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However it should be pointed out that orrelation immunity is not harmo-nious with some other ryptographi requirements. In partiular, high orrelationimmunity may introdue weaknesses in terms of a low algebrai degree, a smallavalanhe degree and a low nonlinearity and so on. This an be seen, for instane,from reent work in [14, 15℄.GAC is a nonlinearity indiator introdued in [11℄ to study the global oroverall avalanhe harateristis of a ryptographi funtion. Two di�erent indi-ators were proposed to measure numerially the GAC of a funtions, namely,the sum-of-squares indiator and the absolute indiator. A small value for theabsolute indiator of a funtion is generally more desirable.In the �rst part of this paper we show that funtions with a high orderorrelation immunity neessarily has weaknesses in its avalanhe harateristis.More spei�ally, we prove that if f is a balaned mth-order orrelation immunefuntion with n variables, then the absolute indiator for GAC of f , denotedby �f , satis�es �f � 2mP+1i=0 2i(m�n). For an unbalaned funtion f , we showthat �f � 2m�1P+1i=0 2i(m�1�n). We further investigate the tightness of thelower bounds and identify a neessary and suÆient ondition on when the twolower bounds are ahieved.When �f = 2n, f must have a non-zero linear struture, whih is onsid-ered ryptographially undesirable. In the seond part of this paper, we employorrelation immunity to haraterize Boolean funtions having non-zero linearstrutures.Reently, Zheng and Zhang [14℄ have proved that if f is an mth-order orre-lation immune funtion f with n variables, then its nonlinearity satis�es Nf �2n�1�2m+1, when 0:6n�0:4 � m � n�2, regardless of the balane of the fun-tion. Note that the inequality Nf � 2n�1 � 2m+1 does not hold for m = n � 1.Fortunately, this is a trivial ase, as an (n�1)th-order orrelation immune fun-tion f with n variables must be aÆne. In the same paper, Zheng and Zhanghave also shown that the equality holds if and only if f is a plateaued funtion.The authors leave as an open problem for the ase of 12n� 1 � m < 0:6n� 0:4.This open problem is addressed in the third part of this paper. In partiular,we prove that the inequality Nf � 2n�1 � 2m+1 does hold for odd m with12n�1 � m < 0:6n�0:4 otherwise f has a non-zero linear struture. This bringsus a step loser to �nally solving the open problem.2 Boolean FuntionsWe onsider funtions from Vn to GF (2) (or simply funtions on Vn), where Vnis the vetor spae of n tuples of elements from GF (2). The truth table of afuntion f on Vn is a (0; 1)-sequene de�ned by (f(�0); f(�1); : : : ; f(�2n�1)),and the sequene of f is a (1;�1)-sequene de�ned by ((�1)f(�0), (�1)f(�1),: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 =(1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix of order 2n de�ned by M =((�1)f(�i��j)) where � denotes the addition in GF (2).



Given two sequenes ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their omponent-wise produt is de�ned by ~a �~b = (a1b1; � � � ; ambm). In partiular, if m = 2n and~a, ~b are the sequenes of funtions f and g on Vn respetively, then ~a � ~b is thesequene of f � g where � denotes the addition in GF (2).Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two sequenes or vetors,the salar produt of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of theomponent-wise multipliations. In partiular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multipliation are over GF (2), andwhen ~a and ~b are (1;�1)-sequenes, h~a;~bi =Pmi=1 aibi, where the addition andmultipliation are over the reals.An aÆne funtion f on Vn is a funtion that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � , where aj ;  2 GF (2), j = 1; 2; : : : ; n. Furthermore f isalled a linear funtion if  = 0.A (1;�1)-matrix N of order n is alled a Hadamard matrix if NNT = nIn,where NT is the transpose of N and In is the identity matrix of order n. