
Cryptographic Boolean Functions via Group Hadamard MatricesJennifer SeberryXian-Mo ZhangYuliang ZhengDepartment of Computer ScienceThe University of WollongongWollongong, NSW 2522, AUSTRALIAAbstractFor any integers n,m, 2n > m > n we construct a set of boolean functions on Vm, say ff1(z); : : : ; fn(z)g,which has the following important cryptographic properties:(i) any nonzero linear combination of the functions is balanced;(ii) the nonlinearity of any nonzero linear combination of the functions is at least 2m�1 � 2n�1;(iii) any nonzero linear combination of the functions satis�es the strict avalanche criterion;(iv) the algebraic degree of any nonzero linear combination of the functions is m � n+ 1;(v) F (z) = (f1(z); : : : ; fn(z)) runs through each vector in Vn precisely 2m�n times while z runs throughVm.1 Basic De�nitionsLet Vn be the vector space of n tuples of elements from GF (2). Let �; � 2 Vn. Write � = (a1; : : : ; an),� = (b1; : : : ; bn), where ai; bi 2 GF (2). Write h�;�i = Pnj=1 ajbj . Also write � = (a1; : : : ; an) < � =(b1; : : : ; bn) if there exists k, 1 <= k <= n, such that a1 = b1, : : : , ak�1 = bk�1 and ak = 0, bk = 1. Hence wecan order all vectors in Vn by the relation <�0 < �1 < � � � < �2n�1;where�0 = (0; : : : ; 0; 0); : : : ; �2n�1�1 = (0; 1; : : : ; 1),�2n�1 = (1; 0; : : : ; 0); : : : ; �2n�1 = (1; 1; : : : ; 1).De�nition 1 Let f(x) be a function from Vn to GF (2), where x = (x1; : : : ; xn), (or simply, a functionon Vn). The (1 -1)-sequence � = ((�1)f(�0) (�1)f(�1) : : : (�1)f(�2n�1)) is called the sequence of f(x).Similarly, the (0, 1)-sequence (f(�0) f(�1) : : : f(�2n�1)) is called the truth table of f(x). In particular,if the truth table of f(x) has 2n�1 zeros (ones) f(x) is said to be 0-1 balanced (or simply, balanced).1



De�nition 2 We call h(x) = a1x1 + � � �+ anxn + c, aj ; c 2 GF (2), an a�ne function. In particular, wewill call h(x) a linear function if c = 0. The sequence of an a�ne function (a linear function) will becalled an a�ne sequence (a linear sequence).De�nition 3 Let f and g be functions on Vn whose sequences are � and � respectively. The Hammingdistance between f and g, denoted by d(f; g), is the number of components where � and � di�er. Let'1; : : : ; '2n ; '2n+1; : : : ; '2n+1 be all a�ne functions on Vn. Nf = mini=1;:::;2n+1 d(f; 'i) is called the non-linearity of f(x).The nonlinearity is a crucial criterion for a good cryptographic design. It prevents a cryptosystem frombeing attacked by solving a set of linear equations.De�nition 4 Let f(x) be a function on Vn. If f(x) + f (x + �) is 0-1 balanced for every � 2 Vn withW (�) = 1, where W (�) denotes the number of nonzero components (the Hamming weight) of �, we saythat f (x) satis�es the strict avalanche criterion the (SAC).The strict avalanche criterion was originally de�ned in [16], [17], and was generalized in two di�erentdirections [2], [5], [8], [9], [10], [14]. The 0-1 balance, the nonlinearity and the avalanche criterion areimportant criteria for cryptographic functions [1], [5], [7], [10].De�nition 5 A (1, -1)-matrix of order n will be called a Hadamard matrix if HHT = nIn.If