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Abstract

Three of the most important criteria for cryptographically strong Boolean functions are
the balancedness, the nonlinearity and the propagation criterion. The main contribution of
this paper is to reveal a number of interesting properties of balancedness and nonlinearity, and
to study systematic methods for constructing Boolean functions satisfying some or all of the
three criteria. We show that concatenating, splitting, modifying and multiplying (in the sense
of Kronecker) sequences can yield balanced Boolean functions with a very high nonlinearity.
In particular, we show that balanced Boolean functions obtained by modifying and multi-
plying sequences achieve a nonlinearity higher than that attainable by any previously known
construction method. We also present methods for constructing balanced Boolean functions
that are highly nonlinear and satisfy the strict avalanche criterion (SAC). Furthermore we
present methods for constructing highly nonlinear balanced Boolean functions satisfying the
propagation criterion with respect to all but one or three vectors. A technique is developed
to transform the vectors where the propagation criterion is not satisfied in such a way that
the functions constructed satisfy the propagation criterion of high degree while preserving the
balancedness and nonlinearity of the functions. The algebraic degrees of functions constructed
are also discussed, together with examples illustrating the various constructions.
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1 Introduction

A Boolean function of n input coordinates is said to satisfy the propagation criterion with respect to
a non-zero vector if complementing input coordinates according to the vector results in the output
of the function being complemented 50% of the time over all possible input vectors, and to satisfy
the propagation criterion of degree k if complementing k or less input coordinates results in the
output of the function being complemented 50% of the time over all possible input vectors. Another
important criterion, the strict avalanche criterion (SAC), coincides with the propagation criterion
of degree 1. It is well known that bent functions possess the highest nonlinearity and satisfy the
propagation criterion with respect to all non-zero vectors [Dil72]. However two drawbacks of bent
functions prohibit their direct applications in practice. The first drawback is that they are not
balanced, and the second drawback is that they exist only when the number of input coordinates is
even. Cryptographic applications, such as the design of strong substitution boxes (S-boxes), often
require that when input coordinates of a Boolean function are selected independently, at random,
the output of the function must behave as a uniformly distributed random variable [KD79, AT90a].
In other words, the function has to be balanced. Some practical applications need Boolean functions
with an odd number of input coordinates. On the other hand, the nonlinearity of Boolean functions
measures the ability of a cryptographic system using the functions to resist against being expressed
as a set of linear equations.

This paper is concerned properties and constructions of nonlinearly balanced functions. We
present a number of methods for constructing highly nonlinear balanced functions. These include
concatenating, splitting, modifying and multiplying (in the sense of Kronecker) sequences. It is in-
teresting to note that balanced functions obtained by modifying and multiplying sequences achieve
a nonlinearity higher than that attainable by any previously known construction method. We also
initiate the research into the systematic construction of highly nonlinear balanced functions satis-
fying the SAC or the propagation criterion. We present simple methods for constructing balanced
functions satisfying the SAC. When n = 2k + 1, where n is the number of input coordinates, the
nonlinearity of functions constructed is at least 2% — 2F and when n = 2k, it is at least 22¢=1 — 2F,

Furthermore we present methods for constructing balanced functions satistying the high degree
propagation criterion. More precisely, when n = 2k + 1, we construct balanced functions that
satisfy the propagation criterion with respect to all but one non-zero vectors, and when n = 2k,
functions we construct are balanced and also satisfy the propagation criterion with respect to all
but three non-zero vectors. We also show that the vectors where the propagation criterion is not
satisfied can be transformed into other vectors. As a consequence, we obtain balanced functions
satisfying the propagation criterion of degree 2k when n = 2k + 1, and balanced functions satisfying
the propagation criterion of degree 43—k when n = 2k. The nonlinearity of functions constructed is
at least 228 — 2% when n = 2k + 1, and 22k=1 _ 9k when n = 2k.

The organization of the rest part of the paper is as follows: in Section 2 we introduce notations
and definitions used in this paper. In Section 3 we prove results on the nonlinearity and balancedness
of functions including those obtained by concatenating or splitting bent sequences. In Section 4, we



show methods for constructing highly nonlinear balanced functions by modifying and multiplying
sequences. Qur construction methods for highly nonlinear balanced functions satistying the SAC
are presented in Section 5, while methods for highly nonlinear balanced functions satisfying the high
degree propagation criterion are presented in Section 6. Each method is illustrated by constructing
a concrete function with the cryptographic properties. The paper is closed by a discussion of future
work in Section 7.

2 Preliminaries

We consider functions from V,, to G'F'(2) (or simply functions on V,,), where V, is the vector space
of n tuples of elements from GF(2). These functions are also called Boolean functions. Note that
functions on V,, can be represented by polynomials of n coordinates. We are particularly interested
in the algebraic normal form representation in which a function is viewed as the sum of products of
coordinates. The algebraic degree of a function is the number of coordinates in the longest product
when the function is represented in the algebraic normal form. To distinguish between a vector of
coordinates and an individual coordinate, the former will be strictly denoted by x, y or z, while the
latter strictly by x;, y;, z;, u or v, where 7 is an index.

Let f be a function on V,,. The (1, —1)-sequence defined by ((—1)f(0) (—1)fea) - (—1)Fe2n-1))
is called the sequence of f, and the (0, 1)-sequence defined by (f(ao), f(e1), ..., f(aan_q1)) is called
the truth table of f, where a;, 0 < ¢ < 2™ — 1, denotes the vector in V,, whose integer representation
is ¢. A (0, 1)-sequence ((1,—1)-sequence) is said balanced if it contains an equal number of zeros
and ones (ones and minus ones). A function is balanced if its sequence is balanced.

Obviously if (ag,...,asn_1) and (bg,...,byn_1) are the sequences of functions f; and fy on V,,
respectively, then (agbo, ..., azn_1ban_1) is the sequence of f(x) & g(x), where © = (21, 29,...,2,).
In particular, —(aq,...,azn_1) = (—ag, ..., —agn_y1) is the sequence of 1 & fi(x).

An affine function f on V, is a function that takes the form of f(z) = @121 B - -Bayx, He, where
aj,c € GF(2), 5 =1,2,...,n. Furthermore f is called a linear function if ¢ = 0. The sequence
of an affine (or linear) function is called an affine (or linear) sequence. The Hamming weight of a
(0, 1)-sequence (or vector) «, denoted by W(«), is the number of ones in a. The Hamming distance
between two sequences a and /3 of the same length, denoted by d(«, 3), is the number of positions
where the two sequences differ. Given two functions f and ¢ on V,,, the Hamming distance between
them is defined as d(f,g) = d(&;,€,), where {5 and &, are the truth tables of f and g respectively.
The nonlinearity of f, denoted by Ny, is the minimal Hamming distance between f and all affine
functions on V,,, i.e., Ny = min;,_q;__an+1-1d(f, ;) where @o, @1, ..., pan+1_1 denote the affine
functions on V,,.

The following notation will be used in this paper. Let a = (a1, --,a,) and § = (by,---,b,)
be two sequences (or vectors), the scalar product of o and 3, denoted by (a, 3), is defined as the
sum of the component-wise multiplications. In particular, when « and  are from V,,, (a, ) =
arby @ - - - P ayb,, where the addition and the multiplication are over GF(2), and when « and /3 are
(1, —1)-sequences, (a, ) = a1by + - - -+ a,by,, where the addition and the multiplication are over the
reals.

