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Abstract. The work investigates the design of ideal threshold secret
sharing in the context of cheating prevention. We showed that each or-
thogonal array is exactly a defining matrix of an ideal threshold scheme.
To prevent cheating, defining matrices should be nonlinear so both the
cheaters and honest participants have the same chance of guessing of the
valid secret. The last part of the work shows how to construct nonlinear
secret sharing based on orthogonal arrays.
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1 Introduction

Secret sharing is one of basic cryptographic algorithms that is of great impor-
tance for cryptographic services where actions are controlled by groups. It is a
well known fact that linear secret sharing is vulnerable to cheating attacks. In
these attacks, dishonest participants submit forged shares to the combiner who
returns an invalid secret. The cheaters, knowing the invalid secret and their valid
shares, are able to recover the valid secret. As the result, the cheaters hold the
valid secret while the honest participants are left with the invalid one distributed
by the combiner.

This paper explores how (nonlinear) orthogonal arrays can be used to build
ideal threshold schemes that are immune against cheating. The immunity against
cheating springs from the fact that, in nonlinear secret sharing, a cheater is
unable to obtain the valid secret. More precisely, the probability of guessing the
valid secret by the cheater and honest participants are the same.

This work is structured as follows. The basic concepts of secret sharing are
introduced in Section 2. In Section 3, we define a perfect secret sharing scheme
using defining matrices. An ideal secret sharing scheme is a perfect scheme for
which the set of secrets and the set of shares have the same size. We investigate
some properties of ideal secret sharing in Section 4. In Section 5, we introduce
orthogonal arrays and show how they can be used to construct ideal threshold
schemes. In Section 6, we study properties of such ideal threshold schemes and



their applications for cheating prevention. In Section 7 we demonstrate the exis-
tence of orthogonal arrays that are defining matrices of ideal threshold schemes.
Section 8 examines how cheating attacks can be prevented in secret sharing
based on orthogonal arrays and constructions of secret sharing immune against
cheating are given. Conclusions close the work.

2 Access Structures

Secret sharing is a method to share a secret among a set of participants P =
{P1, . . . , Pn}. Let K denote the set of secrets and S denote the set of shares.
The secret sharing includes two algorithms: the distribution algorithm (dealer)
and the recovery algorithm (combiner). The dealer assigns shares s1, . . . , sn to
all the participants P1, . . . , Pn, respectively, or in other words, it creates the
secret sharing system. After that the participants collectively hold the secret
until there is a big enough subset of participants who wish to recover the secret
by calling the recovery algorithm. Assume that the currently active participants
are Pj1 , . . . , Pjℓ

and that they submit their shares to the combiner in order
to recover the secret. Their shares sj1 , . . . , sjℓ

can determine a secret if and
only if {Pj1 , . . . , Pjℓ

} is a qualified subset of P, i.e., the set of currently active
participants belongs to the access structure Γ . It turns out that any access
control is monotone or any superset of qualified set of participants belongs to
the access structure, or more precisely

if A ∈ Γ and A ⊆ B ⊆ P then B ∈ Γ (1)

We can describe secret sharing with the access structure Γ by an m× (n+1)
matrix M∗, as shown in [2, 3]. The matrix M∗ has n + 1 columns indexed by
0, 1. . . . , n. The number m of rows of M∗ depends on a particular scheme. We
index the m rows by 1, . . . ,m. For a row of M∗, the entry in the 0th position
holds a secret and the entry in the ith position (i = 1, . . . , n) contains the
corresponding share of Pi. Denote the entry on the ith row and the jth column
of M∗ by M∗(i, j). The matrix M∗ is called a defining matrix of secret sharing
with the access scheme Γ . The matrix M obtained from M∗ by removing the
0th column is called the associated matrix of the scheme.

