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Abstract

Due to the success of differential and linear attacks on a large number of encryption al-
gorithms, it is important to investigate relationships among various cryptographic, including
differential and linear, characteristics of an S-box (substitution box). After discussing a precise
relationship among three tables, namely the difference, auto-correlation and correlation immu-
nity distribution tables, of an S-box, we develop a number of results on various properties of
S-boxes. More specifically, we show (1) close connections among three indicators of S-boxes,
(2) a tight lower bound on the sum of elements in the leftmost column of its differential distri-
bution table, (3) a non-trivial and tight lower bound on the differential uniformity of an S-box,
and (4) two upper bounds on the nonlinearity of S-boxes (one for a general, not necessarily
regular, S-box and the other for a regular S-box).

*Part of the results were presented at SAC’96.
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1 Introduction

This paper deals with n x m S-boxes with n > m. Success of the notable differential cryptanalysis
on various block ciphers [3, 4] has motivated researchers to investigate properties of the difference
distribution tables of S-boxes. A core topic in this endeavor is to discover relationships between
differential distribution tables and other properties of S-boxes. In this paper we first introduce
two additional tables associated with an S-box, these being the auto-correlation and correlation
immunity distribution tables. Then we establish a precise relationship among the three tables of
an S-box (i.e., the difference, auto-correlation and correlation immunity distribution tables). With
this relationship as a basis, we show that an S-box is regular (or balanced) if and only if the sum
22n=m_In a sense, this
result complements a well-known fact about the regularity of an S-box which states that an S-box is
regular if and only if the non-zero linear combinations of its component functions are all balanced.

The next issue addressed in this paper is on the lower bound on the differential uniformity of

of the values in the leftmost column of its difference distribution table is

an S-box which is defined as the largest non-zero value in the differential distribution table of the
S-box, not taking into account the first entry in the top row. For an n x m S-box, it is easy to see
that its differential uniformity is at least 2”7, As another contribution of this paper, we will show
a new tight lower bound that improves the “trivial” bound of 2",

The final issue addressed in this work relates more specifically the nonlinearity of an S-box to
its difference distribution table. In particular, we give two upper bounds on the nonlinearity of the
S-box, one for the case when the S-box is an arbitrary mapping and the other when it is regular.
These two bounds are expressed in terms of three parameters: the number of input bits, the number
of output bits and the number of non-zero entries in the entire difference distribution table or in
the leftmost column of the difference distribution table of the S-box, respectively. We also compare
the second new upper bound with previous works in the same area.

The remainder of this paper is organized as follows: Section 2 introduces formal notations and
definitions used in this paper. The difference, auto-correlation and correlation immunity distribution
tables of an S-box are defined in Section 3 where a precise relationship among the three tables is
also established. An interesting connection between the regularity of an S-box and columns of its
differential distribution table is presented in Section 4. A tight lower bound on the differential
uniformity of an S-box is presented in Section 5, and then two upper bounds on the nonlinearity
of an S-box and its difference distribution table are proved in Section 6. Section 7 closes the paper
with some concluding remarks.

2 Basic Notations and Definitions

This section is intended as a summary of the minimum amount of mathematical knowledge required
in rigorously treating issues on S-boxes to be discussed in this paper.

The vector space of n tuples of elements from GF(2) is denoted by V,. These vectors, in
ascending lexicographic order, are denoted by «g, aq, ..., asn_q. As vectors in V,, and integers in



[0,2™ — 1] have a natural one-to-one correspondence, it allows us to switch from a vector in V,, to
its corresponding integer in [0,2" — 1], and vice versa.

Let f be a function from V,, to GF(2) (or simply, a function on V;,). The sequence of f is defined
as ((—=1)f0) (=1)fe) - (—1)fe2n-1)) “while the truth table of f is defined as (f(ao), f(a1), ...,
flazn_1)). f is said to be balanced if its truth table assumes an equal number of zeros and ones.
We call h(z) = ay21 & - - B apx, B ¢ an affine function, where © = (x1,...,2,) and a;j,¢c € GF(2).
In particular, h will be called a linear function if ¢ = 0. The sequence of an affine (linear) function
will be called an affine (linear) sequence.

The Hamming weight of a vector v, denoted by W (v), is the number of ones in v. Let f and
g be functions on V,. Then d(f,g) = 3 s(s)2g(x) I, Where the addition is over the reals, is called
the Hamming distance between f and g. Let o, ..., @on+1_1 be the affine functions on V,,. Then
Ny = min;—g,_an+1_1 d(f, ;) is called the nonlinearity of f. It is well-known that the nonlinearity
of f on V, satisfies N; < 2"~! — 25"=1. The equality holds if and only if f is bent (see P. 426 of
12])

Given two sequences a = (ay,...,a,) and b = (by,...,b,), their component-wise product is
denoted by a * b, while the scalar product (sum of component-wise products) is denoted by (a, b).

