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Abstract

We show that some widely accepted criteria for cryptographic functions, including the strict avalanche
criterion (SAC) and the propagation criterion, have various limitations in capturing properties of vital
importance to cryptographic algorithms, and propose a new criterion called GAC to measure the global
avalanche characteristics of cryptographic functions. We also introduce two indicators related to the
new criterion, one forecasts the sum-of-squares while the other the absolute avalanche characteristics of
a function. Lower and upper bounds on the two indicators are derived, and two methods are presented
to construct cryptographic functions that achieve nearly optimal global avalanche characteristics.

1 Why the GAC

In 1985, Webster and Tavares introduced the concept of the strict avalanche criterion (SAC) when searching
for principles for designing DES-like data encryption algorithms [23, 24]. A function is said to satisfy
the SAC if complementing a single bit results in the output of the function being complemented with a
probability of a half. More formally, let V,, denote the vector space of n tuples of elements from GF(2), a
function f on V,,, a mapping from V,, into GF(2), is said to satisfy the SAC if for any n-bit vector o with
W(a) =1, where W(-) denotes the Hamming weight, f(z) @ f(z @& «) assumes the values zero and one an
equal number of times, namely f(z)® f(z @ a) is a balanced function on V,,, where & denotes the addition
in GF(2).

The SAC was generalized in one direction by Forré in [7]. Forré defines that a function f satisfies
the SAC of order k if a partial function obtained by keeping any k input bits to f constant still satisfies
the SAC. Enumerating functions satisfying the higher order SAC is an interesting combinatorial problem
and various results on this topic have been obtained over the past years (see for instance [9, 10, 12]). In
another direction, the SAC has been generalized by Adams and Tavares [1] and independently by Preneel
et al [16] to what is now called the propagation criterion. A function f on V, is said to satisfy the
propagation criterion with respect to a vector @ € V,, if f(2) @ f(z @& a) is balanced, and to satisfy the
propagation criterion of degree k if it satisfies the propagation criterion with respect to all nonzero vectors
whose Hamming weight is at most k. In informal terms, f satisfies the propagation criterion of degree k
if complementing &k or less bits results in the output of f being complemented with a probability of a half.



We note that functions satisfying the propagation criterion of degree n coincide with bent functions, an
important combinatorial structure discovered by Rothaus [17]. A combination of the two generalizations
has also been studied in [16, 15].

The SAC and its various generalizations are very important concepts in designing cryptographic func-
tions employed by data encryption algorithms and one-way hashing functions. Asis shown below, however,
these concepts all have their limitations in capturing some of the vital characteristics required by a cryp-
tographically strong function. The following concept of linear structure will be useful in our discussions.
Given a function f on V,, and a vector @ € V,,, the vector is said to be a linear structure of fif f(z)® f(zda)
is a constant. An affine function f(z) = 121 @ -+ & a2z, ¢, where a;,¢c € GF(2), j = 1,2,...,n, has
all the vectors in V,, as its linear structures. Hence having linear structures is generally regarded as an
unwelcome property in cryptographic practice.

First we can see that the SAC is an indicator with a very strong local flavor, as it guarantees good
avalanche characteristics with respect only to the vectors of Hamming weight one. A function that satisfies
the SAC can have a large number of vectors of Hamming weight larger than one as its linear structures.
Such functions, if employed in certain cryptographic algorithms or systems, can result in a potential security
risk.

Next we consider generalizations of the SAC. The higher order SAC suggested by Forré in [7] has not
been widely accepted by the research community as a criterion of cryptographic significance, although the
concept itself seems interesting from a combinatorial point of view. In contrast, the other generalization
of the SAC, namely the propagation criterion, has well established its position in cryptographic design.
This can be seen from work represented by [1, 16, 15, 5, 20, 21]. A function satisfying the propagation
criterion of degree k shows the perfect avalanche characteristic with respect to vectors of Hamming weight
not larger than k. This property, however, does not rule out the possibility that the function can have
vectors of Hamming weight larger than k as its linear structures. For instance, all currently known methods
for constructing functions satisfying higher degree propagation criteria, including those presented in [15, 5,
20, 21], yield functions having undesirable linear structures. Therefore the propagation criterion, though
being an extension of the SAC, is merely another indicator for local properties. On the other hand, the
criterion is too strict in the sense that it requires that f(z) @ f(z & a) be 100% balanced. This leads to
the situation where a function satisfying the propagation criterion of the largest possible degree becomes
bent. Although bent functions have nice properties, they are not balanced and hence can hardly be directly
employed in practice.

In designing a cryptographic algorithm, we often need functions that satisfy a number of crucial crypto-
graphic requirements such as balance, high nonlinearity, high algebraic degree and good avalanche charac-
teristics. A function can be considered to have good avalanche characteristics if it does not have a nonzero
linear structure and satisfies the propagation criterion with respect to the majority of the vectors.