n is the order of an Hadamard matrix then n is 1, 2 or divisible by 4 [15]. A special kind of Hadamardmatrix de�ned below will be relevant:De�nition 6 A Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n, denoted by Hn, isgenerated by the recursive relationHn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : ; H0 = 1:Notation 1 For a vector � = (i1; : : : ; ip) 2 Vp, we de�ne a function on Vp:D�(y1; : : : ; yp) = Di1;:::;ip(y1; : : : ; yp) = (y1 + �i1) � � � (yp + �ip)where �i = 1+ i.Notation 2 De�ne a matrix of order s+ t, denoted by Q(s; t), whose entries come from GF (2), such thatQ(s; t) = " Is 0s�tD It # ;where Ii is the identity matrix of order i, 0s�t is the zero-matrix of order s� t,D = 266664 1 0 � � � 01 0 � � � 0...1 0 � � � 0 377775 :Obviously Q(s; t) is a nonsingular matrix. 2



2 The Properties of Balance, Nonlinearity and SACIn this section we review a number of results on balance, nonlinearity and the SAC. These results will beemployed in the later part of the paper.Lemma 1 Di1;:::;ip(y1; : : : ; yp) = ( 1 if (y1; : : : ; yp) = (i1; : : : ; ip),0 if (y1; : : : ; yp) 6= (i1; : : : ; ip).Proof. The veri�cation is straightforward. utLemma 2 Let �i1;:::;ip be the sequence of a function fi1;:::;ip(x1; : : : ; xq) on Vq. Set � = (�0;:::;0;0; �0;:::;0;1; : : : ; �1;:::;1;1).Then � is the sequence of the functionf(y1; : : : ; yp; x1; : : : ; xq) = X(i1;:::;ip)2VpDi1;:::;ip(y1; : : : ; yp)fi1;:::;ip(x1; : : : ; xq); (1)that is a function on Vq+p.(See Lemma 1 of [11].)Lemma 3 f(y1; : : : ; yp; x1; : : : ; xq), de�ned as in ( 1) is the zero function on Vq+p if and only if eachfi1;:::;ip(x1; : : : ; xq) is the zero function on Vq.Proof. f(y1; : : : ; yp; x1; : : : ; xq) is the zero function on Vq+p if and only if f(i1; : : : ; ip; x1; : : : ; xq) is the zerofunction on Vq for any �xed (i1; : : : ; ip) 2 Vp. From Lemma 1, f(i1; : : : ; ip; x1; : : : ; xq) = fi1;:::;ip(x1; : : : ; xq).utFrom the proof of Lemma 3, any function can be uniquely presented by (1).Lemma 4 D�(y + �) = D�+�(y) where y; � 2 Vp.Proof. Since D�(y + �) = 1 if and only if y + � = �. D�+�(y) = 1 if and only if y = � + �. This provesthe lemma. utLemma 5 Write Hn = 266664 `0`1...`2n�1 377775 where `i is a row of Hn. Then each `i is the sequence of the linearfunction hi(x) = h�i; xi where �i, 0 <= i <= 2n � 1, is a vector in Vn, x 2 Vn.3



(See Lemma 2 of [11].)From Lemma 5, the rows of Hn comprise all the sequences of linear functions on Vn and hence the rowsof �Hn comprise all the sequences of a�ne functions on Vn.Lemma 6 Let f and g be functions on Vn whose sequences are �f and �g respectively. Then d(f; g) =2n�1 � 12h�f ; �gi.(See Lemma 3 of [11].)Lemma 7 For any function f on Vn, Nf <= 2n�1 � 2 12n�1.(See Lemma 4 of [11].)Lemma 8 Let f(x) be a function on Vn, A be a nonsingular matrix of order n, with entries from GF (2).Set f(xA) =  (x). Then(i) f is balanced if and only if  is balanced,(ii) Nf = N .Proof. (i) Note that  (x0) = 0 if and only if f(x0A) = 0.(ii) Let h(x) be an a�ne function on Vn. Set hA(x) = h(xA).  (x0) 6= hA(x0) if and only if f (x0A) 6=h(x0A). Thus d(f; h) = d( ;hA). Note that while h runs through all a�ne functions on Vn, hA runsthrough all a�ne functions on Vn since A is nonsingular. utTheorem 1 Let f(x) be a function on Vn, A be a nonsingular matrix of order n, with entries from GF (2).Set f(xA) =  (x). Let i denote the ith row of A. If f(x) + f(x + i) is balanced for i = 1; : : : ; n then (x) satis�es the SAC.Proof. Let �i denote the vector Vn, whose the ith entry is 1 and others 0. Note that IA = A. Thus�iA = i, i = 1; : : : ; n. Note that  (x)+ (x+�i) = f (xA)+f((x+�i)A) = f (u)+f(u+i), where u = xA.Since A is nonsingular uA�1 = x will go through Vn while u runs through Vn. Thus  (x) +  (x + �i) isbalanced, i = 1; : : : ; n, that is to say,  (x) satis�es the SAC. utLemma 9 Let g(y1; : : : ; ys) be a function on Vs. Set f(y1; : : : ; ys; x1; : : : ; xt) = g(y1; : : : ; ys), a functionon Vs+t.(i) If g is balanced then f is balanced, 4



(ii) Nf >= 2tNg.Proof. (i) g(y1; : : : ; ys) takes the value 0 and the value 1 both 2s�1 times while (y1; : : : ; ys) runsthrough Vs once. Hence f(y1; : : : ; ys; x1; : : : ; xt) takes the value 0 and the value 1 both 2t+s�1 timeswhile (y1; : : : ; ys; x1; : : : ; xt) runs through Vs+t once.(ii) Let f1(x1; : : : ; xt; y1; : : : ; ys) = f(y1; : : : ; ys; x1; : : : ; xt) = g(y1; : : : ; ys).Let � be the sequence of g hence � = (�; : : : ; �) is the sequence of f1, where � is the concatenation of 2t�s. Let L be an a�ne sequence of length 2t+s. By Lemma 5, L is a row of �Ht+s = �Ht � Hs. ThusL = �`0 � `00 where `0 is a linear sequence of length 2t, a row of Ht and `00 is a linear sequence of length2s, a row of Hs. Write `0 = (a1; : : : ; a2t) thus L = (a1`00; : : : ; a2t`00). Note that h�;Li =P2tj=1 ajh�; `00i. Let`00 be the sequence of a linear function on Vs, say h. Since d(g; h) >= Ng, by Lemma 6, h�; `00i <= 2s � 2Ng.Note that P2tj=1 aj <= 2t thus h�; Li <= 2t(2s � 2Ng). Let L be the sequence of an a�ne function on Vt+s,say h�. Hence by Lemma 6, d(f1; h�) >= 2tNg. Since h� is arbitrary Nf1 >= 2tNg. By (ii) of Lemma 8,Nf = Nf1 >= 2tNg. utCorollary 1 Let g(y1; : : : ; ys) be a function on Vs. Set f(y1; : : : ; ys; x1; : : : ; xt) = g(y1; : : : ; ys), a functionon Vs+t. Let A = Q(s; t) where Q(s; t) is de�ned as in Notation 2. Set f(zA) =  (z) where z = (y; x),y = (y1; : : : ; ys), x = (x1; : : : ; xt). If g satis�es the SAC then  satis�es the SAC.Proof. Let i denote the ith row of A. Write i = (�i; �i) where �i 2 Vs, �i 2 Vt.For i = 1; : : : ; s, f(z) + f (z + i) = g(y) + g(y + �i).Since g satis�es the SAC g(y) + g(y + �i) is balanced on Vs, by (i) of Lemma 9, f(z) + f(z + i) isbalanced on Vs+t.For i = s+ 1; : : : ; s+ t, f(z) + f(z + i) = g(y) + g(y+ �i). By the same reasoning, f(z) + f(z+ i) isbalanced on Vs+t.Note that A is nonsingular. By Theorem 1,  , as a function on Vs+t, satis�es the SAC. ut3 Basic ConstructionFor y 2 Vs, x 2 Vt, write y = (y1; : : : ; ys), x = (x1; : : : ; xt).f(y1; : : : ; ys; x1; : : : ; xt) = X(j1;:::;js)2VsDj1;:::;js(y)fj1;:::;js(x) + r(y) (2)where Dj1;:::;js is de�ned as in Notation 1, each fj1;:::;js(x) is a function on Vt, r(y) is a function on Vs.Lemma 10 If each fj1 ;:::;js(x) in (2) is balanced then f is balanced.5