Definition 1 Let f be a function on V,. For a vector o« € V,,, denote by {(«) the sequence of
f(z @ «). Thus £(0) is the sequence of f itself and £(0) * £(«v) is the sequence of f(x) & f(x & ).
Define the auto-correlation of f with a shift « by

Ala) = (£(0), {(e)).

The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 2", denoted by H,, is
generated by the recursive relation

M H”‘ll,n:m,..., Hy = 1.

H, =
lHn—l —iip—1

Fach row (column) of H, is a linear sequence of length 2".
The following two formulas are well known to researchers (for a proof see for instance [14, 23]).
Let £ be the sequence of a function f on V,,. Then the nonlinearity of f, Ny can be calculated
by

Ny =27t - Cmaxl(E )]0 £ 20 1) (1

where /; is the ith row of H,,, 2 =0,1,...,2" — 1, and
(Alao), Alar), ..., Alazeoa)) Hu = ({6, 00)*, (& 4)7, - (& lona)?) (2)
where ¢, is the binary representation of an integer 7 and /; is the ¢th row of H,, 2 =0,1,...,2" — 1.
An n x m S-box or substitution box is a mapping from V,, to V., i.e., F' = (f1,..., fm), where

n and m are integers with n 2 m 2 1 and each component function f; is a function on V,. In this
paper, we use the terms of mapping and S-box interchangeably.

As can be seen from the design of many practical block ciphers, researchers are mainly concerned
with regular S-boxes only. A mapping F' = (fi,..., fin) is said to be regular if F'(x) runs through
each vector in V,, 2"~ times while = runs through V), once.

3



The following lemma states a useful result on the regularity of an S-box. This result has appeared
in many different forms in the literature. Our description can be viewed as the binary version of

Corollary 7.39 of [11].

Lemma 1l Let F' = (fi,..., fm) be a mapping from V, to V,,, where n and m are integers with
n2m 21 and each fij(z) is a function on V,. Then I is reqular if and only if every non-zero
linear combination of f1,..., f, is balanced.

The concept of nonlinearity can be extended to the case of an S-box [16].

Definition 2 The standard definition of the nonlinearity of F'= (fi,..., fin) is

m

Np = ming{Nylg = Pe;fj, ¢; € GF(2),g # 0}.

i=1

Now we consider an S-box in terms of its usefulness in designing a block cipher secure against
differential cryptanalysis [3, 4]. The essence of a differential attack is to exploit particular entries in
the difference distribution tables of S-boxes employed by a block cipher. The difference distribution
table of an n x m S-box is a 2" x 2" matrix. The rows of the matrix, indexed by the vectors in V,,,
represent the changes in the inputs, while the columns, indexed by the vectors in V,,, represent the
change in the output of the S-box. An entry in the table indexed by («, 3) indicates the number of
input vectors which, when changed by «a (in the sense of bit-wise XOR), result in a change in the
output by 3 (also in the sense of bit-wise XOR). It should be pointed out that while in this paper
the notation of difference is restricted to XOR differences, in general other differences are also of
interest, such as those based on modular addition and multiplication.

Note that an entry in a difference distribution table can only take an even value, the sum of the
values in a row is always 2", and the top row is always (27,0,...,0). As entries with higher values
in the table are particularly useful to differential cryptanalysis, a desirable condition for an S-box
not to be exploited in differential cryptanalysis would be that it does not have large values in its
differential distribution table (not taking into account the leftmost entry in the top row).

In measuring the strength of an S-box (in terms of the security of a block cipher that employs
the S-box) against differential attacks, a useful indicator commonly used is differential uniformity

which is defined as follows [17].

Definition 3 Let F' be an n x m S-box, where n = m. Let § be the largest value in the differential
distribution table of the S-box (not taking into account the leftmost entry in the top row), namely,

d= max max #{z|F(2)d F(ada) =0}

0€Vn,a#0 BEV,

Then F is said to be differentially d-uniform, and accordingly, ¢ is called the differential uniformity
of F.

An important ingredient in designing cryptographic Boolean functions is bent functions. Below
is the formal definition of bent functions.



Definition 4 Let f be a function on V, and £ denote the sequence of f. Then f is called a bent
function if

|<§7£2>| :2%7
1=0,1,...,2" — 1, where {; denotes the ith row of H,.

Bent functions can be characterized in various ways [2, 8, 20, 23, 26]. A characterization of
particular interest can be found in [8, 20] which states that bent functions on V,, exist only when n
is even, and that they achieve the highest possible nonlinearity on V,,, namely, 2"~' — 2771,

3 Relationships among Three Tables

Now we introduce three more notations, k;(«), A;(«) and n;, associated with an S-box F =

(fiseoos fim)-

Definition 5 Let F' = (f1,..., fm) be an n x m S-box, a € V,,, 7 = 0,1,...,2" — 1 and §; =
(b1,...,bn) be the vector in V,, that corresponds to the binary representation of j. In addition, set
g; =P, by fu be the jth linear combination of the component functions of I'. Then we define

1. kj(«) as the number of times F(x) & F(x & «) equals 3; € V,, while & runs through V,, once,
2. Aj(«) as the auto-correlation of g; with a shift «,
3. n; as the sequence of g;.

