
On Algebraic Immunity and Annihilators

Xian-Mo Zhang1, Josef Pieprzyk1, and Yuliang Zheng2

1 Centre for Advanced Computing - Algorithms and Cryptography
Department of Computing, Macquarie University

Sydney , NSW 2109, Australia
xianmo,josef@ics.mq.edu.au

2 Department of Software & Information Systems
The University of North Carolina at Charlotte

9201 University City Blvd, Charlotte
NC 28223-0001, USA
yzheng@uncc.edu

Abstract. Algebraic immunity AI(f) defined for a boolean function f

measures the resistance of the function against algebraic attacks. Cur-
rently known algorithms for computing the optimal annihilator of f and
AI(f) are inefficient. This work consists of two parts. In the first part, we
extend the concept of algebraic immunity. In particular, we argue that a
function f may be replaced by another boolean function fc called the al-
gebraic complement of f . This motivates us to examine AI(fc). We define
the extended algebraic immunity of f as AI∗(f) = min{AI(f), AI(fc)}.
We prove that 0 ≤ AI(f) − AI∗(f) ≤ 1. Since AI(f) − AI∗(f) = 1
holds for a large number of cases, the difference between AI(f) and
AI∗(f) cannot be ignored in algebraic attacks. In the second part, we
link boolean functions to hypergraphs so that we can apply known re-
sults in hypergraph theory to boolean functions. This not only allows us
to find annihilators in a fast and simple way but also provides a good
estimation of the upper bound on AI∗(f).

Key Words: Algebraic Attacks, Algebraic Immunity, Hypergraph Theory,
Greedy Algorithm.

1 Introduction to Algebraic Immunity

Recent algebraic attacks [4, 5, 3, 6, 14, 7, 8, 2, 1, 16, 9] have become a powerful tool
that can be used for almost all types of cryptographic systems. Normally an al-
gebraic attack is run in two stages. In the first stage, attackers build algebraic
equations that reflect the relations between inputs, outputs and a secret key.
In the second stage, attackers solve the algebraic equations in order to discover
the secret key or restrict the secret key to a small domain (then exhaustively
search the small domain). Algebraic attacks will be more efficient if algebraic
equations have low degrees because the number of monomials (terms) of low
degree is relatively small. Using annihilators is one of techniques to enable us
to produce algebraic equations of low degree. Algebraic attacks have been used
very successfully to analyse LFSR-based stream ciphers because all the alge-
braic equations preserve their algebraic degree. The concept of annihilators for

algebraic attacks was introduced by Courtois and Meier in [5]. For a boolean
function f with n-bit inputs, AN(f) is a set of boolean functions, defined as
AN(f) = {g : (GF (2))n → GF (2)|f(x)g(x) = 0, for all x ∈ (GF (2))n}. Each
function g ∈ AN(f) is called an annihilator of f . Courtois and Meier [5] pro-
posed three different scenarios to reduce the degree of algebraic equations. They
discussed the relation among the three scenarios S3a, S3b and S3c in [6]. Later
Meier at el. [14] showed that the scenario S3c can be replaced by the scenario
S3a. Dalai et al [8] demonstrated that all the scenarios are equivalent to finding
the union of two related annihilators, namely, AN(f) and AN(1 ⊕ f) and then
they defined the algebraic immunity AI(f) as the minimum degree of nonzero
boolean functions in AN(f) ∪AN(1 ⊕ f).

We now explain an application of annihilators to algebraic attacks. We may
consider two types of algebraic equations, namely f(x) = 0 or f(x) = 1. For an
algebraic equation f(x) = 0, multiplying the equation by g1, such that g1f = h
is of a lower degree than the degree of f . Consequently, the attackers obtain a
lower degree equation h(x) = 0. For the algebraic equation f(x) = 1, multiplying
the equation by g2 of a low degree such that g2f is identical to the constant zero.
Then the attackers obtain a lower degree equation g2(x) = 0.

Courtois and Meier [5, 6] studied AI(f) and proved that AI(f) ≤ ⌈n/2⌉
where ⌈c⌉ denotes the smallest integer that is equal to or bigger than c. The
problem of finding function f , such that AI(f) = ⌈n/2⌉, was examined in [8, 2]. It
is easy to observe that AI(f) is never higher than its degree, i.e. AI(f) ≤ deg(f).
This fact is true because (1 ⊕ f)f = 0. In general, for any boolean function f
of n variables, we have AI(f) ≤ min{deg(f), ⌈n/2⌉}. Very recently, Armknecht
et al [1] presented a method by which the algebraic immunity of a random
boolean function with n variables and degree d can be computed in O(D2)

steps where D =
∑d

i=0

(

n
i

)

. This is an improvement on the previous best result
O(D3). This method is efficient for many classes of boolean functions including
boolean functions of low degree. HoweverD2 will be as large as O(2n) for random
functions when d is larger than or close to 1

2n.

2 Introduction to This Work

This work is composed of two parts. In the first part, we review the current
definition of algebraic immunity and extend the concept. For a boolean function
f , we create its algebraic complement f c and define extended algebraic immunity
of the function f as AI∗(f) = min{AI(f), AI(f c)}. We next prove that 0 ≤
AI(f) − AI∗(f) ≤ 1. Since AI(f) − AI∗(f) = 1 holds for a large number of
cases, the difference between AI(f) and AI∗(f) cannot be ignored in algebraic
attacks. AI∗(f) is applicable not only to LFSR-based stream ciphers but also
to other ciphers whenever attackers can replace the original function f by f c.
In the second part, we apply the hypergraph theory to study annihilators. This
new approach enables us to examine the relation among boolean functions f ,
1 ⊕ f , f c and 1 ⊕ f c. The main tool we use here is the concept of transversals
in the hypergraph theory. We can produce annihilators of a function f , and its
related functions 1⊕ f , f c and 1⊕ f c and obtain an upper bound on AI∗(f) in

a fast and straightforward way. We also prove that the functions obtained in our
approach must be annihilators, although they may not be optimal. Further we
argue that the transversal number can be smaller than both deg(f) and ⌈n/2⌉.
This means the transversal number gives a new upper bound on AI∗(f).

The rest of the paper is organised as follows. We review the definition of
algebraic immunity AI(f) and present the extended algebraic immunity AI∗(f)
in Section 3. We briefly introduce the hypergraph theory in Section 4. We de-
scribe the connection between boolean functions and hypergraphs in Section 5.
In Sections 6 we show how to convert the problem of finding annihilators into
the related problem of finding transversals in a hypergraph. Then in Section 7
we derive an upper-bound on AI∗(f). In Section 8 we study boolean functions
and their transversal numbers. In Section 9 we apply the well-known greedy al-
gorithm in order to find annihilators for boolean functions in an efficient and
straightforward way. Section 10 concludes the work. In the Appendix we elabo-
rate how to use the greedy algorithm to obtain better annihilators.

