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Abstract. New criteria of extended resiliency and extended immunity
of vectorial Boolean functions, such as S-boxes for stream or block ci-
phers, were recently introduced. They are related to a divide-and-conquer
approach to algebraic attacks by conditional or unconditional equations.
Classical resiliency turns out to be a special case of extended resiliency
and as such requires more conditions to be satisfied. In particular, the
algebraic degrees of classically resilient S-boxes are restricted to lower
values. In this paper, extended immunity and extended resiliency of S-
boxes are studied and many characterisations and properties of such
S-boxes are established. The new criteria are shown to be necessary and
sufficient for resistance against the divide-and-conquer algebraic attacks
by conditional or unconditional equations.
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1 Introduction

The concept of divide-and-conquer algebraic attacks by the conditional or un-
conditional equations induced from a cipher was introduced recently by Golić in
[15]. The basic idea behind the resistance against the new attacks is to design
the ciphers so that an attacker cannot induce non-constant equations involv-
ing certain subsets of variables within the cipher. For this reason, the notions
of extended resiliency along with extended immunity as a special case were in-
troduced in [15].3 As a special case of extended resiliency, classical resiliency
(see for instance [1, 2, 5, 6, 16, 20, 21, 23, 24]) requires additional conditions that
are not necessary for resistance against the algebraic attacks by conditional or
unconditional equations. Furthermore, the additional conditions restrict the al-
gebraic degrees [3, 21, 22]. Therefore, although possibly useful to resist other

3 The name ‘extended resiliency (immunity)’ in this paper corresponds to ‘algebraic
immunity (resiliency)’ in [15]. The name is changed in order to avoid confusion with
[4, 12, 13], where ‘algebraic immunity’ was defined differently.



types of attacks, such as correlation attacks, classically resilient S-boxes are not
good candidates for cryptographic blocks that should resist algebraic attacks
by conditional or unconditional equations. The extended resiliency (immunity)
thus seems to be an appropriate platform for a study of S-boxes that are used
in stream or block ciphers. These S-boxes are “provably” immune against the
divide-and-conquer algebraic attacks by conditional (unconditional) equations
and, unlike classically resilient S-boxes, can have high algebraic degrees.

The aim of the paper is to characterise extended resiliency and extended
immunity. More precisely, in Section 2, we recall and describe the divide-and-
conquer algebraic attacks by unconditional (conditional) equations induced from
an S-box. The algebraic properties of S-boxes to be used in the rest of the paper
are provided in Section 3. The extended resiliency and the extended immunity
are characterised in Sections 4 and 5, respectively. In Section 6, the extended
resiliency (immunity) is characterised in terms of the resistance against alge-
braic attacks by unconditional (conditional) equations. The relations between
the extended immunity, the extended resiliency and the classical resiliency are
summarised in Section 7. In Section 8, we demonstrate that algebraic degrees of
extended resilient (immune) S-boxes can be as high as n−1, where n denotes the
input size, and provide the corresponding constructions. In Section 9, an upper
bound on extended immunity (resiliency) is analysed. Conclusions and sugges-
tions for future work are given in Section 10. Proofs of mathematical results are
provided in the Appendix.

2 Divide-and-Conquer Algebraic Attacks based on
Conditional and Unconditional Equations

Algebraic attacks [5, 7, 9–13,15, 18] have recently been shown to be very powerful
against certain types of both stream and block ciphers. Typically, an algebraic
attack consists of the following two stages. In the first stage, the attacker finds
a collection of equations that holds for some specific input, intermediate, and
output variables for the cipher. In the second stage, the attacker observes the
accessible variables, fixes the known variables to the observed values, and solves
the resulting system of equations. The solution normally reduces the uncertainty
of the unknown variables such as the secret key and in some circumstances, the
attacker can determine all unknown variables breaking the cipher. The amount
of work involved in this attack depends on the algebraic degree of the equations
derived by the adversary. The smaller the degree of the equations the more
efficient the attack is. To prevent ciphers against algebraic attacks, one would
expect that the internal structure of the ciphers does not permit the adversary
to derive low degree non-constant equations.

A concept of divide-and-conquer algebraic attacks is recently proposed in
[15]. It suggests that algebraic attacks can be based on equations involving only
subsets of input or output variables for individual nonlinear components of a
cipher such as S-boxes or lookup tables. The equations can be unconditional,
involving both input and output variables, or conditioned on the output, in-
volving only the input variables. The conditional scenario is shown to be useful



for stream ciphers (e.g., based on linear feedback shift registers), while the un-
conditional scenario may possibly be used for both block ciphers and stream
ciphers. More precisely, in iterated constructions, such equations may possibly
reduce the number of intermediate variables involved in the equations and hence
also the complexity of algebraic attacks. The two scenarios of induced algebraic
equations are described next.

Let F (x) = y be an n×m S-box, where x = (x1, . . . , xn) ∈ GF (2)n and y ∈
GF (2)m. 4 For a fixed integer t, 0 ≤ t ≤ n, let T = {j1, . . . , jt} be fixed ordered
t-subset of {1, . . . , n} and {i1, . . . , in−t}= {1, . . . , n} \ {j1, . . . , jt}, where j1 <
· · · < jt and i1 < · · · < in−t. Set x′ = (xj1 , . . . , xjt

) and x′′ = (xi1 , . . . , xin−t
).

We define a subset W (F, T ) of GF (2)t+m as follows.

W (F, T ) = {(α′, β) | α′ ∈ GF (2)t, β ∈ GF (2)m,
(∃α′′ ∈ GF (2)n−t, x′ = α′, x′′ = α′′, F (x) = β)}.

(1)

Let a function h on GF (2)t+m satisfy

h(x′, y) = 0, for all (x′, y) ∈W (F, T ). (2)

Then the equation (2), over x′ and y, is called an unconditional algebraic equation
induced from F (x) = y (for the fixed T ). Of course, such h always exists as h can
be the constant zero function. However the attackers try to find a non-constant
h so as to eliminate x′′ and involve only the variables in x′ and y. To make this
divide-and-conquer strategy ineffective, it is desirable that F does not induce
non-constant unconditional algebraic equations, e.g., for relatively small values
of t.

In particular, when β ∈ F (GF (2)n) in (1) is fixed, we define a subset
W (F, T, β) of GF (2)t as follows.

W (F, T, β) = {α′ | α′ ∈ GF (2)t,
(∃α′′ ∈ GF (2)n−t, x′ = α′, x′′ = α′′, F (x) = β)}.