Since both 7y and {y are the all-one sequence of length 2" and ¢; is (1, —1) balanced for j > 0,
we have

<7707£0>:2n7 <770,£]>:0, ]:177271_1 (3)

From the definition of k;(c;), one can see that the sum of the entries in each row of K is 2", and
that the first row has the form of (27,0,...,0). Namely,

2m—1
S ki) =27 i=0,1,...,2" =1, (4)
7=0
and
ko(ao):2n, k‘]‘(Oéo):O, ]:1,,2m—1 (5)

Using the three notations introduced above, we formally define three tables/matrices related to

F: (fl,...,fm).
Definition 6 For an S-box F = (f1,..., fn), set

ko(cv) ki(ao) ... hkom_1(ao)
" ko(on) Ei(on) ... kom_i(aq)
ko(azn—l) kl(a;"—l) - k2M—1(042n—1)
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Ag(ap) Ay(ag) ... Agm_y(ag)

D— Ao(al) Al(Oél) Ce Azm_l(al)
Ao(azn—l) Al(azn—l) A2771—1(04271—1)
and
<7707£0>2 <7717£0>2 <772m—17£o>2
p_ <7707£1>2 <7717£1>2 T <772m—17£1>2
<7707£2"—1>2 <7717£2n—1>2 <772m—17£2n—1>2

where /; is the ith row of H,, 7 =0,1,...,2" — 1. The three tables (or matrices) K, D and P share
the same size of 2" x 2. Clearly K is the difference distribution table of F' that has already been
(informally) introduced in Section 2. The other two tables, D and P, are called auto-correlation
distribution table and correlation immunity distribution table of the S-box F', respectively.

In designing a strong S-box, many cryptographic criteria should be examined not only against
component functions, but also against their linear combinations. Such criteria include those related
to nonlinearity, propagation characteristics [19] and difference distribution tables. The matrix K
characterizes the differential characteristics of an S-box. The matrix D indicates the auto-correlation
of all linear combinations of the component functions. While the matrix P represents the inner
product between the sequence of each linear combination of the component functions and each
linear sequence. P is helpful in studying the correlation immunity, as well as the nonlinearity, of
each linear combination of the component functions (see [22]).

The following lemma shows an intimate relationship between the three tables K, D and P
defined above. The lemma can be easily shown to be correct by the use of a connection between the
Hamming distance between rows and the distribution of ones in the columns in a (0,1) matrix. For
completeness, a full proof for the lemma is provided in the appendix. It turns out that the lemma is
very useful in examining cryptographic properties of an S-box, and it will be used in proving many
of the main results in this paper.

Lemma 2 Let F' = (f1,..., fm) be a mapping from V, to V,,, where n and m are integers with
n2m 21 and each f; is a function on V. Set g; = @I, cufu where (c1,...,¢y) is the binary
representation of an integer 3, 3 =0,1,...,2" — 1. Then

(1) (ko(c), ki(ei)y ... kam () Hy = (Do), Av(ei), ..., Agm_1(av;)), where o; is the binary

representation of an integer 1,
(ii) D=KH,,
(i) P=H,D,
(iv) P=H,KH,,.

When n = m and [ is regular, a similar relation between matrices K" and P has been derived
in [7]. As permutations, a special type of S-boxes, are used in many cryptographic algorithms,
it 1s of interest is to look into how the three tables of a permutation are connected to the three
corresponding tables of the inverse of the permutation. The following result is easy to verify.



Corollary 1 Let F' be a permutation on V,, and F~' denote the inverse of F'. Let K = (k;(a;)),
D = (Ailej)) and P = ((n;,0;)) be the difference distribution, auto-correlation distribution and
correlation immunity distribution tables of F'. Similarly, let K* = (kX(«;)), D* = (AX(«;)) and
P* = ((nr,0;)) be the difference distribution, auto-correlation distribution and correlation immunity
distribution tables of F'=1. Then

(i) K* = KT,
(i) P* =P,

(iii) D* = H7'DTH,.

4 Regularity of S-boxes and Difference Distribution Tables

Using Lemma 2, we now show that the regularity of an S-box can be characterized by its difference
distribution table. This characterization nicely complements Lemma 1 which is stated in terms of
the balance of non-zero linear combinations of component functions of an S-box.

Corollary 2 Let F' = (f1,..., fn) be a mapping from V,, to V,,, where n and m are integers with
n 2 m 2 1 and each f; is a function on V,. Then F is reqular if and only if the sum of the
entries in each column in the difference distribution table is 2*"~™  i.e., Y ey, ki(a) = 22"7™,
1=0,1,...,2" — 1.

