order m iscalled a Hadamard matrix if HHt = mIm, whereHt is the transpose of H and Im is the identity ma-trix of order m [15]. A Sylvester-Hadamard matrixof order 2n, denoted by Hn, is generated by thefollowing recursive relationH0 = 1; Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ;n = 1; 2; : : : : (1)Now let L be the sequence of '. Then L is a rowof Hn. Since Hn = Ht � Hn�t, where � denotesthe Kronecker product, we have L = `0 � `00, where`0 is a row of Ht and `00 is a row of Hn�t. Write`0 = (d0; : : : ; d2t�1). Then L = (d0`00; : : : ; d2t�1`00)and henceh�;Li = d0h�0���0; `00i+ d1h�0���01; `00i+ � � �+ d2t�1h�1���01; `00i (2)Since f (x) � '(x) is balanced, h�; Li = 0. Notethat `0 = (d0; : : : ; d2t�1), a row or column of Ht,is also the sequence of '0(x0) = c1x1 � � � � � ctxt.A fact with Ht is that the rows (columns) of Htcomprises all the linear sequences (see Lemma 2 of[16]). Then from (2),(h�0���0; `00 i; h�0���01; `00i; � � � ; h�1���11; `00i)Ht= (0;0; � � � ; 0):As Ht has inverse, we haveh�0���0; `00i = h�0���01; `00i = � � � = h�1���11; `00i = 0:Rewrite '(x) = '(x0)�'(x00), where x0 2 Vt andx00 2 Vn�t. Now `0 is the sequence of '0 while `00is the sequence of `00. Note that '0(x0) = c1x1 �� � � � ctxt. Thus '00 = 0 and `00 = (1; : : : ; 1). Asa result, h�a1:::at ; `00i = 0, which implies that �a1:::atis balanced and hence f(a1; : : : ; at; xt+1; : : : ; xn) is

balanced, where (a1; : : : ; at) is an arbitrary vectorin Vt. This shows that f is unbiased with respectto T = f1; : : : ; tg.For the more general case where T = fj1; : : : ; jtg,setf(x1; : : : ; xn) = g(xj1 ; : : : ; xjt ; xjt+1 ; : : : ; xjn);where fj1; : : : ; jtg = T andfxjt ; xjt+1 ; : : : ; xjng = f1; : : : ; ng � T:Also set xj1 = y1; : : : ; xjn = yn: (3)Thus g(xj1 ; : : : ; xjt ; xjt+1 ; : : : ; xjn)= g(y1; : : : ; yt; yt+1; : : : ; yn):Now write  (y) =  (y1; : : : ; yn) = c1y1 � � � � � ctyt,where y = (y1; : : : ; yn). Obviously  (y1; : : : ; yn) ='(x1; : : : ; xn). Hence f(x) � '(x) = g(y) �  (y).Clearly, f is unbiased with respect to fj1; : : : ; jtg ifand only if g is unbiased with respect to f1; : : : ; tg,and by the above discussions, if and only if g(y) � (y) = f(x)� '(x) is balanced. utA corollary of Lemma 3 isCorollary 1 f is a (n; 1; t)-resilient function ifand only if for each linear function '(x) = c1x1 �� � � � cnxn with W (c1; : : : ; cn) <= t, f(x) � '(x) isbalanced.From this corollary and Theorem 1 it followsCorollary 2 F is a (n;m; t)-resilient function ifand only if it is a (n;m; s)-resilient function foreach 0 <= s <= t.Now we go back to correlation immune functions.Work by Xiao and Massey provides us with anequivalent de�nition of the concept [10]:De�nition 2 A function f on Vn is said to be tth-order correlation immune if for each linear function'(x) = c1x1�� � ��cnxn with 1 <= W (c1; : : : ; cn) <= t,f(x)� '(x) is balanced.4



