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Abstract. We observe that MDS codes have interesting properties that
can be used to construct ideal threshold schemes. These schemes permit
the combiner to detect cheating, identify cheaters and recover the correct
secret. The construction is later generalised so the resulting secret sharing
is resistant against the Tompa-Woll cheating.
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1 Introduction

In this paper we use MDS codes, i.e., maximum distance separable codes, to con-
struct ideal threshold schemes. Based on the properties of MDS codes, in these
ideal threshold schemes, cheating can be detected, cheaters can be identified and
the correct secret can be recovered.

The work is structured as follows. The basic concepts of perfect and ideal se-
cret sharing schemes/threshold schemes are introduced in Section 2, In Section
3, we briefly introduce MDS codes. In Section 4, we use MDS codes to con-
struct ideal threshold schemes. We then propose a general construction of ideal
threshold schemes in Section 5. The construction not only provides ideal thresh-
old schemes but also protects secret sharing against the Tompa-Woll cheating.
In Section 6, we prove that all these ideal threshold schemes, constructed from
MDS codes, have an ability to detect incorrect shares, recover correct shares and
identify the cheaters. We illustrate our considerations in Section 7. We compare
this work with previous works in Section 8. Conclusions close the work.

2 Access Structures and Threshold Structures

A secret sharing scheme is a method to share a secret among a set of partic-
ipants P = {P1, . . . , Pn}. Let K denote the set of secrets and S denote the
set of shares. The secret sharing has two algorithms: the distribution algo-
rithm (dealer) and the recovery algorithm (combiner). The dealer assigns shares
s1, . . . , sn ∈ S to all the participants P1, . . . , Pn respectively. Assume that ℓ



participants Pj1 , . . . , Pjℓ
are active, i.e., they currently have trading, then they

submit their shares sj1 , . . . , sjℓ
to the combiner so as to recover a secret while

other participants have no trading. Shares sj1 , . . . , sjℓ
together can determine a

secret K ∈ K if and only if {Pj1 , . . . , Pjℓ
} is a qualified subset of P. The col-

lection of all qualified sets is called the access structure Γ . The access structure
should be monotone: if A ∈ Γ and A ⊆ B ⊆ P then B ∈ Γ .

An access structure Γ = {A | #A ≥ t}, where #X denotes the cardinality
of the set X , i.e., the number of elements in the set X and t is an integer with
0 < t ≤ n, is called a (t, n)-threshold access structure. A secret sharing scheme
with a (t, n)-threshold access structure is called a (t, n)-threshold scheme. The
parameter t is called the threshold.

We say that secret sharing based on an access structure Γ is perfect if the
following two conditions are satisfied [3]:

(1) if A ∈ Γ , then the participants in A can determine a secret,
(2) if A 6∈ Γ , then the participants in A can determine nothing about a secret

(in the information theoretic sense).

Alternatively, we say that a (t, n)-threshold scheme is perfect if the following
two conditions are satisfied:

(1’) if #A ≥ t then the participants in A can determine a secret,
(2’) if #A < t then the participants in A can determine nothing about a secret

(in the information theoretic sense).

It is known [3] that for perfect secret sharing, the size of the shares has to be
no smaller than the size of the secrets or #K ≤ #S. In particular, secret sharing
is said to be ideal if it is perfect and the size of the shares is equal to the size of
the secrets or #K = #S. Thus ideal secret sharing is a special case of perfect
secret sharing. Without loss of generality, we can assume that S = K for ideal
secret sharing.

Threshold schemes were first introduced by Blakley [1] and Shamir [9]. Ito
et al [4] generalised secret sharing for arbitrary monotone access structure.

3 MDS Codes

In this section we introduce MDS codes, that will be used to construct ideal
threshold schemes. Let q = pv where p is a prime number and v is a positive
integer. We write GF (q) or GF (pv) to denote the finite field of q = pv elements,
and GF (q)n or GF (pv)n to denote the vector space of n tuples of elements from
GF (q). Then each vector α ∈ GF (q)n can be expressed as α = (a1, . . . , an)
where a1, . . . , an ∈ GF (q). We write HW (α) to denote the Hamming weight of
α, i.e., the number of nonzero coordinates of α. The Hamming distance of two
vectors α and β in GF (q)n, denoted by dist(α, β), is the Hamming weight of
α − β.