These discussions show a necessity to search for a new criterion for cryptographic functions. The new
criterion should overcome the shortcomings of the SAC or its generalizations, and be able to forecast the
overall avalanche characteristic of a cryptographic function. The main aim of this paper is to put forward
two closely related indicators that forecast the GAC or global avalanche characteristic of a cryptographic
function. We also present methods for constructing functions that have promising overall avalanche char-
acteristics.

The rest of the paper is organized as follows: The two new indicators, one is called the sum-of-squares
indicator and the other the absolute indicator, are introduced in Section 2, and the lower and upper
bounds on the two indicators are discussed in Sections 3 and 4 respectively. Finally, Section 5 presents two
methods, one for even and the other for odd dimensional spaces, for constructing cryptographic functions
that have excellent nonlinear characteristics, including GACs, nonlinearity and balance.



2 Introducing the GAC

A function on V,, is a mapping from V,, into GF(2). The truth table of f is a (0,1)-sequence defined
by (f(ao), f(oa), ..., f(agn_1)), where ag = (0,...,0,0), a3 = (0,...,0,1), ..., agn—1_7 = (1,...,1,1).
The sequence of f is a (1,—1)-sequence defined by ((—1)7(@0), (=1)/(e1)  (=1)/(@2=1)) where each
exponent is regarded as being real-valued.

[ is said to show the perfect avalanche effect with respect to a vector a € V,, if it satisfies the propagation
criterion with respect to the vector, namely, f(z) @ f(z @ «) is balanced. We note that f(z)® f(z & a)
is also called the directional derivative of f in the direction «. To broaden our observation, we say that f
shows good avalanche effect with respect to a if f(z) @ f(« & a) is almost balanced. By imposing certain
conditions on «, we have the notion of the SAC as well as that of the propagation criterion. As shown in
the previous section, this approach introduces various limitations in capturing the GAC or global avalanche
characteristic of a cryptographic function. To get around the problem, we will not impose restrictions on
a. Instead, we will let it be a free vector, which allows us to examine the overall avalanche characteristic
of a function. The following are a few notations used in further discussions.

Let @ = (ay,---,a,) and b= (b1,-+-,by) be two vectors (or sequences), the scalar product of a and b,
denoted by (a, l~)>, is defined as the sum of the component-wise multiplications. In particular, when @ and b
are from V,,,, (a, l~)> = a1by & -+ B amb,,, where the addition and multiplication are over G F(2), and when
a and b are (1, —1)-sequences, (a,b) = Y7, asb;, where the addition and multiplication are over the reals.

Given a function f on V,, and a vector a € V,,, we denote by £{(a) the sequence of f(z & «). Note
that £(0) is identical to the sequence of f. In addition, £(0) * £(«), the component-wise multiplication
of the two sequences, is the sequence of f(z) @ f(z & a). Set As(a) = (£(0),&(a)). Ag(a) is called the
auto-correlation of f with a shift a. To further simplify our discussions, Ay(a) will be written as A(a) if
the function under consideration is clear. Obviously, A(a) = 0 if and only if f(z)® f(z & a) is balanced,
and |A(a)| = 2" if and only if f(2) @ f(z & a) is a constant, namely, « is a linear structure of f. More
generally, we have

Lemma 1 Let f be a function on V,,. Then the Hamming weight of the truth table of f(x)® f(x & a) is
equal to 2"1 — LA(a).

Let eq and e_ denote the number of ones and minus ones in £(0) * £(a) respectively. Thus e} —e_ =
A(a), (2" —e_)—e_ = A(a) and hence e_ = 271 —1A(a). As e_ is also the number of ones in the truth
table of f(2)® f(« & a), the lemma holds.

The overall avalanche characteristic of a function f can be measured by examining |A(a)| for all nonzero
vectors a. We can say that a function has a good GAC or global avalanche characteristic if for most nonzero
a, |[A(a)| is zero or very close to zero. Again only bent functions that are unbalanced satisfy the criterion
perfectly ! In designing cryptographic algorithms, however, we are mainly interested in balanced functions.

Although simple, the concept of GAC introduces a number of problems to be resolved. These include

1. How to measure precisely the GAC of a function.
2. How to compare the GACs of two different functions.

3. What is the best GAC of a balanced function and how to construct balanced functions that achieve

the best GAC.

To solve the various problems, we propose the following two indicators:

Definition 1 Let f be a function on V,,. Then the sum-of-squares indicator for the avalanche characteristic

of f is defined by
op= ), A¥a)

aEVn



and the absolute indicator for the characteristic is defined by

Ay = max |A(a)l.
s ozEVn,oz;éO| (a)]
The smaller oy and Ay, the better the GAC of a function. Like many other nonlinearity characteristics
of a function including nonlinearity, algebraic degree and the profile of difference distribution tables, the
two indicators for the GAC are invariant under nonsingular linear transforms on the input coordinates.