As W (c1; : : : ; cn) = 0 is excluded, the de�nitioncovers both balanced and non-balanced correlationimmune function, although stream ciphers preferbalanced to non-balanced functions.Comparing the de�nition with Corollary 1, it be-comes clear that a balanced tth-order correlationimmune function is indeed identical to a (n; 1; t)-resilient function.Having presented essential facts on resilient func-tions, next we consider transformations on the coor-dinates of a resilient function. Unlike nonlinearityand algebraic degree, the resiliency of functions isnot invariant under a nonsingular linear transfor-mation on the coordinates. This can be seen fromthe following example.Let f(x) = x1 � x2 � � � � � xn, where x =(x1; : : : ; xn). Then f is a (n; 1; n � 1)-resilientfunction. Now let B be a matrix of order nover GF (2) satisfying (x1; x2; : : : ; xn�1; xn)B =(x2; x3; : : : ; xn�1;Lnj=1 xj): Set g(x) = f (xB�1).Then g(x) = xn whose resiliency is zero.Another issue is in relation to the transforma-tion of the component functions, namely output, ofa resilient function. This will be discussed in detailin Section 4, where we show an important resultregarding invariant properties of resilient functionsunder transformations of (output) component func-tions.2.2 Related WorkThe concept of a resilient function was introducedin [5, 1]. The equivalence between linear resilientfunctions and linear error correcting codes was es-tablished also in [5, 1], while the equivalence be-tween resilient functions and large sets of orthogo-nal arrays was proved in [21]. Two upper bounds onresiliency which are the best known so far were de-rived in [7, 3]. In [22] Stinson and Massey disprovedthe conjecture that if there exists a nonlinear re-silient function then there exists a linear resilientfunction with the same parameters. The nonlinearresilient functions they constructed were based onthe (nonlinear) Kerdock and Preparata codes [11].Some linear resilient functions achieving an upperbound on resiliency can be found in [7, 3]. Re-silient functions which are symmetric were studiedin [5, 8], while non-binary resilient functions were

examined in [9].Soon after the concept of a correlation immunefunction was introduced by Siegenthaler [20], Xiaoand Massey gave an equivalent de�nition in [10].These were followed by [4, 18] where various meth-ods for constructing correlation immune functionswere presented.3 Constructing New ResilientFunctions from OldConstructing new resilient functions from old onesis an interesting problem that has many practi-cal implications. There are two opposite directionsin relation to this problem, these being construct-ing \large" ones from \small" ones and \small"ones from \large" ones. Due to the close relation-ship between resilient functions and error correctingcodes, in particular the equivalence between lin-ear codes and linear resilient functions as was re-vealed in [5, 1], numerous techniques can be bor-rowed from the theory of error correcting codes toconstruct new resilient functions from old. Thesetechniques have been further enriched by Stinson'swork on the equivalence between resilient functionsand large sets of orthogonal arrays [21]. Some con-crete examples on constructing new from old canbe found in [3].The main purpose of this section is to present anumber of methods for directly synthesizing largeresilient functions from small ones. A distinctivefeature of these methods is that they are applicableboth to linear and to nonlinear resilient functions.We start with correlation immune functions. Letfi be a (ni; 1; ti)-resilient function, i = 1; 2. Thenf1(x) � f2(y) is a (n1 + n2; 1; t1 + t2 + 1)-resilientfunction, where x 2 Vn1 and y 2 Vn2 . To show thatthis is correct, let ' be a linear function on Vn1+n2de�ned by '(x; y) = c1x1 � � � � � cn1xn1�d1y1 � � � � � dn2yn2 ;where x = (x1; : : : ; xn1), y = (y1; : : : ; yn2), cj ; di 2GF (2). Suppose thatW (c1; : : : ; cn1 ; d1; : : : ; dn2) <= t1 + t2 + 1:5