The dealer works in two stages. In the first stage, it creates the defining
matrix M∗ for secret sharing with the access structure Γ . The matrix is made
public. In the second stage, the dealer randomly chooses a row of the matrix
M∗. Let the row chosen be indexed by the integer i. The secret is K = M∗(i, 0)
and shares are sj = M∗(i, j), j = 1, . . . , n. The shares are distributed to the
corresponding participants via secure channels.

An access structure Γ = {A | #A ≥ t} is called a (t, n)-threshold access
structure, where #X denotes the cardinality of the set X (i.e., the number of
elements in the set X) and the integer t is called the threshold of secret sharing,
where t ≤ n. Secret sharing schemes with the (t, n)-threshold access structure
are called (t, n)-threshold schemes.



It should be noticed that a defining matrix uniquely determines a secret shar-
ing scheme but a secret sharing scheme has more defining matrices. Permuting
the rows of a defining matrix of secret sharing does not give a new scheme.
Clearly, two secret sharing schemes are considered to be the same if the defining
matrix of the one can be obtained from the other by permuting the rows of
its defining matrix. Permuting the columns of defining matrices of secret shar-
ing is equivalent to changing the indices of participants. In other words, access
structures of secret sharing with permuted columns are different but one access
structure can be derived from the other by permuting the participants. For this
reason, we do not regard the the resulting scheme as a new one. We say that the
resulting scheme is equivalent to the original one.

It should be pointed out once again that a defining matrix of a secret sharing
scheme is public. The dealer chooses at random a single row of the matrix. The
shares are communicated to the corresponding participants via secure channels
so the share si is known to the participant Pi only (i = 1, . . . , n).

3 Perfect Secret Sharing

We say that secret sharing with the access structure Γ is perfect if the following
two conditions are satisfied:

(1) If A ∈ Γ then the participants in A can uniquely determine the secret by
pooling their shares together.

(2) if A 6∈ Γ then the participants from A can determine nothing about the
secret (in an information theoretic sense).

As argued in [2], Conditions (1) and (2) can be translated into conditions
that need to be satisfied in the context of the defining matrix.

(a) Let A ∈ Γ . If M∗(i, j) = M∗(i′, j) for every Pj ∈ A then M∗(i, 0) =
M∗(i′, 0).

(b) Let A 6∈ Γ . For any 1 ≤ i0 ≤ m and any K ∈ K, there exists some i with
1 ≤ i ≤ m such that M∗(i, j) = M∗(i0, j) for all Pj ∈ A and M∗(i, 0) = K.

(b’) Let A = {Pj1 , . . . , Pjℓ
} 6∈ Γ . For any sj1 , . . . , sjℓ

∈ S and any K ∈ K,

#{i | M∗(i, ju) = sju
for all Pju

∈ A and M∗(i, 0) = K}

is independent to the choice of K.

It is easy to verify that (b’) implies (b). For the case of a (t, n)-threshold
scheme, Conditions (a), (b), and (b’) can be rewritten as follows:

(c) Let #A ≥ t. If M∗(i, j) = M∗(i′, j) for every Pj ∈ A then M∗(i, 0) =
M∗(i′, 0).

(d) Let #A < t. For any 1 ≤ i0 ≤ m and any K ∈ K, there exists some i with
1 ≤ i ≤ m such that M∗(i, j) = M∗(i0, j) for all Pj ∈ A and M∗(i, 0) = K.



(d’) Let A = {Pj1 , . . . , Pjℓ
} with ℓ < t. For any sj1 , . . . , sjℓ

∈ S and any K ∈ K,

#{i | M∗(i, ju) = sju
for all Pju

∈ A and M∗(i, 0) = K}

is independent to the choice of K.

Similarly, (d’) implies (d).

Definition 1. A secret sharing scheme satisfying (a) and (b) is called weakly
perfect, while it is called perfect if it satisfies (a) and (b’) [2]. Alternatively, a
(t, n)-threshold scheme satisfying (c) and (d) is called weakly perfect, while it is
called perfect if it satisfies (c) and (d’).

Threshold schemes were first introduced by Blakley [1] and Shamir [6]. Ito et
al [5] generalized threshold secret sharing for arbitrary monotonic access struc-
tures.

