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Key WordsBoolean Functions, Cryptography, Di�erential Attack, Nonlinearity, S-boxes1 IntroductionThis paper deals with n�m S-boxes with n > m. Success of the notable di�erential cryptanalysison various block ciphers [3, 4] has motivated researchers to investigate properties of the di�erencedistribution tables of S-boxes. A core topic in this endeavor is to discover relationships betweendi�erential distribution tables and other properties of S-boxes. In this paper we �rst introducetwo additional tables associated with an S-box, these being the auto-correlation and correlationimmunity distribution tables. Then we establish a precise relationship among the three tables ofan S-box (i.e., the di�erence, auto-correlation and correlation immunity distribution tables). Withthis relationship as a basis, we show that an S-box is regular (or balanced) if and only if the sumof the values in the leftmost column of its di�erence distribution table is 22n�m. In a sense, thisresult complements a well-known fact about the regularity of an S-box which states that an S-box isregular if and only if the non-zero linear combinations of its component functions are all balanced.The next issue addressed in this paper is on the lower bound on the di�erential uniformity ofan S-box which is de�ned as the largest non-zero value in the di�erential distribution table of theS-box, not taking into account the �rst entry in the top row. For an n �m S-box, it is easy to seethat its di�erential uniformity is at least 2n�m. As another contribution of this paper, we will showa new tight lower bound that improves the \trivial" bound of 2n�m.The �nal issue addressed in this work relates more speci�cally the nonlinearity of an S-box toits di�erence distribution table. In particular, we give two upper bounds on the nonlinearity of theS-box, one for the case when the S-box is an arbitrary mapping and the other when it is regular.These two bounds are expressed in terms of three parameters: the number of input bits, the numberof output bits and the number of non-zero entries in the entire di�erence distribution table or inthe leftmost column of the di�erence distribution table of the S-box, respectively. We also comparethe second new upper bound with previous works in the same area.The remainder of this paper is organized as follows: Section 2 introduces formal notations andde�nitions used in this paper. The di�erence, auto-correlation and correlation immunity distributiontables of an S-box are de�ned in Section 3 where a precise relationship among the three tables isalso established. An interesting connection between the regularity of an S-box and columns of itsdi�erential distribution table is presented in Section 4. A tight lower bound on the di�erentialuniformity of an S-box is presented in Section 5, and then two upper bounds on the nonlinearityof an S-box and its di�erence distribution table are proved in Section 6. Section 7 closes the paperwith some concluding remarks.2 Basic Notations and De�nitionsThis section is intended as a summary of the minimum amount of mathematical knowledge requiredin rigorously treating issues on S-boxes to be discussed in this paper.The vector space of n tuples of elements from GF (2) is denoted by Vn. These vectors, inascending lexicographic order, are denoted by �0, �1, : : :, �2n�1. As vectors in Vn and integers in2



[0; 2n � 1] have a natural one-to-one correspondence, it allows us to switch from a vector in Vn toits corresponding integer in [0; 2n � 1], and vice versa.Let f be a function from Vn to GF (2) (or simply, a function on Vn). The sequence of f is de�nedas ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1)), while the truth table of f is de�ned as (f(�0), f(�1), : : :,f(�2n�1)). f is said to be balanced if its truth table assumes an equal number of zeros and ones.We call h(x) = a1x1 � � � � � anxn � c an a�ne function, where x = (x1; : : : ; xn) and aj; c 2 GF (2).In particular, h will be called a linear function if c = 0. The sequence of an a�ne (linear) functionwill be called an a�ne (linear) sequence.The Hamming weight of a vector v, denoted by W (v), is the number of ones in v. Let f andg be functions on Vn. Then d(f; g) = Pf(x) 6=g(x) 1, where the addition is over the reals, is calledthe Hamming distance between f and g. Let '0; : : : ; '2n+1�1 be the a�ne functions on Vn. ThenNf = mini=0;:::;2n+1�1 d(f; 'i) is called the nonlinearity of f . It is well-known that the nonlinearityof f on Vn satis�es Nf <= 2n�1 � 2 12n�1. The equality holds if and only if f is bent (see P. 426 of[12]).Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise product isdenoted by a � b, while the scalar product (sum of component-wise products) is denoted by ha; bi.De�nition 1 Let f be a function on Vn. For a vector � 2 Vn, denote by �(�) the sequence off(x� �). Thus �(0) is the sequence of f itself and �(0) � �(�) is the sequence of f(x)� f(x � �).De�ne the auto-correlation of f with a shift � by�(�) = h�(0); �(�)i:The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n, denoted by Hn, isgenerated by the recursive relationHn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : ; H0 = 1:Each row (column) of Hn is a linear sequence of length 2n.The following two formulas are well known to researchers (for a proof see for instance [14, 23]).Let � be the sequence of a function f on Vn. Then the nonlinearity of f , Nf can be calculatedby Nf = 2n�1 � 12 maxfjh�; `iij; 0 <= i <= 2n � 1g (1)where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1, and(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2) (2)where �i is the binary representation of an integer i and `i is the ith row of Hn, i = 0; 1; : : : ; 2n� 1.An n�m S-box or substitution box is a mapping from Vn to Vm, i.e., F = (f1; : : : ; fm), wheren and m are integers with n >= m >= 1 and each component function fj is a function on Vn. In thispaper, we use the terms of mapping and S-box interchangeably.As can be seen from the design of many practical block ciphers, researchers are mainly concernedwith regular S-boxes only. A mapping F = (f1; : : : ; fm) is said to be regular if F (x) runs througheach vector in Vm 2n�m times while x runs through Vn once.3



The following lemma states a useful result on the regularity of an S-box. This result has appearedin many di�erent forms in the literature. Our description can be viewed as the binary version ofCorollary 7.39 of [11].Lemma 1 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers withn >= m >= 1 and each fj(x) is a function on Vn. Then F is regular if and only if every non-zerolinear combination of f1; : : : ; fm is balanced.The concept of nonlinearity can be extended to the case of an S-box [16].De�nition 2 The standard de�nition of the nonlinearity of F = (f1; : : : ; fm) isNF = mingfNgjg = mMj=1 cjfj ; cj 2 GF (2); g 6= 0g:Now we consider an S-box in terms of its usefulness in designing a block cipher secure againstdi�erential cryptanalysis [3, 4]. The essence of a di�erential attack is to exploit particular entries inthe di�erence distribution tables of S-boxes employed by a block cipher. The di�erence distributiontable of an n�m S-box is a 2n � 2m matrix. The rows of the matrix, indexed by the vectors in Vn,represent the changes in the inputs, while the columns, indexed by the vectors in Vm, represent thechange in the output of the S-box. An entry in the table indexed by (�; �) indicates the number ofinput vectors which, when changed by � (in the sense of bit-wise XOR), result in a change in theoutput by � (also in the sense of bit-wise XOR). It should be pointed out that while in this paperthe notation of di�erence is restricted to XOR di�erences, in general other di�erences are also ofinterest, such as those based on modular addition and multiplication.Note that an entry in a di�erence distribution table can only take an even value, the sum of thevalues in a row is always 2n, and the top row is always (2n; 0; : : : ; 0). As entries with higher valuesin the table are particularly useful to di�erential cryptanalysis, a desirable condition for an S-boxnot to be exploited in di�erential cryptanalysis would be that it does not have large values in itsdi�erential distribution table (not taking into account the leftmost entry in the top row).In measuring the strength of an S-box (in terms of the security of a block cipher that employsthe S-box) against di�erential attacks, a useful indicator commonly used is di�erential uniformitywhich is de�ned as follows [17].De�nition 3 Let F be an n�m S-box, where n >= m. Let � be the largest value in the di�erentialdistribution table of the S-box (not taking into account the leftmost entry in the top row), namely,� = max�2Vn;�6=0max�2Vm#fxjF (x)� F (x� �) = �gThen F is said to be di�erentially �-uniform, and accordingly, � is called the di�erential uniformityof F .An important ingredient in designing cryptographic Boolean functions is bent functions. Belowis the formal de�nition of bent functions. 4