Then eitherW (c1; : : : ; cn1) <= t1 or W (d1; : : : ; dn2) <= t2. ByCorollary 1, either f1(x) � '1(x) or f2(y) � '2(y)is balanced, where '1(x) = c1x1 � � � � � cn1xn1 and'2(y) = d1y1 � � � � � dn2yn2 . Note that the sum oftwo functions with disjoint variables is balanced ifone of the two functions is balanced (for a simpleproof see Lemma 9 of [16]). Hence f1(x)� f2(y)�'(x; y) = [f1(x) � '1(x)] � [f2(y) � '2(y)] is bal-anced. Again by Corollary 1, f1(x) � f2(y) is a(n1 + n2; 1; t1 + t2 + 1)-resilient function.By induction, we have the following result.Lemma 4 Let fi be a (ni; 1; ti)-resilient func-tion, i = 1; : : : ; s. Then f1(x) � � � � � fs(y) isa (Psj=1 nj ; 1; s � 1 + Psj=1 tj)-resilient function,where x 2 Vn1 ; : : : ; y 2 Vns.As an application of Lemma 4, we can com-bine known resilient functions to obtain a newone. First we show that if F = (f1; : : : ; fm)is a (n;m; t)-resilient function, then G(x;y; z) =(F (x) � F (y); F (y) � F (z)) is a (3n;2m; 2t + 1)-resilient function, where x; y; z 2 Vn.To prove that G is a (3n; 2m; 2t + 1)-resilientfunction, we �rst note that f1(x) � f1(y), : : :,fm(x)�fm(y), f1(y)�f1(z), : : :, fm(y)�fm(z) com-prise all the 2m component functions of G. Con-sider a nonzero linear combination of these 2m com-ponent functionsf(x; y; z) = mMj=1 cj(fj(x)� fj(y))� mMj=1 dj(fj(y)� fj(z));where either (c1; : : : ; cm) 6= (0; : : : ; 0) or(d1; : : : ; dm) 6= (0; : : : ; 0).Note thatf(x; y; z) = mMj=1 cjfj(x)� mMj=1(cj � dj)fj(y)� mMj=1 djfj(z):By Theorem 1, Lmj=1 cjfj(x) is a (n; 1; t)-resilientfunction when (c1; : : : ; cm) 6= (0; : : : ; 0). Similarly,Lmj=1 djfj(z) is a (n; 1; t)-resilient function when

(d1; : : : ; dm) 6= (0; : : : ; 0), andLmj=1(cj�dj)fj(y) isa (n; 1; t)-resilient function when (c1� d1; : : : ; cm�dm) 6= (0; : : : ; 0).Since either (c1; : : : ; cm) 6= (0; : : : ; 0) or(d1; : : : ; dm) 6= (0; : : : ; 0), at least two hold among(c1; : : : ; cm) 6= (0; : : : ; 0), (d1; : : : ; dm) 6= (0; : : : ; 0)and (c1 � d1; : : : ; cm � dm) 6= (0; : : : ; 0). ByLemma 4, when two hold f(x; y; z) is a (3n;1; 2t +1)-resilient function, while when three hold it isa (3n; 1; 3t + 2)-resilient function. By Theorem 1,G(x;y; z) is indeed a (3n; 2m; 2t+1)-resilient func-tion.It was �rst observed in [5] that g(x1; : : : ; x3h) =(x1�� � ��x2h; xh+1�� � ��x3h) is a linear (3h;2; 2h�1)-resilient function. We can view this function asbeing obtained from f(x1; : : : ; xh) = x1 � � � � � xh,which is a (h; 1; h � 1)-resilient function, by usingthe technique described above. Conversely we canalso regard our technique as a signi�cant general-ization of the idea underling the construction ofg(x1; : : : ; x3h) = (x1 � � � � � x2h; xh+1 � � � � � x3h).Now applying the same technique to the result-ing function G itself, we obtain a (32n; 22m; 22(1 +t) � 1)-resilient function. In general repeating thetechnique for k times, k = 1; 2; : : :, we obtain a(3kn; 2km; 2k(1 + t) � 1)-resilient function from a(n;m; t)-resilient function.The technique can also be generalized in otherdirections. In particular, it is easy to prove thatif F = (f1; : : : ; fm) is a (n;m; t)-resilient func-tion, then G(x; y; z; u) = (F (x) � F (y); F (y) �F (z); F (z) � F (u)) is a (4n; 3m; 2t + 1)-resilientfunction, where x; y; z; u 2 Vn. Again by iteratingthe technique, we can construct from a (n;m; t)-resilient function a (4kn; 3km; 2k(1+ t)�1)-resilientfunction for all k = 1; 2; : : :.To summarize the discussions, we haveLemma 5 Given a (n;m; t)-resilient function,there is an iterative method to construct a ((h +1)kn; hkm; 2k(1 + t) � 1)-resilient function for allh = 2; 3; : : : and k = 1; 2; : : :.As another application of Lemma 4, we give thefollowing result.Corollary 3 Let F = (f1; : : : ; fm) be a (n1;m; t1)-resilient function and G = (g1; : : : ; gm) a6