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing reursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :ObviouslyHn is symmetri. Let `i, 0 � i � 2n�1, be the i row of Hn. It is knownthat `i is the sequene of a linear funtion 'i(x) de�ned by the salar produt'i(x) = h�i; xi, where �i is the ith vetor in Vn aording to the asendingalphabetial order.The Hamming weight of a (0; 1)-sequene �, denoted by HW (�), is the num-ber of ones in the sequene. Given two funtions f and g on Vn, the Hammingdistane d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x)� g(x), where x = (x1; : : : ; xn).A funtion f is said to be balaned if its truth table ontains an equal numberof ones and zeros.3 Cryptographi Criteria of Boolean FuntionsThe following riteria for ryptographi Boolean funtions are often onsidered:balane, nonlinearity, avalanhe riterion, orrelation immunity, algebrai degreeand non-zero linear strutures. In this paper we fous mainly on nonlinearity andorrelation immunity.The so-alled Parseval's equation (Page 416 [6℄) is a useful tool in this work:Let f be a funtion on Vn and � denote the sequene of f . ThenP2n�1i=0 h�; `ii2 =22n where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.The nonlinearity of a funtion f on Vn, denoted by Nf , is the minimal Ham-ming distane between f and all aÆne funtions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f; 'i)



where '1, '2, : : :, '2n+1 are all the aÆne funtions on Vn. High nonlinearity isuseful in resisting a linear attak and a best approximation attak. The followingharaterization of nonlinearity will be useful (for a proof see for instane [7℄).Lemma 1. The nonlinearity of f on Vn an be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequene of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequenes of linear funtions on Vn.From Lemma 1 and Parseval's equation, it is easy to verify that Nf � 2n�1�2 12n�1 for any funtion f on Vn. If Nf = 2n�1 � 2 12n�1, then f is alled a bentfuntion [8℄. It is known that a bent funtion on Vn exists only when n is even.Let f be a funtion on Vn. For a vetor � 2 Vn, denote by �(�) the sequeneof f(x� �). Thus �(0) is the sequene of f itself and �(0) � �(�) is the sequeneof f(x)�f(x��). Set �f (�) = h�(0); �(�)i, the salar produt of �(0) and �(�).�(�) is alled the auto-orrelation of f with a shift �. We omit the subsript of�f (�) if no onfusion ours. Obviously, �(�) = 0 if and only if f(x)�f(x��)is balaned, i.e., f satis�es the avalanhe riterion with respet to �. In thease that f does not satisfy the avalanhe riterion with respet to a vetor �,it may be desirable for f(x) � f(x � �) to be almost balaned. That is, onemay require j�(�)j to be a small value. In an extreme ase, � 2 Vn is alleda linear struture of f if j�(�)j = 2n (i.e., f(x) � f(x � �) is a onstant). Forany funtion f , �(�0) = 2n, where �0 is the zero vetor on Vn. It is easy toverify that the set of all linear strutures of a funtion f form a linear subspaeof Vn, whose dimension is alled the linearity of f , denoted by Lf . A non-zerolinear struture is ryptographially undesirable hene we should avoid non-zerolinear strutures in the design of ryptographi funtions as possible as we an.It is also well-known that if f has non-zero linear strutures, then there exists anonsingular n� n matrix B over GF (2) suh that f(xB) = g(y)�  (z), wherex = (y; z), y 2 Vp, z 2 Vq , g is a funtion on Vp that has no non-zero linearstrutures, and  