Proof. For any �xed (j1; : : : ; js) 2 Vs f(j1; : : : ; js; x1; : : : ; xt) = Dj1;:::;js(j1; : : : ; js)fj1;:::;js(x)+r(j1; : : : ; js) =fj1 ;:::;js(x) + r(j1; : : : ; js), that is balanced. Thus f is balanced. utTheorem 2 Let f be de�ned as in (2), where each fj1;:::;js(x) is a nonzero linear function on Vt then(i) f is balanced,(ii) Nf >= 2s+t�1 � 2t�1 if all fj1;:::;js(x) are distinct linear functions on Vt,(iii) f(z) + f(z + ) is balanced whenever � 6= 0, where z = (y; x),  = (�; �), y; � 2 Vs, x;� 2 Vt, iffj1;:::;js(x) are distinct linear functions on Vt.Proof. (i) Since any nonzero linear function is balanced, by Lemma 10, f is balanced.(ii) Let �j1;:::;js be the sequence of f(j1; : : : ; js; x1; : : : ; xt) = fj1;:::;js(x) + r(j1; : : : ; js). Thus �j1;:::;js is anonzero a�ne sequence. By Lemma 2, � = (�0;:::;0; �0;:::;0;1; : : : ; �1;:::;1;1) is the sequence of f (y1; : : : ; ys; x1; : : : ; xt).Let L be an a�ne sequence of length 2s+t. By Lemma 5, L is a row of �Hs+t = �Hs � Ht. ThusL = �`0 � `00 where `0 is a linear sequence of length 2s, a row of Hs and `00 is a linear sequence of length2t, a row of Ht. Write `0 = (a0;:::;0; a0;:::;0;1; : : : ; a1;:::;1;1), where the subscript (j1; : : : ; js) 2 Vs. ThusL = (a0;:::;0`00; a0;:::;0;1`00; : : : ; a1;:::;1;1`00). h�;Li = Pj1;:::;js aj1;:::;jsh�j1;:::;js; `00i. Note that each �j1;:::;js is anonzero a�ne sequence. Thus h�j1;:::;js ; `00i = ( �2t if �j1;:::;js = �`00;0 otherwise:Since all the �j1;:::;js are distinct there exists at most one �j1;:::;js such that �j1;:::;js = �`00. Thus h�;Li = �2tor 0. Let L be the sequence of an a�ne function, say h�. By Lemma 6, d(f; h�) >= 2s+t�1 � 2t�1. Since h�is arbitrary Nf >= 2s+t�1 � 2t�1.(iii) Let � = (b1; : : : ; bs). By Lemma 4,Dj1;:::;js(y1 + b1; : : : ; ys + bs) = Dj1+b1;:::;js+bs(y1; : : : ; ys):Hence f(z + ) = Xj1;:::;jsDj1 ;:::;js(y + �)fj1;:::;js(x+ �) + r(y + �)= Xj1;:::;jsDj1+b1 ;:::;js+bk (y)fj1;:::;js(x+ �) + r(y + �)= Xj1+b1;:::;js+bsDj1+b1;:::;js+bk (y)fj1;:::;js(x+ �) + r(y + �): (3)Set (j1; : : : ; js) = (i1 + b1; : : : ; is + bs).f(z + ) = Xi1;:::;isDi1;:::;is(y)fi1+b1;:::;is+bs(x+ �) + r(y + �):6



f(z) + f(z + ) = Xi1;:::;isDi1;:::;is(y)(fj1;:::;js(x) + fj1+b1;:::;js+bs(x+ �)) + r(y) + r(y + �):Note that � = (b1; : : : ; bs) 6= 0 fj1;:::;js(x) + fj1+b1;:::;js+bs(x + �) = fj1;:::;js(x) + fj1+b1;:::;js+bs(x) +fj1+b1 ;:::;js+bs(�) is a non-constant a�ne function since all fj1;:::;js(x) are distinct linear functions on Vt.By Lemma 10 f(z) + f (z + �) is balanced. ut4 A Group Generalised Hadamard MatrixLet G be a group, p = (p1; : : : ; pn), q = (q1; : : : ; qn) be two vectors of length n, whose entries pj ; qjcome from G. De�ne the operation � such that p � q = (p1q1; : : : ; pnqn) and the inverse of q such thatq�1 = (q�11 ; : : : ; q�1k ).p and q are s-orthogonal if p � q�1 = (p1q�11 ; : : : ; pnq�1n ) comprise s times of all the elements of G.A generalised Hadamard matrix ( [3], [4]) of type s for group G is a square matrix with entries fromG whose rows are mutually s-orthogonal.A group Hadamard matrix [6] is a generalised Hadamard matrix whose rows form a