A set ℑ of R vectors in GF (q)n is called an (n, R, d)q code if min{dist(α, β) |
α, β ∈ ℑ, α 6= β} = d. The parameter n is called the length of the code. Each



vector in ℑ is called a codeword of ℑ. In particular, if ℑ is a t-dimensional
subspace of GF (q)n, then the (n, qt, d)q code is called linear and it is denoted
by [n, t, d]q. Since an [n, t, d]q code is a subspace of GF (q)n, a linear [n, t, d]q
code ℑ can be equivalently defined as a t-dimensional subspace of GF (q)n such
that min{HW (α) | α ∈ ℑ, α 6= 0} = d. In this work we focus our attention on
linear codes. Let ℑ be an [n, t, d]q code. Set ℑ⊥ = {β | 〈β, α〉 = 0 for all α ∈ ℑ}
where 〈β, α〉 denotes the inner product between two vectors β = (b1, . . . , bn)
and α = (a1, . . . , an), i.e., 〈β, α〉 = b1a1 + · · · + bnan. The set ℑ⊥ is an (n − t)-
dimensional linear subspace of GF (q)n and it is called the dual code of ℑ.

There are two methods to determine a linear code ℑ: a generator matrix
and a parity check matrix. A generator matrix of a linear code ℑ is any t × n

matrix G whose rows form a basis for ℑ. A generator matrix H of ℑ⊥ is called a
parity check matrix of ℑ. Clearly, the matrix H is of the size (n− t)× n. Hence
α = (a1, . . . , an) ∈ ℑ if and only if HαT = 0.

For any [n, t, d]q code, the following inequality holds and it is known as the
Singleton bound [7], [8], [10], t + d ≤ n + 1. In particular, if t + d = n + 1 then
the [n, t, d]q code is called maximum distance separable (MDS) [7], [10]. Clearly
we can rewrite an [n, t, d]q MDS code as [n, t, n− t + 1]q.

MDS codes have interesting properties, that will be used in this work. From
[7], [10], we assert the validity of the lemma given below.

Lemma 1. Let ℑ be an [n, t, d]q code. Then the following statements are equiv-
alent:

(i) ℑ is an [n, t, n − t + 1]q MDS code,
(ii) any t columns of a generator matrix of ℑ are linearly independent,
(iii) ℑ⊥ is an [n, n − t, t + 1]q MDS code.

The following property of MDS codes is known [7], [8], [10].

Lemma 2. Let ℑ be an [n, t, n− t + 1]q MDS code. Then n− q + 1 ≤ t ≤ q− 1.

4 Ideal Threshold Schemes from MDS Codes

Construction 1 Let D be a generator matrix of an [n + 1, t, n − t + 2]q MDS
code. Thus D is a t× (n + 1) matrix over GF (q) satisfying (ii) of Lemma 1. Set

(K, s1, . . . , sn) = (r1, . . . , rt)D (1)

where each rj ∈ GF (q). For any fixed r1, . . . , rt ∈ GF (q), K, s1, . . . , sn can
be calculated from (1). We define s1, . . . , sn to be the shares for participants
P1, . . . , Pn respectively, and define K to be the secret corresponding to the shares
s1, . . . , sn.

Lemma 3. The secrets and shares, defined in Construction 1, satisfy Condi-
tions (1’) and (2’) so the resulting secret sharing is a perfect (t, n)-threshold
scheme.



Proof. Index n + 1 columns of D by 0, 1, . . . , n, and write D = [η0, η1, . . . , ηn],
where ηj is the jth column of D. Let P1, . . . , Pn be all the participants and
Pj1 , . . . , Pjℓ

be all the currently active participants, where 1 ≤ j1 < · · · < jℓ ≤ n.
We first verify Condition (1’). Let ℓ ≥ t. Assume that the dealer sends shares

s1, . . . , sn to P1, . . . , Pn respectively, where (s1, . . . , sn) is created according
to (1). Thus Pj1 , . . . , Pjℓ

have their shares sj1 , . . . , sjℓ
respectively. Consider a

t × ℓ submatrix D1 = [ηj1 , . . . , ηjℓ
]. From (1), we get

(sj1 , . . . , sjℓ
) = (r1, . . . , rt)D1 (2)

Recall that D is a generator matrix of an [n+1, t, n−t+2]q. Due to the state-
ment (ii) of Lemma 1, when ℓ ≥ t, the rank of D1 is t and then according to the
properties of linear equations, (r1, . . . , rt) is uniquely identified by (sj1 , . . . , sjℓ

).
It follows that K is uniquely determined by K = (r1, . . . , rt)η0. This proves (1’).