3 The Sum-of-Squares Indicator o,

A (1,—1)-matrix H of order m is called a Hadamard matrix if HH' = mI,,, where H' is the transpose of
H and I, is the identity matrix of order m. A Sylvester-Hadamard matrix of order 2", denoted by H,, is
defined by the following recursive relation

Hn—l Hn—l

HO - 17 Hn - l Hn—l _Hn—l

],n:l, 2,

Let ¢; be the ith row of H,. By Lemma 2 of [20], {; is the sequence of a linear function defined by
pilz) = (o, ) = a1x1 P agzs & - B a,x,, where x = (z1,22,...,2,) and a; = (a1, az,...,4a,) is the ith
vector in V,, in the ascending alphabetical order.

Definition 2 Let f be a function on V,. The Walsh-Hadamard transform of f is defined as
flay=2"% 3 (—1)/ (@)&te2)
zEVR
where o = (a1,...,a,) € V,, © = (21,...,2,) and (o, 2) = Py a;x;, and f(x) P (o, x) is regarded as a

real-valued function.

The Walsh-Hadamard transform has numerous applications in areas ranging from physical science to
communications engineering. It appears in several slightly different forms [17, 11, 6]. The above definition
follows the first formula in [17]. It can be equivalently written as

(flao), fer),..., flagm_1)) = 272¢H,

where a; is the ith vector in V,, according to the ascending order, £ is the sequence of f and H, is the
Sylvester-Hadamard matrix of order 2". More information regarding the transform can be found in [11, 6].
In addition, Beauchamp’s book [2] is a good source of information on other related orthogonal transforms
with their applications.

We now introduce the concept of bent functions.

Definition 3 A function f on V, is called a bent function if its Walsh-Hadamard transform satisfies

fa) = +1
for alla € V,.
From [6, 1, 18, 25] we know that the following four statements are equivalent

(i) fis bent.

(ii) (£,0) = £227 for any affine sequence ¢ of length 2™, where £ is the sequence of f.
(i) f(z)® f(z & «) is balanced for any non-zero vector a € V,,, where z = (21, 22,...,2,).
)

(iv) M = ((=1)7@i®2)) 0 < i,5 <27 — 1, which is called the matrix of f is a Hadamard matrix.



3.1 Bounds on oy

McFarland, when studying Walsh-Hadamard transform of functions, obtained the following result (see also
Theorem 3.3 of [6]):
M = Q_an dlag(<£7£0>7 T <£7£2"—1>)Hn7

where f is a function on V,,, £ is the sequence of f, M = ((—1)f(°”®aﬂ)), 0<4,7<2"—1,and (; is the ith
row of H,. Thus
MMT = Q_an diag(<£7£0>27 Ty <£7£2"—1>2)Hn-

The first row of M M7 is
(A(ao),A(al), t 7A(a2"—1))

while the first row of 27" H,, diag({£,00)?, -+, (€, an_1)?)H,, can be expressed as
2—n(<£*7£0>7 ) <£*7£2"—1>) = 2_n£*Hn

where
5* = (<£7£0>27 Tty <£7£2"—1>2)‘

Hence

(A(Ozo), A(Ozl), s ,A(azn—l)) = 2_n(<£7£0>27 T <£7£2"—1>2)HTL‘

Thus we have proved:
Theorem 1 Let £ be the sequence of a function f on V,. Then
(A(ao)v A(al)v T 7A(a2"—1))Hn = (<£7£0>27 T <£7£2"—1>2)‘

This theorem is in fact a special form of a more general result, the Wiener-Khintchine Theorem [2].
Now write n = (A(ag), Alayg), -+, Alagn_q)). Since

(€, = (nH,,nH,) = nH,H n" = 2"(n,n),

we have -
Y66y =2 Y A¥a)
Thus the following result holds:
1
o=y AHa)=27"3 (£ 6)" (1)

A closely related equation is

1

Yo (&) =27 (2)

7=0

(See also p.416, [11]). Both (1) and (2) are special forms of a general equation attributed to Parseval [2].
The nonlinearity of a function f on V,,, commonly denoted by Ny, is defined as the minimum Hamming
distance between f and all the affine functions on V,,. On the other hand, the distance between two



functions g1 and g, on V,;, namely the number of disagreeing positions in the truth tables or sequences of
the two functions, can be calculated by

1

d(g1,92) = 2" - §<771ﬂ72>

where 7;, ¢ = 1,2, are the sequences of g1 and gy (see for instance Lemma 4 of [20]). Hence for any f on
V5., we have

1
Ny =27t - Sma{|{g,6)],0 S i S 2" — 1)

where £ is the sequence of f and fy, ..., fon_q are the rows of H,, namely, the sequences of the linear
functions on V,,. Now considering Theorem 1, Lemma 1 and in particular, the equation (1), we can see
that the nonlinearity of a function is closely related to the sum-of-squares avalanche characteristic of the
function. In general, the larger the nonlinearity, the smaller (i.e., better) the sum-of-squares avalanche
characteristic.