(3)

Let a function h on GF (2)t satisfy

h(x′) = 0, for all x′ ∈W (F, T, β). (4)

Then the equation (4), over x′ only, is called a conditional algebraic equation
induced from F (x) = β. Similarly, it may be desirable that F does not induce
non-constant conditional algebraic equations, e.g., for relatively small values of
t. The extended immunity (resiliency) of vectorial Boolean functions is defined
in [15] in order to describe the divide-and-conquer effect of induced algebraic
equations. This will be studied in more detail in Section 6 and provides a practical
motivation for our work. On the other hand, the extended resiliency (immunity)
naturally generalises the well-known notion of classical resiliency (immunity)
and it is thus theoretically interesting to investigate its properties and propose
new constructions.
4 Here and throughout, we use a simplified notation GF (2)n for (GF (2))n.



3 Algebraic Properties of S-boxes

In this section, we provide the necessary background including notations that are
used in the next sections. We write all vectors in GF (2)n as (0, . . . , 0, 0) = α0,
(0, . . . , 0, 1) = α1, . . ., (1, . . . , 1, 1) = α2n−1, and call αi the binary representation
of integer i, i = 0, 1, . . . , 2n−1. A Boolean function f is a mapping from GF (2)n

to GF (2). We express f as f(x) = f(x1, . . . , xn) where x = (x1, . . . , xn) ∈
GF (2)n. The truth table of f is defined as (f(α0), f(α1), . . ., f(α2n−1)), and the
sequence of f is defined as ((−1)f(α0), (−1)f(α1), . . ., (−1)f(α2n

−1)). The scalar
product of α = (a1, . . . , an), β = (b1, . . . , bn) ∈ GF (2)n, denoted by 〈α, β〉, is
defined as 〈α, β〉= a1b1 ⊕ · · · ⊕ anbn where ⊕ denotes the binary addition. We
call h(x) = 〈α, x〉 ⊕ c an affine function, where α, x ∈ GF (2)n and c ∈ GF (2).
In particular, h is called a linear function if c = 0.

Consider a mapping F = (f1, . . . , fm) from GF (2)n to GF (2)m, where each
fj is a Boolean function on GF (2)n and is called a coordinate or component
function of F . We express F as F (x) = F (x1, . . . , xn) where x = (x1, . . . , xn) ∈
GF (2)n. F is also called an S-box or a vectorial Boolean function. From now, we
call F an n ×m S-box. F is said to be affine if all its coordinate functions are
affine, and in particular, F is said to be linear if all its coordinate functions are
linear. For any k, 1 ≤ k ≤ m, and any k-subset {j1, . . . , jk} of {1, . . . ,m}, where
j1 < · · · < jt, the mapping F̂ = (fj1 , . . . , fjk

) from GF (2)n to GF (2)k is called
a k-subfunction of F .

Notation 1 Let αi ∈ GF (2)n be the binary representation of integer i, i =
0, . . . , 2n − 1, and γj ∈ GF (2)m be the binary representation of integer j, j =
0, . . . , 2m − 1. For an n×m S-box F , we define a 2n × 2m (1,−1) matrix DF =
(dij): dij = (−1)〈F (αi),γj〉. Also we define a 2n × 2m real-valued (0, 1) matrix
CF = (cij): cij = 1 if and only if F (αi) = γj.

Recall that a k×k (1,−1)-matrix M is called a Hadamard matrix if MMT =
kIk, where MT is the transpose of M and Ik is the k× k identity matrix [17]. A
2s × 2s Sylvester-Hadamard matrix, denoted by Hs, is defined by the following

recursive relation: H0 = 1, Hs =

[

Hs−1 Hs−1

Hs−1 −Hs−1

]

, s = 1, 2, . . .. Clearly Hs

is a symmetric matrix. Denote the jth row (column) of Hm by ℓj (ℓTj ), j =
0, 1, . . . .2m − 1. It is known that ℓj is the sequence of a linear function ψj(y) =
〈γj , y〉 where y ∈ GF (2)m.

Lemma 1. Let F be an n×m S-box. Then DFHm = 2mCF .

Lemma 2. Let F be an n × m S-box. Let diag(λ0, λ1, . . . , λ2m−1) be a diago-
nal matrix, where λj denotes the number of times that F takes value γj. Then
DT

FDF = Hmdiag(λ0, λ1, . . . , λ2m−1)Hm.

Recall the basic facts from linear algebra, for instance, from [19]. If an s× s
matrix A with real entries, a nonzero s-dimensional column vector η with real
coordinates and a real number κ satisfy Aη = κη, then κ is called the eigenvalue



of matrix A corresponding to the eigenvector η or, alternatively, η is called an
eigenvector of matrix A corresponding to the eigenvalue κ. For a fixed matrix A,
each eigenvector corresponds to only one eigenvalue, whereas an eigenvalue does
not necessarily correspond to only one eigenvector. Usually, a real square matrix
does not necessarily have a real eigenvector. However, any real symmetric s× s
matrix must have s linearly independent real eigenvectors.

Corollary 1. Let F be an n ×m S-box. Then the jth column ℓTj of Hm is the

eigenvector of DT
FDF corresponding to the eigenvalue 2mλj, where λj denotes

the number of times that F takes value γj.

4 Extended Resilient S-boxes

The concept of extended resiliency was originally proposed by Golić [15]. In this
section, we derive various characterisations of the extended resiliency.

4.1 Surjective S-boxes

Before defining the extended resiliency, we introduce necessary notations.

Notation 2 Let F be an n × m S-box. For a subset S of GF (2)n, we write
{F (x) | x ∈ S} = F (S).

Definition 1. Let F be an n × m S-box. F is said to be surjective (or onto
GF (2)m) if F (GF (2)n) = GF (2)m.

Lemma 3. Let F be an n×m S-box. Then the following statements are equiva-
lent: (i) F is surjective, (ii) all eigenvalues of DT

FDF are nonzero, and (iii) the
rank of DF is 2m.

Definition 2. Functions f1, . . . , fm on GF (2)n are said to be functionally inde-
pendent if for any non-constant Boolean function h on GF (2)m, h(f1, . . . , fm)
is non-constant.

Clearly linear independence is a special case of functional independence.

Lemma 4. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is surjective, (ii) for any integer k, 1 ≤ k ≤ m, and any surjective
m × k S-box P , the n × k S-box P (F (x)) is surjective, and (iii) the coordinate
functions of F are functionally independent.