3 Extended Algebraic Immunity

In this section we present the concept of extended algebraic immunity. Through-
out the paper we are going to use the following notations. The vector space of
n-tuples of elements from GF (2) is denoted by (GF (2))n. We write all vectors in
(GF (2))n as (0, . . . , 0, 0) = α0, (0, . . . , 0, 1) = α1, . . ., (1, . . . , 1, 1) = α2n−1, and
call αi the binary representation of integer i, i = 0, 1, . . . , 2n − 1. A boolean
function f is a mapping from (GF (2))n to GF (2) or simply, a function f
on (GF (2))n. The Hamming weight of f , denoted by HW (f), is defined as
HW (f) = #{α ∈ (GF (2))n, f(α) = 1}, where # denotes the cardinality of
a set. We express f as f(x) = f(x1, . . . , xn) where x = (x1, . . . , xn) ∈ (GF (2))n.
The function f can be uniquely represented by a polynomial f(x1, . . . , xn) =
⊕

α∈(GF (2))n g(a1, . . . , an)xa1

1 · · ·xan
n where α = (a1, . . . , an), and g is also a

function on (GF (2))n. The polynomial representation of f is called the algebraic
normal form (ANF) of the function and each xa1

1 · · ·xan
n is called a monomial

(term) in ANF of f . The algebraic degree, or simply degree, of f , denoted by
deg(f), is defined as the number of variables in the longest monomial of f , i.e.,
deg(f) = max{HW (α) | g(α) = 1, α ∈ (GF (2))n}.

As an example, we consider stream ciphers based on LFSRs (Linear Feedback
Shift Registers [10]). A such stream cipher is composed of two parts: a single
LFSR defined by a connection function L and a nonlinear filter (boolean func-
tion) f on (GF (2))n, where both L and f are known. A secret vector state K is
also called the initial state. The stream cipher generates a sequence of keystream
bits bi as follows:

bi = f(Li(K)), i = 0, 1, . . . (1)

In a typical attack, adversaries wish to find the initial state K knowing the
structure of the cipher (i.e. functions L and f) and a sequence of keystream bits bi
for some (not necessarily consecutive) clocks i. Since L is a linear transformation,
Li(0) = 0, i = 0, 1, Therefore K must NOT be the all-zero state.

Notation 1 Set ∆(x) = (1⊕x1) · · · (1⊕xn) where x = (x1, . . . , xn) ∈ (GF (2))n.

It is easy to prove the following lemma.

Lemma 1. The function ∆(x) has the following properties. (i) ∆(α) 6= 0 if and
only if α = 0, (ii) h(x)∆(x) is identical with the constant zero for any boolean
function g ∈ (GF (2))n with h(0) = 0, (iii) h(x)∆(x) is identical with ∆(x) for
any boolean function g ∈ (GF (2))n with h(0) = 1.

Notation 2 Given a function f on (GF (2))n. We define an algebraic comple-
ment of f , denoted by f c, as the function that contains all monomials xa1

1 · · ·xan
n ,

where each aj ∈ {0, 1}, that are not in ANF of the function f .

The following properties of the algebraic complement are obvious: (1) (f c)c = f
for any function f ; (2) any pair of functions (f, f c) does not have any monomials
in common.

Lemma 2. Let f be a function on (GF (2))n. Then (i) f c(x) = ∆(x)⊕ f(x) for
all x ∈ (GF (2))n, (ii) f c(x) = f(x) for all nonzero x ∈ (GF (2))n.

Proof. It is easy to verify that ANF of∆(x) contains all 2n−1 possible monomials
xa1

1 · · ·xan
n . Thus the statement (i) is true. Using Lemma 1, we can say that the

statement (ii) holds.

Due to (ii) of Lemma 2, f can be replaced by f c. This leads us to the following
theorem.

Theorem 1. Let the connection function L be nonsingular (i.e. L(α) 6= L(α′)
if α 6= α′). Then Equation (1) is true if and only if

bi = f c(Li(K)), i = 0, 1, . . . (2)

holds.

Proof. It is noted that the secret K must be nonzero. Since L is linear and
nonsingular, Li(K) 6= 0, i = 0, 1, According to Lemma 2, we have proved
the theorem. ⊓⊔

Note that there exists no guarantee that AI(f) and AI(f c) are equal. This can
be seen from a large number of evidences, for instance

Example 1. Let f(x1, x2, x3) = x2x3⊕ x2 ⊕ x3 ⊕ x1 ⊕ 1. Then its algebraic
complement is f c(x1, x2, x3) = x1x2x3⊕ x1x2 ⊕ x1x3. It is easy to check that
AI(f) = 2 but AI(f c) = 1. ⊓⊔

Clearly, in an algebraic attack, adversaries are going to compute both AI(f)
and AI(f c) and find annihilators for both functions f and f c. Obviously, they
can apply the annihilator whose degree is lowest. This is the reason why we need
to revise the concept of algebraic immunity.

Definition 1. Given a function f on (GF (2))n. The extended algebraic im-
munity of f , denoted by AI∗(f), is the minimum degree of nonzero boolean
functions in AN(f) ∪ AN(1 ⊕ f) ∪ AN(f c) ∪ AN(1 ⊕ f c), or in other words,
AI∗(f) = min{AI(f), AI(f c)}.

Example 2. In Example 1, the extended algebraic immunity AI∗(f) = 1 but the
algebraic immunity AI(f) = 2. ⊓⊔

Theorem 2. Let f a function on (GF (2))n. Then

(i) |AI(f) −AI(f c)| ≤ 1,
(ii) 0 ≤ AI(f) −AI∗(f) ≤ 1 and 0 ≤ AI(f c) −AI∗(f) ≤ 1.