is a linear funtion on Vq .The onept of orrelation immune funtions was introdued by Siegenthaler[10℄. Xiao and Massey gave an equivalent de�nition [1, 4℄: A funtion f on Vn isalled a mth-order orrelation immune funtion ifXx2Vn f(x)(�1)h�;xi = 0for all � 2 Vn with 1 � HW (�) � m, where in the the sum, f(x) and h�; xi areregarded as real-valued funtions. From the �rst equality in Setion 4.2 of [1℄,a orrelation immune funtion an also be equivalently restated as follows: Letf be a funtion on Vn and let � be its sequene. Then f is alled a mth-orderorrelation immune funtion if h�; `i = 0 for every `, where ` is the sequeneof a linear funtion '(x) = h�; xi on Vn onstrained by 1 � HW (�) � m. Infat, h�; `ii = 0, where `i is the ith row of Hn, if and only if f(x) � h�i; xi is



balaned, where �i is the binary representation of an integer i, 0 � i � 2n � 1.Correlation immune funtions are used in the design of running-key generatorsin stream iphers to resist a orrelation attak and the design of hash funtions.Relevant disussions on orrelation immune funtions, more generally on resilientfuntions, an be found in [12℄.4 A Tight Lower Bound on the Absolute Indiators ofCorrelation Immune FuntionsLet f be a funtion on Vn and � denote the sequene of f . We introdue twonew notations:1. Set =f = fi j h�; `ii 6= 0; 0 � i � 2n � 1g where `i is the ith row of Hn,2. set =�f = f�i j h�; `�ii 6= 0; 0 � i � 2n � 1g where �i is the binaryrepresentation of an integer i, 0 � i � 2n � 1 and `�i is identi�ed with `i.=�f is essentially the same as =f with the only di�erene being that its ele-ments are represented by a binary vetor in Vn. We will simply write =f as =and =�f as =� when no onfusion arises. It is easy to verify that #=f and #=�fare invariant under any nonsingular linear transformation on the variables of thefuntion f . #=f (#=�f ) together with the distribution of =f (=�f ) determinesthe orrelation immunity and other ryptographi properties of a funtion.Lemma 2. Let f be a funtion on Vn, � be a vetor in Vn and B be a nonsingularn� n matrix over GF (2). Then the following statements hold:(i) Set g(x) = f(xB � �). Then #=�g = #=�f .(ii) Set g(x) = f(x� �). Then =�g = =�f .(iii) Set g(x) = f(xB). Then =�g = =�fBT where XBT = f�BT j� 2 Xg.(iv) Set g(x) = f(x) � '(x), where '(x) = h�; xi. Then =�g = � � =�f whereX = f� � j 2 Xg.Proof. Sine (ii), (iii) and (iv) together imply (i), we prove (ii), (iii) and (iv)only.(ii) � 2 =�g () g(x)�h�; xi is unbalaned, i.e., f(x��)�h�; xi is unbalaned() f(x� �)� h�; x� �i is unbalaned () f(u)� h�; ui is unbalaned whereu = x� � () � 2 =�f . This proves =�g = =�f .(iii) � 2 =�g () g(x) � h�; xi is unbalaned, i.e., f(xB) � h�; xi is unbal-aned() f(u)�h�; uB�1i is unbalaned where xB = u. Note that h�; uB�1i =(uB�1)�T= u(B�1�T ) = (B�1�T )TuT = �(BT )�1uT = h�(BT )�1; ui. There-fore f(u)�h�; uB�1i is unbalaned() f(u)�h�(BT )�1; ui is unbalaned()�(BT )�1 2 =�f () � 2 =�fBT . This proves =�g = =�fBT .(iv) � 2 =�g () g(x) � h�; xi is unbalaned, i.e., f(x) � h�; xi � h�; xi isunbalaned() f(x)�h���; xi is unbalaned() ��� 2 =�f () � 2 ��=�f .This proves =�g = � �=�f .The following de�nition is from [11℄.