De�nition 4 Let f be a function on Vn and � denote the sequence of f . Then f is called a bentfunction if jh�; `iij = 2n2 ;i = 0; 1; : : : ; 2n � 1, where `i denotes the ith row of Hn.Bent functions can be characterized in various ways [2, 8, 20, 23, 26]. A characterization ofparticular interest can be found in [8, 20] which states that bent functions on Vn exist only when nis even, and that they achieve the highest possible nonlinearity on Vn, namely, 2n�1 � 2n2�1.3 Relationships among Three TablesNow we introduce three more notations, kj(�), �j(�) and �j , associated with an S-box F =(f1; : : : ; fm).De�nition 5 Let F = (f1; : : : ; fm) be an n � m S-box, � 2 Vn, j = 0; 1; : : : ; 2m � 1 and �j =(b1; : : : ; bm) be the vector in Vm that corresponds to the binary representation of j. In addition, setgj = Lmu=1 bufu be the jth linear combination of the component functions of F . Then we de�ne1. kj(�) as the number of times F (x)� F (x� �) equals �j 2 Vm while x runs through Vn once,2. �j(�) as the auto-correlation of gj with a shift �,3. �j as the sequence of gj .Since both �0 and `0 are the all-one sequence of length 2n and `j is (1;�1) balanced for j > 0,we have h�0; `0i = 2n; h�0; `ji = 0; j = 1; : : : ; 2n � 1: (3)From the de�nition of kj(�i), one can see that the sum of the entries in each row of K is 2n, andthat the �rst row has the form of (2n; 0; : : : ; 0). Namely,2m�1Xj=0 kj(�i) = 2n; i = 0; 1; : : : ; 2n � 1; (4)and k0(�0) = 2n; kj(�0) = 0; j = 1; : : : ; 2m � 1: (5)Using the three notations introduced above, we formally de�ne three tables/matrices related toF = (f1; : : : ; fm).De�nition 6 For an S-box F = (f1; : : : ; fm), setK = 266664 k0(�0) k1(�0) : : : k2m�1(�0)k0(�1) k1(�1) : : : k2m�1(�1)...k0(�2n�1) k1(�2n�1) : : : k2m�1(�2n�1) 3777755



D = 266664 �0(�0) �1(�0) : : : �2m�1(�0)�0(�1) �1(�1) : : : �2m�1(�1)...�0(�2n�1) �1(�2n�1) : : : �2m�1(�2n�1) 377775and P = 266664 h�0; `0i2 h�1; `0i2 � � � h�2m�1; `0i2h�0; `1i2 h�1; `1i2 � � � h�2m�1; `1i2...h�0; `2n�1i2 h�1; `2n�1i2 � � � h�2m�1; `2n�1i2 377775where `i is the ith row of Hn, i = 0; 1; : : : ; 2n� 1. The three tables (or matrices) K, D and P sharethe same size of 2n � 2m. Clearly K is the di�erence distribution table of F that has already been(informally) introduced in Section 2. The other two tables, D and P , are called auto-correlationdistribution table and correlation immunity distribution table of the S-box F , respectively.In designing a strong S-box, many cryptographic criteria should be examined not only againstcomponent functions, but also against their linear combinations. Such criteria include those relatedto nonlinearity, propagation characteristics [19] and di�erence distribution tables. The matrix Kcharacterizes the di�erential characteristics of an S-box. The matrixD indicates the auto-correlationof all linear combinations of the component functions. While the matrix P represents the innerproduct between the sequence of each linear combination of the component functions and eachlinear sequence. P is helpful in studying the correlation immunity, as well as the nonlinearity, ofeach linear combination of the component functions (see [22]).The following lemma shows an intimate relationship between the three tables K, D and Pde�ned above. The lemma can be easily shown to be correct by the use of a connection between theHamming distance between rows and the distribution of ones in the columns in a (0; 1) matrix. Forcompleteness, a full proof for the lemma is provided in the appendix. It turns out that the lemma isvery useful in examining cryptographic properties of an S-box, and it will be used in proving manyof the main results in this paper.Lemma 2 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers withn >= m >= 1 and each fj is a function on Vn. Set gj = Lmu=1 cufu where (c1; : : : ; cm) is the binaryrepresentation of an integer j, j = 0; 1; : : : ; 2m � 1. Then(i) (k0(�i); k1(�i); : : : ; k2m�1(�i))Hm = (�0(�i);�1(�i); : : : ;�2m�1(�i)), where �i is the binaryrepresentation of an integer i,(ii) D = KHm,(iii) P = HnD,(iv) P = HnKHm.When n = m and F is regular, a similar relation between matrices K and P has been derivedin [7]. As permutations, a special type of S-boxes, are used in many cryptographic algorithms,it is of interest is to look into how the three tables of a permutation are connected to the threecorresponding tables of the inverse of the permutation. The following result is easy to verify.6