Proof. Compare the first rows in both sides of the formula in Part (iv) of Lemma 2,

( Z ko(a)v Z kl(a)v SR Z ka—l(a))Hm = (<7707€0>27 <7717€0>27 SR <772m—17£0>2)' (6)

aEVn aEVn aEVn
Obviously, if Y ey, ki(a) = 2™ ¢ = 0,1,...,2™ — 1 then (my1,00)? = -+ = (nam_1,Lo)* =
0. Note that /y is the all-one sequence of length 2". Hence ¢y,...,gam_1 are balanced, where
Gi,--.,92m_q are defined in Lemma 2. By Lemma 1, F' is regular.
Conversely, suppose F' is regular. By Lemma 1, g1,...,gam_; are balanced. Hence (1, {o)* =

oo = (nam_1,0o)* = 0. Note that (ng, lo)* = 2*". Rewrite (6) as

27N ko), Y ki), -+, D kam_1(a)) = (277,0,...,0)H,,.

aEVn aEVn aEVn

This proves that > ey, ki(a) = 227" 7 =0,1,...,2™ — 1. 0
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Corollary 2 has also been obtained independently by Tapia-Recillas, Daltabuit and Vega [25].
The following corollary shows the uniqueness of the leftmost column of the difference distribution
table of a regular mapping.

Theorem 1 Let F' = (fi,..., fm) be a mapping from V,, to V,,, where n and m are integers with
n2m 21 and each f; is a function on V,. Then

(i) Taev, ko(a) 2 2277,



(ii) the equality in (i) holds if and only if F' is regular.

Proof. (i) Right-multiplying both sides of the equality in Part (iv) of Lemma 2 by el where, ¢
denotes the all-one sequence of length 27, Hence we have

ko(ao) ki(ao) ... kam_i(ao) 2m > s bo)?
H ko(a) kl(?l) oo k(o) 0 _ 22’"‘1<m,€1>
ko(azn_1) kl(a‘zn—l) oo kg (0gny) 0 iy 1<77]7£2" 1)’
and hence
ko(ao) SE 0y, o)
pog, | B0 || BEar | )
kO(a‘zn—l) 2m_1<77]7£2" 1)’

Comparing the top element of the vector on the two sides of equality (7), the following is obtained

2n_1 2m_1
2" Y kolar) = 3 (nj.lo)” (8)
=0 7=0
Recall (3), {(no, lo)* = 2*". From (8), we have proved Part (i) of the theorem.
(ii) Suppose 3 .ey, ko(a) = 22"~ then from (8), (m,0o)* = -+ = (nam_1,0o)*> = 0. Note that
ly is the all-one sequence of length 2". Hence ¢y,...,gam_1 are balanced, where ¢y,...,gom_1 are

defined in Lemma 2. By Lemma 1, F'is regular.
Conversely, if I is regular, then by Corollary 2, > v, ko(a) = 2**~™. The proof of the theorem
is completed. O

5 A Lower Bound on Differential Uniformity

We turn our attention back to the differential uniformity, denoted by 4, of an n x m S-box. Recall
that ¢ is defined as the largest value in the differential distribution table of the S-box (not taking
into account the leftmost entry in the top row), namely,

d= max max #{z|F(2)d F(ada) =0}

a€Vn,a#0 BEV,

(See Definition 3). As discussed earlier, ¢ is bounded by 2" < § < 2", and generally speaking
S-boxes with a smaller ¢ are desirable in designing a block cipher secure against differential attacks.
This motivates us to improve the “trivial” lower bound 2"~ on the differential uniformity ¢.

The following lemma will be used in our discussions. It is identical to Lemma 2 of [27].

Lemma 3 Let real valued sequences ag, ..., an_q and by, ..., byn_1 satisfy
(Clo, Ce ,azn_l)Hn = (bo, ce 762"—1)-
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For any integer p and ¢, p+q=n, 1 Ep,q = n—1, set 0; = 25 bigays, where j =0,1,...,20 —1.

Then

Y

Qq(am A29, A2.295 « « « a(2P—1)2q)Hp = (007 01y .- 70219—1)- (9)
Now we prove another main result of this paper.

Theorem 2 Let F'= (fi,..., fm) be an n x m S-box, where n and m are integers with n 2 m 2 1
and each f; is a function on V,. Set g; = @ ¢y fu where (c1,. .., ¢n) is the binary representation
of an integer j, j =0,1,...,2" — 1. Denote by A;(«) the auto-correlation of g; with a shift o, and
set Apr = MaXaev, azo Maxj=1 om_1{|Aj(a)|}. Then the differential uniformity § of F' is bounded

veey

from below by 2"~ + 27" Ay, namely,

§ 22" 4 27 Ay

Proof. Let Aji(ay) = Ap. By Part (i) of Lemma 2, we have
27" (Ao(air), Ag(air), .. Agmoy(aw)) Hy = (ko(eg), ke, . .o kam i () (10)
Applying Lemma 3 to (10), we get
2127 (Ao ), Agm=i(ap)) Hy = (00, 01)
where o; = Z?:&l_l kjgm-145, 3 = 0,1. Hence