We next verify Condition (2’). Let 0 < ℓ < t. Consider a t×(1+ℓ) submatrix
D0 = [η0, ηj1 , . . . , ηjℓ

]. For any arbitrary K, sj1 , . . . , sjℓ
∈ GF (q), consider the

system of equations on r1, . . . , rt:

(K, sj1 , . . . , sjℓ
) = (r1, . . . , rt)D0 (3)

Due to (ii) of Lemma 1, when ℓ < t, the rank of D0 is 1 + ℓ(≤ t). Thus,
using the properties of linear equations, we conclude that (3) has solutions on
(r1, . . . , rt) and the number of solutions is qt−ℓ−1. This number is independent
to the choice of K. Thus the secret K can take any element in GF (q) at an equal
probability and thus there is no information on the secret. We then have proved
that the scheme satisfies Condition (2’). Summarising Conditions (1’) and (2’),
we have proved that the secret and shares, defined in Construction 1, form a
perfect (t, n)-threshold scheme. ⊓⊔

Corollary 1. The secrets and shares, defined in Construction 1, form an ideal
(t, n)-threshold scheme.

Proof. According to Lemma 3, the (t, n)-threshold scheme, defined in Construc-
tion 1, is perfect. Note that each column vector ηj (0 ≤ j ≤ n) of matrix D is
nonzero. Thus (r1, . . . , rt)η0 takes all elements in GF (q) when (r1, . . . , rt) takes
all vectors in GF (q)t. This implies that K = GF (q). On the other hand, for each
j with 1 ≤ j ≤ n, (r1, . . . , rt)ηj , takes all elements in GF (q) when (r1, . . . , rt)
takes all vectors in GF (q)t. This implies that S = GF (q). By definition, we know
that the scheme is ideal. ⊓⊔

We now explain how the scheme works. The matrix D is public but (r1, . . . , rt)
is chosen secretly by the dealer. From (r1, . . . , rt), the dealer (distribution algo-
rithm) computes (s1, . . . , sn) based on (1). The dealer sends the shares s1, . . . , sn

to participants P1, . . . .Pn respectively via secure channels. Assume that Pj1 , . . .

, Pjℓ
are the currently active participants, where 1 ≤ j1 < · · · < jℓ ≤ n.

Pj1 , . . . , Pjℓ
submit their shares to the combiner (recovery algorithm). The com-

biner recovers the secret. There are two cases: ℓ ≥ t and ℓ < t. According to
Lemma 3 and its proof, if ℓ ≥ t, then the combiner can uniquely determine



(r1, . . . , rt) and then identify the secret K = (r1, . . . , rt)η0, while in the case of
ℓ < t, the secret can be any element in GF (q) with the same probability so the
combiner knows nothing about the secret.

5 More General Constructions of Ideal Threshold

Schemes

In this section, we generalise Construction 1.

Construction 2 Let D be a generator matrix of an [n + 1, t, n − t + 2]q MDS
code. Thus D is a t× (n + 1) matrix over GF (q) satisfying (ii) of Lemma 1. Let
π0, π1, . . . , πn be permutations on GF (q). Set

(K, s1, . . . , sn) = (r1, . . . , rt)D (4)

and

(K∗, s∗
1
, . . . , s∗n) = (π0(K), π1(s1), . . . , πn(sn)) (5)

where each rj ∈ GF (q). For any fixed r1, . . . , rt ∈ GF (q), K∗, s∗1, . . . , s
∗
n can be

calculated from (4) and (5). We define s∗
1
, . . . , s∗n to be the shares for participants

P1, . . . , Pn respectively, and define K∗ to be the secret corresponding to the shares
s∗1, . . . , s

∗
n.

Theorem 1. The secrets and shares, defined in Construction 2, form not only
a perfect but also an ideal (t, n)-threshold scheme.