De�nition 1. For a funtion f on Vn, the absolute indiator for GAC of f isde�ned as �f = max�2Vn;� 6=0 j�(�)jObviously �f = 2n if and only if f has a non-zero linear struture, while�f = 0 if and only if f is bent. Sine balaned funtions are not bent, wehave �f > 0 where f is balaned. In designing ryptographi algorithms, weare onerned with a balaned nonlinear funtion f that shows a small �f , aswas disussed in [11℄ where it was argued that a smaller �f is ryptographiallymore desirable. This setion shows that a high order of orrelation immunitymay result in weaknesses in avalanhe harateristis.The following lemma is the re-statement of a relation proved in Setion 2of [2℄.Lemma 3. For every funtion f on Vn, we have(�(�0); �(�1); : : : ; �(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2):where � denotes the sequene of f and `i is the ith row of Hn, i = 0; 1; : : : ; 2n�1.From [14℄, we have the following statement.Lemma 4. Consider a funtion f on Vn. Let � = (a0; a1; : : : ; a2n�1), whereaj = �1 denote the sequene of f and `i denote the ith row of Hn, i = 0; 1; : : : ; 2n�1. Let p be an integer with 1 � p � n�1. Write � = (�0; �1; : : : ; �2p�1) where eah�i is of length 2n�p. Let ei denote the ith row of Hn�p, i = 0; 1; : : : ; 2n�p � 1.2p(h�0; eji; h�1; eji; h�2; eji; : : : ; h�2p�1; eji)= (h�; `ji; h�; `j+2n�pi; h�; `j+2�2n�pi; : : : ; h�; `j+(2p�1)2n�pi)Hpwhere j = 0; 1; : : : ; 2n�p � 1.The following lemma is useful in proving one of our main theorems.Lemma 5. Let (k0; k1; : : : ; k2n�1)Hn = (r0; r1; : : : ; r2n�1), where k0 = 0 andeah kj and eah rj are both real numbers. Thenmaxfjr1j; : : : ; jr2n�1jg � maxfjk1j; : : : ; jk2n�1jgProof. Without loss of generality, we assume that jk2n�1 j = maxfjk1j; : : : ; jk2n�1jg.Let Hn = [P Q℄ where both P and Q are 2n � 2n�1 matries. Hene we have(k0; k1; : : : ; k2n�1)Q = (r2n�1 ; r2n�1+1; : : : ; r2n�1). Let e0 denote the all-one se-quene of length 2n�1. It is obvious that(k0; k1; : : : ; k2n�1)QeT0 = (r2n�1 ; r2n�1+1; : : : ; r2n�1)eT0 (1)Note that Q = � Hn�1�Hn�1 � and hene we have QeT0 = 2n�1(b0; b1; : : : ; b2n�1)Twhere (b0; b1; : : : ; b2n�1) satis�es b0 = 1, b2n�1 = �1 and other bj = 0. Dueto (1), we have 2n�1(k0 � k2n�1) =P2n�1j=2n�1 rj , where k0 = 0. This proves thatthere exits some i0, 2n�1 � i0 � 2n � 1, suh that jri0 j � jk2n�1 j. Thus thelemma holds. ut



We notie that maxfjr0j; jr1j; : : : ; jr2n�1jg � maxfjk0j; jk1j; : : : ; jk2n�1jg isstill true. However this inequality is less useful in this paper as �(�0) = 2nholds for every funtion on Vn, and we are onerned with �f where �f =max�2Vn;� 6=0 j�(�)j.Theorem 1. Let f be a funtion on Vn. Then the following statements hold:(i) If there exist an m-dimensional linear subspae W , 1 � m � n � 1, and avetor �� in Vn suh that =�f \ (���W ) = ; where ; denotes the empty set,then �f � 2m +1Xi=0 2i(m�n) (2)(ii) Under the assumption of (i), the following three statements are equivalent:(a) �f = 2mP+1i=0 2i(m�n),(b) m = n� 1,() f has a non-zero linear struture.Proof. First we prove (i). Due to Lemma 2, we an assume, without loss ofgenerality, that �� = �0, where �0 denotes the zero vetor in Vn, and W =f�0; �1; : : : ; �2m�1g. Let � denote the sequene of f and `i be the ith row of Hn,i = 0; 1; : : : ; 2n � 1. Sine =�f \W = ;, we have h�; `ii = 0, i = 0; 1; : : : ; 2m � 1.Due to Lemma 3, we have(�(�0); �(�1); : : : ; �(�2n�1))Hn = (0; : : : ; 0; h�; `2mi2; : : : ; h�; `2n�1i2)or (0; : : : ; 0; h�; `2mi2; : : : ; h�; `2n�1i2)Hn = 2n(�(�0); �(�1); : : : ; �(�2n�1)) (3)Applying Lemma (4) (with p = n�m and j = 0) to Equation (3), we obtain(0; 2�2m�1Xj=2m h�; `ji2; : : : ; 2n�1Xj=2n�2mh�; `ji2)Hn�m= 2n(�(�0); �(�2m); �(�2�2m); : : : ; �(�(2n�m�1)�2m) (4)Applying Parseval's equation to f , we haveP2n�m�1i=1 P(i+1)�2m�1j=i�2m h�; `ji2 = 22n.It is easy to see that there exists some i0, 1 � i0 � 2n�m � 1, suh that(i0+1)�2m�1Xj=i0�2m h�; `ji2 � 22n2n�m � 1 = 2n+m +1Xi=0 2i(m�n)Applying Lemma 5 to (4), we onlude that there exists some j0, 1 � j0 �2n�m � 1, suh that 2nj�(�j0�2m)j � 2n+m +1Xi=0 2i(m�n)