4 Ideal Secret Sharing

Given an access structure Γ . A set A ∈ Γ is called minimal if all proper subsets
of A do not belong to Γ . It is easy to see that A is minimal for a (t, n)-threshold
access structure if and only if #A = t.

Lemma 1. #K ≤ #S for any weakly perfect secret sharing scheme.

Proof. Denote K = {K1, . . . ,Kκ}. We are going to consider the following two
cases: every minimal A ∈ Γ satisfies #A = 1 and there exists a minimal A0 ∈ Γ

such that #A0 ≥ 2. The first case is trivial. For this case, let M∗(i1, 0) = K1 . . .,
M∗(iκ, 0) = Kκ. Since K1, . . . ,Kκ are mutually distinct, due to Condition (a),
M∗(i1, 1), . . ., M∗(iκ, 1) must be mutually distinct. This proves that #S ≥ #K.
Consider the second case: there exists a minimal A0 ∈ Γ such that #A0 ≥ 2.
Let A0 = {Pj1 , . . . , Pjℓ

} where j1 < · · · < jℓ. For fixed i0th row of M∗, let
M∗(i0, j1) = sj1 , . . . ,M

∗(i0, jℓ−1) = sjℓ−1
. Since {Pj1 , . . . , Pjℓ−1

} 6∈ Γ , according
to Condition (b), for each Kr with 1 ≤ r ≤ κ, there exists a row ir of M∗

such that M∗(ir, j1) = sj1 , . . . ,M
∗(ir, jℓ−1) = sjℓ−1 and M∗(ir, 0) = Kr, where

r = 1, . . . , κ. Since M∗(i1, 0) = K1, . . . ,M
∗(iκ, 0) = Kκ are mutually distinct,

due to Condition (a), M∗(i1, jℓ), . . . ,M
∗(iκ, jℓ) must be mutually distinct. This

proves that S contains at least κ elements, i.e., #S ≥ #K. ⊓⊔

A similar statement for perfect secret sharing appeared previously, for in-
stance, in [3], that is, #K ≤ #S for any perfect secret sharing scheme. Since
any perfect secret sharing is a special weakly perfect secret sharing, Lemma 1 is
more general. In particular, if the equality in Lemma 1 holds, i.e., #K = #S,
the perfect secret sharing scheme is said to be ideal.

Definition 2. A perfect secret sharing scheme is said to be ideal if #K = #S,
where K and S denote the set of secrets and the set of shares respectively. Al-
ternatively, a perfect threshold scheme is said to be ideal if the set of secrets and
the set of shares have the same cardinality.



Using the same approach as in the proof of Lemma 1, we can prove the following
lemma.

Lemma 2. Let M be an associated matrix M of an ideal secret sharing scheme
with an access structure Γ . Let A0 = {Pj1 , . . . , Pjℓ

} ∈ Γ , where j1 < · · · < jℓ, be
a minimal set. Then the submatrix of M , comprised of ℓ columns of M , indexed
by j1, . . . , jℓ, contains each row vector (s1, . . . , sℓ) where each sj ∈ S.

In particular, we can formulate the following corollary.

Corollary 1. Let M be an associated matrix of an ideal (t, n)-threshold scheme.
Then a submatrix of M consisting of any t columns, contains all values of the
vector (s1, . . . , st) where each sj ∈ S.

Let M∗ be a defining matrix of an ideal (t, n)-threshold scheme. Set St =
{(s1, . . . , st) | s1, . . . , st ∈ S}. Let 1 ≤ j1 < · · · < jt ≤ n and M1 be the
m × t submatrix of M , comprised of the t columns indexed by j1, . . . , jt. We
now define a function, denoted by χj1,...,jt

, from St to K as follows. According
to Corollary 1, for any (s1, . . . , st) ∈ St, there exists some i0 with 1 ≤ i0 ≤ m

such that M∗(i0, j1) = s1, . . . ,M
∗(i0, jt) = st. Let M∗(i0, 0) = K. Note that

according to Condition (d), if there exists another i1 (1 ≤ i1 ≤ m) such that
M∗(i1, j1) = s1, . . . ,M

∗(i1, jt) = st, then M∗(i1, 0) = K. Thus we can define
K to be the image of (s1, . . . , st) and write K = χj1,...,jt

(s1, . . . , st). We call
χj1,...,jt

the secret function with respect to j1, . . . , jt. Secret functions play an
important role as a tool against cheating. This will be elaborated later.