2_1(A0(O@/) + Azm—l (Ozi/)) = Op

and

2_1(A0(Ozi/) — Azm—l (Ozi/)) = 01
Thus there is a 7527 + 5o for 0 < s < 2™71 — 1 and jo = 0 or 1, such that

Fipzogs, 2 27" (Ao(ai) + Agmar(air)).
Recall that Ag(a) = 2" for all @ € V,,. So we have
kj02q+50 g 2—m(2n ‘|‘ AQm—l (Ozl/))

According to Section 5.3 of [21], the differential uniformity of F'is invariant under a nonsingular
linear transformation on the variables of F'. Thus by choosing an appropriate nonsingular linear
transformation on the variables of F', we have

kpoq-I—So g 2n_m —I_ 2_mAM

and hence

5 g 2n—m _I_ 2_mAM



Examining the new lower bound of 2"=™ + 27" Ay, on the differential uniformity ¢, where Ay
is the largest value among all |A;(«a)| with j =1,...,2" — 1, a € V,, and o # 0, a natural question
would be how large and small Ay; can be and what could be its typical value.

First of all, by the definition of Ays, we have 0 £ Ay = 2. When Ay = 0, every non-zero
linear combination of the components of ' must be a bent function. And the converse is also true:
if every non-zero linear combination of the components of F'is a bent function, then we must have
Ap; = 0. Note that in this case we have § = 2"~ which indicates that the bound in Theorem 2 is
tight. Also note that such S-boxes do exist [1, 15], although they are not regular.

On the other hand, if Ay; = 27, then there must exist a non-zero vector « such that it is a
linear structure of a non-zero linear combination, say g¢;, of the component functions of F', i.e.,
gi(x) & gj(x & a) is a constant. Similarly, the converse is also true.

For other S-boxes, namely those whose non-zero linear combinations of component functions are
not all bent, and do not have non-zero linear structures, their Ay; will be a value between 0 and
2". Although it is not quite clear as to what would be the typical value of Aj; for such S-boxes,
from the bound § = 2"~™ 4+ 27" A, at least one thing can be said: if an S-box is designed to resist
against differential attacks, then its differential uniformity must be small, and hence its Ay; must
be small too; conversely, if an S-box has a small Ay;, we would expect that it could have a small
differential uniformity too.

6 Upper Bounds on Nonlinearity of S-boxes

After the discovery of differential attacks in [4], an equally notable cryptanalysis method, the linear
cryptanalytic attack, was subsequently introduced in [13]. Identifying relationships between these
two types of attacks has been an interesting research area, both from the view point of cryptanalysis
and the design of secure ciphers. We will first show a tight upper bound on the nonlinearity of a
general S-box. This will be followed by another upper bound on the nonlinearity of a regular S-box.
The usefulness of such an explicit relationship is obvious: the nonlinearity of an S-box represents a
key indicator for the strength of a block cipher that employs the S-box. We also compare our result
on the relationship with a related theorem in [6].

In studying an n x m S-box, a possible approach would be to use the two parameters n and m
alone in determining information on the S-box. Success of this approach, however, seems to have
been limited to the case of m = n —1 with which an upper bound on nonlinearity has been obtained
in [6] (but see discussions in the closing paragraph of this section.)

Another approach that can be used to obtain far more detailed information on an S-box is to take
into account all the k;(«), Aj(a), or (n;,¢;)*, for j =0,1,...,2"—1,7=0,1,...,2"—1land a € V,
(see Definition 5). A potential problem with this approach is that it would be impractical to apply
it to an S-box with relatively large n and/or m. In what follows, we adopt a different approach that
employs more parameters other than n and m, and hence can be viewed as a compromise between
the above two approaches. More specifically, we prove two theorems that relate the nonlinearity
of an n X m S-box to three parameters, namely n, m and the number of non-zero entries in its
difference distribution table K.

10



6.1 General Case

Here we consider n x m S-box that is not necessarily regular. In addition, the restriction of n =2 m
is not imposed on the S-box. We first introduce Hélder’s Inequality which can be found in [9].

Lemma 4 Let ¢; 2 0 and d; 2 0 be real numbers, where j = 1,...,s, and let p and q salisfy
;—)—I—%zl and p > 1. Then

DoAY 23 ¢id;
7=1 7=1 7=1

where the quality holds if and only if ¢; = vd;, 3 =1,...,s for a constant v 2 0.

1 iijzl

— g =1
0 ife, =0 MdP=a=15

When ¢;, d;, p and ¢ satisfy the condition that ¢; =2 0, d; = {

Holder’s Inequality gives
G257 (D) (11)

where the quality holds if and only if ¢4, ..., ¢, are all identical. The inequality (11) will be used in
the proof of the following two theorems regarding the upper bound on the nonlinearity of an S-box.