This proves that �f � 2mP+1i=0 2i(m�n) and hene (i) holds. Next we prove(ii).First we prove (a)() (b). Assume that (a) holds, i.e.,�f = 2mP+1i=0 2i(m�n),or equivalently, �f = 2mP+1i=0 2i(m�n) = 2n2n�m�1 . Therefore 2n2n�m�1 must bean integer. Sine 2n is not divisible by 2n�m � 1 if n�m � 2, we onlude thatm = n � 1, i.e., (b) holds. Conversely, assume that (b) holds, i.e., m = n � 1.In this ase, by using (i) of the theorem, we have �f � 2mP+1i=0 2i(m�n) =2n2n�m�1 = 2n. Hene �f = 2n, i.e., (a) holds.We now prove (b)() (). Assume that (b) holds, i.e.,m = n�1. In this ase,by using (i) of the theorem, we have �f � 2mP+1i=0 2i(m�n) = 2n2n�m�1 = 2n.Hene �f = 2n. This means that f has a non-zero linear struture and hene ()holds. Conversely, assume that () holds, i.e., f has a non-zero linear struture.Due to Lemma 2, without loss of generality, assume that �2n�1 is a non-zerolinear struture. Hene we an write f as f(x) = x1�g(y) where g is a funtionon Vn�1, x = (x1; : : : ; xn), y = (x2; : : : ; xn) and  is a onstant in GF (2).One again, due to Lemma 2, without loss of generality, assume that  = 0.Let � denote the sequene of g. Then the sequene � of f an be denoted as� = (�; �). It is easy to verify that h�; `ii = 0 where `i is the ith row of Hn,i = 0; 1; : : : ; 2n�1�1. This proves that =�f \W = ; where W is speialized as an(n� 1)-dimensional subspae, that is, W = f�0; �1; : : : ; 2n�1 � 1g. This provesthat m = n� 1 and hene (b) holds. utFrom the de�nition of orrelation immune funtions [1, 4℄, if f is a balanedmth-order orrelation immune funtions, then m � n� 1, and a funtion on Vnis (n�1)th-order orrelation immune if and only if f(x) = x1�� � ��xn� wherex = (x1; : : : ; xn) and  is a onstant in GF (2). Using Theorem 1, we obtainTheorem 2. Let f be a balaned mth-order orrelation immune funtion on Vn(1 � m � n� 1). Then �f � 2m +1Xi=0 2i(m�n)where the equality holds if and only if f(x) = x1 � � � � � xn �  where x =(x1; : : : ; xn) and  is a onstant in GF (2).Let f be a funtion on Vn whose sequene is �. Assume that f satis�esh�; `ii = 0 for every i = 1; : : : ; 2n � 1, or equivalently, f(x) � h�; xi is balanedfor every non-zero vetor in Vn. It is easy to verify that f must be a onstantin GF (2). For this reason, we de�ne the zero funtion on Vn and the non-zeroonstant funtion on Vn as an nth-order orrelation immune funtion on Vn.Theorem 3. Let f be an unbalaned mth-order orrelation immune funtion onVn (2 � m � n). Then �f � 2m�1 +1Xi=0 2i(m�1�n)



where the equality holds if and only if f is a onstant. (Note that an nth-orderorrelation immune funtion is de�ned as a onstant).Proof. Let � 2 Vn and HW (�) = m. Set  (x) = h�; xi and g = f � . It is easyto see that g is a balaned (m� 1)th-order orrelation immune funtion on Vn.Due to Theorem 2, the statement holds. utTheorems 2 and 3 indiate that orrelation immunity is not harmonious withavalanhe harateristis.5 A Relationship between Correlation Immunity andLinear StruturesIn this setion, we onsider the ase when the absolute indiator for SAC ahievesthe maximum value i.e., �f = 2n.Theorem 4. Let f be a funtion on Vn. If there exist a p-dimensional linearsubspae W with 1 � p � n� 1 and a vetor � in Vn suh that =�f � � �W ifand only if f has a non-zero linear struture.Proof. We �rst prove the neessity. Sine the existene of non-zero linear stru-tures is invariant under a nonsingular linear transformation on the variables,without loss of generality, we an assume W = f(a1; : : : ; ap; 0; : : : ; 0)j(a1; : : : ; ap,0; : : : ; 0) 2 Vng. In other words, W = f�0; �2n�p ; �2�2n�p ; : : : ; �(2p�1)�2n�pg,where eah �j 2 Vn and �j is the binary representation of an integer j. LetW � = f(0; : : :, 0; 1; : : : ; n�p) j(0; : : : ; 0; 1; : : : ; n�p) 2 Vng. In other words,W � = f�0; �1, : : : , �2n�p�1g, where eah �j 2 Vn is the binary representationof