The Kronecker product of an m x n matrix A and an s x t matrix B, denoted by A ® B, is an



ms x nt matrix defined by

anB  apB - a,B
A 9 B— QQ‘IB GQ?B ce G27?B
amlB amZB e amnB

where a;; is the element in the :th row and the jth column of A. In particular, the Kronecker
product of a sequence « of length m and a sequence  of length n is a sequence of length mn
defined by a @ 8 = (a1b, azb, - - -, a,,b), where a; is the ith element in a.

A (1, —1)-matrix H of order n is called a Hadamard matrix if HH* = nl,, where H' is the
transpose of H and [, is the identity matrix of order n. It is well known that the order of a
Hadamard matrix is 1, 2 or divisible by 4 [WSW72, SY92]. A special kind of Hadamard matrix,
called Sylvester-Hadamard matriz or Walsh-Hadamard matriz, will be relevant to this paper. A
Sylvester-Hadamard matrix of order 2", denoted by H,, is generated by the following recursive
relation

1 1

Hozl,Hn:ll _1

]@Hn_l,nzl, 2,

Note that H, can be represented as H, = H, ® H; for any s and ¢ with s+ = n.
Sylvester-Hadamard matrices are closely related to linear functions, as is shown in the following
lemma. For completeness, the proof of the lemma is also presented.

lo
. él . .
Lemma 1 Write H, = ] where (; is a row of H,. Then {; is the sequence of h; = (ay, x),
lon_4
a linear function, where o; is a vector in V,, whose integer representation is i and © = (x1,...,2,).

Conversely the sequence of any linear function on V,, is a row of H,.

1 1
1 =1
The first row of Hy, lo = (1,1), is the sequence of {ap, x), while the second row of Hy, {1 = (1,—-1),
is the sequence of hq(z) = (aq,x), where @ = (21, 22), o = (0,0) and ag = (0, 1).

Now suppose the first half of the lemma is true for n = 1,2,... &k — 1. Since Hy = Hy ® Hj_1,
each row of Hj can be expressed as 6 @ { where 6 = (1,1) or (1,—1), and ( is a row of Hy_y. By

Proof. We prove the first half of the lemma by induction on n. Let n = 1. Then H; = l

the assumption ¢ is the sequence of a linear function hy_1(x) = (o, x) for some a € Vi_1, where
= (21,...,25-1). Thus 6 @ { is the sequence of a linear function on Vj defined by hi(y) = (5,y),
where y = (y1,...,y%), 8= (0,a) if 6 = (1,1) and 8 = (1, a) otherwise. Thus the first half is also
true for n = k.

The second half follows from the above discussion as well as the fact that H, has 2" rows and
that there are exactly 2" linear functions on V. O

JFrom Lemma 1 the rows of H, comprise the sequences of all linear functions on V,,. Conse-
quently the rows of £H,, comprise the sequences of all affine functions on V.



The following notation is very useful in obtaining the functional representation of a concatenated
sequence. Let 6 = (i1,19,...,1,) be a vector in V,,. Then Dy is a function on V, defined by

D5(y17y27"'7yp): (yl@il@l)'”(yp@ip@l)‘

Using this notation one can readily prove

Lemma 2 Let fo, f1, ..., fav—1 be functions on V. Let & the sequence of f;, v =0,1,...,2P — 1,
and let & be the concatenation of &o, &1, ..., Eaw_1, namely, & = (&o,&1,...,Em—1). Then £ is the
sequence of the following function on V4,

fly,7) = @ Dai(v)filx)

where y = (y1,...,Yyp), © = (T1,...,24) and «; is the vector in V, whose integer representation is ¢.

As a special case, if £, & are the sequences of functions f1, fa on V,,, then n = (£1,&;) is the
sequence of the following function ¢ on V, 41

glu, a1, o xn) = (1B u)fi(er, ..o, x,) Bufalar, ... x,).
We now introduce the concept of bent functions.
Definition 1 A function f on 'V, is called a bent function if

92— % Z (_1)f(l’)@(571’> — +1

zEVR

for all p € V,. Here f(x) & (B,x) is regarded as a real-valued function. The sequence of a bent
function is called a bent sequence.

JFrom the definition we can see that bent functions on V,, exist only when n is even. It was
Rothaus who first introduced and studied bent functions in 1960s, although his pioneering work was
not published in the open literature until some ten years later [Rot76]. Other issues related to bent
functions, such as properties, constructions and counting, can be found in [AT90a, KS83, LC82,
OSW82, YH89]. Kumar, Scholtz and Welch [KSW85] defined and studied bent functions from
7y to Z,, where ¢ is a positive integer. Applications of bent functions to digital communications,
coding theory and cryptography can be found in such as [AT90b, DT93, LC82, Los87, MS78, MS90,
Nyb91, OSW382].

The following result can be found in an excellent survey of bent functions by Dillon [Dil72].

Lemma 3 Let f be a function on V,, and let & be the sequence of f. Then the following four
statements are equivalent:

(i) f is bent.
(ii) (£,0) = +23" for any affine sequence { of length 2.

(tii)) f(2) @ f(x & a) is balanced for any non-zero vector a € V,,.

5



(iv) f(z) @ (a,z) assumes the value one 2"~' + 2571 times for any a € V.

By (iv) of Lemma 3, if f is a bent function on V,,, then f(x) @& h(x) is also a bent function
for any affine function h on V,,. This property will be employed in constructing highly nonlinear
balanced functions to be described in Sections 5 and 6.

In [Web85, WT86], Webster and Tavares first introduced the notion of strict avalanche criterion
(SAC):

Definition 2 A function f on V, is said to satisfy the SAC if complementing any single input
coordinate results in the output of f being complemented half the times over all input vectors,
namely, f(x) @ f(x @ a) is a balanced function for any vector o € V,, whose Hamming weight is 1.

The SAC has been generalized in two different directions: the propagation criterion [AT90a,
PLL*91] and the high order SAC [For89]. (Note that in [AT90a] the former is called the high order
SACI1, while the latter the high order SAC2.) A combination of the two generalizations has also
been studied in [PLL*t91, PGV91]. In this paper we are concerned with the propagation criterion
whose formal definition follows.

Definition 3 Let f be a function on V,,. We say that f satisfies

1. the propagation criterion with respect to a non-zero vector o in V,, if f(2) & f(x & «) is a
balanced function.

2. the propagation criterion of degree k if it satisfies the propagation criterion with respect to all

aeV, withl £ W(a) k.

Note that the SAC is equivalent to the propagation criterion of degree 1. Also note that the per-
fect nonlinearity studied by Meier and Staffelbach [MS90] is equivalent to the propagation criterion
of degree n.

Now it becomes clear that when n is even, only bent functions fulfill the propagation criterion of
the maximal degree n. Another property of bent functions is that they possess the highest possible
nonlinearity. This will be discussed in more detail in the next section. However, since bent functions
are not balanced and exist only for even n, they can not be directly employed in many practical
applications. Constructing highly nonlinear balanced functions is the main topic to be treated in
the following sections. Methods for constructing functions with additional properties, such as the
SAC or the high degree propagation criterion, will also be presented.