4.2 Extended Resiliency and its Properties

Notation 3 For a fixed t-subset T = {j1, . . . , jt} of {1, . . . , n} and a fixed vector
α = (a1, . . . , at) ∈ GF (2)t, we define a subset S(n, T, α) of GF (2)n: S(n, T, α) =
{x = (x1, . . . , xn) | x ∈ GF (2)n, xj1 = a1, . . . , xjt

= at}. 5 Formally, for t = 0,
a 0-subset T is the empty set, i.e., T = ∅ and α is not defined, then S(n, T, α)
becomes GF (2)n.

5 Here and throughout, a t-subset {j1, . . . , jt} is assumed to be ordered so that j1 <

· · · < jt.



Let #X denote the number of elements in a set X . Then #S(n, T, α) = 2n−t.

Lemma 5. For fixed subsets T = {j1, . . . , jt}, T ′ = {j1, . . . , jt−1} and fixed
vectors α = (a1, . . . , at) ∈ GF (2)t and α′ = (a1, . . . , at−1) ∈ GF (2)t−1, we have
S(n, T, α) ⊆ S(n, T ′, α′).

Definition 3. Let F be an n×m S-box. Then F is said to be (n,m, t)-extended
resilient if for any t-subset T of {1, . . . , n} and any α ∈ GF (2)t, we have
F (S(n, T, α)) = GF (2)m. An (n,m, t)-extended resilient S-box is also said to
be t-extended resilient if we ignore the particular values of n and m.

It follows that any (n,m, t)-extended resilient S-box is surjective, in particular,
any (n,m, 0)-extended resilient S-box is equivalent to a surjective n×m S-box.

Proposition 1. For any (n,m, t)-extended resilient S-box, it is necessary that
t ≤ n−m.

The following claim directly follows from Lemma 5.

Lemma 6. Let F be an n ×m S-box. Then F is (n,m, t)-extended resilient if
and only if F is (n,m, k)-extended resilient for k = 0, . . . , t.

Due to Lemma 6, we are able to introduce the following definition.

Definition 4. If F is an (n,m, t)-extended resilient S-box, but is not (n,m, t+
1)-extended resilient, then t is called the extended resiliency order of F .

Proposition 2. Let F be an (n,m, t)-extended resilient S-box. Then F (x) runs
through each vector in GF (2)m at least 2t times while x runs through GF (2)n

once.

4.3 Characterisations of Extended Resilient S-boxes

Definition 5. Let S be a subset of GF (2)n. Then the characteristic function of
S, denoted by χS, is a Boolean function on GF (2)n defined as χS(α) = 1 if and
only if α ∈ S.

Theorem 1. Let F be an n × m S-box. Then the following statements are
equivalent: (i) F is an (n,m, t)-extended resilient, (ii) for any fixed t-subset
T of {1, . . . , n} and any fixed α ∈ GF (2)t, all eigenvalues of DT

Fdiag(b0, b1, . . . ,
b2n−1)DF are nonzero, where (b0, b1, . . . , b2n−1) denotes the truth table of the
characteristic function of S(n, T, α) and each bj is regarded a real number, and
(iii) the rank of diag(b0, b1, . . . , b2n−1)DF is 2m.

The next claim follows from Lemma 4 and Definition 3.

Theorem 2. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended resilient, (ii) for any integer k, 1 ≤ k ≤ m, and
any surjective m × k S-box P , the n × k S-box P (F (x)) is (n, k, t)-extended re-
silient, and (iii) for any t-subset T = {j1, . . . , jt} of {1, . . . , n} and any α =
(a1, . . . , at) ∈ GF (2)t, the coordinate functions of F (x)|xj1

=a1,...,xjt
=at

, i.e., the
restriction of F to S(n, T, α), are functionally independent.



The necessity in the following statement holds due to Theorem 2 and the
sufficiency is obvious.

Corollary 2. Let F be an n×m S-box. Then F is (n,m, t)-extended resilient if
and only if for any k, 1 ≤ k ≤ m, every k-subfunction F̂ of F is (n, k, t)-extended
resilient.

Theorem 3. Let F be an n × m S-box. Then F is (n,m, t)-extended resilient
if and only if for any fixed r, 1 ≤ r ≤ t, any fixed r-subset T = {j1, . . . , jr} of
{1, . . . , n} and every nonzero Boolean function g on GF (2)r, g(xj1 , . . . , xjr

)F (x)
is surjective, i.e., {g(xj1 , . . . , xjt

)F (x)|x ∈ GF (2)n} = GF (2)m.

The next theorem is helpful for understanding the extended resiliency.

Theorem 4. Let F be an n×m S-box. Then the following statements are equva-
lent: (i) F is (n,m, t)-extended resilient, (ii) for any integer t0, 0 ≤ t0 ≤ t,
any t0-subset T0 of {1, . . . , n} and any α ∈ GF (2)t0 , the restriction of F (x) to
S(n, T0, α) is (t− t0)-extended resilient, and (iii) for any integer t0, 0 ≤ t0 ≤ t,
any t0-subset T0 of {1, . . . , n} and any α ∈ GF (2)t0 , F (x) runs through each
vector in GF (2)m at least 2t−t0 times while x runs through S(n, T0, α) once.

The following statement follows from Theorem 4.

Corollary 3. Let F be an (n,m, t)-extended resilient S-box. For any integer
k ≥ 1, define an (n+ k)×m S-box F ∗ as F ∗(α, β) = F (α) for each α ∈ GF (2)n

and β ∈ GF (2)k. Then F ∗ is (n+ k,m, t)-extended resilient.

5 Extended Immune S-boxes

The extended immunity proposed by Golić [15] is more general than the extended
resiliency. In this section, we derive characterisations of the extended immunity.

5.1 Extended Immunity and its Properties

Definition 6. Let F be an n×m S-box. Then F is said to be (n,m, t)-extended
immune if for any t-subset T of {1, . . . , n} and any α ∈ GF (2)t, we have
F (S(n, T, α)) = F (GF (2)n). An (n,m, t)-extended immune S-box is also said
to be t-extended immune if we ignore the particular values of n and m.

An (n,m, t)-extended immune S-box is (n,m, t)-extended resilient if and only
if F (GF (2)n) = GF (2)m. Recall that S(n, T, α) with #T = 0 denotes GF (2)n.
Thus any n×m S-box is (n,m, 0)-extended immune.

Proposition 3. For any (n,m, t)-extended immune S-box F , it is necessary that
t ≤ n− log2 #F (GF (2)n).