5 Ideal Threshold Schemes from Orthogonal Arrays

An m×n matrix with entries from b-set B is called an orthogonal array, denoted
by (m,n, b, t), if its any m × t submatrix contains all bt possible row vectors
precisely λ times. Clearly m = λbt. The parameters m, t and λ are called the
size, the strength and the index of the orthogonal array, respectively, while n is
called the number of constraints and b is called the number of levels.

Lemma 3. An orthogonal array (m,n, b, t) with an index λ is an orthogonal
array (m,n, b, ℓ) with an index λbt−ℓ where ℓ is any integer with 1 ≤ ℓ ≤ t.

In particular, we can formulate the following corollary.

Corollary 2. Each column of an orthogonal array (m,n, b, t) with entries from
a b-set B contains each element of B precisely λbt−1 times, where λ is the index
of the orthogonal array.

This following statement is obvious.

Lemma 4. Let O1 be an m × n1 submatrix of an orthogonal array (m,n, b, t)
with an index λ. If n1 ≥ t then O1 is an orthogonal array (m,n1, b, t) with an
index λ.



Orthogonal arrays with index λ = 1, i.e, orthogonal arrays (bt, n, b, t) have
many interesting properties. The following bounds on the number of constraints
for orthogonal arrays (bt, n, b, t) was proved by Bush [4]:

Lemma 5. For an orthogonal array (bt, n, b, t),

(i) if t ≤ b then n ≤ b+ t− 1 (b is even) or n ≤ b+ t− 2 (b is odd and t ≥ 3),
(ii) if b ≤ t, then n ≤ t+ 1.

Theorem 1. An orthogonal array (bt, n+ 1, b, t) with entries from a b-set B is
a defining matrix of an ideal (t, n)-threshold scheme with K = S = B.

Proof. Let O be an orthogonal array (bt, n+1, b, t) with entries from b-set B. We
index the columns ofO by j = 0, 1, . . . , n and index the rows of O by i, 1 ≤ i ≤ bt.
We write O(i, j) to denote the entry of O in the i row and the j column. We
now construct a (t, n)-threshold with participants P1, . . . , Pn as follows. For an
ith row, let O(i, 0) be a secret, and O(i, j) denote the share of participant of Pj ,
j = 1, . . . , n. We next prove that this scheme satisfies Condition (c) and (d’).

Let {Pj1 , . . . , Pjℓ
} be the set of currently active participants. For the case of

ℓ ≥ t, if O(i, j1) = O(i′, j1), . . . , O(i, jℓ) = O(i′, jℓ), then it follows that i = i′,
as the orthogonal array (bt, n + 1, b, t) has index λ = 1. Thus Condition (c) is
satisfied. For the case of ℓ < t, let O1 denote the bt × (ℓ + 1) submatrix of O,
comprised of the ℓ + 1 columns indexed by 0, j1, . . ., jℓ. Note that ℓ + 1 ≤ t.
Let K, sj1 , . . . , sjℓ

∈ B. According to Lemma 3, O1 contains the row vector
(K, sj1 . . . . , sjℓ

) precisely bt−ℓ−1 times, where bt−ℓ−1 is independent to the choice
of K. This proves (d’). Thus O is a defining matrix of a perfect (t, n)-threshold
scheme. Finally, due to Corollary 2, we conclude that K = S = B. Hence the
scheme is ideal. ⊓⊔

6 Properties of Threshold Schemes from Orthogonal

Arrays

The Hamming distance of two vectors µ = (a1, . . . , an) and ν = (b1, . . . , bn),
denoted by dist(µ, ν), is the value of #{j | aj 6= bj , 1 ≤ j ≤ n}.