3 Properties of Balancedness and Nonlinearity

This section presents a number of results related to balancedness and nonlinearity. These include
upper bounds for nonlinearity and properties of concatenated and split sequences.



3.1 Upper Bounds of Nonlinearity
First we prove a lemma that is very useful in calculating the nonlinearity of a function.

Lemma 4 Let [ and g be functions on V,, whose sequences are &5 and &, respectively. Then the
distance between f and g can be calculated by d(f,g) = 2" — L(&;,¢,).

P?“OOf. <£f7€g> = Zf(ac):g(x) 1— Zf(ac);ég(w)l =2" — QZf(x);ég(x)l = 2" — Qd(f,g) This proves the

lemma. O

Recall that H, is a 2" x 2" matrix. Denote by {; the ith row of H,, where : = 0,1,...,2" — 1.
For each (;, define ;4 on = —{;. Since ly, {1, ..., {3n_y are linear sequences of length 2", {{ly, ...,
lon_1, lon, ..., lyns1_1} comprise all the affine sequences of length 2”. For convenience, the affine
function corresponding to the sequence ¢; is denoted by ;. Now let f be a function on V,, whose
sequence is £. We are interested in determining the upper bound of the distance between f and all
the affine functions on V,,.

Using Parseval’s equation (Page 416, [MS78]), we have

2n_1

> (€ 6)t =2 (1)

i=0
Consequently there exists an integer 0 < ig < 2" —1 such that (£, 0;,)?* = (£, {;y42n)* = 2". By noting
the fact that (&, 0;)) = —(&,{;,42n), we have either (£, (;)) 2 23" or (€ ligqan) = 23", Without loss of
generality assume that (£, (;,) = 25", Then by Lemma 4, d(f, i) =201 = 3(€, 0;y) S 2771 —23n-1,
This proves the following lemma which gives the upper bound of the nonlinearity of a function on

Va.
Lemma 5 For any function f on 'V, the nonlinearity Ny of f satisfies Ny < 2"~ — 231,

It is well-known that the maximum nonlinearity of functions on V,, coincides with the covering
radius of the first order binary Reed-Muller code R(1,n) of length 2" (see [CKHFMS85]). Many
results on the covering radius of R(1,n) have direct implications on the nonlinearity of functions.
In particular, Lemma 5 can be viewed as a translation of the upper bound on the covering radius
of R(1,n) [CKHFMSS85].

Let n be even, f be a bent function on V,, and ¢ be the sequence of f. By Lemma 3, we have
(&, 0;) = +25" for any afline sequence (;, i = 0,1,...,2"t' —1. By Lemma 4, d(f,p:) =21 423771
for any ¢;, 7 = 0,1,...,2"" —1. Finally by the definition of nonlinearity we have N; = 2"~! —93n-1,
Thus bent functions attain the upper bound for the nonlinearities of functions on V,, shown in
Lemma 5.

Conversely, if the nonlinearity of a function f on V, attains the upper bound 277! — 2%”_1, we
can show that (£,0;) = +237 for all i = 0,1,...,2""1 — 1, which implies that f is bent. Suppose
that it is not the case. Then (¢,¢;) # +25" for some i, 0 < i < 21 — 1. Note that for any
0=i=<2" —1, (£,06) = —(£,liya), and hence (£,0;)* = (£, liy2n)?. Thus from the Parseval’s
equation (1), there exist iy and ¢, 0 < 4,19, < 2" —1, such that (£, 6;,)* > 2™ and (£, (,,)* < 2". This
implies that either (£,¢;,) > 23" or (&, 0;) yon) > 23", and hence either d(f,piy) <271 — 2571 or
d(f, pijpan) < 2771 —23n-1 (see also Lemma 4.) As a consequence we have N; < 2"7* — 23771 This
contradicts the assumption that f attains the maximum nonlinearity 2"~ — 2571, Consequently
we have the following result (see also [MST78]):



Corollary 1 A function on V, attains the upper bound for nonlinearities, 27! —2%”_1, if and only
if it is bent.

JFrom Corollary 1, balanced functions can not attain the upper bound for nonlinearities, namely
1 . . . Vs .
2=l 2371 A slightly improved upper bound for the nonlinearities of balanced functions can be
obtained by noting the fact that a balanced function assumes the value one an even number of
times.

Lemma 6 Let & and n be (0,1)-sequences of length 2t. If both W (&) and W(n) are even, then
d(&,n) is even.

Proof.  Write £ = (ay,...,a2) and n = (by,...,by). Denote by ny the number of pairs (a;,b;) =
(0,0), by ny the number of pairs (a;,b;) = (0,1), by ns the number of pairs (a;,b;) = (1,0), and by
ny the number of pairs (a;,b;) = (1,1). Hence ny + n2, ng + n4, ny + n3 and ng + ny are all even.
Consequently, 2ny + ng + ns = (n1 + n2) + (n1 + n3) is even. This proves that d(&,n) = ny + ns is
even. d

Corollary 2 Let f be a balanced function on V,, (n 2 3). Then the nonlinearity Ny of f is given

by
on=1 _ 9gn—1 _ 2, n even

N: < 1
,= { (270 = 2571 |, odd

where | |x]| denotes the mazimum even integer less than or equal to x.

Proof. Note that the length of the sequence of a function is even. Also note that the truth table of
f contains an even number of ones and that all affine sequences contain an even number of ones. By

Lemma 6, Ny = min;_q ;1 on+1-1 d(f,:), where @o, @1, ..., @an+1_; denote the affine functions on
V,., must be even. On the other hand, since f is not bent, by corollary 1 we have N; < 2771 — 231,
This proves the corollary. O

For V;, there are six balanced sequences, namely
+(1,1,1,1), £(1,-1,1,-1), (1, -1, -1, 1)

all of which are linear. Therefore there are no nonlinearly balanced functions on V5.

3.2 Concatenating Sequences

The following lemma gives the lower bound of the nonlinearity of a function obtained by concate-
nating the sequences of two functions.

Lemma 7 Let fi and fy be functions on 'V, and let g be a function on V, 1 defined by

g(U,J}l, s 7$n) = (1 b u)fl(xlv' .- 7$n) b qu(xlv s 7$n)' (2)

Suppose that & and &, the sequences of f1 and fy respectively, satisfy (€1,0) £ Py and (&3,0) £ Py
for any affine sequence { of length 2", where Py and Py are positive integers. Then the nonlinearity

of g satisfies Ny 2 2" — L(Py 4 P).



Proof. Note that £ = (&,&2) is the sequence of ¢g. Let ) be an arbitrary affine function on V,,11 and
let L be the sequence of ¢». Then L must take the form of L = (¢, £() where { is an affine sequence
of length 2". Note that (¢, L) = (&1, 0) £ (&2, () and thus |(¢, L)] £ Py + P,. On the other hand, by
Lemma 4 we have d(g,1) = 2" —1(¢, L). (From these discussions we have d(g,v) 2 2" — L(P, + P,).
Since ¢ is arbitrary we have N, =2 2" — (P, + P,), and this completes the proof. O

As bent functions do not exist on V5541, an interesting question is what functions on V554 are
highly nonlinear. The following result, as a special case of Lemma 7, shows that such functions can
be obtained by concatenating bent sequences. This construction has also been discovered by Meier

and Staffelbach in [MS90].