In particular, if F is an (n,m, t)-extended immune S-box, then the inequality
t ≤ n− log2 #F (GF (2)n) becomes t ≤ n−m, as in Proposition 1.

Lemma 5 and Definition 6 imply the following lemma.



Lemma 7. Let F be an n ×m S-box. Then F is (n,m, t)-extended immune if
and only if F is (n,m, k)-extended immune for k = 0, . . . , t.

According to Lemma 7, we are able to introduce the following definition.

Definition 7. If F is an (n,m, t)-extended immune S-box, but is not (n,m, t+
1)-extended immune, then t is called the extended immunity order of F .

Similarly to Proposition 2, we have the following more general statement.

Proposition 4. Let F be an (n,m, t)-extended immune S-box. Then F (x) runs
through each vector in F (GF (2)n) at least 2t times while x runs through GF (2)n

once.

5.2 Characterisations of Extended Immune S-boxes

We start with the following simple result.

Theorem 5. Let F be an n × m S-box. Then the following statements are
equivalent: (i) F is (n,m, t)-extended immune and (ii) for any fixed t-subset
T of {1, . . . , n} and any two vectors α, α′ ∈ GF (2)t, we have F (S(n, T, α)) =
F (S(n, T, α′)).

By using a similar argument in the proof of Theorem 1, we can prove Theorem
6, whereas Theorem 7 and Corollary 4 correspond to Theorem 2 and Corollary
2, respectively.

Theorem 6. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended immune and (ii) for any fixed t-subset T of
of {1, . . . , n} and any fixed α ∈ GF (2)t, the eigenvalue corresponding to the
eigenvector ℓTj of DT

Fdiag(b0, b1, . . . , b2n−1)DF is nonzero if and only if the the

eigenvalue corresponding to the eigenvector ℓTj of DT
FDF is nonzero, where ℓTj is

the jth column of Hm, j = 0, 1, . . . , 2m − 1, (b0, b1, . . . , b2n−1) denotes the truth
table of the characteristic function of S(n, T, α) and each bj is regarded as a real
number.

Theorem 7. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended immune, (ii) for any integer k, 1 ≤ k ≤ m,
and any m×k S-box P (not necessarily surjective), P (F (x)) is (n, k, t)-extended
immune, and (iii) for any t-subset T = {j1, . . . , jt} of {1, . . . , n}, any α =
(a1, . . . , at) ∈ GF (2)t, and any Boolean function h on GF (2)m, if h(F ) is non-
constant, then h(G) is non-constant, where G(x)= F (x)|xj1

=a1,...,xjt
=at

.

Corollary 4. Let F be an n×n S-box. Then F is (n,m, t)-extended immune if
and only if for any k, 1 ≤ k ≤ m, every k-subfunction F̂ of F is (n, k, t)-extended
immune.

By using a similar argument as in the proof of Theorem 3, we can prove the
following characterisation.



Theorem 8. Let F be an n ×m S-box. Then F is (n,m, t)-extended immune
if and only if for any fixed r, 1 ≤ r ≤ t, any fixed r-subset T = {j1, . . . , jr} of
{1, . . . , n} and every nonzero Boolean function g on GF (2)r,
{g(xj1 , . . . , xjr

)F (x)|x = (x1, . . . , xn) ∈ GF (2)n} = F (GF (2)n).

By the same reasoning as for Theorem 4, we can also prove the following
theorem, whereas Corollary 5 corresponds to Corollary 3.

Theorem 9. Let F be an n×m S-box. Then the following statements are equiv-
alent: (i) F is (n,m, t)-extended immune, (ii) for any integer t0, 0 ≤ t0 ≤ t, any
t0-subset T0 of {1, . . . , n} and any α0 ∈ GF (2)t0 , the restriction of F (x) to
S(n, T0, α0) is (t− t0)-extended immune, and (iii) for any integer t0, 0 ≤ t0 ≤ t,
any t0-subset T0 of {1, . . . , n} and any α0 ∈ GF (2)t0 , F (x) runs through each
vector in F (GF (2)n) at least 2t−t0 times while x runs through S(n, T0, α) once.

Corollary 5. Let F be an (n,m, t)-extended immune S-box. For any integer
k ≥ 1, define an (n+ k)×m S-box F ∗ as F ∗(α, β) = F (α) for each α ∈ GF (2)n

and β ∈ GF (2)k. Then F ∗ is (n+ k,m, t)-extended immune.

6 Characterisation of Extended Resiliency (Immunity)
in Terms of Existence of Unconditional (Conditional)
Equations

In this section, we characterise the extended resiliency (immunity) in terms of the
resistance against divide-and-conquer algebraic attacks by unconditional (con-
ditional) equations. For completeness, we first give a new proof for a result from
[15] about the existence of conditional algebraic equations. Then, we prove a
new result about the existence of unconditional algebraic equations.

Lemma 8. For a fixed t-subset T = {j1, . . . , jt} ⊆ {1, . . . , n}, there is no non-
constant conditional algebraic equation over x′ = (xj1 , . . . , xjt

) induced from
F (x1, . . . , xn) = β for any value of β ∈ F (GF (2)n) if and only if F (S(n, T, x′)) =
F (GF (2)n), for every x′ ∈ GF (2)t.

Theorem 10. There is no non-constant conditional algebraic equation over x′ =
(xj1 , . . . , xjt

) induced from F (x1, . . . , xn) = β for any t-subset T = {j1, . . . , jt} ⊆
{1, . . . , n} and any value of β ∈ F (GF (2)n) if and only if F is (n,m, t)-extended
immune.

Accordingly, for a (n,m, t)-extended immune S-box F , if the attackers want
to establish a non-constant conditional algebraic equation induced from F , they
have to choose x′ with dimension higher than the extended immunity order
defined in Definition 7.

Lemma 9. For a fixed t-subset T = {j1, . . . , jt} ⊆ {1, . . . , n}, there is no non-
constant unconditional algebraic equation over x′ = (xj1 , . . . , xjt

) and y induced
from F (x1, . . . , xn) = y if and only if F (S(n, T, x′)) = GF (2)m, for every x′ ∈
GF (2)t.



Theorem 11. There is no non-constant unconditional algebraic equation over
x′ = (xj1 , . . . , xjt

) and y induced from F (x1, . . . , xn) = y for any t-subset T =
{j1, . . . , jt} ⊆ {1, . . . , n} if and only if F is (n,m, t)-extended resilient.