Lemma 6. Any two distinct row vectors of an orthogonal array (bt, n, b, t) have
a Hamming distance at least n− t+ 1.

Proof. Denote the orthogonal array by O. We prove the lemma by contradic-
tion. Assume that there exist two rows of O, row Li and Lj of O, satisfying
dist(Li, Lj) ≤ n−t. Then Li and Lj have at least t same corresponding coordina-
tions. This contradicts the fact that the submatrix, comprised of any t columns,
contains a row vector precisely once as O is an orthogonal array (bt, n, b, t) with
index λ = 1. Therefore we have proved the lemma. ⊓⊔

Consider (t, n)-threshold secret sharing whose defining matrix O is an or-
thogonal array (bt, n+ 1, b, t). Assume that the dealer chooses an i0 row vector



(s1, . . . , sn) of O and assigns s1, . . . , sn to participants P1, . . . , Pn, respectively.
Let {Pj1 , . . . , Pjℓ

} for t ≤ ℓ ≤ n be a subset of active participants. Let O1 be the
bt × ℓ submatrix of O, containing ℓ columns indexed by j1, . . . , jℓ. According to
Lemma 4, O1 is an orthogonal array (bt, ℓ, b, t). Denote the ith row of O1 by Li.
According to Lemma 6, any two distinct row vectors Li and Lj of O1 satisfy

dist(Li, Lj) ≥ ℓ − t+ 1 (2)

Clearly, the row i0 of O1 is Li0 = (sj1 , . . . , sjℓ
). Let there exist u cheaters,

among the active participants Pj1 , . . ., Pjℓ
, who submit modified shares to the

combiner while the honest active participants submit correct shares to the com-
biner. Assume that the combiner receives the shares s′j1 , . . . , s

′

jℓ
sent by Pj1 , . . .,

Pjℓ
, where s′ji

= sji
if and only if Pji

is honest. Write L′ = (s′j1 , . . . , s
′

jℓ
). Clearly,

dist(L′, Li0) = u.
We show that cheating can be checked when 1 ≤ u ≤ ℓ− t. We assume that

the combiner (recovery algorithm) knows the defining matrix O and then O1.
Thus the combiner can calculate

dm = min{dist(L′, Li) | 1 ≤ i ≤ bt}

Since dist(L′, Li0) = u and 1 ≤ u ≤ ℓ − t, it follows that 1 ≤ dm ≤ ℓ − t.
Although the combiner does not know Li0 , from 1 ≤ dm ≤ ℓ− t and (2), he can
conclude that L′ = (s′j1 , . . . , s

′

jℓ
) is not a row of O1 and thus it is incorrect.

Furthermore we indicate that the correct shares can be found and the cheaters
can be identified when 1 ≤ u ≤ ⌊ 1

2
(ℓ− t)⌋, where ⌊ 1

2
(ℓ− t)⌋ denotes the greatest

integer not larger than 1

2
(ℓ − t). The combiner can find a row Li1 of O1 such

that dist(L′, Li1) = dm. Then Li1 is identical with Li0 = (sj1 , . . . , sjℓ
). In fact

dist(Li1 , Li0) ≤ dist(Li1 , L
′) + dist(L′, Li0) ≤ 2u ≤ ℓ − t. Since both Li0 and

Li are rows of O1, due to (2), we conclude that Li1 is identical with Li0 =
(sj1 , . . . , sjℓ

). Thus the correct shares have been found. Comparing L′ and Li0 ,
the combiner (recovery algorithm) can determine who are cheaters.

The above discussions uses basic facts of coding theory. The reader interested
in more details is referred to any book on the subject.