Theorem 3 Let F' be an n x m S-box (F is not necessarily reqular, and the restriction of n 2 m
is not imposed on it). Denote by T,. the total number of all non-zero entries, except for ko(ap), in

the difference distribution table K of the S-box (see Definition 6). Then
(i) the nonlinearity of F' satisfies

. 1 22n+m _ 23n _I_ Tn—2’122n+m(2n _ 1)2 1
Np =2 1—5( 5m 1 )

(ii) the equality in (i) holds if and only if every non-zero linear combination of the component
functions of I' is a bent function.

Proof. We first prove Part (i) of the theorem. Using Part (iv) of Lemma 2, we have
P'P=H,K"HTH,KH, =2"H,KTKH, =2"""H'KTKH,,.

Note that the sum of entries on the diagonal of PT P is equal to the sum of entries on the diagonal
of 27+m KT K. Hence

2m—12"-1 2m—12"-1
Do ()t =2m Yy k).
7=0 =0 7=0 =0

From (3), (4) and (5) in Section 3, we have

2m_12n_1 2m_127_1
2 > > ()t =2mT (24 Y Y ki (ed)).
j=1 =0 7=0 =1

11



Now combining (4) with (11), a special form of Hélder’s Inequality, we have

2m—12"-1 2Mm—12"-1
2D kia) 2T Y. Y0 kylaw))? = T22(2" — )% (12)
7=0 =1 7=0 =1

Hence there is a certain j, 1 < 70 < 2™ — 1, and a certain 1o, 0 < 19 < 2" — 1, such that
2n—|—m(22n + T{ZIQQH(QH _ 1)2) _ 24n
(2m — 12

(Mjo lig)* 2

which implies - , - ,
o i) 2 (A LT
Now applying (1) we obtain Part (i) of the theorem.
Note that since T,, = 2™(2" — 1), we have T, 12¥+m (2" — 1)? 2 227(2" — 1). That is, the
expression under the fourth root is always positive.
Now we prove Part (ii). First assume that the equality in Part (i) holds. From the definition of

N, as well as (1), we have
22n+m _ 23n _I_ T7;122n+m(2n _ 1)2

forall j=1,...,2" —land ¢ =0,1,...,2" — 1. Returning to the proof of Part (i), we can see that
(13) implies that the equality on the left hand side of (12) must hold. Namely,

AN

(13)

2m_1271 2m_1271
> 2 Fe) =TI X kien)”.
7=0 =1 7=0 =1

Again using (11), the special form of Holder’s Inequality, there exists a constant k such that k(o) =
k,forallj =0,1,...,2"—1landi =1,...,2"—1. From (4), the constant & must satisfy the condition
of k= 2"~ Note also that in this case, T,,, = 27(2" — 1). Thus due to Theorem 3.1 in [15], we
conclude that every non-zero linear combination of the component functions of F' is a bent function.
A consequence of this conclusion is that in this case, n must be even and m = 1n [15].
Conversely, assume that every non-zero linear combination of the component functions of F
is a bent function. Once again employing Theorem 3.1 in [15], we have k;(o;) = 27" for j =

0,1,....2% —=land 2 =1,...,2" — 1. In this case, the total number of non-zero entries in the table
K is T,, = 27(2" — 1). Now the inequality in Part (i) of the theorem becomes
Np £2m7t 9571, (14)

On the other hand, since every non-zero linear combination of the component functions of F' is a
bent function, the equality in (14) must hold i.e. the equality in Part (i) of the theorem holds. This
completes the proof of Part (ii). O

We note that for a permutation on V,,, results obtained in [18] imply that the expected value of
T.. approaches (1 — e_%)(Z” —1)?, when n is large, where e = 2.718.... By using Theorem 3, the
expected value of Np for a permutation satisfies




Before moving on to the next topic on regular S-boxes, we would like to stress that Theorem 3
shows a tight upper bound on the nonlinearity of a general S-box which does not have to be
regular. We also note that an S-box that achieves the upper bound in theorem has a flat difference
distribution table and hence is weak against differential cryptanalysis.

6.2 For a Regular S-box

As we mentioned earlier, most encryption algorithms employ regular S-boxes. Hence such S-boxes
play a more important role than does an irregular one. OQur research results to be described below
show that the nonlinearity of a regular n xm S-box can be determined by n, m and a third parameter
that counts only the number of non-zero entries in the leftmost column of the difference distribution

table of the S-box.

We begin with examining partitions of the leftmost column of a difference distribution table.

Lemma 5 Let F' be a mapping from V,, to V,,, and K is the difference distribution table of F'. Then
the leftmost column of K is determined by a 27 -partition of V,,, say V,, = Qo U --- U Qom_4, that
satisfies the condition that Q; N Q; =0 for all 7 # 1.

Proof.  For each 8 € V,,, define Q3 = {a € V,|F(a) = #}. Note that we use an integer in
[0,...,2™ — 1] and a vector in V,, interchangeably. Clearly

Vi = Ugev,, Qs (15)

and Qg NQgn =0 if ' £ ", Note that F'(z)® F(x @ a) = 0if and only if both x and x @ o belong
to the same class, say {23.