Proof. Let g ∈ AN(f) ∪ AN(1 ⊕ f) such that deg(g) = AI(f). It is easy to
see that there exists some i0 with 1 ≤ i0 ≤ n such that 1 ⊕ xi0 is not a factor
of g, or in other words, g cannot be expressed as g(x) = (1 ⊕ xi0)g

′(y) where
g′ is a boolean function on (GF (2))n−1. Hence xi0g(x) is a nonzero function.
Due to Lemma 1, xi0∆(x) is identical with the constant zero. There exist two
cases to be considered: g ∈ AN(f) and g ∈ AN(1 ⊕ f). Consider the first
case: g ∈ AN(f). The function gf is identical with the constant zero. Therefore
xi0g(x)f

c(x) or xi0g(x)(f(x) ⊕ ∆(x)) is identical with the constant zero. This
implies that xi0g(x) ∈ AN(f c) and thus AI(f c) ≤ 1 +AI(f). We next consider
the second case: g ∈ AN(1 ⊕ f). The function g(1 ⊕ f) is identical with the
constant zero. Therefore xi0g(x)(1⊕ f c(x)) or xi0g(x)(1⊕ f(x)⊕∆(x)) is iden-
tical with the constant zero. This implies that xi0g(x) ∈ AN(1 ⊕ f c) and thus
AI(f c) ≤ 1 + AI(f). We then have proved that AI(f c) ≤ 1 + AI(f) in both
cases. Since (f c)c = f , we know that AI(f) ≤ 1 +AI(f c). AI(f c) ≤ 1 +AI(f)
and AI(f) ≤ 1+AI(f c) together imply that −1+AI(f) ≤ AI(f c) ≤ 1+AI(f),
i.e., |AI(f) −AI(f c)| ≤ 1. Thus we have proved the relation (i) of the theorem.
The relation (ii) is true due to (i) and the definition of AI∗(f). ⊓⊔

Theorem 3. Let f be a function on (GF (2))n. Then AI∗(f) = AI(f) if there
exists some h in AN(f) ∪ AN(1 ⊕ f) with deg(h) = AI(f) and h(0) = 0, and,
there exists some g in AN(f c)∪AN(1⊕f c) with deg(g) = AI(f c) and g(0) = 0.

Proof. Let h ∈ AN(f) ∪ AN(1 ⊕ f) with deg(h) = AI(f) and h(0) = 0. Due
to Lemma 1, the function h(x)∆(x) is identical with the constant zero. Thus
h(x)f c(x) = h(x)(f(x)⊕∆(x)) = h(x)f(x). Similarly, h(x)(1⊕f c(x)) = h(x)(1⊕
f(x)⊕∆(x)) = h(x)(1⊕f(x)). Consequently, h is either an annihilator of f c or an
annihilator of 1⊕f c and then AI(f c) ≤ AI(f). Symmetrically, AI(f) ≤ AI(f c).
Thus AI(f c) = AI(f) and thus AI(f∗) = AI(f). ⊓⊔

Due to Theorem 3, AI(f) − AI∗(f) = 0 may hold sometimes. However the
next example indicates that AI(f) −AI∗(f) = 1 can also hold.

Example 3. Let ∆(y) be the function on (GF (2))p defined in Notation 1 and
βj ∈ (GF (2))p be the binary representation of positive integer j, j = 1, . . . , 2p−1.
Let q ≥ 2p − 1 be another integer. Thus there exist 2p − 1 linearly independent

linear functions ψ1, . . . , ψ2p−1 on (GF (2))q . Define a function on (GF (2))p+q :

f(x) =
⊕2p−1

j=1 ∆(y ⊕ βj)ψj(z) ⊕ Πq+p
i=1 (1 ⊕ xi) where y = (x1, . . . , xp), z =

(xp+1, . . . , xp+q) and x = (y, z). Then f c(x) =
⊕2p−1

j=1 ∆(y ⊕ βj)ψj(z). It is
not hard to verify that AI(f) ≥ p + 1 and AI(f c) ≥ p. Since ∆(y)∆(y ⊕ β)
is identical with the constant zero for any nonzero β ∈ (GF (2))p, ∆(y) is an
annihilator of f c. Thus AI(f c) ≤ p. AI(f c) ≥ p and AI(f c) ≤ p together imply
that AI(f c) = p. Due to AI(f c) = p, AI(f) ≥ p + 1 and Theorem 2, we have
AI(f) = p+ 1. Hence we have proved that AI(f) = p+ 1 but AI∗(f) = p. ⊓⊔

Due to Example 3, AI(f) −AI∗(f) = 1 holds for a large number of boolean
functions. Therefore the difference between AI(f) and AI∗(f) cannot be ignored
in algebraic attacks. Observe that the extended algebraic immunity AI∗(f) is
not only relevant to LFSR-based stream ciphers but in general, to any ciphers
whose initial states do not contain the zero vector.

4 Brief Introduction to Hypergraph

Hypergraph theory is a part of combinatorics. The word “hypergraph” was intro-
duced in 1966. Let X = {x1, . . . , xn} be a finite set. Set E = {e1, . . . , em}, where
each ej is a subset of X . A hypergraph, denoted by ℵ, is the pair ℵ = (X,E).
Each xj is called a vertex, j = 1, . . . , n and each ej is called an edge; j = 1, . . . ,m.
It should be noted that repeated edges are permitted. An edge e ∈ E is called
a loop if #e = 1. The rank of ℵ is defined as max{#e|e ∈ E}. In particular,
the hypergraph ℵ is called a graph if the rank of ℵ is less or equal to 2. Graph
theory was formed much earlier than hypergraph theory. Let X ′ be a subset of
X and E′ be a subset of E. If there exists some ej ∈ E′ such that X ′ ∩ ej 6= ∅,
where ∅ denotes the empty set, we simply say that X ′ and E′ are associated. A
star centered at a vertex xj is a family of edges of ℵ associated with xj . The
degree of vertex xj , denoted by ∆ℵ(xj), is the size of the star centered at xj . The
maximum value of degrees of vertices is denoted by ∆(ℵ). Let X ′ ⊆ X , define
ℵ−X ′ as a hypergraph whose vertex set is X −X ′ and whose edge set consists
of all edges in E with all vertices in X−X ′. A sequence x1e1x2e2 · · ·xpepxp+1 is
called a path of length p joining x1 to xp+1, where p > 1, all the ej are distinct,
xj with 1 ≤ j ≤ p are distinct, and xj , xj+1 ∈ ej , j = 1, . . . , p. In particular,
if x1 = xp then the path is called a cycle of length p. A subset of X , say S,
is a stable set of ℵ, if ej 6⊆ S for each j = 1, . . . ,m. The maximum cardinality
of a stable set is called the stability number of ℵ and it is denoted by ς(ℵ). A
subset of X , say T , is a transversal of ℵ, if T ∩ ej 6= ∅ for each j = 1, . . . ,m.
The minimum cardinality of a transversal is called the transversal number of ℵ
and it is denoted by τ(ℵ). A subset of E, say M = {ej1 , . . . , ejq

}, is a matching
of ℵ, if eju

∩ ejv
= ∅, for u 6= v. The maximum number of edges in a matching

is called the matching number of ℵ, denoted by ν(ℵ).

5 Relating Hypergraphs to Boolean Functions

Definition 2. Let f be a function on (GF (2))n. If the constant monomial in
the ANF of f is zero (one) we say f to be 0-CM (1-CM).