Corollary 1 Let F be a permutation on Vn and F�1 denote the inverse of F . Let K = (ki(�j)),D = (�i(�j)) and P = (h�i; `ji) be the di�erence distribution, auto-correlation distribution andcorrelation immunity distribution tables of F . Similarly, let K� = (k�i (�j)), D� = (��i (�j)) andP � = (h��i ; `ji) be the di�erence distribution, auto-correlation distribution and correlation immunitydistribution tables of F�1. Then(i) K� = KT ,(ii) P � = P T ,(iii) D� = H�1n DTHn.4 Regularity of S-boxes and Di�erence Distribution TablesUsing Lemma 2, we now show that the regularity of an S-box can be characterized by its di�erencedistribution table. This characterization nicely complements Lemma 1 which is stated in terms ofthe balance of non-zero linear combinations of component functions of an S-box.Corollary 2 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers withn >= m >= 1 and each fj is a function on Vn. Then F is regular if and only if the sum of theentries in each column in the di�erence distribution table is 22n�m, i.e., P�2Vn ki(�) = 22n�m,i = 0; 1; : : : ; 2m � 1.Proof. Compare the �rst rows in both sides of the formula in Part (iv) of Lemma 2,(X�2Vn k0(�); X�2Vn k1(�); : : : ; X�2Vn k2m�1(�))Hm = (h�0; `0i2; h�1; `0i2; : : : ; h�2m�1; `0i2): (6)Obviously, if P�2Vn ki(�) = 22n�m, i = 0; 1; : : : ; 2m � 1 then h�1; `0i2 = � � � = h�2m�1; `0i2 =0. Note that `0 is the all-one sequence of length 2n. Hence g1; : : : ; g2m�1 are balanced, whereg1; : : : ; g2m�1 are de�ned in Lemma 2. By Lemma 1, F is regular.Conversely, suppose F is regular. By Lemma 1, g1; : : : ; g2m�1 are balanced. Hence h�1; `0i2 =� � � = h�2m�1; `0i2 = 0. Note that h�0; `0i2 = 22n. Rewrite (6) as2m(X�2Vn k0(�); X�2Vn k1(�); � � � ; X�2Vn k2m�1(�)) = (22n; 0; : : : ; 0)Hm:This proves that P�2Vn ki(�) = 22n�m, i = 0; 1; : : : ; 2m � 1. utCorollary 2 has also been obtained independently by Tapia-Recillas, Daltabuit and Vega [25].The following corollary shows the uniqueness of the leftmost column of the di�erence distributiontable of a regular mapping.Theorem 1 Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n and m are integers withn >= m >= 1 and each fj is a function on Vn. Then(i) P�2Vn k0(�) >= 22n�m, 7



(ii) the equality in (i) holds if and only if F is regular.Proof. (i) Right-multiplying both sides of the equality in Part (iv) of Lemma 2 by eT where, edenotes the all-one sequence of length 2m. Hence we haveHn 266664 k0(�0) k1(�0) : : : k2m�1(�0)k0(�1) k1(�1) : : : k2m�1(�1)...k0(�2n�1) k1(�2n�1) : : : k2m�1(�2n�1) 377775266664 2m0...0 377775 = 266664 P2m�1j=0 h�j; `0i2P2m�1j=0 h�j; `1i2...P2m�1j=0 h�j ; `2n�1i2 377775and hence 2mHn 266664 k0(�0)k0(�1)...k0(�2n�1) 377775 = 266664 P2m�1j=0 h�j ; `0i2P2m�1j=0 h�j ; `1i2...P2m�1j=0 h�j ; `2n�1i2 377775 : (7)Comparing the top element of the vector on the two sides of equality (7), the following is obtained2m 2n�1Xi=0 k0(�i) = 2m�1Xj=0 h�j ; `0i2: (8)Recall (3), h�0; `0i2 = 22n. From (8), we have proved Part (i) of the theorem.(ii) Suppose P�2Vn k0(�) = 22n�m, then from (8), h�1; `0i2 = � � � = h�2m�1; `0i2 = 0. Note that`0 is the all-one sequence of length 2n. Hence g1; : : : ; g2m�1 are balanced, where g1; : : : ; g2m�1 arede�ned in Lemma 2. By Lemma 1, F is regular.Conversely, if F is regular, then by Corollary 2, P�2Vn k0(�) = 22n�m. The proof of the theoremis completed. ut5 A Lower Bound on Di�erential UniformityWe turn our attention back to the di�erential uniformity, denoted by �, of an n�m S-box. Recallthat � is de�ned as the largest value in the di�erential distribution table of the S-box (not takinginto account the leftmost entry in the top row), namely,� = max�2Vn;�6=0max�2Vm#fxjF (x)� F (x� �) = �g(See De�nition 3). As discussed earlier, � is bounded by 2n�m <= � <= 2n, and generally speakingS-boxes with a smaller � are desirable in designing a block cipher secure against di�erential attacks.This motivates us to improve the \trivial" lower bound 2n�m on the di�erential uniformity �.The following lemma will be used in our discussions. It is identical to Lemma 2 of [27].Lemma 3 Let real valued sequences a0; : : : ; a2n�1 and b0; : : : ; b2n�1 satisfy(a0; : : : ; a2n�1)Hn = (b0; : : : ; b2n�1):8



For any integer p and q, p+q = n, 1 <= p; q <= n�1, set �j =P2q�1s=0 bj2q+s, where j = 0; 1; : : : ; 2p�1.Then 2q(a0; a2q; a2�2q; : : : ; a(2p�1)2q)Hp = (�0; �1; : : : ; �2p�1): (9)Now we prove another main result of this paper.Theorem 2 Let F = (f1; : : : ; fm) be an n�m S-box, where n and m are integers with n >= m >= 1and each fj is a function on Vn. Set gj =Lmu=1 cufu where (c1; : : : ; cm) is the binary representationof an integer j, j = 0; 1; : : : ; 2m� 1. Denote by �j(�) the auto-correlation of gj with a shift �, andset �M = max�2Vn;�6=0maxj=1;:::;2m�1fj�j(�)jg. Then the di�erential uniformity � of F is boundedfrom below by 2n�m + 2�m�M , namely,� >= 2n�m + 2�m�M :Proof. Let �j0(�i0) = �M . By Part (i) of Lemma 2, we have2�m(�0(�i0);�1(�i0); : : : ;�2m�1(�i0))Hm = (k0(�0i); k1(�0i); : : : ; k2m�1(�0i)) (10)Applying Lemma 3 to (10), we get2m�12�m(�0(�i0);�2m�1(�i0))H1 = (�0; �1)where �j =P2m�1�1s=0 kj2m�1+s, j = 0; 1. Hence2�1(�0(�i0) + �2m�1(�i0)) = �0and 2�1(�0(�i0)��2m�1(�i0)) = �1Thus there is a j02q + s0 for 0 <= s0 <= 2m�1 � 1 and j0 = 0 or 1, such thatkj02q+s0 >= 2�m(�0(�i0) + �2m�1(�i0)):Recall that �0(�) = 2n for all � 2 Vn. So we havekj02q+s0 >= 2�m(2n +�2m�1(�i0)):According to Section 5.3 of [21], the di�erential uniformity of F is invariant under a nonsingularlinear transformation on the variables of F . Thus by choosing an appropriate nonsingular lineartransformation on the variables of F , we havekj02q+s0 >= 2n�m + 2�m�Mand hence � >= 2n�m + 2�m�M : ut9