Corollary 3 In the construction (2), if both fi and fo are bent functions on Vay,, then N, = 2% —2F,

Proof. In the proof of Lemma 7, let P, = P, = 2%, O

A similar result can be obtained when sequences of four functions are concatenated.

Lemma 8 Let fo, f1, f2 and f3 be functions on V,, whose sequences are &y, &1, &2 and &3 respectively.
Assume that (£;,0) = P; for each 0 =i < 3 and for each affine sequence { of length 2", where each
P; is a positive integer. Let g be a function on V, 15 defined by

9(y.2) = €D Day () i) 3)

where y = (y1,y2), © = (21,...,2,) and «; is a vector in Vo whose integer representation is . Then

N, = 27+t — %(Po + P+ Py + Ps). In particular, when n is even and fo, f1, f2 and fs are all bent
Junctions on V,,, N, = 2"+t — 93n+l

Proof. The proof is similar to that for Lemma 7, and hence is omitted. O

Lemma 8 can be further generalized. Let fo, f1, ..., for—1 be functions on V,,. Denote by ¢; the
sequence of f;. Assume that (£, () < P, for each 0 < ¢ < 2" — 1 and for each affine sequence ¢ of
length 2", where each F; is a positive integer. Let g be a function on V, ; defined by

2t—1
9(y.2) = D Da,(y) fi(x) (4)

i=0
where y = (y1,...,¥:), * = (21,...,2,) and «; is a vector in V; whose integer representation is ¢.
Then N, =z 2+t — %Z?;_Ol P;. In particular, when n is even and f;, 1 = 0,...,2" — 1, are all bent

functions on V,,, N, = 27+i=1 — 3nti=l

By selecting proper starting functions in (2), (3) and (4), the resulting functions can be balanced.
For instance, in (2), if both fi and f; are balanced, or the number of times f; assumes the value
one is equal to that f, assumes the value zero, the resulting function ¢ is balanced.



3.3 Splitting Sequences

We have discussed the concatenation of sequences of functions including bent functions. The fol-
lowing lemma deals with the other direction, namely splitting bent sequences.

Lemma 9 Let f(xy,x9,...,29) be a bent function on Vay, no be the sequence of f(0,xq,. .., x2),

and ny be the sequence of f(1,xa,...,291). Then for any affine sequence ( of length 2**=1 we have
—2F < (o, ) < 2% and —2% < (5, 0) £ 2%,

Proof.  We only give a proof for —2F < (5o, () < 2*. The other half can be proved in the same
way. Since f(x1,22,...,22%) = (1 & 21)f(0,22,...,295) & w1 f (1,29, ...,22%), 7 = (00,7m1) is the
sequence of f(xy,x9,...,29;). Let L = ({,{) and L' = ({,—{). By Lemma 1, both L and L’ are
affine sequences of length 2%

Suppose that —2% < (5o, £) < 2% is not true. Without loss of generality assume that (5o, () > 2F.
There are two cases that have to be considered: (n;,f) > 0 and (n;,f) < 0. In the first case we
have (5, L) 2 (no,0) + (m1,¢) > 2%, and in the second case we have (n, L") = (no,0) + (n1,—() =
(no, () + (=1){n1,0) > 2% both of which contradict the fact that (n,L) = £2* (see also (ii) of

Lemma 3). This completes the proof. O
A consequence of Lemma 9 is that the nonlinearity of f(0,zq,...,22) and f(1,x2,...,29;) is
at least 22%=2 — 281 1t is interesting to note that concatenating and splitting bent sequences both

achieve the same nonlinearity.

Splitting bent sequences can also result in balanced functions. Let {; be the ith row of Hj where
i = 0,1,...,2F — 1. Note that {, is an all-one sequence while {1, {5, ..., {3_; are all balanced
sequences. The concatenation of the rows, ({o, (1, ...,y _1), is a bent sequence [AT90a]. Denote by
flx1,22,. .., x2) the function corresponding to the bent sequence. Let ¢ be the second half of the
bent sequence, namely, & = ({yr-1,lox—1,q,...,lex_y). Then € is the sequence of f(1,xq,..., 2).
Since all £;, ¢ = 281 2k=1 41 .. 2% — 1 are balanced, f(1, s, ..., 7;) is a balanced function. The
nonlinearity of the function is at least 22¢=2 — 2k—1,

By permuting {{yr-1, {yr-111, ..., lox_1 }, we obtain a new balanced sequence & = (¢;_,,{
that has the same nonlinearity as that of {. Now let £ = (egr-10)_1, eqn-1 41001 5oy ear 1),
where each ¢; is independently selected from {1, —1}. ¢ is also a balanced sequence with the same
nonlinearity. The total number of balanced sequences obtained by permuting and changing signs is
22571 9k=11 These sequences are all different from one another but have the same nonlinearity.

3.4 An Invariance Property

Next we examine properties of functions with respect to the affine transformation of coordinates.
Let f be a function on V,,, A a nondegenerate matrix of order n with entries from G'F(2), and b a
vector in V,,. Then f*(x) = f(xA @ b) defines a new function on V,,, where © = (21, x2,...,2,). It
is obvious that the algebraic degree of f* is the same as that of f.

On the other hand, since A is nondegenerate, A & b is an one-to-one mapping on V,,. Hence
the truth table of f* contains exactly the same number of ones as that of f. This indicates that
the balancedness of a function is preserved under the affine transformation of coordinates.

Now let o be an affine function on V,, and let ¢*(2) = ¢(xA & b). It is easy to verify that
d(f,o) =d(f*,¢*). Since A is nondegenerate, ¢* will run through all affine functions on V,, while
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@ runs through all affine functions on V,,. This proves that the nonlinearity of f* is the same as
that of f.

Finally we consider the propagation characteristics under the affine transformation of coordi-
nates. Let o be a nonzero vector in V,,. f*(x) & f*(x & «) is balanced if and only if

JEAGD) @ f((a@a)Adb) = f(zAG) @ f((zAD D) & aA)
= [ & fly®h)

is balanced, where y = t A @ b and # = aA. Since A is nondegenerate and « is a nonzero vector, 3
is a nonzero vector. In addition, y = 2 A& b will run through V,, while  runs through V,,. Therefore
the number of vectors in V,, where the propagation criterion is satisfied remains unchanged under
the affine transformation. To summarize the discussions, we have

Lemma 10 The algebraic degree, the Hamming weight of the truth table, the nonlinearity, and
the number of vectors with respect to which the propagation criterion is satisfied, of a function are
invariant under the affine transformation of coordinates.

4 Highly Nonlinear Balanced Functions

Note that a bent sequence on Vjj, contains 22%71 4 251 ones and 221 — 2%~ zeros, or vice versa.
As is observed by Meier and Staffelbach [MS90], changing 2*~! positions in a bent sequence yields
a balanced function having a nonlinearity of at least 22*=' — 2% This nonlinearity is the same as
that obtained by concatenating four bent sequences of length 2272 (see Lemma 8).