Definition 3. Let f(x) or f(x1, . . . , xn) be a 0-CM boolean function on (GF (2))n,
where x = (x1, . . . , xn). We now define a hypergraph ℵ(f) associated with the
function f as follows. The vertex set X(f) of ℵ(f) consists of all variables of
the function f , i.e. X(f) = {x1, . . . , xn}. A subset e = {xj1 , . . . , xjs

} over X(f)
is an edge of ℵ(f) if and only if xj1 · · ·xjs

is a monomial in ANF of f . Denote
the collection of edges of ℵ(f) by E(f). The hypergraph ℵ(f) = (X(f), E(f))
is called the hypergraph of the 0-CM boolean function f . We define the hyper-
graph of the 1-CM boolean function f as the hypergraph of 1 ⊕ f and use the
same notation ℵ(f) = (X(f), E(f)).

According to Definition 3, for any boolean function f , there uniquely exists a
hypergraph ℵ such that ℵ = ℵ(f), but, for any hypergraph ℵ, there are pre-
cisely two boolean functions f and 1 ⊕ f whose hypergraphs are identical, i.e.
ℵ = ℵ(f) = ℵ(1 ⊕ f). Denote the stability number, the transversal number and
the matching number of ℵ(f) simply by ς(f), τ(f) and ν(f) respectively. In this
way we can apply the known results in the hypergraph theory in our study of
annihilators. The relation between boolean functions and hypergraphs was first
introduced by Zheng et al in [20]. Note, however, that the authors of [20] used
hypergraphs to examine the nonlinearity of boolean functions while in this work
we use hypergraphs to study annihilators and extended algebraic immunity. It
should also be noted that the relation between boolean functions and hyper-
graphs established in [20] contains a minor inaccuracy because 1-CM boolean
functions do not correspond to any hypergraph. Note also that 0-CM and 1-CM
can be united by the definition of algebraic immunity based on the scenarios S3a
and S3b: let h have a lower degree than f , then h is an annihilator of f if and
only if h(1 ⊕ f) = h, while, h is an annihilator of 1 ⊕ f if and only if hf = h.

6 Annihilators versus Transversals

In this section we relate transversals to annihilators.

Lemma 3. For a given 0-CM function f on (GF (2))n, let T = {xj1 , . . . , xjt
}

be a subset of X(f). Then the following equation holds

(1 ⊕ xj1) · · · (1 ⊕ xjt
) · f = (1 ⊕ xj1) · · · (1 ⊕ xjt

) · f |xj1
=0,...,xjt

=0.

Proof. Note that a(1 ⊕ a) = 0 holds for any a ∈ GF (2). Let xi1 · · ·xiv
be a

monomial in ANF of f . If {xi1 , . . . , xiv
}∩ {xj1 , . . . , xjt

} 6= ∅ then xi1 · · ·xiv
· (1⊕

xj1) · · · (1 ⊕ xjt
) turns out to be the zero boolean function. If {xi1 , . . . , xiv

}∩
{xj1 , . . . , xjt

} = ∅ then xi1 · · ·xiv
· (1 ⊕ xj1) · · · (1 ⊕ xjt

) will be different from
zero. Note that the monomials of f that have empty intersection with T are
uniquely identified by f |xj1

=0,...,xjt
=0. So the result follows. ⊓⊔

Note that Lemma 3 is relevant to the proof of Proposition 1 of [8] or the proof
of Proposition 2 of [2]. The authors of [2, 8] indicated that the algebraic immunity
of a boolean function will be low if it has a sub-function of low degree. Since the
authors of [2, 8] did not determine how many variables or which variables are
involved in such a sub-function, their claims need more investigation.

Lemma 4. Let f be a 0-CM function on (GF (2))n. Let T = {xj1 , . . . , xjt
}

be a subset of X(f). Then the following statements are equivalent: (i) T is a
transversal of ℵ(f), (ii) (1 ⊕ xj1) · · · (1 ⊕ xjt

) is an annihilator of the function
f , (iii) f |xj1

=0,...,xjt
=0 vanishes or is identical with the constant zero.

This lemma establishes a relation between annihilators of f and transversals of
ℵ(f). Due to Lemma 4, we can introduce the following equivalence.

Definition 4. If T = {xj1 , . . . , xjt
} is a transversal of a 0-CM boolean func-

tion f then (1 ⊕ xj1) · · · (1 ⊕ xjt
) is called the annihilator of the function f ,

corresponding to the transversal T .

7 Upper-bound on Extended Algebraic Immunity

Theorem 4. For any boolean function f on (GF (2))n, the extended algebraic
immunity of f is upper-bounded by its transversal number, i.e.,

AI∗(f) ≤ min{τ(f), τ(f c)}.

Proof. According to Lemma 4,AI(f) ≤ τ(f) and AI(f c) ≤ τ(f c). ThenAI∗(f) ≤
min{τ(f), τ(f c)}. ⊓⊔

In the hypergraph theory (see Section 3 of [11]), τ(ℵ) + ς(ℵ) = n, where
ς(ℵ) is the stability number of ℵ. This equality and Theorem 4 imply that the
following statement is true.

Corollary 1. For any boolean function f on (GF (2))n, the following upper
bound on extended algebraic immunity holds:

AI∗(f) ≤ min{⌈n/2⌉, deg(f), deg(f c), τ(f) = n− ς(f), τ(f c) = n− ς(f c)}.

According to Corollary 1, a large transversal number min{τ(f), τ(f c)} is
necessary for resistance against algebraic attacks. In the next section, we show
a large number of boolean functions whose transversal numbers are less than
both deg(f) and ⌈n/2⌉. Therefore the new bound in Theorem 4 or Corollary 1
is non-trivial.

8 Boolean Functions with Low Transversal Number

Throughout this section, we discuss only f however we can do the same for f c

and then study AI∗(f). We indicate that there exist a large number of boolean
functions with small transversal number. It is known that the inequality ν(ℵ) ≤
τ(ℵ) holds for every hypergraph [11] where ν(ℵ) is the matching number of ℵ.
The hypergraph ℵ is said to satisfy the König property if ν(ℵ) = τ(ℵ). We say
that a boolean function f satisfies the König property if its hypergraph does.

Theorem 5. Let f be a 0-CM boolean function on (GF (2))n satisfying the
König property. Let M be a matching of ℵ(f) such that #M = ν(f). Let us
denote λM = 1

ν(f)

∑

e∈M #e. Then AI(f) ≤ ⌊n/λM⌋, where ⌊c⌋ denotes the

maximum integer less than or equal to c.