group and whosecolumns form a group under the operation �. Note that in a group Hadamard matrix of type s for G thereexists a row acting the role of identity. By the de�nition of generalised Hadamard matrix, each of otherrows contains each element of G s times.Let " be a primitive element of GF (2k), G be the additive group of GF (2k). Set X = ("j�i+1(mod 2k�1)),where i; j = 1; 2; : : : ; 2k�1, and D1 = 264 0 � � � 0... X0 375. Hence D1 is a generalised Hadamard matrix of order2k, type 1 (1-orthogonal) for G also a group Hadamard matrix [3], [4], [6].It is easy to �nd out that D2 = 264 0 � � � 0... Y0 375, where Y = ("j+i�1(mod 2k�1)), is also a generalisedHadamard matrix of order 2k, type 1 (1-orthogonal) for G also a group Hadamard matrix.Note that an entry of Y , an element of G, is a polynomial in ", whose degree is no more than k � 1,say a0 + a1"+ � � �+ ak�1"k�1.We now change a0 + a1"+ � � �+ ak�1"k�1 into a0x1 + a1x2 + � � �+ ak�1xk, a linear function on Vk.Note that all linear functions on Vk form an additive group, denoted by �k.Correspondingly D2 becomes a matrix E with entries from �k . Obviously E is also a group Hadamardmatrix of order 2k, type 1 (1-orthogonal) but for group �k .Write E = (ei;j), where i; j = 0; 1; : : : ; 2k � 1. 7



Let y = (y1; : : : ; yk), x = (x1; : : : ; xk). Setfi(y1; : : : ; yk ; x1; : : : ; xk) = D0;:::;0(y)ei;0(x) +D0;:::;0;1(y)ei;1(x) + � � �+D1;:::;1(y)ei;2k�1(x) (4)where i = 0; 1; : : : ; 2k � 1.Lemma 11 For any �xed s, 1 <= s <= 2k � 1, e1;s; : : : ; ek;s are linearly independent.Proof. Consider Pkj=1 cjfj where (c1; : : : ; ck) 6= (0; : : : ; 0). Note that e1;1 = x1, e2;1 = x2, : : :, ek;1 = xk.It is obvious that kXi=1 ciei;1 6= 0: (5)Since E is a group Hadamard matrix of type 1 (1-orthogonal) for �k there exists a row in E, say thei0th row, such that �i0 = Pki=1 ci�i, where each �i denotes the ith row of E and hence Pki=1 ciei;j = ei0;j ,for every j = 1; : : : ; 2k � 1. From (5), the i0th row of E is not a zero row (i.e. i0 6= 0) and thus containsevery linear function on Vk since E is a group Hadamard matrix of type 1 (1-orthogonal) for �k. ThusPki=1 ciei;s = ei0;s is a nonzero linear function for every s = 1; : : : ; 2k � 1. This proves that for any s,1 <= s <= 2k � 1, Pki=1 ciei;s = 0 if and only if (c1; : : : ; ck) = (0; : : : ; 0) thus e1;s; : : : ; ek;s are linearlyindependent. ut5 A Set of Functions with Cryptographic PropertiesLet P be a permutation on 1; 2; : : : ; 2k � 1. Let E0 be the matrix obtained from E by putting P on thenonzero columns of E. Set E 0 = (e0i;j), where i; j = 0; 1; : : : ; 2k � 1.Let k < n < 2k. Write y = (y1; : : : ; yn�k), x = (x1; : : : ; xk), z = (y; x). Note that e0i;j is nonzero linearfunction on Vk for i = 1; 2; : : : ; 2k � 1. Setgi(y; x) = D0;���;0(y)e0i;1(x) +D0;:::;0;1(y)e0i;2(x) + � � �+D1;:::;1(y)e0i;2n�k(x) + ri(y) (6)where i = 1; : : : ; 2k � 1, each subscript (i1; : : : ; in�k) 2 Vn�k and each ri is a function on Vn�k .Let A = Q(n� k; k). Set  i(z) = gi(zA); i = 1; : : : ; 2k � 1: (7)Theorem 3 For any nonzero linear combination of  1; : : : ;  k, de�ned as in (7), say  = Pkj=1 cj j,where (c1; : : : ; ck) 6= (0; : : : ; 0).(i)  is balanced,(ii) N >= 2n�1 � 2k�1, 8



