
Cheating Immune Seret SharingXian-Mo Zhang1 and Josef Pieprzyk21 Shool of IT and CS, University of WollongongWollongong, NSW 2522, AUSTRALIA, xianmo�s.uow.edu.au2 Algorithms and Cryptography Centre, Department of ComputingMaquarie University, Sydney , NSW 2109, AUSTRALIA, josef�is.mq.edu.auAbstrat We onsider seret sharing with binary shares. This model allows us touse the well developed theory of ryptographially strong boolean funtions. We provethat for given seret sharing, the average heating probability over all heating andoriginal vetors, i.e., � = 1n � 2�nPn=1P�2Vn �;�, satis�es � � 12 , and the equalityholds () �;� satis�es �;� = 12 for every heating vetor Æ and every original vetor�. In this ase the seret sharing is said to be heating immune. We further establisha relationship between heating-immune seret sharing and ryptographi riteria ofboolean funtions. This enables us to onstrut heating-immune seret sharing.1 Introdution and BakgroundSine its invention in 1978 by Blakley [2℄ and Shamir [9℄, seret sharing hasevolved dramatially. Initially, it was designed to failitate a distributed stor-age for a seret in an unreliable or inseure environment. Later, however, seretsharing has been inorporated into publi key ryptography giving rise to thewell-known onept of group or soiety oriented ryptography (see [5℄). Nowseret sharing is one of the basi ryptographi tools with variety of very in-teresting shemes based on algebrai or geometri strutures. Tompa and Woll[11℄ observed that Shamir seret sharing an be subjet to heating by dishonestpartiipants. The heater is able to reover the valid seret from the invalid onepassed by the ombiner. As the result, the honest partiipants are left with in-valid seret while the heater holds the valid one. This observation is true for alllinear seret sharing. The heating attak an also be extended for geometrialseret sharing. Cheating prevention an be onsidered in the ontext of ondi-tionally and unonditionally seure seret sharing. We fous our attention onunonditionally seure seret sharing. In this setting, heating an be thwartedby (1) share veri�ation by the ombiner { all invalid shares are identi�ed anddisarded, where the key reovery goes ahead only if there are enough validshares to reover the valid seret (see [3, 4, 6℄), and (2) disouraging heatersfrom sending invalid shares to the ombiner { this argument works if the heatergains no advantage over honest partiipants. In other words, sending invalidshare will result with reovery of an invalid seret whih gives no lues to theheater as to the value of the valid seret. We intend to onsider a lass of se-ret sharing for whih, a heating partiipant is no better o� than a partiipantwho tries simply to guess a seret. Ideally, the probability of suessful heatingshould be equal to the probability of guessing the seret by a partiipant. Tomake our onsiderations expliit, we assume that seret and shares are binary.



For this ase we prove that there is a seret sharing, further in the work alledheating immune, that gives no advantage to a heater making it, in a sense,immune against heating.Seret sharing allows a group of partiipants P = fP1; : : : ; Png to olletivelyhold a seret K 2 K, where K is a set of elements from whih the seret isdrawn. Seret sharing is reated by a trusted algorithm alled a dealer whofor a given seret, generates a olletion of shares si 2 S, where S is a set ofshares. Note that si is given to Pi, i = 1; : : : ; n. The olletive ownership of theseret is de�ned by the aess struture of seret sharing. The aess struture� is a olletion of subgroups of P that are authorized to reover the seret.An authorized group of partiipants A 2 � is able to reonstrut the seret byinvoking a trusted algorithm alled ombiner. The ombiner always returns thevalid seret if the group A submits their valid shares. If the group, however, istoo small, i.e. A =2 � , then the algorithm returns a value whih is not the validseret (with an overwhelming probability). In this work, we desribe a seretsharing by a