7 Simple Construction

According to Theorem 1, the design of threshold schemes is equivalent to the
construction of corresponding orthogonal arrays. In this section, we are interested
in orthogonal arrays with elements in a finite field, or simply, orthogonal arrays
over a finite field. Let q = pv where p is a prime number and v is a positive
integer. We write GF (q) or GF (pv) to denote the finite field of q = pv elements,
and GF (q)n or GF (pv)n to denote the vector space of n tuples of elements
from GF (q). Each vector α ∈ GF (q)n can be expressed as α = (a1, . . . , an)
where a1, . . . , an ∈ GF (q). The integer a1q

n−1 + · · · + an−1q + an is called the
integer representation of vector α = (a1, . . . , an), where each aj and the sum are
regarded real-valued. Thus we can index all vectors in GF (q)n:

α0, α1, . . . , αqn−1



where j is the integer representation of αj . A function f on GF (q)n is a mapping
fromGF (q)n toGF (q). The function f can be expressed as f(x) or f(x1, . . . , xn),
where x = (x1, . . . , xn) ∈ GF (q)n. The truth table of f is the sequence f(α0), f(α1),
. . . , f(αqn−1). If each element of GF (q) = GF (pv) appears in the truth table
of f precisely qn−1 times then f is called balanced. If f can be expressed as
f(x1, . . . , xn) = c + a1x1 + · · · + anxn then f is called an affine function. In
particular, the affine function f is called linear if c = 0. It is easy to see that
non-constant affine functions are balanced.

For any integer t, n and prime power q with 1 ≤ t ≤ n+ 1 ≤ q − 1, we next
construct an orthogonal array (qt, n+1, q, t) over GF (q). Since n+1 ≤ q−1, we
can collect n+ 1 nonzero elements of GF (q): λ1, . . . , λn+1. For each λj , 1 ≤ j ≤
n+1, define a vector βj = (1, λj , . . . , λ

t−1

j ), j = 1, . . . , n+1, and a liner function

ψj on GF (q)t such that ψj(x) = 〈βj , x〉 where x = (x1, . . . , xt) ∈ GF (q)t and 〈, 〉
denotes the inner product of two vectors. We now construct a qt×(n+1) matrix
O. We index the columns of O by j = 0, 1. . . . , n, and define the j column vector
of O to be the truth table of ψj+1 where j = 0, 1, . . . , n. According to the results
given in [4], O is an orthogonal array (qt, n+ 1, q, t) over GF (q). Therefore, by
Theorem 1, O is a defining matrix of an ideal (t, n)-threshold scheme.

The above orthogonal arrays have a property as follows.

Lemma 7. Let O be the orthogonal array (qt, n+1, q, t) over GF (q), constructed
previously in this section. Then for any fixed 1 ≤ j1 < · · · < jt ≤ n, χj1,...,jt

is
a linear function.

Proof. It is not hard to verify that any t vectors βj1 , . . . , βjt
, where each βj has

been defined previously in this section, are linearly independent. Thus {βj1 , . . .
, βjt

} is a basis of GF (q)t and thus the 0th column is a linear combination of
the j1th, . . ., the jtth columns. If we denote the jth columns of O by ηj , then
η0 = c1ηj1 + · · ·+ ctηjt

where each cj ∈ GF (q). Thus O(i, 0) = c1O(i, j1)+ · · ·+
ct0(i, jt), i = 1, . . . , qt. By definition, χj1,...,jt

(s1, . . . , st) = c1s1 + · · · + ctst, for
any s1, . . . , st ∈ GF (q). This proves the lemma. ⊓⊔

Using the same approach as shown by Tompa and Woll [7] for Shamir’s
scheme [6], due to Lemma 7, we can demonstrate that the Tompa-Woll attack
works also for the scheme constructed above. For this reason, we will improve
this construction in the next section.

8 Ideal Threshold Schemes with Nonlinear Secret

Functions

We address the weakness discussed in the previous section by removing linearity
from the orthogonal array (qt, n+1, q, t). Being more specific, we make sure that
the 0th column (secret) is described by a nonlinear function of other columns
(shares).