Proof. It is noted that any two distinct e ∈M and e′ ∈M are disjoint because
M is a matching of ℵ(f). Thus λMν(ℵ) =

∑

e∈M #e ≤ n. It follows that ν(ℵ) ≤
n/λM . Due to the König Property τ(f) = µ(f), we know that τ(f) ≤ n/λM .
Since τ(f) is an integer, τ(f) ≤ ⌊n/λM⌋. We have proved the theorem. ⊓⊔

The following is a consequence of Theorem 5.

Corollary 2. Let f be a 0-CM boolean function on (GF (2))n satisfying the
König property. Let M be a matching of ℵ(f) such that #M = ν(f). Let m0 =
min{#e | e ∈M}. Then AI(f) ≤ ⌊n/m0⌋.

In Corollary 2, if m0 > min{2, n/deg(f)} then AI(f) < min{n/2, deg(f)}.
Therefore the König property of a function may result in a lower algebraic im-
munity.

Notation 3 Let f be a 0-CM function on (GF (2))n Let f [i], where i = 1, . . . , n,
denote the 0-CM function composed of all terms of f with degree at least i and f[i]
denote the 0-CM function on (GF (2))n composed of all terms of f with degree
at most i− 1. Clearly f = f [i] ⊕ f[i].

Lemma 5. Let f be a 0-CM boolean function on (GF (2))n and ℵ(f [i0]) satisfy
the König property for an integer i0 with 2 ≤ i0 ≤ n − 1. Then there exists a
transversal T = {xj1 , . . . , xjt

} of ℵ(f [i0]) such that t ≤ ⌊n/i0⌋ and

(1 ⊕ xj1) · · · (1 ⊕ xjt
) · f = (1 ⊕ xj1) · · · (1 ⊕ xjt

) · f[i0]|xj1
=0,...,xjt

=0 (3)

where the degree of (1 ⊕ xj1) · · · (1 ⊕ xjt
) · f[i0]|xj1

=0,...,xjt
=0 is at most ⌊n/i0⌋+

i0 − 1, or, (1⊕ xj1) · · · (1⊕ xjt
) · f[i0]|xj1

=0,...,xjt
=0 is identical with the constant

zero.

Proof. Applying the proof of Theorem 5 to ℵ(f [i0]), we know that τ(f [i0]) ≤
⌊n/λM⌋, where λM is defined for f [i0]. Since i0 ≤ λM , we know that τ(f [i0]) ≤
⌊n/i0⌋. Thus there exists a transversal T = {xj1 , . . . , xjt

} of f [i0] such that #T =
t = τ(f [i0]) ≤ ⌊n/i0⌋. Therefore, from f = f [i0]⊕f[i0], we know that the equality
(3) holds. If T is also a transversal of f[i0]|xj1

=0,...,xjt
=0 then (1⊕xj1) · · · (1⊕xjt

)·
f[i0]|xj1

=0,...,xjt
=0 will be identical with the constant zero. If T is not a transversal

of f[i0]|xj1
=0,...,xjt

=0 then the degree of (1 ⊕ xj1) · · · (1 ⊕ xjt
) · f[i0]|xj1

=0,...,xjt
=0

is at most t + i0 − 1 = τ(f [i0]) + i0 − 1 ≤ ⌊n/i0⌋+i0 − 1. We have proved the
lemma. ⊓⊔

Corollary 3. Let f be a 0-CM boolean function on (GF (2))n. Let there be a
subset X ′ of X = {x1, . . . , xn} such that ℵ(f)−X ′ satisfies the König property.
Let M be a matching of ℵ(f) − X ′ such that #M = ν(ℵ(f) − X ′). Denote
λM = 1

ν(f)

∑

e∈M #e, then AI(f) ≤ #X ′ + ⌊(n− #X ′)/λM⌋.

Proof. Applying Theorem 5 to the hypergraph ℵ(f) −X ′, we know that there
exists a transversal T ′ = {xj1 , . . . , xjt

} of ℵ(f) − X ′ such that #T ′ ≤ ⌊(n −
#X ′)/λM⌋. Denote T = X ′ ∪ T ′. Clearly T is a transversal ℵ(f) and #T =
#X ′ + ⌊(n− #X ′)/λM⌋. Then the corollary holds. ⊓⊔

Corollary 3 shows that if a hypergraph does not satisfy the König property
but its a sub-hypergraph obtained by removing some vertices does, then the
transversal number τ can be small.

Example 4. In Lemma 5, if #i0 ≈ √
n then the degree of (1 ⊕ xj1) · · · (1 ⊕

xjt
) · f[i0]|xj1

=0,...,xjt
=0 is approximately 2

√
n − 1. This shows a possible lower

algebraic immunity. In fact, it is easy to verify that AI(f) < min{n/2, deg(f)}
when n ≥ 12 and 2

√
n − 1 < deg(f). It is noted that the real-valued function

ϕ(t) = n/t+ t− 1 reaches its minimum value ϕ(
√
n) = 2

√
n− 1. ⊓⊔

There exist many sufficient conditions for the König property. For example,
a hypergraph ℵ will satisfy the König property if it does not have a cycle of odd
length [11].

9 Annihilators by Greedy Algorithm

Throughout this section, we discuss only the original function f and symmetri-
cally we can do the same for the algebraic complement f c. The greedy algorithm
[11] is widely used in combinatorial optimisation. It is based on the natural
principle of building up a solution from best choices that are made locally.

9.1 Annihilators of 0-CM Boolean Functions by Greedy Algorithm

Let f be a 0-CM boolean function over the set X = {x1, . . . , xn} of variables
and its hypergraph ℵ(f). We would like to find the transversal T of ℵ(f). Below
we give the description of such algorithm.
greedy algorithm (finds a transversal T of ℵ(f))

1. Set T0 = ∅.
2. For k = 1, 2, · · · do {

– choose a vertex xjk
∈ ℵ(f) − Tk−1 where

∆ℵ(f)−Tk−1
(xjk

) = ∆(ℵ(f) − Tk−1),

– set Tk = Tk−1 ∪ {xjk
},

– if ℵ(f) − Tk is empty return the transversal Tk and exit. }

Let T = {xj1 , . . . , xjt
} be a transversal obtained from the greedy algorithm.

According to Lemma 4, we know that (1 ⊕ xj1) · · · (1 ⊕ xjt
) is an annihilator of

f , i.e., f · (1 ⊕ xj1) · · · (1 ⊕ xjt
) is identical with the constant zero.

Note that the greedy algorithm does not guarantee that the resulting transver-
sal T is optimal. An optimal transversal should satisfy #T = τ(f). However, we
still use the greedy algorithm to obtain a “reasonable” solution, and the greedy
algorithm is often used in practice. We also note that there may exist two or
more resulting transversals of ℵ(f) by the greedy algorithm because, for example,
there may exist two or more monomials whose degrees are equal to the deg(f).
Using the results from [12, 19, 13], the following statement can be proved.