As the maximum nonlinearity of functions on V,, coincides with the covering radius of the first
order binary Reed-Muller code R(1,n) of length 2" [CKHFMS85], using a result of [PW83], we can
construct unbalanced functions on Voryq, k = 7, whose nonlinearity is at least 22% — %2’“, a higher
value than 2%% — 2% achieved by the construction in Corollary 3. One might tempt to think that
modifying the sequences in [PW83] would result in balanced functions with a higher nonlinearity
than that obtained by concatenating or splitting bent sequences. We find that it is not the case.
We take Vi5 for an example. The Hamming weight of the sequences on Vis5, which have the largest
nonlinearity of 16276, is 16492. Changing 54 positions makes them balanced. The nonlinearity of
the resulting functions is 16222, smaller than 16256 achieved by concatenating two bent sequences
of length 2'* (see Corollary 3).

In the following we show how to modify bent sequences of length 22* constructed from Hadamard
matrices in such a way that the resulting functions are balanced and have a much higher nonlin-
earity than that attainable by concatenating four bent sequences. This result, in conjunction with
sequences in [PW83], allows us to construct balanced functions on V5115, & = 7, that have a higher
nonlinearity than that achieved by concatenating or splitting bent sequences.

4.1 On Vék

Note that an even number n = 4 can be expressed as n = 4t or n = 4t + 2, where t = 1. As the
first step towards our goal, we prove

Lemma 11 For any integer t 2 1 there evists
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i) a balanced function f on Vi such that N, = 241 —2%-1__ 9t
f s

(ii) a balanced function f on Vis such that N, = 24+t — 22 _ 9ot

Proof. (i) Let {; be the ith row of Hy where ¢ = 0,1,...,2%" — 1. Then { = ({og,l1,. .., ly2e_1) is a
bent sequence of length 2%,

Note that except for {o = (1,1,...,1), all other ¢; (i = 1,...,2* — 1) are balanced sequences of
length 22¢. Therefore replacing the all-one (or “flat”) leading sequence {5 with a balanced sequence
renders ¢ balanced. The crucial idea here is to select a replacement with a high nonlinearity, since
the nonlinearity of the resulting function depends largely on that of the replacement.

The replacement we select is (5 = (€1, €1, €2,...,€2_1), where ¢; is the ith row of H;. Note that
the leading sequence in £} is e; but not eg = (1,1,...,1). £ is a balanced sequence of length 2%,
since all e;, ¢ = 1,...,2" — 1, are balanced sequences of length 2. Replacing (o by (5, we get a
balanced sequence £* = (05,01, ... (y:_y).

Denote by f* the tfunction corresponding to the sequence £, and consider the nonlinearity of
f*. Let ¢ be an arbitrary affine function on Vj;, and let L be the sequence of . By Lemma 1, L is
a row of £ Hy. Since Hy = Hy @ Hyy, L can be expressed as L = £0; @ (;, where {; and {; are two
row of Hy.. Assume that {; = (ag, a1,...,a92¢_q). Then L = +(aol;,a1l;,. .. aye_1{;). A property
of a Hadamard matrix is that its rows are mutually orthogonal. Hence (¢,,¢,) = 0 for p # ¢. Thus

€7, LT = [0, 6] + (G, G = (6, 45)] + 2.

We proceed to estimate |((5, (;)|. Note that Hyy = H; @ Hy, {; can be expressed as {; = e, @ €,,
where e, and e, are rows of H;. Write e, = (bg,...,byt_1). Then (; = (boey,. .., byt_1€,). Similarly
to the discussion for [(£*, L)|, we have

2|(eq, €9)] = 211 if v = 2,
(G L)l =9 Kewe)| =20, ifo=3,....2,
0, ifo=1

Thus (€5, 0;)] < 2+ and hence [(£*, L)]| = 21 4 2%,

By Lemma 4, d(f*,p) 2 2%71 — L(¢x L) = 2471 — 2%~1 — 2% Since ¢ is arbitrary, Ny =
2425—1 _ 2225—1 _ 215‘

(i1) Now consider the case of Viiq. Let £;, 4 =10,1,...,2%T1 — 1 be the ith row of Hyyy. Then
&= (lo,ly,... ly41_1) is a bent sequence of length 2412,

The replacement for the all-one leading sequence o = (1,1,...,1) € Va4q is the following
balanced sequence £ = (egt, €9t1q,...,€9:41_1), the concatenation of the 2'th, the (2! 4+ 1)th, ...,
and the (2t —1)th rows of H;1y. Let £ = (05,04, ..., ly241_1), and let f* the function corresponding
to the balanced sequence.

Similarly to the case of Vi, let ¢ be a affine function on Vj;1o and let L be its sequence. L can
be expressed as L = +{; @ {; where {; and {; are rows of Hyq. Hence

(€7 L)) = (6 )]+ (6, )] = (6, £5)] + 22+

Since 0 is obtained by splitting the bent sequence (eg, €1,...,eg41_y1), where ¢; is a row of Hiiq,
by Lemma 9, we have [(5,(;)] < 2'T'. ;From this it follows that [(£*, L) 2L 4 22+ and
Njo = 2441 _ 92t _ ot 0

A 2

12



With the above result as a basis, we consider an iterative procedure to further improve the
nonlinearity of a function constructed. Note that an even number n = 4 can be expressed as
n=2""mz22orn=22t+1),s=1and t21.

Consider the case when n = 2™, m = 2. We start with the bent sequence obtained by con-
catenating the rows of Hym—1. The sequence consists of 2277 sequences of length 22”7 . Now we
replace the all-one leading sequence with a bent sequence of the same length, which is obtained
by concatenating the rows of Hym—z. The length of the new leading sequence becomes 22", It
is replaced by another bent sequence of the same length. This replacing process is continued until
the length of the all-one leading sequence is 22 = 4. To finish the procedure, we replace the leading
sequence (1,1,1,1) with (1, —1,1,—1). The last replacement makes the entire sequence balanced.
By induction on s = 2,3.4,..., it can be proved that the nonlinearity of the function obtained is

at least
2m—2

m 1 m—1 2
2? —1—5(22 +2°7 4 427 4227,

The modifying procedure for the case of n = 2°(2t + 1), s 2 1 and t 2 1, is the same as that

for the case of n = 2™, m = 2, except for the last replacement. In this case, the replacing process

is continued until the length of the all-one leading sequence is 22t

. The last leading sequence is
replaced by (§ = (eat, €941, ..., €941 1), the second half of the bent sequence (eg, ey, ..., eq+1_1),
where each €; is a row of H;yq. Again by induction on s = 1,2,3,..., it can be proved that the

nonlinearity of the resulting function is at least

22S(2t+1)—1 . l( 2571(2t+1) + 225_2(2t+1) R 22(2t+1) + 92t+1 + 2t+1)‘

2
We have completed the proof for the following

Theorem 1 For any even number n = 4, there exists a balanced function f* on V, whose nonlin-
earity is

N 271 12T 92T 1 9% 092, n=2"
= 92teet)-1 _ %(225—1(%4—1) 49272 oLy 92(2641) o 92641 2000 n =252t 4 1).

Let ¢ = ((o,Ciy- -+, Cr_q) be a sequence of length 22* obtained by modifying a bent sequence.
Permuting and changing signs discussed in Section 3.3 can also be applied to (. In this way we
obtain in total 22° - 2%! different balanced functions, all of which have the same nonlinearity. Even
more functions can be obtained by observing the fact that the leading sequence (y has exactly the
same structure as the large sequence (, and hence permuting and changing signs can also be applied
to (o.