Theorem 2. Let O be the orthogonal array (qt, n + 1, q, t) over GF (q), con-
structed in Section 7. We replace the 0th column by the truth table of function
σ(x) = 〈β1, x〉

p, where p is the characteristic of GF (q), i.e., q = pv. Denote
the resulting matrix by O′. Then O′ is also an orthogonal array (qt, n+ 1, q, t).
Alternatively, we obtain an ideal (t, n)-threshold scheme with the defining matrix
O′.

Proof. Let O′

1 (O1) be a qt×t submatrix of O′ (O), consisting of any t columns of
O′ (O), indexed by j1, . . . , jt, where 0 ≤ j1 < · · · < jt ≤ n. Let (a1, a2, . . . , at) be
a t-dimensional vector where each aj ∈ GF (q). There two cases to be considered:
j1 6= 0 and j1 = 0. For the first case: j1 6= 0, clearly O′

1 = O1 is a submatrix
of O. Thus O′

1 = O1 contains (a1, a2, . . . , at) as a row vector precisely once.
We next consider the second case: j1 = 0. It is easy to verify that c1 = c2,
where c1, c2 ∈ GF (q), if and only if cp1 = c

p
2. Thus, there exists an unique

element c ∈ GF (q) such that cp = a1. Recall that O is an orthogonal array
(qt, n+ 1, q, t) with index λ = 1. Thus O1 contains the row vector (c, a2, . . . , at)
precisely once. It follows that O′

1 contains the row vector (a1, a2, . . . , at) precisely
once. Summarising the two cases, we have proved that O′ is also an orthogonal
array (qt, n+1, q, t). According to Theorem 1, we obtain an ideal (t, n)-threshold
scheme with the defining matrix O′. ⊓⊔

Theorem 3. Let O′ be the orthogonal array (qt, n + 1, q, t) in Theorem 2. For
any 1 ≤ j1 < · · · < jt ≤ n, χj1,...,jt

is a nonlinear function.

Proof. Recall that for each j with 1 ≤ j ≤ n, the jth column of O′ is the truth
table of a linear function on GF (q)t. On the other hand, the 0th column of O′

is the truth table of the function σ(x) = 〈β1, x〉
p, that contains nonlinear terms.

Thus the 0th column of O′ is not a linear combination of other columns. This
proves that χj1,...,jt

is a nonlinear function. ⊓⊔

9 Constructions of Ideal Threshold Schemes

The construction in Section 7 demonstrates the existence of secret sharing based
on orthogonal arrays. In this section, we show how to construct secret sharing
from a known orthogonal array.

Theorem 4. Let O be the orthogonal array (m,n, b, t) with elements from a b-
set B. For a permutation π on B and a uth column of O, we replace each entry c
in the uth column by π(c). Denote the resulting matrix by O′. Then O′ is also an
orthogonal array (m,n, b, t). Alternatively, we obtain an ideal threshold scheme
based on the defining matrix O′.

Proof. The proof is similar to the proof of Theorem 2. Let O′

1 (O1) be an m× t

submatrix of O′ (O), consisting of the t columns of O′ (O), indexed by j1, . . . , jt,
where 1 ≤ j1 < · · · < jt ≤ n. Let (a1, a2, . . . , at) be a t-dimensional vector
where each aj ∈ GF (q). There two cases to be considered: u 6∈ {j1, . . . , jt} and



u ∈ {j1, . . . , jt}. For the first case: u 6∈ {j1, . . . , jt}, clearly O′

1 = O1 is a sub-
matrix of O. Thus O′

1 = O1 contains (a1, a2, . . . , at) as a row vector precisely
once. We next consider the second case: u ∈ {j1, . . . , jt}. Let u = jr and then
assume that j1 < · · · < jr−1 < jr < jr+1 < · · · < jt. Since π is a permutation
on B, there exists an unique element c ∈ B such that π(c) = ajr