Theorem 2 Let f be a function on V,,. Then
(Z) 22n § oy § 2371’
(ii) of = 22" if and only if f is a bent function,

(iii) of = 2°" if and only if f is an affine function.

Proof. (i) Note that A(0) = 2". Hence

op = Y A%(a) 2 A(0) = 2*". (3)
a€Vn

On the other hand, by Parseval’s equation (2), we have

2" -1
Z <£7£]>2 — 2271‘
7=0
Thus
2n—1 2" -1
of = 9—n Z <£7£]>4 g Q—n( Z <£7£]>2)2 — 2—n24n — 2371‘
7=0 7=0

(ii) oy = 22" if and only if A(a) = 0 for all a # 0, namely, f is bent.
(iii) Set b; = (£,¢;)*. Again by Parseval’s equation (2), Zfial b; = 2". Now we have the following
reasoning:
oy = 2% if and only if
2—712331 b? = 25" if and only if
Z?:El b? = 27 if and only if
YEo 0% = (322051 b;)? if and only if
bib; = 0 for 7 # ¢ if and only if
there exists a jo such that bj, = 22" and b; = 0 for j # jo if and only if
there exists a jo such that (£,(;,) = £2" and (£,{;) = 0 for j # jo if and only if

there exists a jo such that £ = £¢;,, i.e., f is an affine function. O

A more important topic is to find a lower bound on oy for balanced functions f. This is left as a
problem for future research.



3.2 o of Some Highly Nonlinear Functions

Now we discuss the sum-of-squares avalanche characteristics of some highly nonlinear functions.

The structure of a function f on V, that satisfies the propagation criterion with respect to all but a
subset % of vectors in V,,, has been studied in [?]. We note that ® always contains the zero vector in V,.
It has been shown in [?] that

L. if |R| = 2 then n is odd, the nonlinearity of f satisfies Ny = 277! — 25(n=1) and in addition, there
exists a nonsingular matrix of order n over GF(2), say A, such that ¢g(z) = f(Az) can be written as

glz)=cx, B h(e1,...,20-1)
where ¢ is a constant in GF(2) and & is a bent function on V,_q;

2. if [R| = 4 then n must be even, the nonlinearity of f satisfies Ny = 277! — 25" and there exists a
nonsingular matrix of order n over GF(2), say B, such that g(z) = f(Bz) can be written as

g(z) = 121 B 2y B (21, .., 20—2)
where ¢1 and ¢y are constants in GF(2), and h is a bent function on V,,_o;
3. in both cases, all vectors in } are linear structures of f.
Now the sum-of-squares avalanche characteristics for the two cases can be determined.
1. if |[R| = 2 then n = 2k + 1 and

or= S A¥a)= AX0)+ Alay) = 2. 2142 = 91k43,
a€Vapyr

where «ay is the nonzero vector in R;

2. if |R| = 4 then n = 2k and

3
op= Y A%a)=A%0)+ > AP(aj) =42 =22
aeVay J=1

where a;, @ = 1,2,3, are the nonzero vectors in R.

Functions f on V,, with |R| = 5 are also studied in [?], where it is shown that Nj = 2"~ — 2%(”_1), n
is odd and that |[A(a;)| = 277 for all the four nonzero vectors, aq, ay, az and ay, in the set ®. Thus, the
sum-of-squares avalanche characteristic of f with ¥ = 5 is

4
o= Y AYa)= AY0)+ Y A¥aj) = 212 4. ot Z ke,
a€Vapta J=1

This value is the same as that for the case when |R| = 2.
It is also shown in [?] that functions with |¥| = 3 or 6 do not exist.



4 The Absolute Indicator Ay

Let f be a function on V,,. Recall that A is defined as the maximum among all A(«a), o # 0, and that
A(a) = 42" if and only if « is a linear structure of f. Thus the following result is straightforward.

Lemma 2 Let f be a function on V,,. Then 0 £ Ay < 2", Moreover, Ay = 0 if and only if f is bent, and
Ay = 2" if and only if f has a nonzero linear structure.

In particular, for any quadratic non-bent function f, we have Ay = 2". Next we focus on functions
whose algebraic degrees are at least three.

Now set g(z) = f(z) @ f(2 & a). Then the algebraic degree of ¢ is one less than that of f. As
g(z)® g(z & a) =0, g cannot be bent. Thus we have the following simple yet helpful lemma.

Lemma 3 Let f be a function on V,,. Then for any nonzero vector o € V,,, f(z) @ f(a & ) is not bent
and its algebraic degree is one less than that of f.

Recall that by Lemma 1, Af(a) and the Hamming weight W (g) of g(z) = f(2) @& f(z @ a) are related
by W(g) = 27! — IAf(a), or equivalently, Ay(a) = 2(2"~! — W(g)). Therefore, assume that f is a
function on V,, of algebraic degree £, the problem of finding Ay is reduced to that of finding the minimum
Hamming weight of functions on V,, of algebraic degree k& — 1 which are integrable in the sense that they
can be expressed as f(2) @ f(z @ a) with o a nonzero vector in V,,.