Therefore, for an (n,m, t)-extended resilient S-box F , if the attackers want
to establish a non-constant unconditional algebraic equation induced from F ,
they have to choose x′ with dimension higher than the extended resiliency order
defined in Definition 4.

7 Relations between Extended Immunity, Extended
Resiliency and Classical Resiliency

Classically resilient S-boxes (see for instance [1, 2, 5, 6, 8, 16, 20, 21, 23, 24]) were
studied previously. The following is the definition of classical resiliency.

Definition 8. Let F be an n×m S-box. If for any t-subset T of {1, . . . , n} and
any α ∈ GF (2)t, F (x) runs through each vector in GF (2)m exactly 2n−m−t times
while x runs through S(n, T, α) once, then F is said to be (n,m, t)-classically
resilient.

Classical resiliency in Definition 8 was usually called resiliency. In this paper, we
call it classical resiliency so as to avoid confusion. Summarily, classical resiliency
is a special case of extended resiliency and extended resiliency is a special case
of extended immunity. We next establish some relations among the three.

Proposition 5. Any affine (n,m, t)-extended resilient S-box is also (n,m, t)-
classically resilient.

Theorem 12. Let F be an affine (n,m, t)-extended immune S-box. Then
#F (GF (2)n) = 2k, where k is an integer, and there exist a vector β ∈ GF (2)m

and an m× k matrix B over GF (2) such that the mapping P (x) = (F (x)⊕β)B
is an (n, k, t)-classically resilient S-box.

According to Theorem 12, any affine extended immune S-box can be used to
construct a classically resilient S-box by an appropriate affine transformation of
the output.

Theorem 13. Let Q be an (n,m, t)-extended immune S-box and let k be an inte-
ger satisfying k = ⌊log2 #Q(GF (2)n)⌋, where ⌊r⌋ denotes the maximum integer
less than or equal to r. For any mapping P from Q(GF (2)n) onto GF (2)k, de-
fine a mapping F = P (Q(x)) where x ∈ GF (2)n. Then F is an (n, k, t)-extended
resilient S-box.

According to Theorem 13, any extended immune S-box can be transformed
into an extended resilient S-box by an appropriate mapping of the output.



8 Algebraic Degree of Extended Resilient S-boxes

The algebraic degree of n × m S-box F = (f1, . . . , fm), denoted by deg(F ), is
defined as deg(F ) = ming{deg(g)|g =

⊕m
j=1 cjfj , (c1, . . . , cm) 6= (0, . . . , 0)}. S-

boxes with high algebraic degrees are desirable for resistance against algebraic
attacks.

Lemma 10. The algebraic degree of any n × m S-box F is at most n − 1 if
m ≥ 2.

From [24], an n×m S-box is (n,m, t)-classically resilient if and only if each
nonzero linear combination of its coordinate functions is (n, 1, t)-classically re-
silient. Due to [22], the algebraic degree of an (n, 1, t)-classically resilient function
is less than n− t unless t = n− 1 (Siegenthaler’s inequality). Therefore, the al-
gebraic degree of any (n,m, t)-classically resilient S-box is less than n− t (when
m ≥ 2). We will show that unlike the classical resiliency order, the extended
immunity (resiliency) order does not restrict the algebraic degree.

Notation 4 Let βj denote the vector in GF (2)n whose jth component is zero
and all other components are one, and β0 = (1, . . . , 1) ∈ GF (2)n. Let (x1 · · ·xn)/xj

denote the product x1 · · ·xj−1xj+1 · · ·xn of n− 1 variables.

Lemma 11. Let f be a Boolean function on GF (2)n. For any integer j, 1 ≤
j ≤ n, let f ′(x1, . . . , xn) = f(x1, . . . , xn) ⊕ (x1 · · ·xn)/xj . Then f ′ differs from
f only for x = β0 and x = βj. If deg(f) < n− 1 then deg(f ′) = n− 1.

Theorem 14. Let F = (f1, . . . , fm) be an (n,m, t)-extended resilient S-box,
deg(fj) < n− 1, j = 1, . . . ,m, and t > ⌊log2(m+ 1)⌋+ 1. Let F ′ = (f ′

1, . . . , f
′
m)

be an n×m S-box, where f ′
j(x1, . . . , xn) = fj(x1, . . . , xn)⊕ (x1 · · ·xn)/xj . Then

F ′ is an (n,m, t0)-extended resilient S-box such that t0 = t− ⌊log2(m + 1)⌋ − 1
and deg(F ′) = n− 1.

Therefore, an (n,m, t0)-extended resilient S-box F ′ achieves the maximum
degree n− 1. In contrast with F ′, if there exists an (n,m, t0)-classically resilient
S-box, due to Siegenthaler’s inequality, its algebraic degree is less than n − t0
(when m ≥ 2). Furthermore, there is another problem: it is unknown whether
this upper bound on the algebraic degree of classically resilient S-boxes can be
reached except for special cases. For these reasons, classically resilient S-boxes
may not be desirable with respect to algebraic attacks.

In the proof of Theorem 15, we construct (n,m, t)-extended resilient S-boxes
with maximum algebraic degree n − 1, for any given m and t, but the number
of inputs, n, has to be sufficiently large.

Theorem 15. For any given m and t and r ≥ t+⌊log2(m+1)⌋+2, there exists
an (rm,m, t)-extended resilient S-box with algebraic degree rm− 1.



9 Upper Bound on Extended Immunity (Resiliency)

Recall that the classical resiliency t of an (n,m, t)-resilient function is upper-

bounded by t ≤ ⌊ 2m−1n
2m−1 ⌋−1 [14] and t ≤ 2⌊ 2m−2(n+1)

2m−1 ⌋−1 [2]. In this section, we
indicate that the upper bound on extended immunity (resiliency) order is differ-
ent from the bound on the classical resiliency order. According to Proposition
3, any (n,m, t)-extended immune S-box F satisfies t ≤ n − log2 #F (GF (2)n).
We next show that this upper bound is tight for large t. We first provide a new
proof of a result from [15] concerning Boolean functions, i.e., m = 1. Then we
generalise this result to an arbitrary m.

Lemma 12. Let f be a Boolean function on GF (2)n with an extended immunity
order t. Then (i) t = n if and only if f is constant and (ii) t = n− 1 if and only
if f(x) = x1 ⊕ · · · ⊕ xn ⊕ c, where c ∈ GF (2) is constant.