Examining the new lower bound of 2n�m + 2�m�M on the di�erential uniformity �, where �Mis the largest value among all j�j(�)j with j = 1; : : : ; 2m � 1, � 2 Vn and � 6= 0, a natural questionwould be how large and small �M can be and what could be its typical value.First of all, by the de�nition of �M , we have 0 <= �M <= 2n. When �M = 0, every non-zerolinear combination of the components of F must be a bent function. And the converse is also true:if every non-zero linear combination of the components of F is a bent function, then we must have�M = 0. Note that in this case we have � = 2n�m, which indicates that the bound in Theorem 2 istight. Also note that such S-boxes do exist [1, 15], although they are not regular.On the other hand, if �M = 2n, then there must exist a non-zero vector � such that it is alinear structure of a non-zero linear combination, say gj, of the component functions of F , i.e.,gj(x)� gj(x� �) is a constant. Similarly, the converse is also true.For other S-boxes, namely those whose non-zero linear combinations of component functions arenot all bent, and do not have non-zero linear structures, their �M will be a value between 0 and2n. Although it is not quite clear as to what would be the typical value of �M for such S-boxes,from the bound � >= 2n�m+2�m�M , at least one thing can be said: if an S-box is designed to resistagainst di�erential attacks, then its di�erential uniformity must be small, and hence its �M mustbe small too; conversely, if an S-box has a small �M , we would expect that it could have a smalldi�erential uniformity too.6 Upper Bounds on Nonlinearity of S-boxesAfter the discovery of di�erential attacks in [4], an equally notable cryptanalysis method, the linearcryptanalytic attack, was subsequently introduced in [13]. Identifying relationships between thesetwo types of attacks has been an interesting research area, both from the view point of cryptanalysisand the design of secure ciphers. We will �rst show a tight upper bound on the nonlinearity of ageneral S-box. This will be followed by another upper bound on the nonlinearity of a regular S-box.The usefulness of such an explicit relationship is obvious: the nonlinearity of an S-box represents akey indicator for the strength of a block cipher that employs the S-box. We also compare our resulton the relationship with a related theorem in [6].In studying an n�m S-box, a possible approach would be to use the two parameters n and malone in determining information on the S-box. Success of this approach, however, seems to havebeen limited to the case of m >= n�1 with which an upper bound on nonlinearity has been obtainedin [6] (but see discussions in the closing paragraph of this section.)Another approach that can be used to obtain far more detailed information on an S-box is to takeinto account all the kj(�), �j(�), or h�j ; `ii2, for j = 0; 1; : : : ; 2m�1, i = 0; 1; : : : ; 2n�1 and � 2 Vn(see De�nition 5). A potential problem with this approach is that it would be impractical to applyit to an S-box with relatively large n and/or m. In what follows, we adopt a di�erent approach thatemploys more parameters other than n and m, and hence can be viewed as a compromise betweenthe above two approaches. More speci�cally, we prove two theorems that relate the nonlinearityof an n � m S-box to three parameters, namely n, m and the number of non-zero entries in itsdi�erence distribution table K. 10



6.1 General CaseHere we consider n�m S-box that is not necessarily regular. In addition, the restriction of n >= mis not imposed on the S-box. We �rst introduce H�older's Inequality which can be found in [9].Lemma 4 Let cj >= 0 and dj >= 0 be real numbers, where j = 1; : : : ; s, and let p and q satisfy1p + 1q = 1 and p > 1. Then ( sXj=1 cpj )1=p( sXj=1 dqj )1=q >= sXj=1 cjdjwhere the quality holds if and only if cj = �dj , j = 1; : : : ; s for a constant � >= 0.When cj, dj, p and q satisfy the condition that cj >= 0, dj = ( 1 if cj = 10 if cj = 0 , and p = q = 12,H�older's Inequality gives sXj=1 c2j >= s�1( sXj=1 cj)2 (11)where the quality holds if and only if c1, : : :, cs are all identical. The inequality (11) will be used inthe proof of the following two theorems regarding the upper bound on the nonlinearity of an S-box.Theorem 3 Let F be an n �m S-box (F is not necessarily regular, and the restriction of n >= mis not imposed on it). Denote by Tnz the total number of all non-zero