For a function f on V,, of algebraic degree k 2 3, Ay is to some extent connected to the weight
distribution of the (k — 1)st order binary Reed-Muller code RM(k — 1,n). Here RM(r, n) is defined as the
collection of all functions on V,,, whose algebraic degrees are at most r. The minimum Hamming weight
of RM(r,n), i.e., the minimum Hamming weight of functions on V,, of algebraic degree r, is known to be
2"7" (see Theorem 3, p.375 of [11]). Now the connection between Ay of a function f on V,, of algebraic
degree k and RM(k — 1,n) can be precisely stated as

Af g 2(2%—1 _ 2n—k-|—1) — 2n _ 2n—k-|—2

where 277%*1 is the minimum Hamming weight of RM(k — 1, n). This lower bound on Ay, however, is very
rough and not satisfactory. The reason is that 27%*! is the minimum Hamming weight of all functions
on V,, whose algebraic degrees are k — 1, including those which are not integrable. Hence it is one of our
aims to find a lower bound on A that is smaller (i.e., better) than the value 2% — 27=*+2,

On the other hand, in designing cryptographic algorithms we are more concerned with balanced non-
linear functions than non-balanced ones. Therefore it is an important issue to know how small the absolute
indicator Ay can be, for a balanced nonlinear function f on V. In the rest of the section we report the
result we have obtained on the lower bound of Ay of cubic functions. This result can be regarded as the
first step towards fully answering the question about Ay.

The following two results (see for instance Lemma 9 of [18] and Lemma 5 of [22] respectively), will be
employed in the discussions of cubic functions.

Lemma 4 f(21,...,2,) = ¥(@1,...,2,) B h(@ry1,...,2,) 15 balanced on V,, if ¥ is balanced on V, or h
is balanced on V,_,.

Lemma 5 If f is a quadratic function and does not have nonzero linear structures, then it is bent.

According to Lemma 5, a quadratic non-bent function f must have at least one linear structure. Hence
the lower bound on Ay for such a function is (trivially) equal to 2. For cubic functions, we have a result
described in the following theorem.



Theorem 3 Let f be a non-bent cubic function on V,,. Then Ay 2 93 (n+1)

Proof.  Since f is not bent, there exists a nonzero vector in V,,, say a, such that f(z)® f(z & «) is not
balanced. We set g(z) = f(2) @ f(z ¢ o) and want to find out the Hamming weight of the truth table of
¢ from which we can find out A(a) and hence the lower bound on Ay.

By Lemma 3, g is not bent. Note that g is quadratic. By Lemma 5, g has nonzero linear structures. it
is easy to see [14] that all the linear structures of a function on V,, form a linear subspace of V,,. Denote
by W the linear subspace formed by the linear structures of g, and by r the dimension of W. From [22],
there exists a nonsingular matrix A of order n on GF(2) such that g*(z) = g(zA) can be expressed as

g (@1, xn) = P21, ) B R(g1, ., T0)

where v is a linear function on W while h is a function on V,,_, that does not have nonzero linear structures.
Note that the truth tables of ¢* and g have the same Hamming weight. Now suppose that 1 is a nonzero
linear function. Then % is balanced. By Lemma 4, ¢* is balanced, which contradicts the fact that ¢ is not
balanced. Consequently ¥ must be equal to zero and hence

g1,y xn) = h(@pg1, ..oy T0). (4)

As h does not have nonzero linear structures, by Lemma 5, it is a bent function on V,,_, (which implies
that n — 7 must be even). Thus the Hamming weight of the truth table of A is 277"~1 + 02%(”_7’)_1,
Where c = #£1, and the Hamming weight of the truth table of ¢g*, a function on V,,, is 27(2"~"~! +
c23(n=7) ) =271 422 3(n+)=1 Fquivalently, the Hamming weight of the truth table of f(z)® f(z® «) is
211 4 ¢23("+)=1  Applying Lemma 1 to the function f, we have Ala) = 25 ()
that there exists a nonzero vector a € V,, such that |A(a)| = 25("+7)  Ag . the dimension of W, is at least
1, we have Ay 2 |A(a)| 2 23 (n+1) 0

-1
3 Thus we have proved

We stress that the bound 22("*1 in Theorem 3 is satisfied by any non-bent cubic function, be it
balanced or non-balanced. The bound, however, is clearly not satisfied by functions of algebraic degree
larger than three. For instance, complementing a single bit in the truth table of a bent function f on V,
results in a non-bent, non-balanced function g with A,(a) = £2 for all nonzero a € V,, (hence A, =2, and
by Theorem 3, g can not be cubic.) Nevertheless, we believe that the lower bound 95(+1) §5 also satisfied
by balanced functions of algebraic degree larger than three. This leads to the following conjecture:

Conjecture 1 Let f be a balanced function on V,,, whose algebraic degree is at least three. Then Ay 2
1
22(n+1),

5 Constructing Balanced Functions with Good GAC

Having discussed various bounds of the two indicators oy and Ay, we now turn our attention to constructing
cryptographic functions that have good GACs or global avalanche characteristics measured in terms of the
two indicators. A remarkable property of the functions to be constructed is that they are balanced and do
not have a nonzero linear structure.