(iii)  satis�es the SAC,(iv) the algebraic degree of  can be n� k + 1.Proof. From (6),g = kXj=1 cjgj = D0;:::;0(y) kXj=1 cje0j;1(x) +D0;:::;0;1(y) kXj=1 cje0j;2(x) + � � �+D1;:::;1(y) kXj=1 cje0j;2n�k(x):By Lemma 11, each of Pkj=1 cje0j;1(x); Pkj=1 cje0j;2(x); : : : ;Pkj=1 cje0j;2n�k(x) is a nonzero linear functionon Vk. Since E0 is a group Hadamard matrix of type 1 for �k , Pkj=1 cje0j;1(x), Pkj=1 cje0j;2(x), : : : ;Pkj=1 cje0j;2n�k(x) are distinct linear functions. By Theorem 2, g is balanced and Ng >= 2n�1 � 2k�1. ByLemma 8,  is balanced and N >= 2n�1 � 2k�1.Let i = (�i; �i) be the ith row of A = Q(n � k; k), where �i 2 Vn�k , �i 2 Vk, i = 1; : : : ; n. Sinceall �i 6= 0, by (iii) of Theorem 2, g(z) + g(z + i) is balanced, i = 1; : : : ; n. Note that  (z) = g(zA). ByTheorem 1,  satis�es the SAC.We can choose E0 such that P2n�kj=1 e01;j is a nonzero linear function on Vk. Otherwise if P2n�kj=1 e01;j iszero, we exchange the 2n�kth and the (2n�k + 1)th columns of E0. Correspondingly, E0 is changed intoE00 = (e00i;j). Since e01;2n�k 6= e01;2n�k+1, P2n�kj=1 e001;j is a nonzero linear function on Vk. Hence it is reasonableto suppose P2n�kj=1 e01;j is a nonzero linear function on Vk. Note that each Dj1;:::;jn�k (y1; : : : ; yn�k) containsthe term y1 � � � yn�k and y1 � � � yn�kP2n�kj=1 e01;j cannot be deleted ing1(y; x) = D0;���;0(y)e01;1(x) +D0;:::;0;1(y)e01;2(x) + � � �+D1;:::;1(y)e01;2n�k(x) + r1(y):This proves that the degree of g1 is n� k + 1.Since D2 (E) is symmetric the columns of D2 (E) also form a group thus the columns of E0 forma group. Recall P2n�kj=1 e01;j is a nonzero linear function on Vk. Thus P2n�kj=1 e0i;j is also a nonzero linearfunction on Vk, i = 2; : : : ; 2k � 1.To show this, note that the columns of E0 form a group thus the sum of the �rst, the second, : : :, the2n�kth columns of E0 is equal to a column of E0, say the s0th column. Since P2n�kj=1 e01;j = e01;s0 is a nonzerolinear function on Vk the s0th column of E0 is a nonzero column (i.e. s0 6= 0). Thus the s0th columncontains all the linear functions on Vk since the columns of E0 form a group.This proves that P2n�kj=1 e0i;j = e0i;s0 is a nonzero function if i 6= 0.By the same reasoning, the degree of gi is n � k + 1, i = 2; : : : ; 2k � 1.Since the rows of E0 form a group there exists i0th such that the i0 row is equal to the linear combinationof g1, : : : , gk corresponding to the coe�cients c1; : : : ; ck. Thus Pki=1 cigi = gi0 . Since the �rst, the second,: : :, the 2n�kth rows of E 0 are linearly independent (see Lemma 11) gi0 is a nonzero function (i.e. i0 6= 0).Thus the degree of P2n�ki=1 cigi = gi0 is n � k + 1. ut9