Theorem 16. Let F = (f1, . . . , fm) be an n × m S-box with an extended im-
munity order t. Then (i) t = n if and only if F is constant and (ii) t = n − 1
if and only if fj(x) = x1 ⊕ · · · ⊕ xn ⊕ cj or cj, where cj ∈ GF (2) is constant,
j = 1, . . . ,m, and there exists a value j = j0 such that fj0 = x1 ⊕ · · · ⊕ xn ⊕ cj0 .
(iii) For both t = n and t = n − 1, the upper bound t ≤ n − log2 #F (GF (2)n)
holds with equality.

According to Theorem 16, the extended immunity of non-constant n × m
S-boxes can be higher than classical resiliency. However, except for t ≤ n −m,
we do not know any other upper bound on the extended resiliency t of (n,m, t)-
extended resilient S-boxes. This is an interesting problem to be studied in the
future.

10 Conclusions And Future Work

In this paper, we provided different mathematical characterisations of the ex-
tended immunity and its special case - the extended resiliency. A characterisation
of the extended resiliency (immunity) in terms of the existence of unconditional
(conditional) equations is also provided. Relations between the extended im-
munity, extended resiliency and classical resiliency are examined. Constructions
showing that the extended resiliency does not restrict the algebraic degree if the
number of inputs is sufficiently large are given too. More efficient constructions
and the nonlinearity of extended resilient (immune) S-boxes will be studied in
future work. It is also interesting to derive other, possibly sharper bounds on
the extended resiliency and extended immunity. Other criteria related to alge-
braic attacks, such as the minimum degree of algebraic equations induced from
S-boxes, in the conditional or unconditional scenarios, can also be taken into
consideration.
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Appendix: Proofs of Mathematical Results

Proof of Lemma 1. From the structure of DF , the ith row vector li of DF is
the sequence of linear function ψ(y) = 〈F (αi), y〉. On the other hand, the jthe
column of Hm is ℓTj - the sequence of a linear function ψj(y) = 〈γj , y〉. Note
that the sequences of different linear functions are orthogonal. Thus, li and ℓj
will be orthogonal if F (αi) 6= γj , while li and ℓj will be identical if F (αi) = γj .
According to the definition of CF , this proves the lemma. ⊓⊔

Proof of Lemma 2. Due to Lemma 1, we have HmD
T
FDFHm = 22mCT

FCF .
Due to the definition of CF , each row of CF has precisely one nonzero entry.
Thus any two columns of CF are orthogonal. On the other hand, the number
of ones in the jth column is equal to the number of times that F takes γj .
Thus CT

FCF = diag(λ0, λ1, . . . , λ2m−1). Summarising the above, we have proved
HmD

T
FDFHm = 22mdiag(λ0, λ1, . . . , λ2m−1). Since Hm is a 2m × 2m Hadamard

matrix, it follows that DT
FDF = Hmdiag(λ0, λ1, . . . , λ2m−1)Hm. ⊓⊔

Proof of Corollary 1. Since Hm is a 2m × 2m Hadamard matrix, due to
Lemma 2, we have DT

FDFHm = 2mHmdiag(λ0, λ1, . . . , λ2m−1) or, equivalently,
DT

FDF ℓ
T
j = 2mλjℓ

T
j , j = 0, 1, . . . , 2m − 1. ⊓⊔

Proof of Lemma 3. According to Corollary 1, (i) and (ii) are equivalent.
According to the well known fact from linear algebra, (ii) holds if and only if the



rank of DT
FDF is 2m. Further, DT

FDF and DF have the same rank. This proves
the equivalence of (ii) and (iii). ⊓⊔

Proof of Lemma 4. Assume that (i) holds. Consequently, P (F (GF (2)n))=
P (GF (2)m)= GF (2)k. This proves (i) =⇒ (ii). Assume that (ii) holds. Clearly,
any non-constant function h on GF (2)m is a surjective m× 1 S-box. Due to (ii),
h(F ) is a surjective n× 1 S-box and then non-constant. By virtue of Definition
2, we thus proved (ii) =⇒ (iii). Assume that (iii) holds. We now prove (i) by
contradiction. Assume that F does not take a value β ∈ GF (2)m. Define a
non-constant function h on GF (2)m as h(y) = 1 if and only if y = β. Clearly,
h(F (x)) is the constant zero function. This contradicts (iii), so that (i) is true.
This proves (iii) =⇒ (i). ⊓⊔

Proof of Proposition 2. Fix a t-subset T of {1, . . . , n}. The 2t sets S(n, T, α),
α ∈ GF (2)t, are disjoint and partition GF (2)n. When x runs once through
S(n, T, α) for any fixed α ∈ GF (2)t, F (x) runs at least once through each vector
in GF (2)m. Accordingly, F (x) runs through each vector in GF (2)m at least 2t

times when x runs once through GF (2)n. ⊓⊔

Proof of Theorem 1. Let a column vector ζ be the sequence of a Boolean func-
tion g on GF (2)n. It is easy to verify that diag(b0, b1, . . . , b2n−1)ζ is the sequence
of the restriction g(x1, . . . , xn)|xj1

=a1,...,xjt
=at

. For this reason, the matrix, from
Notation 1, corresponding to the restriction F (x1, . . . , xn)|xj1

=a1,...,xjt
=at

is iden-
tical with diag(b0, b1, . . . , b2n−1)DF . The theorem then follows from Lemma 3.

⊓⊔

Proof of Theorem 3. We only need to prove the theorem for r = t be-
cause a function g on GF (2)r with 1 ≤ r < t can be regarded as a function on
GF (2)t that does not depend on some t−r variables. Assume that F is (n,m, t)-
extended resilient. For any fixed t-subset T = {j1, . . . , jt} of {1, . . . , n} and any
given nonzero Boolean function g on GF (2)t, there exists a vector α ∈ GF (2)t

satisfying g(α) = 1. Then
{g(xj1 , . . . , xjt

)F (x)|x ∈ S(n, T, α)} =F (S(n, T, α)). Since F is (n,m, t)-extended
resilient, F (S(n, T, α)) = GF (2)m. Thus g(xj1 , . . . , xjt

)F (x) is surjective. Con-
versely, assume that F satisfies the property from the theorem. We now prove
that F is (n,m, t)-extended resilient. For a given t-subset T = {j1, . . . , jt}
of {1, . . . , n} and any given α = (a1, . . . , at) ∈ GF (2)t, we define a nonzero
Boolean function g on GF (2)t such that g(y) = 1 if and only if y = α. There-
fore, {g(xj1 , . . . , xjt

)F (x)|x ∈ GF (2)n} ={g(xj1 , . . . , xjt
)F (x)|x ∈ S(n, T, α)}=

F (S(n, T, α)). Due to the assumption, {g(xj1 , . . . , xjt
)F (x)|x ∈ GF (2)n} =

GF (2)m. Hence F (S(n, T, α)) = GF (2)m. Since both T with #T = t and
α ∈ GF (2)t are arbitrary, we have proved that F is (n,m, t)-extended resilient.