5.1 On ‘/Qk

For z € Vi, write z = (y,2) where y € Vj, and = € Vj. Let w be a permutation on the set of nonzero
vectorsin Vi, i.e., Vz—{0} = {a1,...,a9s_; }, where a; is the ith vector in V} in the ascending alphabetical



order. Set

=1t = { o ity 20 )

where (-,-) denotes the scalar product and «aj, is a fixed nonzero vector in Vj. Equivalently (5) can be
expressed as

JE)=0dyn) (@) (1D yp)aj, ) [18 (1S un)(ldyz) (16 y)w(y),z)

where y = (Y1, 2, -+, Uk)-
First we examine the sequence of the function f. Given a vector a; € Vi, denote by £; the sequence of
a linear function on Vj defined by (a;,z). By Lemma 2 of [18], {; is the ith row of Hy, i = 0,1,...,2% — 1.
Since a; corresponds to the binary representation of integer j, w can be regarded as a permutation on
{1,...,2% — 1}. In particular, w(a;) = a; can be equivalently written as w(j) = i. By Lemma 1 of [18],
the sequence of f defined by (5) is
£ = (o, lupn (1)>- Kw(2k—1))'

We can view £ in the following way: Concatenating the rows in Hj, together, we have ({g,{1,...,l_1).
Replacing (o by ;, gives us ({;,, 01,02, ...,lx_). Finally reordering {1, ...,{y:_; according to the permu-
tation w results in the sequence £. As each £;, 1 £ i < 2% — 1, contains an equal number of ones and minus
ones, their concatenation £ has the same property. Thus we have

Lemma 6 f defined by (5) is a balanced function on V.

We proceed to the discussion of the absolute indicator Ay. Let v = (8, a) be a nonzero vector in Vyy,
where 3,a € Vi. By definition,

Z Z z)B S (ydp wda)

yeVy zeVy

We discuss A(y) in two separate cases: § # 0 and 5 = 0.
First we consider Case 1 where § # 0. In this case A(y) can be written as

Fly,x)of(v®B,xda) )8 f (yDs, xGBa)
=2 2= + 2 2 (=

y=0,8 z€V} y#0,8 z€Vy
When y = 0, the exponent f(y,z)® f(y & f,2 & a) becomes
[(0,2) ® f(B,0 & a) = (aj, ) & (w(B), 2@ a) = (aj, & w(f),z) ®(w(b), ) (6)
and when y = [, it becomes

f(B,2) & f(0,2 @ ) = (w(B),2) B (ajo, 2 & a) = {aj, ©w(B),z) D (aj,,a). (7)

Otherwise when y # 0 or 3, the exponent becomes

fly,2)d flyd Bz da) = (w(y),z) D (w(ydp),zda) (8)
= (WY Dw(ydB),z)d (w(ydf),a). (9)

To find out the value of A(y), we distinguish between the cases of w(3) = a;, and w(3) # aj,.
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When w(f3) = aj,, (6) becomes a constant (w(3),a), (7) also becomes a constant (o, ) and (9) is a
nonzero linear function of x for any fixed y and hence balanced. Thus we have

A= T H-1Ee) 4 ()] = 2250 = 94
l’EVk
where ¢ = (=1){%i0®) = 41,
On the other hand, when w(j3) # aj,, (6), (7) and (9) are all nonzero linear functions and hence

balanced. This results in A(y) = 0.
Next we consider Case 2 where § = 0. In this case, it is necessary for a to be nonzero. Thus (5)

A(’y) — Z (_1)f(0,x)69f(0,x69a) + Z Z (_1)f(y,x)®f(y,x®oz)‘

rz€V) yZ0 zeVy
When y = 0, the exponent f(y,z)® f(y,2z & a) becomes

specializes to

[0,2) & f(0,z B a) = <0‘j07$> b <0‘j07$ G a)= <Oz]'0,04>. (10)
Otherwise, when y # 0, it becomes

fy2) @ fly,e @ a) = (wly),z) & {wy)e ) (11)

Now A(7) can be calculated by

Ay) = D (=D £ 3 3" (—1)el)e)
rz€V) y#0 x€Vy
= D (=Dl 4 37N (1))
€V u#0 zEVy

where u = w(y). Since w is a permutation on Vy —{0}, v = w(y) # 0. Thus we can continue our calculation

of A(7):
Aly)= > (—1)f0) 4 S Z(_l)wa) -3 (—1)(0e),

Note that (v, a) is a nonzero linear function of » and hence balanced. Thus we have