entries, except for k0(�0), inthe di�erence distribution table K of the S-box (see De�nition 6). Then(i) the nonlinearity of F satis�esNF <= 2n�1 � 12(22n+m � 23n + T�1nz 22n+m(2n � 1)22m � 1 ) 14 ;(ii) the equality in (i) holds if and only if every non-zero linear combination of the componentfunctions of F is a bent function.Proof. We �rst prove Part (i) of the theorem. Using Part (iv) of Lemma 2, we haveP TP = HmKTHTnHnKHm = 2nHmKTKHm = 2n+mH�1m KTKHm:Note that the sum of entries on the diagonal of P TP is equal to the sum of entries on the diagonalof 2n+mKTK. Hence 2m�1Xj=0 2n�1Xi=0 h�j ; `ii4 = 2n+m 2m�1Xj=0 2n�1Xi=0 k2j (�i):From (3), (4) and (5) in Section 3, we have24n + 2m�1Xj=1 2n�1Xi=0 h�j; `ii4 = 2n+m(22n + 2m�1Xj=0 2n�1Xi=1 k2j (�i)):11



Now combining (4) with (11), a special form of H�older's Inequality, we have2m�1Xj=0 2n�1Xi=1 k2j (�i) >= T�1nz (2m�1Xj=0 2n�1Xi=1 kj(�i))2 = T�1nz 22n(2n � 1)2: (12)Hence there is a certain j0, 1 <= j0 <= 2m � 1, and a certain i0, 0 <= i0 <= 2n � 1, such thath�j0 ; `i0i4 >= 2n+m(22n + T�1nz 22n(2n � 1)2)� 24n(2m � 1)2nwhich implies jh�j0 ; `i0ij >= (22n+m � 23n + T�1nz 22n+m(2n � 1)22m � 1 ) 14 :Now applying (1) we obtain Part (i) of the theorem.Note that since Tnz <= 2m(2n � 1), we have T�1nz 22n+m(2n � 1)2 >= 22n(2n � 1). That is, theexpression under the fourth root is always positive.Now we prove Part (ii). First assume that the equality in Part (i) holds. From the de�nition ofNF , as well as (1), we havejh�j ; `iij <= (22n+m � 23n + T�1nz 22n+m(2n � 1)22m � 1 ) 14 (13)for all j = 1; : : : ; 2m� 1 and i = 0; 1; : : : ; 2n� 1. Returning to the proof of Part (i), we can see that(13) implies that the equality on the left hand side of (12) must hold. Namely,2m�1Xj=0 2n�1Xi=1 k2j (�i) = T�1nz (2m�1Xj=0 2n�1Xi=1 kj(�i))2:Again using (11), the special form of H�older's Inequality, there exists a constant k such that kj(�i) =k, for all j = 0; 1; : : : ; 2m�1 and i = 1; : : : ; 2n�1. From (4), the constant k must satisfy the conditionof k = 2n�m. Note also that in this case, Tnz = 2m(2n � 1). Thus due to Theorem 3.1 in [15], weconclude that every non-zero linear combination of the component functions of F is a bent function.A consequence of this conclusion is that in this case, n must be even and m <= 12n [15].Conversely, assume that every non-zero linear combination of the component functions of Fis a bent function. Once again employing Theorem 3.1 in [15], we have kj(�i) = 2n�m for j =0; 1; : : : ; 2m� 1 and i = 1; : : : ; 2n� 1. In this case, the total number of non-zero entries in the tableK is Tnz = 2m(2n � 1). Now the inequality in Part (i) of the theorem becomesNF <= 2n�1 � 2n2�1: (14)On the other hand, since every non-zero linear combination of the component functions of F is abent function, the equality in (14) must hold i.e. the equality in Part (i) of the theorem holds. Thiscompletes the proof of Part (ii). utWe note that for a permutation on Vn, results obtained in [18] imply that the expected value ofTnz approaches (1 � e� 12 )(2n � 1)2, when n is large, where e = 2:718 : : :. By using Theorem 3, theexpected value of NF for a permutation satis�esNF <= 2n�1 � 2 34n�14q(1� e� 12 )(2n � 1)12



Before moving on to the next topic on regular S-boxes, we would like to stress that Theorem 3shows a tight upper bound on the nonlinearity of a general S-box which does not have to beregular. We also note that an S-box that achieves the upper bound in theorem has a at di�erencedistribution table and hence is weak against di�erential cryptanalysis.6.2 For a Regular S-boxAs we mentioned earlier, most encryption algorithms employ regular S-boxes. Hence such S-boxesplay a more important role than does an irregular one. Our research results to be described belowshow that the nonlinearity of a regular n�m S-box can be determined by n,m and a third parameterthat counts only the number of non-zero entries in the leftmost column of the di�erence distributiontable of the S-box.We begin with examining partitions of the leftmost column of a di�erence distribution table.Lemma 5 Let F be a mapping from Vn to Vm and K is the di�erence distribution table of F . Thenthe leftmost column of K is determined by a 2m-partition of Vn, say Vn = 
0 [ � � � [ 
2m�1, thatsatis�es the condition that 
j \ 
i = ; for all j 6= i.Proof. For each � 2 Vm, de�ne 
� = f� 2 VnjF (�) = �g. Note that we use an integer in[0; : : : ; 2m � 1] and a vector in Vm interchangeably. ClearlyVn = [�2Vm
� (15)and 
�0 \
�00 = ; if � 0 6= �00. Note that F (x)�F (x��) = 0 if and only if both x and x�� belongto the same class, say 