(n2;m; t2)-resilient function. Then P (z) = F (x)�G(y) = (f1(x) � g1(y); : : : ; fm(x) � gm(y)) is a(n1 + n2;m; t1 + t2 + 1)-resilient function, wherez = (x; y), x 2 Vn1 and y 2 Vn2 .Proof. Consider an arbitrary nonzero linear com-bination of the component functions of P (z), sayp(z) = mMj=1 cj[fj(x)� gj(y)]= mMj=1 cjfj(x)� mMj=1 cjgj(y):By Theorem 1, Lmj=1 cjfj(x) is a t1-resilient func-tion, while Lmj=1 cjgj(y) is a t2-resilient function.Hence by Lemma 4, p(z) is a t1 + t2 + 1-resilientfunction. As p(z) is arbitrary, again by Theorem 1,P (z) is a (n1+n2; m; t1+ t2+ 1)-resilient function.utA special case of the technique indicated in Corol-lary 3, namely when both F and G are linear, hasbeen employed by Bierbrauer, Gopalakrishnan andStinson in proving their Theorem 7 in [3].The following result is concerned with placing re-silient functions in parallel.Corollary 4 Let F = (f1; : : : ; fm1) be a(n1;m1; t1)-resilient function and G = (g1; : : : ; gm2)be a (n2;m2; t2)-resilient function. ThenP (z) = (f1(x); : : : ; fm1(x); g1(y); : : : ; gm2(y))is a (n1 + n2; m1 +m2; �)-resilient function, wherez = (x; y), x 2 Vn1 , y 2 Vn2 , and � = minft1; t2g.Proof. Consider an arbitrary nonzero linear com-bination of the component functions of P (z)p(z) = m1Mj=1 cjfj(x)� m2Mj=1 djgj(y):As (c1; : : : ; cm1 ; d1; : : : ; dm2) is a nonzero vector,without loss of generality, we can assume that(c1; : : : ; cm1) 6= (0; : : : ; 0). For any �1-subsetfj1; : : : ; j�1g � f1; : : : ; n1g and any �2-subsetfi1; : : : ; i�2g � f1; : : : ; n2g, where �1 + �2 = �,