A(’y) = Z (_1)<0‘J070‘> _ Z (_1)(0,a)

rz€V) €V
= Z [(_1)<ajo7a> _ 1]
l’EVk

{ 0 if (o, ) =0

251 if (o, a) = 1

Summarizing the above discussions on Cases 1 and 2, we conclude that |A(y)| £ 2! for any nonzero
vector v € V. This proves the following lemma:

Lemma 7 Let f be the function on Vo defined by (5). Then Ay < 2541,

Now we count the vectors with respect to which the function f satisfies the propagation criterion. We
have seen in the above discussions that A(y) = 0 in two cases: (1) A(y) =0, 8 # 0, w(f) # or a;, and
a is arbitrary. (2) A(y) = 0, 8 = 0 and «a satisfies @ # 0 and (aj,,a) = 0. For the first case there are
(2% — 2)2F = 22k — 2%+1 choices, while for the second case there are 2=1 — 1 choices for v = (3,a). Hence
there exist 228 — 251 4 2k=1 _ 1 vectors y = (3, @) such that A(y) = 0. This proves
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Lemma 8 The function f defined by (5) satisfies the propagation criterion with respect to 22k _ ok+1 4
2k=1 _ 1 vectors in Vyy,.

Next we examine the sum-of-squares avalanche characteristic of the function f. Recall that the sequence
of fis
5 = (ﬁjovﬁw(l)vﬁw@)v cee 7KW(2k—1))
where {; is the sequence of a linear function on Vj defined by (a;,z).
Let L be a row of Hyi. By Lemma 2 of [18], L is a linear sequence of length 22k Since Hop = Hyx Hy, L

can be rewritten as L = {, x {, for some p and ¢ satisfying 0 < p, ¢, = 2F 1. Write l, = (€oy€1y. vy Con_y).
Then we have L = (¢coly, c1ly,. .., con_1ly).

As H}, is a Hadamard matrix, (¢;,(;) = 0 when j # i. Also note that as w is a permutation on Vj — {0},
w(a;) runs through the nonzero vectors in Vi, while j runs through 1,2,. .. ,2F — 1. So there exists a unique

J* such that w(a;«) = aj,. Thus we have

(CO + C]*)<£jovﬁjo)> = (CO + C]‘*)Qk if a, = aj,
(6,L) =4 +2* if oy # aj,,0
0 ifg=0

Here ¢g = 1 and ¢;+ = £1.

There exist 25~ linear sequences {, such that ¢; = 1. Hence there exist 2F=1 linear sequences L such
that L = {, x £, with ¢;« = 1 and o, = a;,. For these sequences we have (¢, L) = 2F+1,

For ¢+ = —1, we have (£, L) = 0. It is easy to see that there exits 2% - (2¥ — 2) linear sequences L such
that L = (, x £, with a, # 0 or a;,. With these sequences we have (£, L) = +2F.

In summary, we have

22k 1
O_f — 2—2k Z <£7 L5>4 — Qk—l . 24(k-|—1) _I_ Qk . (Qk _ 2) . 24k
5=0

— 9tk 4 93k+3 _ 93k+1
This proves the following conclusion:

Lemma 9 The sum-of-squares avalanche characteristic of f, a function on Vyy defined by (5), satisfies
of = 24k + 23k-|—3 _ 23k-|—1.

Recall that for a function on Vay, its sum-of-squares indicator is bounded between 24* and 2%, with the
lower bound 2% being achieved only when the function is bent. We conjecture that the function f defined
by (5) with oy = 24k 4 93k+3 _ 93k+1 4chieves nearly optimal sum-of-squares avalanche characteristic of
balanced functions on Vsy.

From the above discussions, it becomes clear that (£, ;)| < 2%*! for any L, that is a linear sequence
of length 22%. By Lemma 3 of [18], the nonlinearity of f satisfies N; = 22k=1 — 2k,

Putting the above discussions together, we have

Theorem 4 Let f be the function on Vyy, defined by (5). Then
(i) f is balanced,
(ii) the nonlinearity of f satisfies Ny 2 22k=1 22k

22k _

(iii) f satisfies the propagation criterion with respect to 2k+1 4 2k=1 _ 1 nonzero vectors,
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(tv) the sum-of-squares avalanche characteristic of f satisfies o5 = 24k 4 93k+3 _ 93k+1

(v) the absolute avalanche characteristic of [ satisfies Ay < 2541,

A final remark is about the strict avalanche characteristic of the function f. The number of vectors
with respect to which f satisfies the propagation criterion is 22% — 28+1 4 25=1 _ 1 which is larger than
225=1_ Hence these vectors contain at least 2k linear independent ones. Let A be the matrix with the 2k
linear independent vectors as its rows. Then A is nonsingular and of order 2k. By Theorem 3 of [19], f(zA)
satisfies the SAC. All the properties described in Theorem 4 are affected by the nonsingular transform A.