Proof. Let P1, . . . , Pn be all the participants and Pj1 , . . . , Pjℓ
be all the currently

active participants, where 1 ≤ j1 < · · · < jℓ ≤ n.
We first verify Condition (1’). Let ℓ ≥ t. Assume that the dealer sends the

shares s∗
1
, . . . , s∗n to P1, . . . , Pn respectively where (s∗

1
, . . . , s∗n) is created ac-

cording to (5). Then Pj1 , . . . , Pjℓ
have their shares s∗j1 , . . . , s

∗

jℓ
respectively.

Clearly, there uniquely exists a (sj1 , . . . , sjℓ
) such that s∗j1 = πj1(sj1 ), . . . , s

∗

jℓ
=

πjℓ
(sjℓ

). Due to the same reasoning as in the proof of Lemma 3, (r1, . . . , rt) is
uniquely identified by (sj1 , . . . , sjℓ

). It follows that K is uniquely determined by
(r1, . . . , rt). Thus K∗ = π(K) is uniquely determined. This proves (1’).

We next verify Condition (2’). Let 0 < ℓ < t. For any arbitrary K∗, s∗j1 ,
. . . , s∗jℓ

∈ GF (q), there uniquely exists a (sj1 , . . . , sjℓ
) such that s∗j1 = πj1(sj1 ),

. . . , s∗jℓ
= πjℓ

(sjℓ
). Due to the same reasoning as in the proof of lemma 3, for

these sj1 , . . . , sjℓ
, (3) has solutions on (r1, . . . , rt), and the number of solutions

is qt−ℓ−1. This number is independent to the choice of K, and thus K can take
any element in GF (q) at an equal probability. It follows that K∗ can take any
element in GF (q) at an equal probability, and then there exists no information
on the key. We have proved that the scheme satisfies Condition (2’). Summarising
Conditions (1’) and (2’), we have proved that the secret and shares, defined in
Construction 2, form a perfect (t, n)-threshold scheme. Due to Corollary 1, we
know that this scheme is ideal. ⊓⊔



Clearly the schemes in Construction 1 are special schemes in Construction 2
when π0, π1, . . . , πn are all the identity permutation on GF (q).

We now explain how the scheme works. The matrix D and the n + 1 permu-
tations π0, π1, . . . , πn are public but (r1, . . . , rt) is chosen secretly by the dealer.
From (r1, . . . , rt), the dealer (distribution algorithm) computes (s1, . . . , sn) based
on (4), then (s∗

1
, . . . , s∗n) based on (5). After that, the dealer sends the shares

s∗
1
, . . . , s∗n to participants P1, . . . , Pn respectively, via the secure channels. As-

sume that Pj1 , . . . , Pjℓ
are the currently active participants, where 1 ≤ j1 <

· · · < jℓ ≤ n, and they wish to recover the secret. They submit their shares to
the combiner (recovery algorithm). There are two cases: ℓ ≥ t and ℓ < t. Accord-
ing to Theorem 1, if ℓ ≥ t, then the combiner can uniquely determine (r1, . . . , rt)
from (4), identify K from (4), and finally identify the secret K∗ = π0(K) from
(5). In the case when ℓ < t, the secret may take any element in GF (q) with
uniform probability so the secret cannot be determined.

In contrast to Construction 1, Construction 2 not only provides ideal thresh-
old schemes but also improves the schemes in Construction 1. In fact, all the
possible share vectors (s1, . . . , sn) in a (t, n)-threshold scheme by Construction
1 form a linear subspace of GF (q)n as MDS codes are linear codes. Usually,
this is not a desirable property from a point of information security as this case
gives a chance to the Tompa-Woll attack [11]. To remove this drawback, we con-
sider schemes in Construction 2. For example, we choose π0, π1, . . . , πt−1 to be
the identity permutation on GF (q) but we require the permutations πt, . . . , πn

on GF (q) to satisfy πt(0) 6= 0, . . . , πn(0) 6= 0. It is easy to verify that all the
possible share vectors (s∗1, . . . , s

∗

n) in the (t, n)-threshold scheme by Construc-
tion 2 do not form a linear subspace of GF (q)n, as (s∗

1
, . . . , s∗n) cannot take

(0, . . . , 0) ∈ GF (q)n.

6 Cheating Detection and Cheater Identification

In this section, we show that the ideal threshold schemes constructed in Con-
struction 2 have an ability to find whether the shares, submitted by partici-
pants to the combiner, are correct, or in other words, the modified shares can
be detected. The (t, n)-threshold schemes, defined in Construction 2, have the
following property.