The nonlinearities of balanced functions on Vj, Vg, V&, Vig, V12 and V4 constructed by the method
shown in the proof of Theorem 1 are calculated in Table 1. For comparison, the nonlinearities of
balanced functions constructed by concatenating four bent sequences (see Lemma 8) as well as the
upper bounds for the nonlinearities of balanced functions (see Corollary 2) are also presented.

4.2 On ‘/2]9_1_1

Lemma 12 Let f; be a function on Vs and fy be a function on V;. Then fi(x1, ..., 25)Bfa(y1,- -, yet)
is a balanced function on Vg if either fi or fy is balanced.
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‘ Vector Space ‘ Vi ‘ Ve ‘ Vs ‘ Vio ‘ Via ‘ Via ‘

Upper Bound 4 126 | 118 | 494 | 2014 | 8126
By Modification | 4 | 26 | 116 | 492 | 2010 | 8120
By Concatenation | 4 |24 | 112 | 480 | 1984 | 8064

Table 1: Nonlinearities of Balanced Functions

Proof.  Let g(x1,..., 25,41,y yt) = filx, .. 2s) & falyr, ..., y:). Without loss of generality,
suppose that fi is balanced. Then for any vector (aq,...,a;) € Vi,

glay, .o xsyar, .o a0) = fi(xa, ..o xs) B falar,. .., a)
is a balanced function on V,. ;From this it immediately follows that ¢ is a balanced function on

Vit U

Let & be the sequence of fi on V; and & be the sequence of f; on V. Then it is easy to verify
that the Kronecker product & @ & is the sequence of fi(x1,...,25) @& fa(y1, ..., ys)-

Lemma 13 Let fi be a function on Vs and fy be a function on V;. Let g be a function on Vi,
defined by
glxe, .o s Y1,y ys) = frl@, oo xs) B falyr, ooy ye)-

Suppose that & and &2, the sequences of f1 and fy respectively, satisfy (&1,0) < Py and (£3,0) = P,
for any affine sequence { of length 2", where Py and Py are positive integers. Then the nonlinearity
of g satisfies Ny 2 2°T0=1 — 1p . Py,

Proof. Note that £ = & ® & is the sequence of g. Let ¢ be an arbitrary affine function on V.,
and let ¢ be the sequence of ¢. Then ¢ can be expressed as { = +0; @ (5 where {1 is a row of H;
and ¢y 1s a row of H,. Since

(€, 0) = (& @ &a, Hly @ ly) = (&1, (1) (€2, 02)

we have
(& 01 = 1(&, )| - (&5 2)| = Pr- Py
and by Lemma 4

1
d(g,p) 2 2771 — SRR
By the arbitrariness of o, N, = 25T~ — %Pl - Py, O

Let & be a balanced sequence of length 22* that is constructed using the method in the proof
of Theorem 1, where k = 2, Let &, be a sequence of length 2'% obtained by the method of [PW83].
Note that the nonlinearity of & is 16276, and there are 13021 such sequences. Denote by f; the
function corresponding to ¢ and by f; the function corresponding to &,. Let

f(l‘l, e L2k L2k415 - - - 7$2k+15) = f1(=’1?1, ce. ,Slfzk) @ f2($2k+17 e 7$2k+15) (5)

Then
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Theorem 2 The function f defined by (5) is a balanced function on Vapi1s, k 2 2, whose nonlin-
earity is at least

N> {2 10822 4 2 427 2002, 2k =27,
F=1Y 925(2e41)+14 _ 108(22°771 (1) 4 92777 (201) Ly 9202041) 4 92041 4 9kl - 9 ) — 95(2¢ 4 1),

Proof. Let £ =& ®&. Then € is the sequence of f. Let { be an arbitrary affine sequence of length
226415 Then { = 4+, @ {5, where {; is a linear sequence of length 2%* and /, is a linear sequence of

length 2'5. Thus

<[ 2T 2T 2 222, 2k =27,
<€17 1> = 225_1(2t+1) T 225_2(2t+1) N 22(2t+1) + 92t+1 + 225-|—17 9 — 25(2t + 1)
and
(€9, 05) £ 2+ (2" —16276) = 216
By Lemma 13, the theorem is true. O

The nonlinearity of a function on V4z115 constructed in this section is larger than that obtained
by concatenating or splitting bent sequences for all £ = 7.

5 Constructing Highly Nonlinear balanced Functions Sat-
isfying SAC

This section presents methods for constructing balanced functions with a high nonlinearity and
satisfying the SAC. The algebraic degrees of the functions are discussed.

5.1 On ‘/2]9_1_1

Let k 2 1, f a bent function and % a non-constant affine function, both on V. Note that f(z)®h(x)
is also bent. Without loss of generality we suppose that the number of times that f(x) assumes the
value zero differs from that of f(x) @ h(z). (Otherwise we can replace h(z) by h(x) & 1 and hence
flz) @ h(x) by f(z) @ h(x) @ 1.) Let g be a function on Vipyq defined by

glu, @1, ... xak)
= (1 @u)f(eg,...,x98) Bulf(or,. .. 201) B h(ag, ... 22))
= flaq,...,208) Bub(ay, ... 298). (6)

Lemma 14 The function g defined by (6) is a balanced function on Vapiq.

Proof. By Lemma 2 the sequence of ¢ is the concatenation of the sequences of f(x) and f(z)® h(z).
Recall that a bent function on Vy; assumes the value one 225~ 4 2*5=1 times. Therefore the number
of times that ¢ assumes the value one is (22k—1 + Zk_l) + (22k—1 — Zk_l) = 22k O

The following lemma is a direct consequence of Corollary 3.
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Lemma 15 N, = 2% — 2% where g is defined by (6).

Lemma 16 The function g defined by (6) satisfies the SAC.

Proof.  Let v = (b,ay,---,az) be an arbitrary vector in Vapyq with W(y) = 1. Also let o =
(a1, a9), 2 = (u,x1,...,295) and & = (x1,...,22;). We show that g(z) & g(z B v) = f(x) &
flea @ a)Bulh(z)® h(xd a)) G bh(x @ a) is balanced by considering the following two cases.

Case 1: b =0 and hence W(a) = 1. Then g(z)®g(zB7v) = f(2)B f(e B a)Pu(h(z)Bh(zda)).
Since h is an affine function, h(xz) & h(x & ) = ¢ where ¢ is a constant from GF(2). Thus
9g(z2)Bg(zdy) = f(2) B f(x B a) P cu. By (iii) of Lemma 3, f(z) & f(x & «) is a balanced function
on Vs, and hence by Lemma 12, ¢g(z) & g(z & 7) is a balanced function on Vaj41.

Case 2: b =1 and hence W(a) =0, i.e. o =(0,0,---,0). Then ¢g(2) ® g(z & ~) = h(z). Since
h(x) is a non-constant affine function on Vai, h(x) and hence g(z) & g(z & v) are balanced. O

Summarizing Lemmas 14, 15 and 16 we have

Theorem 3 For k = 1, g defined by (6) is a balanced function on Vagyy having N, = 2% — 2% and
satisfying the SAC.

5.2 On Vék

Let k£ =2 2 and f a bent function on V,,_5. And let hy, hy and hs be non-constant affine functions
on Vag_g such that h;(x) & h;(x) is non-constant for any ¢ # j. Such affine functions exist for all
k2 2. Let @ = (21, -, 295-2). Note that each f(x)® h;(x) is also bent.