⊓⊔

Proof of Theorem 4. By Definition 3, it is easy to see that (i) =⇒ (ii). Due
to Proposition 2, (ii) =⇒ (iii). Assume that (iii) holds. We let t0 = t. Then it
follows that F is (n,m, t)-extended resilient. This proves (iii) =⇒ (i). ⊓⊔



Proof of Theorem 7. Assume that (i) holds. For any subset S(n, T, α) of
GF (2)n with #T = t, since F is (n, k, t)-extended immune, P (F (S(n, T, α)))
= P (F (GF (2)n)). Thus P (F (x)) is (n, k, t)-extended immune. We have thus
proved (i) =⇒ (ii). Assume now that (ii) holds. Let h be a function on GF (2)m

such that h(F ) is non-constant, i.e., #h(F (GF (2)n)) = 2. As, due to (ii), h(F ) is
(n, 1, t)-extended immune, for any subset S(n, T, α) of GF (2)n with #T = t and
α ∈ GF (2)t, we have #h(F (S(n, T, α))=#h(F (GF (2)n)) = 2. This means that
h(G) is non-constant, where G is defined in the Theorem. We have thus proved
that (ii) =⇒ (iii). Finally, assume that (iii) holds. We prove (i) by contradiction.
Assume that (i) does not hold. Then there exists a subset S(n, T, α) of GF (2)n

with #T = t and α ∈ GF (2)t such that F (S(n, T, α)) 6= F (GF (2)n). This
implies that F is non-constant. Let β ∈ F (GF (2)n)\ F (S(n, T, α)). We choose
a non-constant function h on GF (2)m such that h(y) = 1 if and only if y = β.
Since F takes value β and F is non-constant, from the definition of h, it follows
that h(F ) takes both values 1 and 0. However, since β 6∈ F (S(n, T, α)), h(G) is
the zero function, where G is defined in the Theorem. This contradicts (iii), so
that (i) is true. Thus we have proved (iii) =⇒ (i). ⊓⊔

Proof of Lemma 8. For a fixed t-subset T and any given value of β ∈
F (GF (2)n), due to (4), there exists a non-constant algebraic equation over x′

induced from F (x) = β if and only if #W (F, T, β) < 2t. Consequently, there
is no non-constant algebraic equation over x′ induced from F (x) = β if and
only if #W (F, T, β) = 2t, or equivalently, for each x′ ∈ GF (2)t, there exists
x′′ ∈ GF (2)n−t such that F (x) = β. Since this is true for an arbitrary β ∈
F (GF (2)n), it then follows that there is no non-constant algebraic equation over
x′ induced from F (x) = β for any β ∈ F (GF (2)n) if and only if F (S(n, T, x′)) =
F (GF (2)n), for every x′ ∈ GF (2)t. ⊓⊔

Proof of Theorem 10. As a t-subset T is arbitrary, the theorem directly
follows from Lemma 8 and Definition 6. ⊓⊔

Proof of Lemma 9. For a fixed t-subset T , due to (2), there is no non-
constant algebraic equation over x′ and y induced from F (x) = y if and only if
#W (F, T ) = 2t+m, or equivalently, for each x′ ∈ GF (2)t, #F (S(n, T, x′)) = 2m,
that is, F (S(n, T, x′)) = GF (2)m, for every x′ ∈ GF (2)t. ⊓⊔

Proof of Theorem 11. As a t-subset T is arbitrary, the theorem directly
follows from Lemma 9 and Definition 3. ⊓⊔

Proof of Proposition 5. Let F be an affine (n,m, t)-extended resilient S-box.
Let T = {j1, . . . , jt} be a subset of {1, . . . , n} and α = (a1, . . . , at) ∈ GF (2)t. Due
to Theorem 2, all the coordinate functions of F (x)|xj1

=a1,...,xjt
=at

are function-
ally independent and then also linearly independent. Since F (x)|xj1

=a1,...,xjt
=at

is affine, due to linear algebra, F (x)|xj1
=a1,...,xjt

=at
runs through each vector in

GF (2)m exactly 2n−m−t times while x runs through S(n, T, α) once. This proves
that F is (n,m, t)-classically resilient. ⊓⊔

Proof of Theorem 12. Since F is affine, there exists a vector β ∈ GF (2)m such
that F (x)⊕β is linear. By linear algebra, #F (GF (2)n) = 2k for an integer k and



F (GF (2)n)⊕β is a k-dimensional subspace U of GF (2)m. Therefore, there exists
an m× k matrix B over GF (2) such that {γB|γ ∈ U} is identical with GF (2)k.
Set P (x) = (F (x) ⊕ β)B. According to Theorem 7, P is an (n, k, t)-extended
resilient S-box. On the other hand, P (GF (2)n) = {γB|γ ∈ U} = GF (2)k. Thus
P is a linear (n, k, t)-extended resilient S-box. According to Proposition 5, P is
an (n, k, t)-classically resilient S-box. ⊓⊔

Proof of Theorem 13. Clearly, the condition #Q(GF (2)n) ≥ 2k guarantees
the existence of a mapping from Q(GF (2)n) onto GF (2)k. Accordingly, if P is
such a mapping, then P (Q(GF (2)n))= GF (2)k. For any t-subset T of {1, . . . , n}
and any α ∈ GF (2)t, since Q is (n,m, t)-extended immune, Q(S(n, T, α)) =
Q(GF (2)n). As P is a mapping from Q(GF (2)n) onto GF (2)k, P (Q(S(n, T, α)))
= P (Q(GF (2)n))= GF (2)k. ⊓⊔

Proof of Lemma 10. We prove the lemma by contradiction. Assume for
contradiction that there exists an n × m S-box F = (f1, . . . , fm) with m ≥ 2
such that deg(F ) = n. Then we have deg(f1) = deg(f2) = n and hence both f1
and f2 contain the product term x1 · · ·xn. This term cancels out in f1 ⊕ f2 and
therefore deg(f1 ⊕ f2) < n. Further, by definition, this implies that deg(F ) < n,
so that we have a contradiction. ⊓⊔