Theorem 6. Let f be a 0-CM boolean function with n variables. Then for any
transversal T of ℵ(f) obtained by the greedy algorithm, there is an upper bound
on the cardinality of T and

#T ≤ τ(f)(1 + 1/2 + · · · + 1/deg(f)).

Our considerations are illustrated on a boolean function f that was used as
the filter function in the LILI-128 stream cipher [18]. Although the function f
in the next example was studied in [6], in this work we use it to illustrate the
greedy algorithm.

Example 5. Let f be the out filter function of LILI-128 (called fd in [18]) that
is a balanced, highly nonlinear and 3rd correlation immune boolean function of
degree 6 on (GF (2))10 constructed using design criteria given in [17]. ANF of f
is taken from [6]. We next list all the monomials of f . They are

x2, x3, x4, x5, x6x7, x1x8, x2x8, x1x9, x3x9, x4x10, x6x10, x3x7x9, x4x7x9, x6x7x9,
x3x8x9, x6x8x9, x4x7x10, x5x7x10, x6x7x10, x3x8x10, x4x8x10, x2x9x10, x3x9x10,
x4x9x10, x5x9x10, x3x7x8x10, x5x7x8x10, x2x7x9x10, x4x7x9x10, x6x7x9x10,
x1x8x9x10, x3x8x9x10, x4x8x9x10, x6x8x9x10, x4x6x7x9, x5x6x7x9, x2x7x8x9,
x4x7x8x9, x4x6x7x9x10, x5x6x7x9x10, x3x7x8x9x10, x4x7x8x9x10, x4x6x7x8x9,
x5x6x7x8x9, x4x6x7x8x9x10, x5x6x7x8x9x10.

We apply the greedy algorithm to ℵ(f). Since ∆ℵ(f)(x9)= ∆(ℵ(f)) = 30,
we set T1 = {x9}. We then have ℵ(f) − T1 = {x2, x3, x4, x5, x6x7, x1x8,
x2x8, x4x10, x6x10, x4x7x10, x5x7x10, x6x7x10, x3x8x10, x4x8x10, x3x7x8x10,
x5x7x8x10}. As ∆ℵ(f)−T1

(x10) = ∆ℵ(f)−T1
= 9, we set T2 = T1∪{x10}. Observe

that ℵ(f) − T2= {x2, x3, x4, x5, x6x7, x1x8, x2x8}. Although we can continue
the greedy algorithm until we find a transversal of f , we now stop the algorithm
and multiple f by (1 ⊕ x9)(1 ⊕ x10). According to Lemma 3, we get

(1 ⊕ x9)(1 ⊕ x10) · f
= (1 ⊕ x9)(1 ⊕ x10) · (x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6x7 ⊕ x1x8 ⊕ x2x8)

Thus multiplying the equation f(x1, . . . , x10) = 1 by (1 ⊕ x9)(1 ⊕ x10), we have

(1 ⊕ x9)(1 ⊕ x10) · (1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6x7 ⊕ x1x8 ⊕ x2x8) = 0

Similarly, multiplying the equation f(x1, . . . , x10) = 0 by (1 ⊕ x9)(1 ⊕ x10), we
receive

(1 ⊕ x9)(1 ⊕ x10) · (x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6x7 ⊕ x1x8 ⊕ x2x8) = 0

Therefore we have reduced degree of the equations from 6 to 4. ⊓⊔

9.2 Greedy Algorithm on 1-CM Boolean Functions

Let f be a 1-CM function on (GF (2))n. Then 1⊕f is 0-CM. We apply the greedy
algorithm to ℵ(1 ⊕ f) and obtain a transversal T = {xj1 , . . . , xjt

}. According
to Lemma 4, we know that (1 ⊕ xj1) · · · (1 ⊕ xjt

) is an annihilator of 1 ⊕ f , i.e.,
(1 ⊕ f) · (1 ⊕ xj1) · · · (1 ⊕ xjt

) is identical with the constant zero, or in other
words, f · (1 ⊕ xj1) · · · (1 ⊕ xjt

) = (1 ⊕ xj1) · · · (1 ⊕ xjt
).

9.3 Complexity of the Greedy Algorithm for Annihilators

We next investigate the complexity of the greedy algorithm for an annihilator.

Theorem 7. For any function f on (GF (2))n, by using the greedy algorithm,
we can obtain an annihilator of f or 1 ⊕ f in n(n+ 1) steps.

Proof. For the case that f is 0-CM, we first compute ∆ℵ(f)(xj) = dj , j =
1, . . . , n. Thus it takes n steps to obtain d1, . . . , dn. Set p1 = d1. Assume we have
had pk. Set pk+1=max{pk, dk+1}. We then get pn. Clearly pn = max{d1, . . . , dn}.
Thus we only need n steps to find pn or xj0 such that ∆ℵ(f)(xj0)= ∆ℵ(f). Con-
cluding, the computation takes at most 2n steps on ℵ(f) to find d1, . . . , dn, and
pn. Similarly, we compute the degree of each vertex of ∆ℵ(f)−{xj0

}, and then
find xj1 such that ∆ℵ(f)−{xj0

}(xj1)= ∆ℵ(f)−{xj0
}. The computation takes at

most 2(n− 1) steps on ℵ(f)−{xj0}. By using the greedy algorithm, we can find
an annihilator of a 0-CM function f with n variables in at most 2n+2(n−1)+· · ·
+ ≤ n(n+ 1) steps. Since we can apply the greedy algorithm to 1⊕ f when f is
1-CM, we then have proved the theorem. ⊓⊔

According to Theorem 7, the greedy algorithm is always fast. The algorithm
guarantees the resulting function must be an annihilator although it may not
be best (with minimum degree). The greedy algorithm will be refined in the
Appendix.

10 Conclusions

We have argued that in algebraic attacks, boolean functions f may be replaced by
their algebraic complements f c. We then have introduced the extended algebraic
immunity AI∗(f) = min{AI(f), AI(f c)}. We prove that 0 ≤ AI(f)−AI∗(f) ≤
1. We have also indicated that AI(f) −AI∗(f) = 1 holds for a large number of
boolean functions. Therefore the difference between AI(f) and AI∗(f) cannot be
ignored in algebraic attacks. We have established a relation between annihilators
of boolean functions and traversals of hypergraphs. The relation allows us to find
annihilators in a fast and effective way provided ANF of the function is known.
In addition, we establish a new upper-bound on AI∗(f). The new upper-bound
and the algorithms together show that the new approach is helpful in analysis
of the extended algebraic immunity AI∗(f) and in finding annihilators.