Without loss of generality we suppose both f(x) and f(z) @ hy(x) assume the value one 2273 +
2k=2 times while both f(2)® ha(z) and f(x) B hs(x) assume the value one 92k=3 _ 9k=2 yimes. This
assumption is reasonable because f(x) @ hj(x) assumes the value one 22k=3 4 9k=2 4imes if and
only if f(a) @ h;(x) & 1 assumes the value one 92k=3 _ 9k=2 times. In addition hi(x) &1 is also a
non-constant affine function. This allows us to choose either f(x) @ h;(x) or f(x) & hj(z) & 1 so
that the assumption is satisfied. Let ¢ be a function on V5 defined by

glu,v,21,.. ., Top_2)
= (1au)(l®v)f(x)® (1 u)(f(z)d h(z))d
u(l @ o)(f(z) @ ha(x)) B uo(f(z) S hs(x))
= [f(z) B vhi(x) D uha(z) B uv(hi(2) B ha(x) D ha(z)). (7)

Lemma 17 g defined by (7) is a balanced function on Vay.

Proof. Note that the sequence of ¢ is the concatenation of the sequences of f(x), f(x) & hq(z),
f(2) @ ha(x) and f(z) B ha(x), and that f(z) and f(z) @ hi(x) assume the value one 22¥=3 4 2k=2
times while f(z)® hy(x) and f(z)® hz(x) assume the value one 228=% — 22 times. Thus ¢ assumes
the value one 22%~! times and hence is a balanced function on Va. O

Lemma 18 N, = 2%*=1 — 2% where g is defined by (7).
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Proof. Tt follows from Corollary 3. O

Lemma 19 The function g defined by (7) satisfies the SAC.

Proof. Let v = (b,c,ay,- -+, az—2) be any vector in Vo with W(y) = 1. Write o = (a1, -+, azk—2),
z=(u,v,21,...,2962) and @ = (x1,...,295-2). Note that g(zB~) = f(e B a)B (vEBe)hi (B a)B
(uBb)ha(x @B a)B (udd)(vde)(hi(x B a)d hy(x B a)® hs(x @ a)). Consider the balancedness of
g(z) @ g(z & 7) in the following three cases.

Case 1: b=1, ¢ =0 and hence W(a) =0, i.e. a = (0,0,---,0). In this case, g(z) B g(z B v) =
hao(x) @ v(hy(x) & he(x) B hs(x)) will be ho(z) when v = 0 and hy(x) & hs(x) when v = 1. Both
hao(x) and hy(x) & hs(x) are non-constant affine functions on Va,_y and hence g(z) & g(z &) is a
balanced function on V5.

Case 2: b =10, ¢ =1 and hence W(a) =0, i.e. a = (0,0,---,0). The proof of the balancedness
of g(z) ® g(z @ ~) is similar to Case 1.

Case 3: b=10, ¢ =0 and hence W(a) = 1. Since h; is an affine function, h;(z) G hj(z B a) = a;
where a; is a constant from G F'(2). Hence g(2) B g(z G 7y) = f(x) @ f(x B o) Bvay B uaz ® uv(a &
az & as). By (iii) of Lemma 3, f(x) & f(x & «) is a balanced function on Va;_o and hence by
Lemma 12, g(2) & g(z & v) is a balanced function on Va;. This proves that ¢ satisfies the SAC. O

Summarizing Lemmas 17, 18 and 19 we have

Theorem 4 For k =2, g defined by (7) is a balanced function on Vo having N, = 2**=1 — 2% and
satisfying the SAC.

5.3 Remarks

We have shown that a function on V,, constructed according to (6) and (7) satisfy the propagation
criterion with respect to all the n vectors whose Hamming weight is 1. In fact there are many more
vectors where the propagation criterion is satisfied.

Let # = (x1,...,29;), 2 = (u,), and let ¢ be a function constructed according to (6). Let
v = (b,a) where b € GF(2) and o € Vai,. Then ¢g(2)Bg(zB7) = f(v)B f(ada)Bbh(zBa)Buh(a).
Consider the following three cases.

Case 1: b =0 and W(a) # 0. In this case, g(2) ® g(z @ 7) is balanced for all 22* — 1 non-zero
vectors o € V.

Case 2: b=1and W(a) =0. g(z) & g(z & v) is balanced for v = (1,0,0,...,0).

Case 3: b=1and W(a) # 0. g(2) & g(z & v) is balanced if h(a) # 0. The number of vectors
a € Vi, such that h(a) # 0 is 2271 ¢g(2) @ g(z @ 7) can not be balanced for any a € Vjy, such that
h(a) = 0. (Otherwise it would imply that ¢ is bent.)

Consequently, the total number of vectors such that g constructed by (6) satisfies the propagation
criterion is 22F 4 22k-1,

For a function g on Vy; constructed according to (7), a similar discussion reveals that the total
number of vectors in V35, where the propagation criterion is satisfied is at least 22572 4 1.

The algebraic degree is also a nonlinearity criterion and it becomes important in certain prac-
tical applications where linear approximation of a nonlinear function needs to be avoided. In our
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constructions (6) and (7), the algebraic degree of a resulting function ¢ is the same as that of the
starting bent function f.
The simplest bent function on V3 is the following quadratic function:

flar,@e, .o Top) = T1Tk41 B Tolpga B -+ D T2

Bent functions with higher algebraic degrees exist and there are many methods for constructing such
functions [Dil72]. The following is a method discovered by Dillon and Maiorana [Dil72, KSW85]

for constructing a bent function f on Vy:

flx) = (2,7 (2")) & r(2")
where @ = (2/,2"), @' = (v1,...,21), 2" = (¥441,...,22k), 7 is an arbitrary function on V; and
7 = (w(2”), ma(a"),. .., m(2”)) is a permutation on the vector space V;. Due to the arbitrariness
of r, the algebraic degree of f can be any integer between 2 and k. ;From these discussions it

becomes clear that functions obtained by (6) and (7) can achieve a wide range of algebraic degrees,
namely 2,...,k and 2,...,k — 1 respectively.

5.4 Examples

Example 1 Consider V5. As we know, f(x1, 29, 23,24) = 2122 G x324 is a bent function in V.
Choose the non-constant affine function h(xq, 2, 25,24) = 1 & 21 & 29 B x5 B x4. Note that
[, 29, 23, 24) assumes the value one 2*71 —2271 = 6 times and f(a1, 29, 23, 24)Bh(21, 22, ¥3, 24) as-
sumes the value one 2712271 = 10 times. Set g(u, xy, x2, ¥3,24) = f(21, 72, T3, T4)Puh(T1, T2, T3, 74) =
T129 BT Bu(lBa BraPrs®ay). By Theorem 3, g is a balanced function with N, = 21 —-2% = 12
and satisfying the SAC. On the other hand, by Corollary 2 the nonlinearity of balanced functions on
Vs is bounded from the above by | [2* — 22_%H = | [13.1818 - - -|| = 12. Therefore the nonlinearity

of ¢ attains the upper bound for balanced functions on V5.