an integer j, j = 0; 1; : : : ; 2n�p, andVn = (�0 �W ) [ (�1 �W ) [ � � � [ (�2n�s�1 �W )where (�j �W ) \ (�i �W ) = ; whenever j 6= i.Sine =�f � �j0�W for some j0, 0 � j0 � 2n�p�1, h�; `ii = 0 if �i 2 �j�Wwith j 6= �0, where �i is the representation of an integer i. Note that �i 2 �j�Wif and only if i 2 fj; j + 2n�p; : : : ; j + (2p � 1)2n�pg. By using Lemma 4, wehave (h�0; eii); h�1; eii); : : : ; h�2p�1; eii)Hp= (h�; `ii; h�; `i+2n�pi; : : : ; h�; `i+(2p�1)2n�pi) = (0; 0; : : : ; 0)whenever i 6= j0. Therefore(h�0; eii; h�1; eii; : : : ; h�2p�1; eii) = (0; 0; : : : ; 0) (5)whenever i 6= j0. Sine h�0; eii = 0, whenever i 6= j0, we onlude �0 = b0ej0where b0 = �1. Similarly �1 = b1ej0 where b1 = �1, : : :, �2p�1 = b2p�1ej0 whereb2p�1 = �1. Therefore the sequene of f , �, satis�es� = (b0ej0 ; b1ej0 ; : : : ; b2p�1ej0) (6)



Sine ej0 is a row of Hn�p, ej0 is the sequene of a linear funtion on Vn�p,denoted by  . Let (b0; b1; : : : ; b2p�1) be the sequene of a funtion on Vp, denotedby g. Due to (6), f an be expressed as f(x) = g(y) �  (z) where x = (y; z),y 2 Vp, z 2 Vn�p. This proves that f has a non-zero linear struture.Conversely, assume that f has a non-zero linear struture. Then f is equiv-alent to g(x) = x1 � h(y) under a nonsingular linear transformation on thevariables, where h is a funtion on Vn�1, x = (x1; : : : ; xn) and y = (x2; : : : ; xn).Without loss of generality, assume that  = 0. Let �0 denote the sequene ofg and � denote the sequene of h. Then �0 = (�; �). Obviously, if `i satis�es`i = (e;�e), where `i denotes the ith row of Hn and e is a row of Hn�1, we haveh�0; `ii = 0. Therefore if h�0; `ji 6= 0 then `j must take the form of `j = (e; e).Due to the struture of Hn, j satis�es 0 � j � 2n�1 � 1. This proves that=g � f0; 1; : : : ; 2n�1 � 1g, equivalently, =�g �W = f�0; �1; : : : ; �2n�1�1g, whereW obviously is an (n � 1)-dimensional subspae of Vn. Sine the linearity isinvariant under any nonsingular linear transformation on the variables, we havethe same onlusion on =�f . Thus we have proved the suÆieny. utTheorem 4 an be viewed as a way of haraterizing Boolean funtions havingnon-zero linear strutures by the use of orrelation immunity. This result will beused in the next setion.6 A New Result on Upper Bound on Nonlinearity ofCorrelation Immune Funtions6.1 Previously Known ResultsReently Zheng and Zhang proved that when 0:6n � 0:4 � m � n � 2, thenonlinearity Nf of an mth-order orrelation immune funtion f with n variablessatis�es the ondition of Nf � 2n�1�2m+1. In the same paper they also showedthat if a orrelation immune funtion ahieves the maximum nonlinearity forsuh a funtion, then it is a plateaued funtion.The onept of plateaued funtions was introdued in [13℄. Let f be a funtionon Vn and � denote the sequene of f . If there exists an even number r, 0 � r � n,suh that #= = 2r and eah h�; `ji2 takes the value of 22n�r or 0 only, where`j denotes the jth row of Hn, j = 0; 1; : : : ; 2n � 1, then f is alled a rth-orderplateaued funtion on Vn. f is also simply alled a plateaued funtion on Vn if weignore the partiular order r. Some fats about plateaued funtions follow: if f isa rth-order plateaued funtion, then r must be even; f is an nth-order plateauedfuntion if and only if f is bent: and f is a 0th-order plateaued funtion if andonly if f is aÆne. Plateaued funtions are interesting as they have a numberof ryptographially useful properties [13℄. For instane: P2n�1j=0 �2(�j) � 23n#=where the equality holds if and only if f is a plateaued funtion.We now introdue a main result in [14℄.Theorem 5. Let f be an mth-order orrelation immune funtion on Vn. If mand n satisfy the ondition of 0:6n� 0:4 � m � n� 2, then Nf � 2n�1 � 2m+1,