set of distribution rules [10℄, where a distribution rule is a funtionf : P ! S that represents possible distribution of shares to the partiipants. Inother words, seret sharing is a set F = SK2KFK where FK is a distributionrule orresponding to the seret K. Equivalently, F an be presented in the formof distribution table T . The table has (n + 1) olumns { the �rst one inludesserets and the other n ones list shares assigned to partiipants (P1; : : : ; Pn),respetively. Eah row of the distribution table spei�es the seret for a olletionof shares held by P . Note that FK an be seen as a part of the distribution tablewith rows whose �rst entry is K. This table is denoted by TK . Most of pratialseret sharing shemes are linear and therefore subjet to an attak observedby Tompa and Woll [11℄. The attak permits a dishonest partiipant who at thepooling stage submits an invalid share, to reover the valid seret from an invalidone returned by the ombiner.2 Model of CheatingWe introdue the following notations. Set � = (s1; : : : ; sn), the sequene of sharesheld by P and the seret K = f(�), and �� = (s1; : : : ; s�1; 1� s; s+1; : : : ; sn),the sequene of shares submitted to the ombiner where P modi�ed her share.Set Æ = (0; : : : ; 0; 1; 0; : : : ; 0) where all zero exept the -th position. Æ repre-sents modi�ation done by the heater and K� = f(��) is the invalid seret re-turned by ombiner. Let 
�� = f(x1; : : : ; x�1; s; x+1; : : : ; xn)j f(x1; : : : ; x�1;1�s; x+1; : : : ; xn) = K�g, the set of all shares taken from rows of T ontaining� and K whih are onsistent with the invalid seret returned by the ombiner.The set 
�� determines the view of the heater after getting bak K� from theombiner. Let 
� = f(x1; : : : ; x�1; s; x+1; : : : ; xn)j f(x1; : : : ; x�1; s; x+1,: : : ; xn) = Kg, the set of rows whih ontain the urrent share of P and thevalid seret K. The funtion f is alled de�ning funtion. The nonzero vetorÆ = (0; : : : ; 0; 1; 0; : : : ; 0), where only the -th oordinate is nonzero, is alledthe heating vetor. � = (s1; : : : ; sn) is alled the original vetor. The value of�� = #(
��\
�)=#
��, where #X denotes the the number of elements in the set



X , expresses the probability of heater suess with respet to � = (s1; : : : ; sn).As the original vetor � = (s1; : : : ; sn) is always in 
�� \ 
�, the probabilityof suessful heating is always nonzero or �;� > 0. Given seret sharing withits de�ning funtion f on Vn. The value of � = 2�nP�2Vn �;� is the averageheating probability over all original vetors in Vn for a �xed heating vetor.The value of � = 1nPn=1 � = 1n � 2�nPn=1P�2Vn �;� is the average heatingprobability over all heating vetors (with Hamming weight one) and all originalvetors in Vn. Of ourse � depends on partiular f .Theorem 1. Given seret sharing with its de�ning funtion f on Vn. Then foreah �xed integer  with 1 �  � n, we have � � 12 where the equality holds ()�;� = 12 for eah � 2 Vn.Proof. Write y = (x1; : : : ; x�1) and z = (x+1; : : : ; xn). Set R1 = f(y; z)jf(y;1; z) = 1, f(y; 0; z) = 1g, R2 = f(y; z)jf(y; 1; z) = 1, f(y; 0; z) = 0g, R3 =f(y; z)jf(y; 1; z) = 0, f(y; 0; z) = 1g, R4 = f(y; z)jf(y; 1; z) = 0, f(y; 0; z)= 0g, and #Ri = ri, i = 1; 2; 3; 4. Obviously r1 + r2 + r3 + r4 = 2n�1. Let�1 2 V�1, �2 2 Vn� and � = (�1; 0; �2) or � = (�1; 1; �2). By de�nition, �;�an be expressed as follows: (1) r1r1+r2 when � = (�1; 0; �2) with (�1; �2) 2 R1,(2) r2r1+r2 when � = (�1; 0; �2) with (�1; �2) 2 R2, (3) r3r3+r4 when � = (�1; 0; �2)with (�1; �2) 2 R3, (4) r4r3+r4 when � = (�1; 0; �2) with (�1; �2) 2 R4, (5) r1r1+r3when � = (�1; 1; �2) with (�1; �2) 2 R1, (6) r3r1+r3 when � = (�1; 1; �2) with(�1; �2) 2 R3, (7) r2r2+r4 when � = (�1; 1; �2) with (�1; �2) 2 R2, (8) r4r2+r4when � = (�1; 1; �2) with (�1; �2) 2 R4. There exist following two ases to beonsidered:Case 1: Rj [ Ri 6= ; for eah (j; i) 2 f(1; 2); (3; 4); (1; 3); (2; 4)g. In thisase rj + ri 6= 0 for eah (j; i) 2 f(1; 2); (3; 4); (1; 3); (2; 4)g. Therefore � =2�nP�2Vn �;� = 2�n( r21r1+r2 + r22r1+r2 + r23r3+r4 + r24r3+r4 + r21r1+r3 + r23r1+r3 + r22r2+r4+ r24r2+r4 ). It is easy to see that a2+b2a+b � 12 (a + b) for any two real numbersa; b � 0 with a + b > 0 where the equality holds () a = b. Therefore � �2�n( 12 (r1+r2)+ 12 (r3+r4)+ 12 (r1+r3) + 12 (r2+r4)) = 2�n(r1+r2+r3+r4) = 12where the equality holds () r1 = r2 = r3 = r4 () �;� = 12 for eah � 2 Vn.Case 2: Rj0 [Ri0 = ; for some (j0; i0) 2 f(1; 2); (3; 4), (1; 3), (2; 4)g. Withoutloss of generality let R1 [ R2 = ;. Thus r1 = r2 = 0 and thus r3 + r4 = 2n�1.There exist following two ases to be onsidered:Case 2.1: Rj [ Ri 6= ; for eah (j; i) 2 f(3; 4); (1; 3); (2; 4)g. In this aserj + ri 6= 0 for eah (j; i) 2 f(3; 4); (1; 3); (2; 4)g. Thus � = 2�nP�2Vn �;�= 2�n( r23r3+r4 + r24r3+r4 + r23r1+r3 + r24r2+r4 ). Sine r1 = r2 = 0, we have � =2�nP�2Vn �;� = 2�n( r23+r24r3+r4 + r3 + r4) � 2�n( 12 (r3 + r4) +r3 + r4) = 34 .Case 2.2: Rj1 [ Ri1 = ; for some (j1; i1) 2 f(3; 4); (1; 3); (2; 4)g. Reall thatr3+ r4 = 2n�1. Thus (j1; i1) 6= (3; 4). Without loss of generality let R1[R3 = ;.Thus r3 = 0 and r4 = 2n�1. Therefore � = 2�nP�2Vn �;� = 2�n( r24r3+r4+ r24r2+r4 ). Sine r2 = r3 = 0, we have � = 2�n(r4 + r4) = 1.Summarizing Cases 1 and 2, we have proved that � � 12 where the equalityholds () �;� = 12 for eah � 2 Vn. ut



Theorem 2. Given seret sharing with its de�ning funtion f on Vn. Then� � 12 where the equality holds () �;� = 12 for eah integer  with 1 �  � nand eah � 2 Vn.Proof. By using Theorem 1, we have � = 1nPn=1 � � 12 . Assume � = 12 .Sine � = 12 and � � 12 ,  = 1; : : : ; n, � = 12 ,  = 1; : : : ; n. Due to Theorem 1,�;� = 12 for eah integer  with 1 �  � n and eah � 2 Vn. We have proved theneessity. The suÆieny is obvious. ut3 Cheating Immune Seret Sharing and Its ConstrutionDue to Theorem 2, if minf�;�j� 2 Vn; 1 �  � ng < 12 then maxf�;�j� 2Vn; 1 �  � ng > 12 . Naturally it is desirable that �;� = 12 for eah integer with 1 �  � n and eah � 2 Vn. In this ase the seret sharing is said to beheating immune. Due to Theorems 1 and 2, we onludeCorollary 1. Given seret sharing with its de�ning funtion f on Vn. Then thefollowing statements are equivalent: (i) � = 12 , (ii) � = 12 for eah integer  with1 �  � n, (iii) �;� = 12 for eah integer  with 1 �  � n and eah � 2 Vn.Cheating immunity of seret sharing an be investigated in the ontext ofwell-known harateristis of the de�ning funtion f suh as resilieny (see [14℄)and the SAC (see [12, 13℄).Theorem 3. Given seret sharing with its de�ning funtion f on Vn. Then theseret sharing is heating immune () f is 1-resilient and satis�es the SAC.Proof. We keep using the notations in the proof of Theorem 1. It is easy to verifythat f(x1; : : : ; xn)jx=1 is balaned (1-resilieny) () r1 + r2 = r3 + r4, whilef(x1; : : : ; xn)jx=0 is balaned (1-resilieny)() r1+r3 = r2+r4. From the proofof Theorem 1, f(x)�f(x�Æ) = �0 if (y; z) 2 R1 [ R41 if (y; z) 2 R2 [ R3 . Thus f(x)�f(x�Æ) isbalaned (SAC)() r1+r4 = r2+r3. Note that r1+r2 = r3+r4, r1+r3 = r2+r4and r1+r4 = r2+r3 together() r1 = r2 = r3 = r4. From the proof of Theorem1, r1 = r2 = r3 = r4 () �;� = 12 for eah � 2 Vn. Due to the arbitrariness ofthe integer  with 1 �  � n, the proof is ompleted. utBased on Theorem 3, to onstrut an heating immune seret sharing sheme,we need a 1-resilient funtion on Vn satisfying the SAC.Theorem 4. Let n > 0 be an even integer. Then there exists a seret sharingwith its de�ning funtion f on Vn suh that (i) this seret sharing is heatingimmune, (ii) the nonlinearity (see [14℄) of f is equal to 2n�1 � 2 12n.Proof. Let h be a bent funtion [7℄ on Vn�2 (n is even). Set g(x1; : : : ; xn�1) =(1� xn�1)h(x1; : : : ; xn�2) � xn�1(1� h(x1 � a1; : : : ; xn�2� an�2)) where theHamming weight of (a1; : : : ; an�2) is 12n�1. Set f(x1; : : : ; xn) = (1�xn)g(x1; : : : ;xn�1) �xng(x1�1; : : : ; xn�1�1). From the proof of Theorem 17 of the referene[8℄, f is 1-resilient, satis�es the SAC and has a nonliearty 2n�1 � 2 12n. Due toTheorem 3, the seret sharing with de�ning funtion f is heating immune. ut
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