5.2 On ‘/2k+1

To construct functions on Vapqq with good avalanche characteristics, we need a permutation m(u) on
Vi with a special property that u & m(u) is also a permutation on Vi, namely, v & m(u) runs through
the vectors in Vi while w runs Vi. As is shown in the following, such functions can be obtained from
maximal length shift register sequences or m-sequences [8]. In a different context, Nyberg showed that m-
sequences are useful in constructing cryptographic substitution boxes with the maximum nonlinearity [13].
(It should be noted, however, that such substitution boxes have been identified to be prone to the differential
cryptanalytic attack [3, 4].)

Let (s0,81,---,89%_5) be a m-sequence of length 2¥ — 1, where each s; is from GF(2). A k-gram is one
of the 2% — 1 subsequences of length k of the form

e = (Stmod(Qk—l)v8(t+1)mod(2k—1)7 .- 78(t—l—k—1)mod(2k—1))7

where t = 0,1,2,...,2% — 2. Note that a k-gram can also be viewed as a vector in V;. Thus we have
an ordered list of 2% — 1 nonzero vectors in Vi (79,71,...,79%_5). Adding to the beginning of the list the
zero vector 0 in Vj results in an extended ordered list (0,7¢,71,...,79k_5). The extended list contains
all vectors in V. Rotating cyclically to the left the nonzero vectors in the list by one position we get
(0,71,72,...,T9k_9,70). Now we have two ordered vector lists:

(0,7‘0,7‘1,...,7‘2k_2)
and

(0,7‘1,7‘2,...,7‘2k_2,7‘0).

Define a mapping m(u) that maps the ith vector in the first list to the corresponding vector in the second
list, namely, 0 to 0, rg to r1, r1 to rg, ..., and rqu_y to 7. By properties of m-sequences, the mapping
m(u) is a permutation with the special property that u & m(u) is also a permutation.

Now write Wy = {(0,u)lu € Vi}, Wy = {(1,u)|lu € Vi}, where 0,1 € GF(2). Obviously, Vi1 =
Wi U Wy, For any y € Vigq, write y = (y1,u) where 33 € GF(2) and u € V. For z € Vipyq, write
z = (y,x) where y € Vi1 and 2 € V.

Then the following is our construction for the case of Vopiq:

B 1@ (u,z) ifye Wy
f(z) = fy,2) = { (mu). 2y if g € W) (13)

where m(u) is a permutation on Vi with the property that u & m(u) is also a permutation on V. Note
that (13) can be equivalently written as f(2) = (1 @ y1)(u,z) & y1(m(u),z).

Since a; is the binary representation of integer j, m can be regarded as a permutation on {0,1,... L2k —
1} and hence w(a;) = a; can be equivalently written as w(j) = ¢. Let £ be the sequence of f. Then the
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first half of £ is specified by 1 & (u, ), while the second half by (m(u),z). To be more precise, the first

half is (the concatenation of) —{g,—(1,...,—{yx_q, where each (; is the ith row in Hj; and —{; means
multiplying each component of ¢; by —1. And the second half is Km(o),ﬁm(l),...,ﬁm(zk_l), a reordered
version of {y,(1,...,{4_4 according to the permutation m on Vi. Thus the sequence of f takes the form

of
£= (Lo, ~lisevs~Lor 1, L (0)s b1y - - - s L2k —1))-
Obviously & contains an equal number of ones and minus ones. Hence f is a balanced function on
Vak41. Using very similar arguments to those for the function f on Vi defined by (5) with attention to

the fact that both m(u) and u & m(u) are permutations, we can find out other properties of the function
f on Vagyq defined by (13). In particular, we have

Theorem 5 Let f be the function on Vyyyq defined in (13). Then
(i) f is balanced,

(ii) the nonlinearity of f satisfies Ny = 22k — 2k

(iii) f satisfies the propagation criterion with respect to 22k _ 1 nonzero vectors,
(tv) the sum-of-squares avalanche characteristic of f satisfies o5 = 24k+3

(v) the absolute avalanche characteristic of f satisfies Ay < okt

An important property of fis that A; matches the lower bound we conjectured at the end of Section 4.
Comparing oy = 2443 = 2.24%+2 ith 24542 and 26543 the upper and upper bounds respectively (see also
Theorem 2), we can see that the sum-of-squares avalanche characteristic of the function is also extremely
good. Again we conjecture that it achieves the lowest possible value for balanced functions on Vagyq.

It should be noted that since the total number of nonzero vectors with respect to which f satisfies
the propagation criterion is 22% — 1, there are at most 2k linearly independent ones among the vectors.
Therefore, unlike the case on Vyi, the function f on Vzi41 constructed by (13) can not be transformed into

an SAC-fulfilling one.
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