Theorem 2. Let K∗, s∗1, . . . , s
∗
n, K, s1, . . . , sn and r1, . . . , rt satisfy (4) and (5),

and K ′∗, s′∗
1

, . . . , s′∗n , K ′, s′
1
, . . . , s′n and r′

1
, . . . , r′t also satisfy (4) and (5). If

(r1, . . . , rt) 6= (r′
1
, . . . , r′t) then the Hamming distance between (K∗, s∗

1
, . . . , s∗n)

and (K ′∗, s′∗1 , . . . , s′∗n ) is at least n − t + 2.

Proof. Recall that K∗ = π0(K), s∗1 = π1(s1), . . ., s∗n = πn(sn), and K ′∗ =
π0(K

′), s′∗
1

= π1(s
′

1
), . . ., s′∗n = πn(s′n). Thus we know that

K∗ = K ′∗ if and only if K = K ′, (6)

s∗j = s′∗j if and only if sj = s′j (j = 1, . . . , n) (7)



Since (r1, . . . , rt) 6= (r′
1
, . . . , r′t) and the rank of the matrix D in (4) or (1)

is equal to t, we know that (K, s1, . . . , sn) and (K ′, s′
1
, . . . , s′n) are two distinct

codewords of an [n + 1, t, n − t + 2]q MDS code. Thus the Hamming distance
between (K, s1, . . . , sn) and (K ′, s′

1
, . . . , s′n) is at least n − t + 2. On the other

hand, according to (6) and (7), we know that the Hamming distance between
(K∗, s∗

1
, . . . , s∗n) and (K ′∗, s′∗

1
, . . . , s′∗n ) is equal to the Hamming distance between

(K, s1, . . . , sn) and (K ′, s′
1
, . . . , s′n). This proves the theorem. ⊓⊔

The following property [10] of codes will be used in this work:

Lemma 4. Let ℑ be an (n, R, d)q code. For any j with 1 ≤ j ≤ n, the code
ℑ0, obtained by removing the jth coordinate from all codewords of ℑ, is a code
(n − 1, R, d− 1)q or (n − 1, R, d)q.

Given an [n+1, t, n−t+2]q MDS code ℑ with a generator matrix D and n+1
permutations π0, π1, . . . , πn. According to Theorem 1, we have an ideal threshold
scheme defined in Construction 2. Let P1, . . . , Pn be the participants. We keep
using all the notations in Sections 4 and 5. The dealer selects r1, . . . , rt ∈ GF (q)
then computes s1, . . . , sn ∈ GF (q) by (4), and then s∗

1
, . . . , s∗n ∈ GF (q) by (5).

The dealer sends the shares s∗1, . . . , s
∗

n to P1, . . . , Pn respectively. Let Pj1 , . . . , Pjℓ

be all the currently active participants, where 1 ≤ j1 < · · · < jℓ ≤ n.

Consider a t × ℓ submatrix D1 consisting of ℓ columns of D, indexed by
j1, . . . , jℓ. Set

W0 = {(s∗j1 , . . . , s
∗

jℓ
) = (πj1 (sj1), . . . , πjℓ

(sjℓ
)) | (sj1 , . . . , sjℓ

) = (r1, . . . , rt)D1,

r1, . . . , rt ∈ GF (q)} (8)

According to Theorem 2 and Lemma 4, we state

Lemma 5. Any two distinct vectors in W0, defined in (8), have a Hamming
distance at least ℓ − t + 1.

6.1 Cheating Detection

Assume that Pj1 , . . . , Pjℓ
submit their modified shares s∗j1 + δ1, . . . , s

∗

jℓ
+ δℓ to

the combiner (recovery algorithm) where each δj ∈ GF (q). Thus Pji
is honest if

δi = 0, otherwise he cheats. We write

β = (s∗j1 , . . . , s
∗

jℓ
), δ = (δ1, . . . , δℓ) and β̃ = β + δ (9)

Assume that HW (δ1, . . . , δℓ) ≤ ℓ − t. Clearly

dist(β̃, β) = HW (δ) ≤ ℓ − t (10)



Theorem 3. Given an [n + 1, t, n − t + 2]q MDS code with a generator matrix
D and n + 1 permutations π0, π1, . . . , πn. According to Theorem 1, we have an
ideal (t, n)-threshold scheme defined in Construction 2. Let P1, . . . , Pn be all the
participants and Pj1 , . . . , Pjℓ

(t < ℓ ≤ n) be all the participants who are currently
active. Assume that no more than ℓ − t cheaters who submit incorrect shares.
Then β̃, where β̃ has been defined in (9), is correct if and only if β̃ ∈ W0, where
W0 has been defined in (8), or in other words, the combiner can find that β̃ is
correct or incorrect according to β̃ ∈ W0 or β̃ 6∈ W0.