and any a1; : : : ; a�1 , b1; : : : ; b�2 2 GF (2), by The-orem 1, and the fact that the sum of two func-tions with disjoint variables is balanced if one ofthe two functions is balanced (Lemma 9 of [16]),Lm1j=1 cjfj(x)jxj1=a1;:::;xj�1=a�1 is balanced. Thusm1Mj=1 cjfj(x)jxj1=a1;:::;xj�1=a�1� m2Mj=1 djgj(y)jyi1=b1;:::;bi�2=b�2is balanced. It follows from Theorem 1 thatP (z) = (f1(x); : : : ; fm1(x); g1(y); : : : ; gm2(y))is a (n1 + n2; m1 +m2; �)-resilient function. ut4 Transforming Linear ResilientFunctions to Nonlinear OnesRecall that a resilient function is said to be lin-ear if its component functions are all linear, andsaid to be nonlinear otherwise. When the conceptof resilient functions was introduced, it was con-jectured that if there exists a nonlinear resilientfunction with certain parameters, then there existsa linear resilient function with the same parame-ters [5, 1]. This conjecture was disproved by Stin-son and Massey [22]. In particular, they showedthat there exists an in�nite class of nonlinear re-silient functions for which there do not exist linearresilient functions with the same parameters. Theyused nonlinear error correcting codes in their proof.In this section we investigate this topic in a slightlydi�erent direction. In particular we show that bypermuting the output m-tuples (i.e., all 2m vectorsin Vm), instead of only re-ordering the m compo-nent functions of a (n;m; t)-resilient function, wecan obtain 2m! distinct (n;m; t)-resilient functions.A consequence of this result is that the converse ofthe conjecture in [5, 1] is true, namely if there existsa linear resilient function with certain parameters,then there exists a nonlinear resilient function withthe same parameters.Here is the main result in this section.7



Theorem 2 Let F be a (n;m; t)-resilient functionand G be a permutation on Vm. Then P = G � F ,namely P (x) = G(F (x)), is also a (n;m; t)-resilientfunction.Proof. Since F is a (n;m; t)-resilient function,for each fj1; : : : ; jtg � f1; : : : ; ng and a1; : : : ; at 2GF (2), F (x)jxj1=a1;:::;xjt=atruns through all the vectors in Vm each 2n�m�ttimes while (xi1 ; : : : ; xin�t) runs through Vn once,where fi1; : : : ; in�tg = f1; : : : ; ng � fj1; : : : ; jtg andi1 < � � � < in�t. As G is a permutation on Vm,P (x)jxj1=a1 ;:::;xjt=at= G(F (x))jxj1=a1;:::;xjt=atruns through all the vectors in Vm each 2n�m�ttimes while (xi1 ; : : : ; xin�t) runs through Vn once.It immediately follows that P is a (n;m; t)-resilientfunction. utNote that the total number of di�erent permuta-tions on Vm is 2m! which is far larger than m!. Thelatter is the number of ways to re-order the m com-ponent functions. New resilient functions generatedusing these permutations are all di�erent. To provethis, let G1 and G2 be two di�erent permutationson Vm. We want to prove that G1 � F 6= G2 � F .Suppose for contradiction that G1 � F = G2 � F .Then F = G�11 �G2 �F . As F is unbiased, for each� 2 Vm, there exist 2n�m di�erent vectors � 2 Vnsuch that F (�) = �. This causes � = G�11 �G2(�).As � is arbitrary, G�11 � G2 must be the identitypermutation on Vm, which contradicts the fact thatG1 6= G2. Thus we have proved the following:Corollary 5 Given a (n;m; t)-resilient function,Theorem 2 produces 2m! distinct (n;m; t)-resilientfunction.Now we describe an example to show applicationsof Theorem 2. It is easy to verify thatF (x1; x2; x3; x4; x5; x6)= (x1 � x2 � x3; x3 � x4 � x5;x5 � x6 � x1)