Now we modify the mapping F' into F’ by applying an arbitrary permutation on V,, to the
output of F. Clearly the partition in (15) remains unchanged, and F'(x) & F'(x & «) = 0 if and
only if both 2 and = & o belong to the same class in (15). This proves that the leftmost columns
of the difference distribution tables of I' and [ are the same. O

Armed with Lemma 5, we are ready to prove the following.

Theorem 4 Let I' be a regular n x m S-box (For such an S-box n 2 m is necessary). Denote by
tns the total number of non-zero entries (except for ko(ag)) in the leftmost column of the difference
distribution table K of F'. Then the nonlinearity of F' satisfies

B 1 23n+2m _ 24n _I_ t_l . 23n+2m 2n—m _ 1 2
N < 2n 1 _( nz )
F= (20 —1)(27 — 1) '

ST

2

Proof. Left-multiplying the transposes of the two sides in (7), we have

O ol (X (P 4+ (8 gl =270 S R(a) (1)

Since both 19 and {y are an all-one sequence, we have (1, (o) = 2". Recall that F is regular. By
Lemma 1, each non-zero linear combination of the component functions of F'is balanced. Thus for
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Jj=1,...,2" =1, n; is (1,—1) balanced and we have (1;,fy) = 0. Also recall the definition in (3)
and the fact that ¢; is (1, —1) balanced for j > 0, we can see that (g, ;) =0 for j=1,...,2" — 1.
Note that ko(cp) = 2". So (16) can be specialized as

2m—1 2m—1 271
(D2 (03 ) oo b (30 (g o)) = 2270090 — 200 4 22000 37 (g (17)
j=1 j=1 i=1

By using (11)
21 21
Y kglai) 245D kolay))?.
=1 =1
Note that F' is regular and ko(ag) = 2. By using Corollary 1, 37771 k() = 227~ — 2", Hence
21

> kglag) 2t - (2207 = 2m)%,
=1

Thus there is an 1g, 1 < 19 < 2" — 1, such that

2m_1 23n+2m _ 24n + t;zl . 2n(22n _ 2n-|—m)2 1
7=1

Since t,, < 2™ — 1, it is easy to verify that the expression under the square root is always positive.
Furthermore there is a jy, 1 < jo < 2™ — 1, such that

ety 3 (EIET 2 A 2 ey
ior b = 2 — )2 — 1) ‘

Now the theorem follows immediately from (1). O

For a permutation F on V,,, (F must be regular), again from results obtained in [18], we know
that the expected value of ¢,., approaches (1 — e_%)(Z” — 1), while n is large enough, where e =
2.718 .... This, together with Theorem 4, shows that the expected value of Ny for regular S-boxes

277,—1

is bounded from above by 277! — Nt Namely,

2n—1
Np <ot _ _2
= o — 1

6.3 Remarks on the Two Upper Bounds

Comparing Theorem 3 with Theorem 4, we note that while the former deals with a general S-box
which is not necessarily regular, the latter is strictly on a regular S-box. Therefore the condition
that n 2 m is required only in Theorem 4. In addition to n and m, both theorems employ a
third parameter in upper bounding the nonlinearity of an S-box. The third parameter 7T}, used
in Theorem 3 is the total number of non-zero entries in the entire difference distribution table of
the S-box (not taking into account the first entry in the leftmost column). In contrast, the third
parameter t,, used in Theorem 4 is the total number of non-zero entries in the leftmost column in
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the difference distribution table of the S-box (again not taking into account the first entry in the
column).

Another difference between Theorems 3 and 4 is that while the bound in the former is tight,
it is unclear whether the same can be said with the latter. This is, however, not surprising, given
that identifying the exact upper bound on the nonlinearity of a balanced function is one of the
outstanding open problems in the study of nonlinear Boolean functions.

A direct consequence of Theorem 3 is that with any n x m S-box with n > m, be it regular or
irregular, the larger the number of non-zero entries in the difference distribution table, the larger
the upper bound on the nonlinearity of the S-box. To interpret the theorem in a different way, if
one wishes to design an S-box that is resistant against linear attacks, namely highly nonlinear, then
one should make sure that a large portion of entries in the difference distribution table of the S5-box
is non-zero. Interestingly, as a larger T),. also means a wider spread of non-zero entries across the
entire difference distribution table, such an S-box can potentially have a higher resilience against
differential attacks.

What Theorem 4 implies is that for a regular S-box, ¢,., the number of non-zero entries in
the leftmost column of its difference distribution table, effects the resistance against linear and
differential attacks in a way similar to that of T},,. Thus, in designing a regular S-box, one prefers
both a large t,. and a large T,.. It should be pointed out, however, that other factors should be
taken into account too. Examples of such factors include successful attacks that exploit non-zero
entries in the leftmost column of a difference distribution table [4, 5, 21], and high order differential
attacks recently developed in [10].