Proof. Assume that β̃ is correct, or in other words, δ = (δ1, . . . , δk) = (0, . . . , 0)
where δ has been defined in (9). Thus β̃ is identical with the β. In this case
β̃ = β ∈ W0. Conversely, assume that β̃ ∈ W0. We now prove by contradiction
that β̃ = β. Assume that β̃ 6= β. According to Lemma 5, β̃ and β have a
Hamming distance at least ℓ − t + 1. This contradicts (10). The contradiction
proves that β̃ must be identical with β and thus β̃ = β is correct. Thus we have
proved that β̃ is correct if and only if β̃ ∈ W0. ⊓⊔

6.2 Cheater Identification

In Section 6.1 the combiner can detect incorrect shares sent by participants,
however there is no guarantee that it can identify the cheaters or reconstruct
the correct shares (and the secret). In this section we consider how to identify the
cheaters and how to recover the correct shares. We keep using all the assumptions
and the notations in Section 6.1. We additionally suppose that δ = (δ1, . . . , δℓ)
satisfies

0 < HW (δ) ≤ ⌊
1

2
(ℓ − t)⌋ (11)

where ⌊r⌋ denotes the maximum integer no larger than r.
Due to (11) and Theorem 3, the combiner knows that β̃ is incorrect by the

fact β̃ 6∈ W0. The combiner further determines a vector γ0 ∈ W0 such that

dist(β̃, γ0) = min{dist(β̃, γ) | γ ∈ W0} (12)

We now prove by contradiction that γ0 is identical with β. Assume that
γ0 6= β. Since γ0, β ∈ W0, due to Lemma 5, we know that

dist(γ0, β) ≥ ℓ − t + 1 (13)

Recall that dist(β̃, β) = HW (δ) ≤ ⌊ 1

2
(ℓ − t)⌋, we have

dist(β̃, γ0) = min{dist(β̃, γ) | γ ∈ W0} ≤ dist(β̃, β) ≤ ⌊
1

2
(ℓ − t)⌋ (14)

Clearly dist(γ0, β) ≤ dist(γ0, β̃) +dist(β̃, β). Thus dist(γ0, β) ≤ dist(γ0, β̃)+
HW (δ). Due to (14), we have

dist(γ0, β) ≤ ⌊
1

2
(ℓ − t)⌋ + ⌊

1

2
(ℓ − t)⌋ ≤ ℓ − t < ℓ − t + 1 (15)



Obviously, (15) contradicts (13). The contradiction disproves the assumption
that γ0 6= β. Therefore γ0 and β must be identical.

After knowing γ0, i.e., β, the combiner can identify the δ as he has received
the vector of β̃ = β + δ. So we can formulate the following theorem.

Theorem 4. Given an [n + 1, t, n − t + 2]q MDS code with a generator matrix
D and n + 1 permutations π0, π1, . . . , πn. According to Theorem 1, we have an
ideal (t, n)-threshold scheme defined in Construction 2. Let P1, . . . , Pn be all
the participants and Pj1 , . . . , Pjℓ

(t < ℓ ≤ n) be all the participants who are
currently active. If the number of cheaters is less than or equal to ⌊ 1

2
(ℓ − t)⌋

then the combiner can identify the cheaters who submitted incorrect shares also
recover the correct shares by determining the vector γ0 ∈ W0 where W0 has been
defined in (8) and γ0 satisfies (12).

Summarising Theorems 3 and 4, the combiner first checks whether the share
vector β̃, that he received from the active participants, is correct. If β̃ is incorrect,
the combiner further determines who are cheaters and reconstructs the correct
shares. We notice that both Theorems 3 and 4 require the parameter ℓ to be
greater than t.