is a linear (6; 3; 2)-resilient function. Consider apermutation G on V3 de�ned byG(u1; u2; u3)= (u1 � u3 � u2u3; u1 � u2 � u1u3;u2 � u3 � u1u2):By Theorem 2, P = G�F is also a (6; 3; 2)-resilientfunction.Note that all component functions of the result-ing resilient function P are quadratic. The rest ofthis section is devoted to this direction, namely con-verting linear resilient functions to nonlinear ones.We also show how to calculate the nonlinearity of aresulting nonlinear resilient function. The followinglemma will be used in the discussions.Lemma 6 Let g be a function on Vm whose nonlin-earity is Ng. Let n >= m and B be an n�m matrixover GF (2) whose rank is m. Set h(x1; : : : ; xn) =g((x1; : : : ; xn)B). Then the nonlinearity Nh of h,a function on Vn, satis�es Nh = 2n�mNg, and thealgebraic degree of h is the same as that of g.Proof. First we note that this lemma is a general-ization of the following result: Let h(x1; : : : ; xn) =g(x1; : : : ; xk). Then h, a function on Vn, satis�esNh = 2n�mNg. A proof for this special case canbe found in, for instance, [18].To prove this lemma, we append to B an n�(n�m) matrix C so that A = [B;C ] is a nonsingularmatrix of order n over GF (2). Set (u1; : : : ; un) =(x1; : : : ; xn)A. Now de�ne a function on Vn, say g�,as follows g�(u1; : : : ; un) = g(u1; : : : ; um):Then Ng� = 2n�mNg, and g� and g share the samealgebraic degree. On the other hand, from the con-struction of h,h(x1; : : : ; xn) = g((x1; : : : ; xn)B)= g�((x1; : : : ; xn)A):By noting the fact that the nonlinearity and al-gebraic degree of a function are invariant under anonsingular linear transformation on coordinates,we have Nh = Ng� = 2n�mNg, and that h has the8



same algebraic degree as that of g�, which is thesame as that of g. utNow we prove a signi�cant result on constructingnew resilient functions from old, linear ones.Theorem 3 Let F be a linear (n;m; t)-resilientfunction and G be a permutation on Vm whose non-linearity is NG. Then P = G � F is a (n;m; t)-resilient function and(i) the nonlinearity NP of P satis�es NP =2n�mNG,(ii) the algebraic degree of P is the same as that ofG.Proof. As F is a linear resilient function, it canbe written as F (x1; : : : ; xn) = (x1; : : : ; xn)B whereB is an n � m matrix of rank m over GF (2) and(x1; : : : ; xn) 2 Vn. The theorem follows immedi-ately from Lemma 6. utWe turn our attention back to the nonlinear(6; 3; 2)-resilient function constructed above. It iseasy to verify that the nonlinearity of each nonzerolinear combination of the component functions ofG is 2. By Theorem 3, the nonlinearity of P is 16,and as we have seen, the algebraic degree of P isindeed 2.Theorem 3 implies that highly nonlinear resilientfunctions can be constructed from linear resilientfunctions by applying highly nonlinear permuta-tions in the transforming process. A number ofhighly nonlinear permutations which are based onpolynomials on a �nite �eld have been shown in [14,2]. In particular, it is shown in [14] that the non-linearity of a permutation G based on the inversefunction on GF (2m) satis�es NG >= 2m�1 � 2 12mand the algebraic degree of G is m� 1. Hence thefollowing is proved:Corollary 6 If there exists a linear (n;m; t)-resilient function, then there exists a nonlinear(n;m; t)-resilient function P whose nonlinearitysatis�es NP >= 2n�1 � 2n� 12m and whose algebraicdegree is m� 1.Another important implication of Theorem 3 isthat from each linear resilient function, we can de-rive a large number nonlinear resilient functions

with the same parameters. This, together with theresult by Stinson and Massey [22], shows that it ismore a�uent in nonlinear resilient functions thanin linear resilient functions, in terms of either thenumbers or the parameters.5 Remarks on Algebraic DegreeIn his pioneering work [20], Siegenthaler showed,by a lengthy argument, that the algebraic degreeof a balanced correlation immune function, i.e., a(n; 1; t)-resilient function, is at most n�t�1, exceptfor the case when t = n � 1. Here we show thatthe proof can substantially shortened by employingTheorem 1 on Page 372 of [11].Let f be a (n; 1; t)-resilient function. As f is afunction on Vn, by Theorem 1 on Page 372 of [11],it can be expressed in the algebraic normal form,namely f (x1; : : : ; xn)= Ma1;:::;an2GF (2)g(a1; : : : ; an)xa11 � � �xann ;where g(a1; : : : ; an)= M(b1;:::;bn)�(a1;:::;an) f (b1; : : : ; bn);and by (b1; : : : ; bn) � (a1; : : : ; an) we mean that ifbj = 1 then aj = 1.Consider the coe�cient of the term x1 � � �xn�t,that is Mb1;:::;bn�t2GF (2) f(b1; : : : ; bn�t; 0; : : : ; 0): (4)Since f is a (n; 1; t)-resilient function, (4) becomeszero, except for n� t = 1 in which case (4) becomesone. By the same reasoning, we can see that thecoe�cient of every term of algebraic degree n� t iszero. This proves that the algebraic degree of f isat most n � t � 1.By noting our Theorem 1, we haveCorollary 7 The algebraic degree of a (n;m; t)-resilient function is at most n � t � 1, except forthe case when t = n� 1.9