Before closing this section, we note that a paper by Chabaud and Vaudenay [6] is a prior work
most relevant to this research. A main result in [6] is their Theorem 4 which is equivalent to stating
that for every mapping from V,, to V,,,, say F', the nonlinearity of F', N, satisfies

n n—1
NF£2”—1—1(3-2”—2—2(2 — D _1))%.
= 2 om |

(18)

Examining the part under the square root in the expression, one can see that it is negative if
m < n — 2. Therefore, (18) is applicable only to n x m S-boxes with m 2 n — 1.

7 Concluding Remarks

We have introduced three tables associated with an S-box, and based on a relationship among the
three tables, we have established a number of results ranging from regularity, nonexistence of certain
quadratic S-boxes, to a tight lower bound on the differential uniformity and two upper bounds on
the nonlinearity of an S-box.

In light of recent progress in interpolation and high order differential cryptanalysis [10, 24], a
natural topic that deserves immediate attention is to research into high order differential distribution
tables of S-boxes, together with connections to other cryptographic properties of S-boxes.
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Appendix: The Proof of Lemma 2

There are close relationships between the Hamming distance between rows and the distribution of
ones in the columns in a (0,1) matrix. Such relationships have been very useful in constructing
linear error correcting codes. In this appendix we review some of the relationships from the view
point of Hadamard transforms. Once the relationships are clear, the proof of Lemma 2 becomes
straightforward.

Let t 2 s, and A be an s x ¢t (0,1) matrix with rank s. Set

€o
A= §:1 = (ai;) = [X0, X1 Xe=1)5 (19)

55‘—1

where £ € V; is the 1th row vector and yx; € V; is the jth column vector of A.

We are concerned with all the linear combinations of &y, &y, ..., 1, denoted by no, m1, ..., M2e_1,
where n; = @54 cuéu, (co, c1, . .., cs_1) is the binary representation of an integer 7,7 = 0,1...,2°—1.
Now set

TIo
Ui
B = . = (bw) = [707717"'7%5—1]7 (20)
T2s—1

where B is a (0,1) matrix of order 2° x ¢ and 7; € Vi« is the jth column vector of B. Replace every
0 entry in B with 1, and every 1 entry in B with —1. Then denote by B* the new (1, —1) matrix
of order 2% x t. Write

R
Ry
B*=(b) = : = [ho, huy -+ by, (21)

)

Ros_4

where R; is the ith row vector and h; is the jth column vector of B*. One can verify that each h;
is a linear sequence of length 2°.

Let B* be the matrix defined in (21), eg, e1,...,e2:—1 be the row vectors, from the top to the
bottom, of H,. Assume that e; appears k; times in the columns of B*. We now prove

k2% ife; =e;
R T — 7 7 7
eiB"B¢; { 0 otherwise. (22)
Write e,B* = (¢f,...,¢_;) where
N 25 if e;; = hy,
Cu = { 0 otherwise (23)
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for all w =0,...,¢t — 1. Similarly, write ¢; B* = (d},, ..., d;_;), where

d: =

U

20 ifel =h
7 u
{ 0 otherwise (24)
forall u=0,...,t—1.
If e; = ¢;, then ¢; B*BTel = Y cici = k;2%°. On the other hand, if €; # ¢;, then by (23) and

24), ¢ # 0 implies d* = 0, which results in e;B*B*Tel = S2'7L ¢*d* = 0. This proves (22).
U U J

u=0 ~u"u
As the Sylvester-Hadamard matrix H,, is symmetric, (22) can be equivalently stated as:

H, BB H, = 2% diag(ko, k1, . . ., kae_1). (25)

Let R; be a row of B* defined in (21) and k; the number of times a row vector e; in Hy appears
in the columns of B*. From (25) we have B*B*T = H, diag(ko, k1, ..., kys_1)H,. Comparing the
first rows in the two sides of the equation, we have

((Ro, Ro), (Ro, R1), . ... (Ro, Rye_1)) = (kos ki, .., kyey ) H,. (26)

Now we are in a position to prove Lemma 2. Consider an s x ¢ matrix A defined in (19) with
s=mand t =n. Let a row & in (19) be the truth table of f;(2) & fi(x o), i =0,1,...,m — 1.
Correspondingly, 7; in (20) denotes the truth table of g;(x) & ¢;(¢ & «), and R; in (21) denotes the
sequence of ¢;(z) B gi(x B o), 1 =0,1,...,2" — 1.

As go is the zero function, Ry is the all-one sequence. Hence (R, R;) is equal to the sum of the
components in R;. That is, (Ro, R;) = A;(«). Hence Part (i) of Lemma 2 follows from (26).

For o = ag,aq,...,a2n_1, Part (i) of Lemma 2 gives 2" equations. These equations can be
written as Part (ii) of the lemma. Part (iii) of the lemma follows from (2). And finally Parts (ii)
and (iii) of the lemma together give Part (iv) of the lemma.
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