7 Examples

Example 1. There exists an MDS code [18, 9, 10]25, that is also a quadratic
residue code (Chapter 4 of [8]). Let D denote a general matrix of this code.
For any permutations π0, π1, . . . , π17 on GF (25), according to Theorem 1, we
can construct an ideal (9, 17)-threshold scheme over GF (25) in Construction 2.
Let ℓ (9 < ℓ ≤ 17) denote the number of currently active participants. Due to
Theorems 3 and 4, this scheme has the ability to detect cheating and identify
cheaters. More precisely, if there are no more than ℓ−9 participants who submit
incorrect shares then the incorrect shares can be detected. Furthermore, if there
are no more than ⌊ 1

2
(ℓ−9)⌋ participants submitting incorrect shares then all the

cheaters can be identified and the correct shares can be recovered.

Example 2. Let GF (q) = {0, λ1, . . . , λq−1} and t be an integer with 2 ≤ t ≤ q−1.
Set

E =





















1 1 · · · 1 1 0
λ1 λ2 · · · λq−1 0 0
...

...
...

...
...

...
λ2

1
λ2

2
· · · λ2

q−1
0 0

...
...

...
...

...
...

λt−1

1
λt−1

2
· · · λt−1

q−1
0 1





















(16)

From [7], [10], E is a generator matrix of a [q + 1, t, q − t + 2]q MDS code.
For any permutations π0, π1, . . . , πq on GF (q), according to Theorem 1, we can
construct an ideal (t, q)-threshold scheme over GF (q) in Construction 2. Let ℓ



(t < ℓ ≤ n) denote the number of currently active participants. Due to Theorems
3 and 4, this scheme has the ability to detect cheating and identify cheaters. More
precisely, if there are no more than ℓ−t participants who submit incorrect shares
then the incorrect shares can be detected. Furthermore, if there are no more than
⌊ 1

2
(ℓ − t)⌋ participants submitting incorrect shares then all the cheaters can be

identified and the correct shares can be recovered.

8 Comparing This Work with Previous Results

Comparing Shamir scheme [9] with the ideal threshold scheme in Example 2, we
can find: (a) k in Shamir scheme is corresponding to t in Example 2, (b) the coeffi-
cients a0, a1, . . . , ak−1 of the polynomial q(x) in Shamir scheme are corresponding
to r1, . . . , rt in Example 2 respectively, (c) the shares D1 = q(1), . . . , Dn = q(n)
in Shamir scheme are corresponding to s1, . . . , sn in Example 2 respectively, (d)
if we remove the last two columns of E in Example 2 and change the entries of
E, then we obtain











1 1 · · · 1
1 2 · · · n
...

...
...

...
1 2t−1 · · · nt−1











(17)

where the entries are elements in the residue modulo class of prime p (t ≤ n ≤
p−1), then we regain Shamir scheme. This shows that the Lagrange interpolation
suggested in [9] can be re-obtained from Example 2.

McEliece and Sarwate [6] generalised Shamir’s construction as they allowed
the elements in the Lagrange interpolation to be from a finite field, instead of
only elements in a prime filed. They also indicated that the share vectors form
Reed-Solomon codes and then their schemes can correct modified shares. As
known, Reed-Solomon codes are special MDS codes and MDS codes are not
necessarily Reed-Solomon codes. Thus Constructions 1 and 2 are more general.

Karnin, Greene and Hellman obtained a similar result (Theorem 2 of [5])
to Construction 1. There is, however, a basic difference between this work and
their work. The difference is in the definitions of (t, n) threshold schemes. In
our definition, we allow t or more participants to collaborate in recovery of the
secret. In fact, the cheating detection relies on the existence of redundant shares
so they can be used to identify incorrect ones (then identify cheaters) and to
recover the correct secret. Karnin et al considered threshold schemes in which
the number of active participants is precisely equal to t. However, as mentioned
in Theorem 6 of [5], cheating detection is impossible in this case.

Summarising the above discussions, the above previous schemes are all special
cases in Construction 1. However Construction 1 is a special case of Construction
2. In addition, according to Theorem 1, we are sure that all the threshold schemes
in Constructions 1 and 2 are ideal. However this property was not mentioned in
the above papers.



9 Conclusions

Using interesting properties of MDS codes, we have constructed ideal threshold
schemes and indicated that incorrect shares can be detected and the cheaters can
be identified, furthermore the correct secret can be recovered. We have further
suggested a general construction that not only provides more ideal threshold
schemes but also prevents Tompa-Woll attack.
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