Acknowledgment

The first two authors were supported by Australian Research Council grants
DP0345366, DP0451484 and DP0663452. We would like to thank the referees
for helpful suggestions.

References

1. F. Armknecht, C. Carlet, P. Gaborit, S. Künzli, W. Meier, and O. Ruatta. Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In
Advances in Cryptology - Eurocrypt’06, volume 4004 of Lecture Notes in Computer
Science, pages 147–164. Springer-Verlag, Berlin, Heidelberg, New York, 2006.

2. C. Carlet, D. Dalai, K. Gupta, and S. Maitra. Algebraic immunity for cryptograph-
ically significant boolean functions: Analysis and construction. IEEE Transactions
on Information Theory, IT-xx No. x:xxx–xxx, 2006.

3. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology - Crypto’03, volume 2729 of Lecture Notes in Computer
Science, pages 176–194. Springer-Verlag, Berlin, Heidelberg, New York, 2003.

4. N. Courtois. Higher order correlation attacks, XL algorithm and cryptanalysis
of Toyocrypt. In The 5th International Conference on Information Security and
Cryptology (ICISC’02), Seoul, Korea, volume 2587 of Lecture Notes in Computer
Science, pages 182–199. Springer-Verlag, Berlin, Heidelberg, New York, 2003.

5. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Advances in Cryptology - Eurocrypt’03, volume 2656 of Lecture Notes in
Computer Science, pages 345–359. Springer-Verlag, Berlin, Heidelberg, New York,
2003.

6. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. (http://www.nicolascourtois.net/toyolili.pdf), 2003.

7. D. Dalai, K. Gupta, and S. Maitra. Results on algebraic immunity for cryptograph-
ically significant boolean functions. In Proceedings of Indocrypt 2004, volume 3348
of Lecture Notes in Computer Science, pages 92–106. Springer-Verlag, Berlin, Hei-
delberg, New York, 2004.

8. D. Dalai, K. Gupta, and S. Maitra. Cryptographically significant boolean functions:
Construction and analysis in term of algebraic immunity. In Proceedings of Fast
Encryption 2005, volume 3557 of Lecture Notes in Computer Science, pages 98–111.
Springer-Verlag, Berlin, Heidelberg, New York, 2005.

9. F. Didier and J. Tillich. Computing the algebraic immunity efficiently. In Proceed-
ings of Fast Encryption 2006, volume xxxx of Lecture Notes in Computer Science,
pages xxx–xxx. Springer-Verlag, Berlin, Heidelberg, New York, 2006.

10. S. W. Golomb. Shift Register Sequences. Laguna Hills, CA: Aegean Park, 1982.
11. R. L. Graham, M. Grötschel, and L. Lovász. Handbook of Combinatorics, volume I.

Elsevier Science B. V., 1995.
12. D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput.

System. Sci., 9:256–298, 1974.
13. L. Lovász. On the ratio of optimal fractional and integral covers. Discrete Math.,

13:383–390, 1975.
14. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of

boolean functions. In Advances in Cryptology - Eurocrypt’04, volume 3027 of Lec-
ture Notes in Computer Science, pages 474–491. Springer-Verlag, Berlin, Heidel-
berg, New York, 2004.

15. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, London, New York, Washington, D.C.,
1997.

16. Y. Nawaz, G. Gong, and K. Gupta. Upper bounds on algebraic immunity of power
functions. In Proceedings of Fast Encryption 2006, volume xxxx of Lecture Notes in
Computer Science, pages xxx–xxx. Springer-Verlag, Berlin, Heidelberg, New York,
2006.

17. P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient boolean
functions. In Advances in Cryptology - CRYPTO2000, volume 1880 of Lecture
Notes in Computer Science, pages 515–532. Springer-Verlag, Berlin, Heidelberg,
New York, 2000.

18. L. Simpson, E. Dawson, J. Golic, and W. Millan. LILI keystream generator. In Se-
lected Areas in Cryptography, 7th Annual International Workshop, SAC2000, vol-
ume 2012 of Lecture Notes in Computer Science, pages 248–261. Springer-Verlag,
Berlin, Heidelberg, New York, 2001.

19. S. K. Stein. Two combinatorial covering theorems. Journal of Combinatorial
Theory A, 16:391–397, 1974.

20. Y. Zheng, X. M. Zhang, and Hideki Imai. Restrictions, terms and nonlinearity of
boolean functions. Theoretical Computer Science, 226:207–223, 1999.

Appendix: Multiple Greedy Algorithms for Annihilators

Throughout this section, we discuss only f and symmetrically we can do the same
for f c. It is noted that 1⊕f is an annihilator of f where f is any boolean function.
Thus, if τ(f) > deg(f) then the greedy algorithm will fail. For this reason, in this
section we strengthen the greedy algorithm in order to obtain better annihilators.
By the improved algorithm, we may obtain a better annihilator of f even τ(f) >
deg(f), ⌈n/2⌉.

Let f boolean function on (GF (2))n (0-CM or 1-CM), X = {x1, . . . , xn} be
the set of variables. Applying greedy algorithm, described in Section 9 to f or
1⊕f , according to f is 0-CM or 1-CM, we obtain a transversal T = {xj1 , . . . , xjt

}
of ℵ(f) or ℵ(1 ⊕ f), where xj1 is produced earliest in the algorithm, xj2 is
produced second earliest, . . ., xjt

is produced last. Based on the transversal T ,
we next present the Multiple greedy algorithm in a series of notations.

Notation 4 We define a function Dβ on (GF (2))k, where 1 ≤ k ≤ r =
min{ 1

4n, t − 2}, as follows: Dβ(y) = (1 ⊕ b1 ⊕ xj1) · · · (1 ⊕ bk ⊕ xjk
) where y =

(xj1 , . . . , xjk
), β = (b1, . . . , bk), {xj1 , . . . , xjk

} ⊆ T = {xj1 , . . . , xjt
}. We define

fβ(z) = f(x)|xj1
=b1,...,xjk

=bk
where z = (xi1 , . . . , xin−k

) satisfying {xj1 , . . . , xjk
}

∪ {xi1 , . . . , xin−k
} = {x1, . . . , xn} with i1 < · · · < in−k.

It is easy to see that

f(x) =
⊕

β∈(GF (2))k

Dβ(y)fβ(z) (4)

Due to the greedy algorithm, it should be noted that y = (xj1 , . . . , xjk
) does not

necessarily imply j1 < · · · < jk.

Definition 5. (4) is called the kth greedy decomposition of f with respect the
transversal T = {xj1 , . . . , xjt

} of ℵ(f). Each fβ(z) is called a subfunction of f
in the greedy decomposition (4).