where the equality holds if and only if f is also a 2(n�m� 2)th-order plateauedfuntion.Note that Theorem 5 is an improvement on Sarkar and Maitra's upper bound[9℄, Nf � 2n�1 � 2m when m > 12n� 1.The following result was given by Sarkar and Maitra [9℄.Theorem 6. Let f be an mth-order orrelation immune funtion on Vn, wherem � n�2. Then h�; `i � 0 (mod 2m+1) where ` is any row of Hn. In partiular,if f is balaned mth-order orrelation immune, then h�; `i � 0 (mod 2m+2).The following two Lemmas an be found from [14℄.6.2 A New ResultLemma 4 an be generalized. Let f be a funtion on Vn andW be a p-dimensionalsubspae of Vn. Let U = f0; �2n�p ; �2�2n�p ; : : : ; �(2p�1)2n�pg. Sine both Wand U are p-dimensional subspaes of Vn, we an �nd an n � n matrix B overGF (2) satisfying WBT = U , where WBT = f�BT j� 2 Wg. Set x = uB andg(u) = f(uB). Consider f(x) � h�; xi where � 2 W . Note that h�; xi = x�T =uB�T = u(�BT )T = h�BT ; ui. Therefore f(x)�h�; xi = g(u)�h�BT ; ui where� 2 W and �BT 2 U . Let � denote the sequene of g. Equivalently, we haveh�; `ji = h�; `ii where j is the binary representation of � 2 W , and i is the binaryrepresentation of �BT 2 U .De�ne a permutation � on f0; 1; : : : ; 2n�1g as follows: �(j) = i if �jBT = �i,where i and j are the the binary representations of �i and �j respetively.Therefore h�; `ji = h�; `�(j)i or h�; `��1(j)i = h�; `ji (7)Rewrite � = (�0; �1; : : : ; �2p�1) where eah �i is of length 2n�p. Applying Lemma4 to the funtion g and the subspae U , we have2p(h�0; eji; h�1; eji; h�2; eji; : : : ; h�2p�1; eji)= (h�; `ji; h�; `j+2n�pi; : : : ; h�; `j+(2p�1)2n�pi)Hpwhere ej denotes the jth row of Hp, j = 0; 1; : : : ; 2n�p�1. Due to (7), we obtain2p(h�0; eji; h�1; eji; h�2; eji; : : : ; h�2p�1; eji)= (h�; `��1(j)i; h�; `��1(j+2n�p)i; : : : ; h�; `��1(j+(2p�1)2n�p)i)Hp (8)where ej denotes the jth row of Hp, j = 0; 1; : : : ; 2n�p � 1.Lemma 6. Let f be a funtion on Vn and � denote the sequene of f . Let q bean odd number with 1 � q � n� 2, suh thath�; `ji = 0 for all j suh that HW (�j) � q and HW (�j) is oddwhere �j 2 Vn is the binary representation of integer j. Then h�; `ji � 0(mod 2q+2) holds for all j with HW (�j) = q + 2 where �j 2 Vn is the binaryrepresentation of an integer j.



Proof. Let U = f0; �2n�q�1 ; �2�2n�q�1 , : : : ; �(2q+1�1)2n�q�1g. Obviously U an berewritten as U = f(a1; a2; : : : ; aq+1; 0; : : : ; 0)j(a1; a2 : : : ; aq+1; 0; : : : ; 0) 2 Vng.Set W = f(a1; a2; : : : ; aq+2; 0; : : : ; 0)j(a1; a2 : : : ; aq+2; 0; : : : ; 0) 2 Vn;HW (a1; a2; : : : ; aq+2) is evengSine both U and W are (q+1)-dimensional subspaes of Vn, there exists ann� n matrix B over GF (2) satisfying(i) WBT = U , where WBT = f�BT j� 2Wg, in partiular, we require�(2q+1�1)2n�q�1BT = �(2q+1�1)2n�q�1 ,(ii) �jBT = �j , j = 1; : : : ; 2n�q�1 � 1.Set x = uB and g(u) = f(uB). Let � = (�0; �1; : : : ; �2n�q�1�1) denote thesequene of g, where eah �i is of length 2n�q�1. Obviously HW (�) is even forany � 2 W , i.e., HW (�) takes the values, 0; 2; 4; : : : ; q � 1; q + 1. ThereforeHW (�2n�q�2��) must be odd, i.e., HW (�) takes the values, 1; 3; 5; : : : ; q; q+2.Note that �(2q+1�1)2n�q�1 = (1; : : : ; 1; 0; : : : ; 0) and HW (�2n�2n�q�1) = q + 1.Obviously, �2n�q�2 ��(2q+1�1)2n�q�1 = (1; : : :, 1, 1, 0, : : :, 0) = �(2q+2�1)2n�q�2 .Note that HW (�(2q+2�1)2n�q�2) = q + 2, and for any other � 2 W with � 6=�(2q+1�1)2n�q�1 , we have 1 � HW (�2n�q�2 � �) � q. Due to the property off , h�; `ji = 0 for all j, where j is the integer representation of �2n�q�2 � �, if� 2W and � 6= �(2q+1�1)2n�q�1 , From the properties of B, (�2n�q�2 ��j)BT =�2n�q�2 ��jBT for all �j 2W . In partiular, (�2n�q�2 � �(2q+1�1)2n�q�1)BT =�2n�q�2 � �(2q+1�1)2n�q�1 .Using (8) with j = 1, we have2q+1(h�0; e1i; h�1; e1i; h�2; e1i; : : : ; h�2q+1�1; e1i)= (0; : : : ; 0; h�; `(2q+1�1)2n�q�1i)Hq+1 (9)Sine 2n�q�1 � 2, h�2q+1�1; e1i is even. Comparing the rightmost term in bothsides of (9), we onlude that h�; `(2q+1�1)2n�q�1i � 0 (mod 2q+2). By thesame reasoning, we an prove that h�; `ji � 0 (mod 2q+2) holds for all j withHW (�j) = q + 2. utLemma 7. Let f be a funtion on Vn and � denote the sequene of f . Let q bean odd number with 1 � q � n� 2, suh thath�; `ji = 0 for all j suh that HW (�j) is odd and HW (�j) � qwhere �j 2 Vn is the binary representation of integer j. Then either there existssome j0 suh that jh�; `j0ij � 2q+2, or h�; `ji = 0 for all j where HW (�j) is odd.Proof. By using Lemma 6, h�; `ji � 0 (mod 2q+2) holds for all j withHW (�j) =q + 2 where �j 2 Vn. There exist two ases to be onsidered.Case 1: there exists some j0 with HW (�j0) = q+2 satisfying h�; `j0i 6= 0. Inthis ase we have jh�; `j0ij � 2q+2. Thus the lemma holds.



Case 2: h�; `ji = 0 holds for all j with HW (�j) = q + 2 where �j 2 Vn. Inthis ase, we onlude that h�; `ji = 0 holds for all j suh that HW (�j) � q+2and HW (�j) is odd.One again we use Lemma 6. There exist two ases to be onsidered.Case 2.1: we have an integer t > 1 suh that h�; `ji = 0 for all j whereHW (�j) � q + 2(t � 1) and HW (�j) is odd, and there also exists j0 withHW (�j0) = q + 2t satisfying h�; `j0i 6= 0. By using Lemma 6, we an onludethat jh�; `j0ij � 2q+2t. Thus the lemma holds in Case 2.1.Case 2.2: h�; `ji = 0 for all j where HW (�j) is odd. Clearly the lemma holds.utApplying Lemma 7, we an extend Theorem 5 in the following way.Theorem 7. Let f be an odd mth-order orrelation immune funtion on Vn.Then either Nf � 2n�1 � 2m+1 holds for 12n � 1 � m < 0:6n� 0:4 or f has anon-zero linear struture.Proof. If f is balaned, Nf � 2n�1 � 2m+1 holds due to Theorem [9℄. Thus weonly need to onsider the unbalaned ase. From Lemma 7, there there two asesto be onsidered. Case 1: there exists some j0 suh that jh�; `j0ij � 2m+2. In thisase, we have proved the theorem by using Lemma 1. Case 2: h�; `ji = 0 for allj where HW (�j) is odd. Set W = f�j� 2 Vn; HW (�) is eveng. Thus W is an(n�1)-dimensional subspae of Vn. From the property of f , obviously, =� �W .From Theorem 4, f has a non-zero liear struture. utNote that the nonlinearity of any Boolean funtion on Vn is upper-boundedby 2n�1� 2 12n�1. For m � 12n� 2, we have 2n�1� 2 12n�1 � 2n�1� 2m+1. Henethe inequality Nf � 2n�1 � 2m+1 is trivial when m � 12n � 2, although it stillholds. For this reason, we require that m � 12n� 1 in Theorem 7.Theorem 7 represents an extension of Theorem 5. The latter is stated for thease of 0:6n� 0:4 � m � n� 2.7 Conlusion RemarksThis paper inludes three main results. (1) We have presented a tight lowerbound on the absolute indiator for GAC of an mth-order orrelation immunefuntion on Vn, and proved that a orrelation immune funtion ahieves the lowbound for the absolute indiator if and only if it is aÆne. (2) We have establisheda relationship between orrelation immunity and non-zero linear strutures. (3)We have shown that given an odd mth-order orrelation immune funtion f onVn, the nonlinearity Nf of f satis�es Nf � 2n�1 � 2m+1 for 12n � 1 � m <0:6n� 0:4 otherwise f has a non-zero linear struture. This is an extension of aknown result that holds for 0:6n� 0:4 � m � n � 2. It would be interesting toknown whether or not Theorem 7 an be extended to the ase of an even m.Some observations on upper bounds on nonlinearity for a \small" m weremade by Sarkar and Maitra in [9℄. For instane, they showed that Nf � 2n�1 �
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