�.Now we modify the mapping F into F 0 by applying an arbitrary permutation on Vm to theoutput of F . Clearly the partition in (15) remains unchanged, and F 0(x) � F 0(x � �) = 0 if andonly if both x and x� � belong to the same class in (15). This proves that the leftmost columnsof the di�erence distribution tables of F and F 0 are the same. utArmed with Lemma 5, we are ready to prove the following.Theorem 4 Let F be a regular n �m S-box (For such an S-box n >= m is necessary). Denote bytnz the total number of non-zero entries (except for k0(�0)) in the leftmost column of the di�erencedistribution table K of F . Then the nonlinearity of F satis�esNF <= 2n�1 � 12(23n+2m � 24n + t�1nz � 23n+2m(2n�m � 1)2(2n � 1)(2m � 1)2 ) 14 :Proof. Left-multiplying the transposes of the two sides in (7), we have(2m�1Xj=0 h�j ; `0i2)2 + (2m�1Xj=0 h�j ; `1i2)2 + � � � + (2m�1Xj=0 h�j; `2n�1i2)2 = 22m+n 2n�1Xi=0 k20(�i) (16)Since both �0 and `0 are an all-one sequence, we have h�0; `0i = 2n. Recall that F is regular. ByLemma 1, each non-zero linear combination of the component functions of F is balanced. Thus for13



j = 1; : : : ; 2m � 1, �j is (1;�1) balanced and we have h�j ; `0i = 0. Also recall the de�nition in (3)and the fact that `j is (1;�1) balanced for j > 0, we can see that h�0; `ji = 0 for j = 1; : : : ; 2n � 1.Note that k0(�0) = 2n. So (16) can be specialized as(2m�1Xj=1 h�j ; `1i2)2 + � � �+ (2m�1Xj=1 h�j ; `2n�1i2)2 = 22m+3n � 24n + 22m+n 2n�1Xi=1 k20(�i) (17)By using (11) 2n�1Xi=1 k20(�i) >= t�1nz (2n�1Xi=1 k0(�i))2:Note that F is regular and k0(�0) = 2k. By using Corollary 1, P2n�1i=1 k0(�i) >= 22n�m � 2n. Hence2n�1Xi=1 k20(�i) >= t�1nz � (22n�m � 2m)2:Thus there is an i0, 1 <= i0 <= 2n � 1, such that2m�1Xj=1 h�j ; `i0i2 >= (23n+2m � 24n + t�1nz � 2n(22n � 2n+m)22n � 1 ) 12 :Since tnz <= 2n � 1, it is easy to verify that the expression under the square root is always positive.Furthermore there is a j0, 1 <= j0 <= 2m � 1, such thatjh�j0 ; `i0ij >= (23n+2m � 24n + t�1nz � 2n(22n � 2n+m)2(2n � 1)(2m � 1)2 ) 14 :Now the theorem follows immediately from (1). utFor a permutation F on Vn, (F must be regular), again from results obtained in [18], we knowthat the expected value of tnz approaches (1 � e� 12 )(2n � 1), while n is large enough, where e =2:718 : : :. This, together with Theorem 4, shows that the expected value of NF for regular S-boxesis bounded from above by 2n�1 � 2n�1p2n�1 . Namely,NF <= 2n�1 � 2n�1p2n � 1 :6.3 Remarks on the Two Upper BoundsComparing Theorem 3 with Theorem 4, we note that while the former deals with a general S-boxwhich is not necessarily regular, the latter is strictly on a regular S-box. Therefore the conditionthat n >= m is required only in Theorem 4. In addition to n and m, both theorems employ athird parameter in upper bounding the nonlinearity of an S-box. The third parameter Tnz usedin Theorem 3 is the total number of non-zero entries in the entire di�erence distribution table ofthe S-box (not taking into account the �rst entry in the leftmost column). In contrast, the thirdparameter tnz used in Theorem 4 is the total number of non-zero entries in the leftmost column in14



the di�erence distribution table of the S-box (again not taking into account the �rst entry in thecolumn).Another di�erence between Theorems 3 and 4 is that while the bound in the former is tight,it is unclear whether the same can be said with the latter. This is, however, not surprising, giventhat identifying the exact upper bound on the nonlinearity of a balanced function is one of theoutstanding open problems in the study of nonlinear Boolean functions.A direct consequence of Theorem 3 is that with any n �m S-box with n > m, be it regular orirregular, the larger the number of non-zero entries in the di�erence distribution table, the largerthe upper bound on the nonlinearity of the S-box. To interpret the theorem in a di�erent way, ifone wishes to design an S-box that is resistant against linear attacks, namely highly nonlinear, thenone should make sure that a large portion of entries in the di�erence distribution table of the S-boxis non-zero. Interestingly, as a larger Tnz also means a wider spread of non-zero entries across theentire di�erence distribution table, such an S-box can potentially have a higher resilience againstdi�erential attacks.What Theorem 4 implies is that for a regular S-box, tnz, the number of non-zero entries inthe leftmost column of its di�erence distribution table, e�ects the resistance against linear anddi�erential attacks in a way similar to that of Tnz. Thus, in designing a regular S-box, one prefersboth a large tnz and a large Tnz. It should be pointed out, however, that other factors should betaken into account too. Examples of such factors include successful attacks that exploit non-zeroentries in the leftmost column of a di�erence distribution table [4, 5, 