Recall that it is easy to construct linear (n;n �1; 1)-resilient functions from linear error correct-ing codes. Using Corollaries 5 and 6, we obtain2n�1! distinct (n;n�1; 1)-resilient functions, a largenumber of which have a nonlinearity of at least2n�1 � 2n+12 and whose algebraic degree is n � 2.It should be noted, however, that due to Corol-lary 7, applying Theorem 3 to a nonlinear (n;n �1; 1)-resilient function does not always yield a func-tion that has a higher algebraic degree.In [7] Friedman proved that the resiliency t ofa (n;m; t)-resilient function is bounded from aboveby B1 = b 2m�1n2m � 1c � 1:Theorem 3 of [3] gives another upper boundB2 = 2b2m�2(n+ 1)2m � 1 c � 1: (5)As shown in [3] a linear (2m � 1;m; 2m�1 � 1)-resilient function can be obtained from a simplexcode. This function achieves the upper bound onresiliency (5). Applying Corollaries 5 and 6 tothis resilient function, we obtain 2m! distinct (2m�1;m; 2m�1 � 1) resilient functions, some of whichhave a nonlinearity of at least 22m�2 � 22m�1� 12mand whose algebraic degree is m�1. All the result-ing functions achieve the upper bound on resiliencyindicated in (5).6 ConclusionMain results of this paper are related to the con-struction of nonlinear resilient functions. Of par-ticular importance to practical applications is themethod for transforming linear resilient functionsinto nonlinear ones. Currently we are in the pro-cess of extending in various directions the resultsreported in this paper.AcknowledgmentWe would like thank G. Stinson for kindly pro-viding us with his papers. This project was sup-ported in part by the Australian Research Council(ARC) under the reference number A49232172 and

by the Australian Telecommunications and Elec-tronics Research Board (ATERB) under the refer-ence numbers C010/058 and N069/412.This work was done while the second author waswith the University of Wollongong.References[1] Bennett, C. H., Brassard, G., andRobert, J. M. Privacy ampli�cation by pub-lic discussion. SIAM J. Computing 17 (1988),210{229.[2] Beth, T., and Ding, C. On permuta-tions against di�erential cryptanalysis. InAdvances in Cryptology - EUROCRYPT'93(1994), vol. 765, Lecture Notes in ComputerScience, Springer-Verlag, Berlin, Heidelberg,New York, pp. 65{76.[3] Bierbrauer, J., Gopalakrishnan, K.,and Stinson, D. R. Bounds on resilientfunctions and orthogonal arrays. In Advancesin Cryptology - CRYPTO'94 (1994), vol. 839,Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, pp. 247{256.[4] Camion, P., Carlet, C., Charpin, P.,and Sendrier, N. On correlation-immunefunctions. In Advances in Cryptology -CRYPTO'91 (1991), vol. 576, Lecture Notesin Computer Science, Springer-Verlag, Berlin,Heidelberg, New York, pp. 87{100.[5] Chor, B., Goldreich, O., H�astad, J.,Friedman, J., Rudich, S., and Smolen-sky, R. The bit extraction problem or t-resilient functions. IEEE Symposium on Foun-dations of Computer Science 26 (1985), 396{407.[6] Ding, C., Xiao, G., and Shan, W. TheStability Theory of Stream Ciphers, vol. 561 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1991.[7] Friedman, J. On the bit extraction prob-lem. Proc. 33rd IEEE Symp. on Foundationsof Computer Science (1992), 314{319.10