Notation 5 Let k be a fixed integer with 1 ≤ k ≤ r, where r = min{ 1
4n, t− 2}

and t = #T . We write the kth greedy decomposition of f in the form (4). If fβ(z)
is a non-constant function, we apply the greedy algorithm to fβ(z) (when fβ(z) is
0-CM) or 1⊕fβ(z) (when fβ(z) is 1-CM), and then we obtain the transversal Tk,β

of fβ(z) or 1 ⊕ fβ(z). Clearly Tk,β is a subset of {xi1 , . . . , xin−k
}. We define an

integer ρk,β =

{

0 if fβ(z) is the constant one or zero
min{deg(fβ(z)),#Tk,β} otherwise

.

We also define an integer ρk = min{ρk,β |β ∈ (GF (2))k}.

Notation 6 If exists some k such that ρk = 0, we define k∗ = min{k|ρk = 0}.
In this case, by definition, there exists some βj∗ ∈ (GF (2))k∗

such that fβj∗
(z) is

the constant zero or one. Otherwise, ρk > 0, k = 1, . . . , r, we define k∗∗ + ρk∗∗=
min{k + ρk|1 ≤ k ≤ r}, where r = min{ 1

4n, t− 2} and t = #T . In this case, by

definition, there exists some βj∗∗ ∈ (GF (2))k∗∗

such that ρk∗∗,βj∗∗
= ρk∗∗ .

Theorem 8. Let f be a function on (GF (2))n (0-CM or 1-CM).

(i) if the first case (in Notation 6) occurs then Dβj∗
(y) is an annihilator of f

or 1 ⊕ f , where deg(Dβj∗
) = k∗,

(ii) if the second case (in Notation 6) occurs then there exists a function g on
(GF (2))n−k∗∗

such that Dβj∗∗
(y)g(z) is an annihilator of f or 1⊕ f , where

deg(g) = min{deg(fβj∗∗
(z)),#Tk,βj∗∗

},
(iii) both annihilators in (i) and (ii) have a degree is less than or equal to t = #T .

Proof. We first prove (i) of the theorem. It is noted that Dβ′(y) · Dβ′′(y) is
identical with the constant zero when β′ 6= β′′. Therefore, according to (4),
we know that Dβj∗

(y)f(x) = Dβj∗
(y)fβj∗

(z). Thus, if fβj∗
(z) is the constant

zero then Dβj∗
(y) is an annihilator of f , and, if fβj∗

(z) is the constant one
then Dβj∗

(y) is an annihilator of 1 ⊕ f . We next prove (ii). Similarly to the
proof of (i), we have Dβj∗∗

(y)f(x) = Dβj∗∗
(y)fβj∗∗

(z). When #Tk∗∗,βj∗∗
<

deg(fβj∗∗
(z)), there exists an annihilator g of fβj∗∗

(z) or 1 ⊕ fβj∗∗
(z), where

the annihilator g is corresponding to (see Definition 4) the transversal Tk∗∗,βj∗∗
.

Therefore Dβj∗∗
(y)g(z)f(x) = Dβj∗∗

(y)g(z)fβj∗∗(z)= 0 if fβj∗∗
(z) is 0-CM, or,

Dβj∗∗
(y)g(z)f(x) = Dβj∗∗

(y)g(z)fβj∗∗(z)= Dβj∗∗
(y)g(z), i.e., Dβj∗∗

(y)g(z)(1 ⊕
f(x)) = 0 if fβj∗∗

(z) is 1-CM. This proves that Dβj∗∗
(y)g(z) is an annihilator

of f or 1⊕ f . When #Tk∗∗,βj∗∗
≥ deg(fβj∗∗

(z)), we set g = 1⊕ fβj∗∗
(z). There-

fore Dβj∗∗
(y)g(z)f(x) = Dβj∗∗

(y)g(z)fβj∗∗(z) that is identical with the constant
zero. This proves thatDβj∗∗

(y)g(z) is an annihilator of f . We have completed the
proof of (ii). We finally prove (iii). The degree of annihilator in (i) is equal to k∗.
According the the multiple greedy algorithm, k ≤ r where t = #T . The degree
of annihilator in (ii) is equal to k∗∗+ρk∗∗,βj∗∗

≤ k∗∗+#Tk∗∗,βj∗∗
≤ k∗∗+#Tk∗∗,0.

Recall that T is the transversal of ℵ(f). Therefore k∗∗+#Tk∗∗,0 = #T . We have
proved (iii). ⊓⊔

Definition 6. We call the algorithm in this section the multiple greedy algo-
rithm. To avoid confusion, we call the algorithm in Section 9 the single greedy
algorithm.

Theorem 9. Let f be a function on (GF (2))n (0-CM or 1-CM). Let T with
#T = t be a transversal of f by the Greedy Algorithm. Then an annihilator of
f or 1 ⊕ f can be computed by using the multiple greedy algorithm in 2r+1 · n2

computing operations, where r = min{ 1
4n, t− 2} and t = #T .

Proof. Due to the multiple greedy algorithm, for each k with 1 ≤ k ≤ r, we do
single greedy algorithm for at most 2k functions on (GF (2))n−k. According to
Theorem 7, the computing operations is at most

∑r

k=1 2k · (n− k)(n− k+ 1) ≤
n2

∑r

k=1 2k ≤ n2 · 2r+1. ⊓⊔

The following statement is obvious.

Corollary 4. In the multiple greedy algorithm, for any k with 1 ≤ k ≤ r, where
r = min{ 1

4n, t − 2} and t = #T , and any β ∈ (GF (2))k, we have AI(f) ≤
k +AI(fβ) ≤ k + τ(fβ).

According to Corollary 4, any degenerate subfunction is not desirable.
The main difference between the multiple and single greedy algorithms is

that the multiple greedy algorithm contains many single greedy algorithms. It is
noted that many subfunctions fβ are involved in the algorithm. This is helpful for
the algebraic attacks because the subfunctions have less variables than original
function f and some subfunctions may have a low degree or a small transversal
number or satisfy the König property. Of course, The multiple greedy algorithm
needs more computing times than the single greedy algorithm, but it results in
better annihilators.

Note that Proposition 1 of [8] or Proposition 2 of [2] previously indicated that
the algebraic immunity of a boolean function will be low if it has a subfunction
of low degree. The main difference between the multiple greedy algorithm and
the previous result is that the formula (4) is based on a transversal T of f ,
produced by the single greedy algorithm. Also the single Greedy Algorithm is
further applied to each subfunction fβ in (4).

By the same reasoning, we can apply the multiple Greedy Algorithm to f c

and obtain an annihilator of f c. Comparing the degree of the annihilator of f c

by the multiple greedy algorithm, to the degree of the annihilator of f by the
same algorithm, we choose one with smaller degree between the two annihilators
as the final result.