Proof of Lemma 11. The first part is straightforward to verify. Secondly, if
deg(f) < n − 1, then the term (x1 · · ·xn)/xj remains in the algebraic normal
form of f ′ and hence deg(f ′) = n− 1. ⊓⊔

Proof of Theorem 14. Due to Lemma 11, each f ′
j contains exactly one term

of degree n−1, i.e., (x1 · · ·xn)/xj . Since m ≤ n and {(x1 · · ·xn)/xj | 1 ≤ j ≤ m}
are linearly independent Boolean functions, any nonzero linear combination of
f ′
1, . . . , f

′
m must contain a nonzero linear combination of (x1 · · ·xn)/xj , j =

1, . . . ,m, that cannot be eliminated. This implies that deg(F ′) = n− 1. For any
fixed subset T0 = {j1, . . . , jt0} of {1, . . . , n} and any fixed vector α0 ∈ GF (2)t0 ,
due to Theorem 4, F (x) runs through each vector in GF (2)m at least 2t−t0 times
while x runs through S(n, T0, α0) once. According to Lemma 11, F ′ is obtained
from F by changing exactly m+1 of its values, F (βj), j = 1, . . . ,m, and F (β∗).
Since t−t0 = ⌊log2(m+1)⌋+1, we have t−t0 > log2(m+1). Thus 2t−t0−(m+1) >
0 and hence F ′(x) runs through each vector in GF (2)m at least once while x runs
through S(n, T0, α0) once, or in other words, F ′(S(n, T0, α0)) = GF (2)m. ⊓⊔

Proof of Theorem 15. Let P be a permutation on GF (2)m and let r ≥ 1. Let
F (x) = P (z1) ⊕ · · · ⊕ P (zr), where z1, . . . , zr ∈ GF (2)m and x = (z1, . . . , zr) ∈
GF (2)rm. We first prove that F is (rm,m, r−1)-extended resilient with deg(F ) ≤
m. We note that F is a surjective rm×m S-box. Rewrite x as x = (x1, . . . , xrm).
Choose any subset T = {j1, . . . , jr−1} of {1, . . . , rm} and any α ∈ GF (2)r−1.
Then there must exist an index i, 1 ≤ i ≤ r, such that the sets of variables in zi

and (xj1 , . . . , xjr−1
) are disjoint. Since P is a permutation on GF (2)m, then we

have GF (2)m ⊇ F (S(rm, T, α)) ⊇ P (GF (2)m)= GF (2)m. This proves that F is
(rm,m, r − 1)-extended resilient. Due to the construction, the algebraic degree
of F cannot exceed m.



In particular, we choose r satisfying r − 1 ≥ t + ⌊log2(m + 1)⌋ + 1. Let F ′

be an rm × m S-box obtained from F as in Theorem 14. Then according to
Theorem 14, deg(F ′) = rm − 1 and F ′ is (rm,m, t0)-extended resilient with
t0 = (r − 1) − ⌊log2(m + 1)⌋ − 1 ≥ t. By virtue of Lemma 6, F ′ is then also
(rm,m, t)-extended resilient. ⊓⊔

Proof of Lemma 12 . If f is constant, then t = n by the definition of extended
immunity. If t = n, then the upper bound t ≤ n− log2 #f(GF (2)n) implies that
#f(GF (2)n) = 1, which means that f is constant. This proves (i).

As for (ii), to prove the sufficiency, note that the restriction of f to any set
S(n, Ti, α), where Ti = {1, . . . , n} \ {i} and α ∈ GF (2)n−1, is a non-constant
affine function of the remaining variable xi, so that f(S(n, Ti, α)) = GF (2). This
means that t ≥ n− 1. However, as f is non-constant, (i) implies that t = n− 1.

To prove the necessity in (ii), assume that t = n − 1. Then, firstly, from (i)
it follows that f(GF (2)n) = GF (2). For any fixed i, 1 ≤ i ≤ n, f can be ex-
pressed as f(x) = xig(x1, . . . , xi−1, xi+1, . . . , xn) ⊕ h(x1, . . . , xi−1, xi+1, . . . , xn)
where both g and h are Boolean functions on GF (2)n−1. We next prove that
g is the constant one by contradiction. Assume that there exists some vec-
totr α ∈ GF (2)n−1 such that g(α) = 0. Since h does not depend on xi, we
have #f(S(n, Ti, α)) = 1, where Ti is as above. This contradicts the fact that
f(S(n, Ti, α)) = f(GF (2)n) = GF (2) and hence proves that g is the constant
one. Thus f(x) = xi ⊕ h(x1, . . . , xi−1, xi+1, . . . , xn), which means that the al-
gebraic normal form of f contains the linear term xi and xi appears as a lin-
ear term only. Since this holds for each i ∈ {1, . . . , n}, f can be expressed as
f(x)=x1 ⊕ · · · ⊕ xn ⊕c, where c ∈ GF (2) is constant. ⊓⊔

Proof of Theorem 16. The claim (i) is proved in the same way as for m = 1
in Lemma 12.

As for (ii), to prove the sufficiency, assume that F has the form specified.
Since fj is either constant or identical to l or l ⊕ 1, where l(x) = x1 ⊕ · · · ⊕ xn,
and fj0 is not constant, it follows that, for each x ∈ GF (2)n, the value of fj0(x)
uniquely determines the values of the remaining functions fj(x). Therefore,
#F (GF (2)n) = 2. By the same argument, we also obtain that #F (S(n, T, α)) =
2, for any (n−1)-subset T of {1, . . . , n}, because the restriction of fj0 to S(n, T, α)
is a non-constant affine function of xi. Consequently, F (S(n, T, α)) = F (GF (2)n)
and #F (GF (2)n) = 2. Hence, in view of (i), we get t = n− 1.

To prove the necessity in (ii), assume that t = n−1. In view of (i), this means
that F is a non-constant (n,m, n − 1)-extended immune function. Corollary 4
then implies that each fj is (n, 1, n− 1)-extended immune, i.e., has an extended
immunity order n − 1 or n. According to Lemma 12, each fj has the form
fj = x1 ⊕ · · · ⊕ xn ⊕ cj or cj , where cj ∈ GF (2) is constant. Since F is non-
constant, there must exist a value j = j0 such that fj0 is non-constant.

Finally, as for (iii), (i) and (ii) imply that for t = n and t = n − 1, we have
#F (GF (2)n) = 1 and #F (GF (2)n) = 2, respectively, so that the upper bound
holds with equality in both cases. ⊓⊔