21], and high order di�erentialattacks recently developed in [10].Before closing this section, we note that a paper by Chabaud and Vaudenay [6] is a prior workmost relevant to this research. A main result in [6] is their Theorem 4 which is equivalent to statingthat for every mapping from Vn to Vm, say F , the nonlinearity of F , NF , satis�esNF <= 2n�1 � 12(3 � 2n � 2 � 2(2n � 1)(2n�1 � 1)2m � 1 ) 12 : (18)Examining the part under the square root in the expression, one can see that it is negative ifm <= n� 2. Therefore, (18) is applicable only to n�m S-boxes with m >= n� 1.7 Concluding RemarksWe have introduced three tables associated with an S-box, and based on a relationship among thethree tables, we have established a number of results ranging from regularity, nonexistence of certainquadratic S-boxes, to a tight lower bound on the di�erential uniformity and two upper bounds onthe nonlinearity of an S-box.In light of recent progress in interpolation and high order di�erential cryptanalysis [10, 24], anatural topic that deserves immediate attention is to research into high order di�erential distributiontables of S-boxes, together with connections to other cryptographic properties of S-boxes.AcknowledgementThe �rst author was supported by a Queen Elizabeth II Research Fellowship (227 23 1002). Partof the second author's work was completed while on sabbatical at the University of Tokyo.15
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Appendix: The Proof of Lemma 2There are close relationships between the Hamming distance between rows and the distribution ofones in the columns in a (0; 1) matrix. Such relationships have been very useful in constructinglinear error correcting codes. In this appendix we review some of the relationships from the viewpoint of Hadamard transforms. Once the relationships are clear, the proof of Lemma 2 becomesstraightforward.Let t >= s, and A be an s� t (0; 1) matrix with rank s. SetA = 266664 �0�1...�s�1 377775 = (aij) = [�0; �1; � � � ; �t�1]; (19)where �i 2 Vt is the ith row vector and �j 2 Vs is the jth column vector of A.We are concerned with all the linear combinations of �0; �1; : : : ; �s�1, denoted by �0; �1; : : : ; �2s�1,where �j = Ls�1u=0 cu�u, (c0; c1; : : : ; cs�1) is the binary representation of an integer j, j = 0; 1 : : : ; 2s�1.Now set B = 266664 �0�1...�2s�1 377775 = (bij) = [0; 1; � � � ; t�1]; (20)where B is a (0; 1) matrix of order 2s� t and j 2 V2s is the jth column vector of B. Replace every0 entry in B with 1, and every 1 entry in B with �1. Then denote by B� the new (1;�1) matrixof order 2s � t. Write B� = (b�ij) = 266664 R0R1...R2s�1 377775 = [h0; h1; � � � ; ht�1]; (21)where Ri is the ith row vector and hj is the jth column vector of B�. One can verify that each hjis a linear sequence of length 2s.Let B� be the matrix de�ned in (21), e0; e1; : : : ; e2s�1 be the row vectors, from the top to thebottom, of Hs. Assume that ej appears kj times in the columns of B�. We now proveeiB�B�TeTj = ( kj22s if ei = ej0 otherwise. (22)Write eiB� = (c�0; : : : ; c�t�1) wherec�u = ( 2s if eTi = hu0 otherwise (23)18



for all u = 0; : : : ; t� 1. Similarly, write ejB� = (d�0; : : : ; d�t�1), whered�u = ( 2s if eTj = hu0 otherwise (24)for all u = 0; : : : ; t� 1.If ei = ej, then eiB�B�TeTj = Pt�1u=0 c�uc�u = kj22s. On the other hand, if ei 6= ej, then by (23) and(24), c�u 6= 0 implies d�u = 0, which results in eiB�B�TeTj =Pt�1u=0 c�ud�u = 0. This proves (22).As the Sylvester-Hadamard matrix Hm is symmetric, (22) can be equivalently stated as:HsB�B�THs = 22s diag(k0; k1; : : : ; k2s�1): (25)Let Rj be a row of B� de�ned in (21) and kj the number of times a row vector ej in Hs appearsin the columns of B�. From (25) we have B�B�T = Hs diag(k0; k1; : : : ; k2s�1)Hs. Comparing the�rst rows in the two sides of the equation, we have(hR0; R0i; hR0; R1i; : : : ; hR0; R2s�1i) = (k0; k1; : : : ; k2s�1)Hs: (26)Now we are in a position to prove Lemma 2. Consider an s � t matrix A de�ned in (19) withs = m and t = n. Let a row �i in (19) be the truth table of fi(x) � fi(x � �), i = 0; 1; : : : ;m � 1.Correspondingly, �i in (20) denotes the truth table of gi(x)� gi(x� �), and Ri in (21) denotes thesequence of gi(x)� gi(x� �), i = 0; 1; : : : ; 2m � 1.As g0 is the zero function, R0 is the all-one sequence. Hence hR0; Rii is equal to the sum of thecomponents in Ri. That is, hR0; Rii = �i(�). Hence Part (i) of Lemma 2 follows from (26).For � = �0; �1; : : : ; �2n�1, Part (i) of Lemma 2 gives 2n equations. These equations can bewritten as Part (ii) of the lemma. Part (iii) of the lemma follows from (2). And �nally Parts (ii)and (iii) of the lemma together give Part (iv) of the lemma.
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