[8] Gopalakrishnan, K., Hoffman, D. G.,and Stinson, D. R. A note on a conjectureconcerning symmetric resilient functions. In-formation Processing Letters 47 (1993), 139{143.[9] Gopalakrishnan, K.,and Stinson, D. R. Three characterizationsof non-binary correlation-immune and resilientfunctions. Designs, Codes and Cryptography 5(1995), 241{251.[10] Guo-Zhen, X., and Massey, J. L. A spec-tral characterization of correlation-immunecombining functions. IEEE Transactions onInformation Theory 34, 3 (1988), 569{571.[11] MacWilliams, F. J., and Sloane, N.J. A. The Theory of Error-Correcting Codes.North-Holland, Amsterdam, New York, Ox-ford, 1978.[12] Matsui, M. Linear cryptanalysis method forDES cipher. In Advances in Cryptology - EU-ROCRYPT'93 (1994), vol. 765, Lecture Notesin Computer Science, Springer-Verlag, Berlin,Heidelberg, New York, pp. 386{397.[13] Nyberg, K. On the construction of highlynonlinear permutations. In Advances in Cryp-tology - EUROCRYPT'92 (1993), vol. 658,Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, pp. 92{98.[14] Nyberg, K. Di�erentially uniform mappingsfor cryptography. In Advances in Cryptology- EUROCRYPT'93 (1994), vol. 765, LectureNotes in Computer Science, Springer-Verlag,Berlin, Heidelberg, New York, pp. 55{65.[15] Seberry, J., and Yamada, M. Hadamardmatrices, sequences, and block designs. InContemporary Design Theory: A Collection ofSurveys, J. H. Dinitz and D. R. Stinson, Eds.John Wiley & Sons, Inc, 1992, ch. 11, pp. 431{559.[16] Seberry, J., Zhang, X. M., and Zheng,Y. Highly nonlinear 0-1 balanced functions

satisfying strict avalanche criterion. In Ad-vances in Cryptology - AUSCRYPT'92 (1993),vol. 718, Lecture Notes in Computer Sci-ence, Springer-Verlag, Berlin, Heidelberg, NewYork, pp. 145{155.[17] Seberry, J., Zhang, X. M., and Zheng,Y. Nonlinearly balanced boolean functionsand their propagation characteristics. In Ad-vances in Cryptology - CRYPTO'93 (1994),vol. 773, Lecture Notes in Computer Sci-ence, Springer-Verlag, Berlin, Heidelberg, NewYork, pp. 49{60.[18] Seberry, J., Zhang, X. M., and Zheng,Y. On constructions and nonlinearity of corre-lation immune functions. In Advances in Cryp-tology - EUROCRYPT'93 (1994), vol. 765,Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, pp. 181{199.[19] Seberry, J., Zhang, X. M., and Zheng,Y. Relationships among nonlinearity criteria.In Advances in Cryptology - EUROCRYPT'94(1995), vol. 950, Lecture Notes in ComputerScience, Springer-Verlag, Berlin, Heidelberg,New York, pp. 376{388.[20] Siegenthaler, T. Correlation-immunityof nonlinear combining functions for crypto-graphic applications. IEEE Transactions onInformation Theory IT-30 No. 5 (1984), 776{779.[21] Stinson, D. R. Resilient functions and largesets of orthogonal arrays. Congressus Numer-antium 92 (1993), 105{110.[22] Stinson, D. R., and Massey, J. L. An in-�nite class of counterexamples to a conjectureconcerning non-linear resilient functions. Jour-nal of Cryptology 8, 3 (1995), 167{173.
11