. Recall that O
is an orthogonal array (m,n, b, t) with index λ = 1. Thus, O1 contains the row
vector (a1, . . . , ajr−1

, c, ajr+1
, . . . , at) precisely once. It follows that O′

1 contains
the row vector (a1, . . . , ajr−1

, ajr
, ajr+1

, . . . , at) precisely once. Summarising the
two cases, we have proved that O′ is also an orthogonal array (m,n, b, t). Alter-
natively, we obtain an ideal threshold scheme with the defining matrix O′. ⊓⊔

Repeatedly applying Theorem 4, we obtain more orthogonal arrays and more
ideal threshold schemes. Moreover, the theorem gives ideal threshold schemes
with different properties.

Theorem 5. Let O be the orthogonal array (qt, n + 1, q, t) over GF (q), con-
structed in Section 7. Let a permutation π on GF (q) satisfy π(0) 6= 0. For a uth
(1 ≤ u ≤ n) column of O, we replace each entry c in the uth column by π(c),
and replace the 0th column by the truth table of function σ(x) = 〈β1, x〉

p, where
q = pv. Denote the resulting matrix by O′. Then

(i) O′ is also an orthogonal array (qt, n, q, t). Alternatively, we obtain an ideal
threshold scheme with the defining matrix O′,

(ii) all the row vectors of the orthogonal array O′ do not form a linear subspace
of GF (q)n,

(iii) for any 1 ≤ j1 < · · · < jt ≤ n, χj1,...,jt
is a nonlinear function.

Proof. According to Theorems 2 and 4, (i) is true. We denote the jth column of
O (O′) by ηj (η′j). From the construction of O mentioned in Section 7, O(0, u) =
0. Thus O′(0, u) = π(0) 6= 0. This means that η′u is not the true table of a
linear function. We have proved (ii). We next prove (iii). There exist two cases
to be considered: u 6∈ {j1, . . . , jt} and u ∈ {j1, . . . , jt}. In the first case: u 6∈
{j1, . . . , jt}. According to the same arguments as in the proof of Theorem 3,
(iii) is true in the first case. We consider the second case: u ∈ {j1, . . . , jt}. Let
u = jr. We prove (iii) by contradiction. Assume that χj1,...,jt

is a linear function.
By definition,

η′0 = c1η
′

j1
+ · · · + cr−1η

′

jr−1
+ crη

′

jr
+ cr+1η

′

jr+1
+ · · · + ctη

′

jt

for some c1, . . . , ct ∈ GF (q). Since η′j = ηj for j 6= 0, jr, we have

η′0 = c1ηj1 + · · · + cr−1ηjr−1
+ crη

′

r + cr+1ηjr+1
+ · · · + ctηjt

(3)

From the proof of Theorem 3, we know that η′0 is not a linear combination of
ηj1 , . . ., ηjr−1

, ηjr+1
, . . ., ηjt

. Thus we conclude that cr 6= 0. On the other hand,
O′(0, 0) = 0, O(0, j1) = 0, . . ., O(0, jr−1) = 0, O(0, jr+1) = 0, . . ., O(0, jt) = 0
but O′(0, jr) 6= 0. This means that (3) does not hold. The contradiction proves
(iii) in the second case. ⊓⊔



It is easy to see that all row vectors of the orthogonal array (qt, n + 1, q, t),
constructed in Section 7, form a linear subspace. Usually, this is not a desirable
property from a security point of view as the corresponding secret sharing may
be subject to the Tompa-Woll attack. In contrast to the construction in Section
7, the construction in Theorem 5 provides secret sharing that is resistant against
cheating.

10 Conclusions

In this work we have applied orthogonal arrays to construct threshold schemes
and have shown that all these schemes are not only perfect but also ideal. We
have indicated that such ideal threshold schemes have an ability to detect cheat-
ing and also, can identify cheaters and recover correct shares. Besides cheating
detection and identification, we have also shown that the secret functions must
be nonlinear to prevent cheating using the Tompa-Woll attack.
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