Corollary 2 	(z) = ( 1(z); : : : ;  k(z)), a mapping from Vn to Vk, where each  j is de�ned as in Theo-rem 3, runs through all the 2k vectors in Vn each 2n�k times while z runs through Vn.Proof. By Theorem 1 of [12], this corollary is equivalent to (i) of Theorem 3. utSince any matrix obtained by permuting the columns of a group Hadamard matrix is still a groupHadamard matrix, we can obtain an extremely large number of boolean function sets with the cryptographicproperties mentioned in Theorem 3 and Corollary 2. These functions can be used in many cryptographicdesigns. In particular, results shown in this section have been successfully employed by the authors insystematically constructing cryptographically robust substitution boxes (S-boxes) [13].6 ExampleExample 1 By using Theorem 3, we now construct 4 functions of 6 variables. Let k = 4 and n = 6in Theorem 3. Choose x4 + x + 1 as the primitive polynomial. Let " be a root of x4 + x + 1 = 0. "i,j = 0; 1; : : : ; 24 � 1 form a sequence:1; "; "2; "3; 1 + "; "+ "2; "2 + "3; 1 + "+ "3;1 + "2; " + "3; 1 + " + "2; " + "2 + "3; 1 + "+ "2 + "3; 1 + "2 + "3; 1 + "3;that is the �rst row of Y , where D2 = 264 0 � � � 0... Y0 375 of order 2k (see Section 4). We change "i into xi+1,i = 0; 1; 2; 3. The above sequence becomesx1; x2; x3; x4; x1 + x2; x2 + x3; x3 + x4;x1 + x2 + x4; x1 + x3; x2 + x4; x1 + x2 + x3; x2 + x3 + x4; x1 + x2 + x3 + x4; x1 + x3 + x4;x1 + x4;that is the �rst row of W , where E = 264 0 � � � 0... W0 375 (see Section 4).We choose the submatrix of order k � 2k�2, that is the conjunction of the �rst four rows and the 4th, the9th, the 12th, the 15th columns of W :26664 x4 x1 + x3 x2 + x3 + x4 x1 + x4x1 + x2 x2 + x4 x1 + x2 + x3 + x4 x1x2 + x3 x1 + x2 + x3 x1 + x3 + x4 x2x3 + x4 x2 + x3 + x4 x1 + x4 x3 37775 :
10



Using the above array we de�ne (see (6))g1(y1; y2; x1; x2; x3; x4) = (1 + y1)(1 + y2)x4 + (1 + y1)y2(x1 + x3)+y1(1 + y2)(x2 + x3 + x4) + y1y2(x1 + x4);g2(y1; y2; x1; x2; x3; x4) = (1 + y1)(1 + y2)(x1 + x2) + (1 + y1)y2(x2 + x4)+y1(1 + y2)(x1 + x2 + x3 + x4) + y1y2x1;g3(y1; y2; x1; x2; x3; x4) = (1 + y1)(1 + y2)(x2 + x3) + (1 + y1)y2(x1 + x2 + x3)+y1(1 + y2)(x1 + x3 + x4) + y1y2x2;g4(y1; y2; x1; x2; x3; x4) = (1 + y1)(1 + y2)(x3 + x4) + (1 + y1)y2(x2 + x3 + x4)+y1(1 + y2)(x1 + x3) + y1y2x3;Simplify the four functionsg1(y1; y2; x1; x2; x3; x4) = x4 + y2x4 + y2x1 + y2x3 + y1x2 + y1x3 + y1y2x2 + y1y2x4;g2(y1; y2; x1; x2; x3; x4) = x1 + x2 + y2x1 + y2x4 + y1x3 + y1x4 + y1y2x1 + y1y2x2 + y1y2x3;g3(y1; y2; x1; x2; x3; x4) = x2 + x3 + y1x2 + y2x1 + y1x1 + y1x4 + y1y2x2 + y1y2x3 + y1y2x4;g4(y1; y2; x1; x2; x3; x4) = x3 + x4 + y1y1 + y2x2 + y1x4 + y1y2x1 + y1y2x2:Let A = Q(2; 4) = 266666664 1 0 0 0 0 00 1 0 0 0 01 0 1 0 0 01 0 0 1 0 01 0 0 0 1 01 0 0 0 0 1 377777775and gi(zA) =  (z), where z = (y1; y2; x1; x2; x3; x4), j = 1; 2; 3; 4. Hence  i(y1; y2; x1; x2; x3; x4) = gi(y1 +x1 + x2 + x3 + x4; y2; x1; x2; x3; x4), i = 1; 2; 3; 4. Let  be a nonzero linear combination of  1,  2,  3,  4i.e.  =P41 cj j , (c1; c2; c3; c4) 6= (0; 0; 0; 0). By Theorem 3 and Corollary 2(i)  is balanced,(ii) N >= 25 � 23 = 24,(iii)  satis�es the SAC,(iv) the degree of  is 3,(v) 	(z) = ( 1(z);  2(z);  3(z);  4(z)), a mapping from V6 to V4, runs through all the 24 vectors in V4each 22 times while z runs through V6 once.Note that the upper bound of nonlinearities of a balanced function on V6 is 26 (see Corollary 3 of [11]).Thus the nonlinearity 24 of any nonzero linear combination of the these functions in this S-box is veryhigh. 11
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