Example 2 Consider V5. Choose f(x1, 22,23, 24) = 2122B 2324, a bent function in V5. Also choose
affine functions hq(x1,xq, x5, 24) = @1, ha(2y, v, 23, 24) = 1 B 2, hg(x1, x2,v3,24) = 1 & 23. Note
both f(w1, 2,3, 24) and f(x1, 22,23, 24) B hy(xy1, T2, T3, 24) assume the value one 2471 — 2271 = §
times while both f(x1, x2, x5, 24) B hs(@1, 2, ¥5,24) and f(x1, 22, €3, 24) B ha(x1, T2, T3, 24) assume
the value one 247142271 = 10 times. Set g(u, v, vy, x2, x5, v4) = f(21, 79, T3, v4)Bvhy (21, T2, T3, T4)P
who(xy, w9, x5, 04) B uv(he(x1, x9, 3, x4) B ho(a1, e, ¥3, 24) B hy(x1, 22, 23, 24)). By Theorem 4, ¢
is a balanced function with N, 2 25 — 23 = 24 and satisfying the SAC. The nonlinearity of ¢ is
comparable to 2° — 2% — 2 = 26, the upper bound for the nonlinearities of balanced functions on Vg
(see Corollary 2).

Recently Zheng, Pieprzyk and Seberry [ZPS93] constructed a very efficient one way hashing
algorithm using boolean functions constructed by the method given in Theorem 3. These functions
have further cryptographically useful properties.

6 Constructing Highly Nonlinear balanced Functions Sat-
isfying High Degree Propagation Criterion

Another interesting topic is to study methods for constructing functions that are balanced and
possess good propagation characteristics. In [PGV91], it was suggested that a function f on V,
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which has a zero point in its Walsh spectrum be modified into a balanced function by adding a
suitable linear function h on V,,. As h has to be found by exhaustive search over all the linear
functions on V,,, the method is infeasible when n is large. In addition, the method is not applicable
to the functions which do not have zero points in their Walsh spectra. These functions include (1)
bent functions, and (2) highly nonlinear functions obtained by complementing a single position in
bent sequences.

This section presents two methods for systematically constructing highly nonlinear balanced
functions satisfying the propagation criterion. For odd n, we construct balanced functions that
satisfy the propagation criterion with respect to all non-zero vectors except v = (1,0,...,0). And
for even n, we construct balanced functions that satisfy the propagation criterion with respect to
all but three non-zero vectors. The three vectors where the propagation criterion is not satisfied are
7 =(1,0,0,...,0), v2=(0,1,0,...,0), and v3 =91 &2 = (1,1,0,...,0). The two methods both
start with bent functions, and hence are similar from a technical point of view. We also show how
v, 71 and 7, can be transformed into any other non-zero vectors.

6.1 Basic Construction
6.1.1 On Vi

Let f be a bent function on V,i, and let g be a function on V541 defined by

g(x1, 225 T2p41)
= (1 D l’l)f(l'z, ceey $2k+1) D 1’1(1 D f(l'g, Ce ,$2k+1))
= xl@f(x%"'vxﬂc-l-l)- (8)

Lemma 20 The function g defined in (8) satisfies the propagation criterion with respect to all
non-zero vectors v € Vappq with v # (1,0,...,0).

Proof.  Let v = (a1,a9,...,a2k41) # (1,0,...,0) and let @ = (21,22,...,22541). Then g(x) &
glx &) = a1 & floa, ..., 22%41) B flae & az, ..., Top41 S azpy1). Since [ is a bent function,
flaay oy xopp1) @B fa2 @ agy ..., Xopp1 D agpq1) is balanced for all (ag,. .., a2641) # (0,...,0) (see
(iii) of Lemma 3). Thus ¢g(x) @ g(x &) is balanced for all v = (a1, az,...,a241) # (1,0,...,0). O

;From Corollary 3, the nonlinearity of the function ¢ defined by (8) satisfies N, = 2% — 2,
Furthermore, by Lemma 12, ¢ is balanced. Thus we have

Corollary 4 The function g defined by (8) is balanced and satisfies the propagation criterion with
respect to all non-zero vectors v € Vappq with v # (1,0,...,0). The nonlinearity of ¢ satisfies
N, = 22k — 2k,

6.1.2 On Vg

Let f be a bent function on V,;_5 and let ¢ be a function on V,; obtained from f in the following
way:

(a1, 9,23, . .., Top)
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(1 @ 1'1)(1 & x2)f(£37 te 7x2k) & (1 & $1)$2(1 S f(l'g, s '7x2k))
(1@ 22) (1D flas, ..., v)) D12 f(2s,..., 22)
= x1 B a2 flas,...,x2). 9)

Lemma 21 The function g defined in (9) satisfies the propagation criterion with respect to all but
three non-zero vectors in Vyi,. The three vectors where the propagation criterion is not satisfied are

11 =(1,0,0,...,0), 2 =(0,1,0,...,0), and vs =y &2 = (1,1,0,...,0).

Proof. Let v = (a1,az,...,a) be a non-zero vector in Vyy, differing from 1, 72 and 5. Also let & =
(1,...,295). Then we have g(x)Bg(aBvy) = a1Bas® f(xs, ..., c2%)B f(esBas, ..., vopPazy). Since
fis a bent function on Vap_y and (as, ..., az;) # (0,...,0), f(s,...,221) B f(x3PBas,..., o5 Hazy)
is balanced, from which it follows that g(«) & g(x & 7) is balanced for any non-zero vector v in Va
differing from 7y, 72 and ~3. This proves the lemma. O

Since x1 & x5 is balanced on V3, ¢ is balanced on V5;. On the other hand, by Lemma 7, we have
N, = 22k=1 _ 2k Thus we have the following result:

Corollary 5 The function g defined by (9) is balanced and satisfies the propagation criterion with
respect to all non-zero vectors v € Vo with v # (e1,¢2,0,...,0), where ¢1,¢2 € GF(2). The
nonlinearity of g satisfies N, = 22k=1 — 2k,

6.2 Moving Vectors Around

Though functions constructed according to (8) or (9) satisfy the propagation criterion with respect
to all but one or three non-zero vectors, they only fulfill the propagation criterion of degree zero.
Therefore these functions are not interesting in practical applications. Recall that the balancedness,
the nonlinearity and the number of vectors where the propagation criterion is satisfied are all
invariant under an affine transformation of coordinates. This indicates that the degree for the
propagation criterion might be improved through a suitable affine transformation of coordinates.
Identifying such an affine transformation, however, is not an easy exercise, especially when the
dimension of the underlying vector space is large and the number of vectors where the propagation
criterion is satisfied is small.

In this section, we show that for functions constructed according to (8) or (9), the vectors
where the propagation criterion is not satisfied can be transformed into vectors having a high
Hamming weight. In this way we obtain highly nonlinear balanced functions satisfying the high
degree propagation criterion.

6.2.1 On Vi

Theorem 5 For any non-zero vector v* € Va1 (k 2 1), there exist balanced functions on Vi1
satisfying the propagation criterion with respect to all non-zero vectors v € Voppy with v # v*. The
nonlinearities of the functions are at least 2% — 2%,

Proof. Let f be a bent function and let ¢ be the function constructed by (8). ;jFrom linear algebra
we know that for any bases By and Bj of the vector space Vapy1, where By = {a;|j = 1,...,2k+1}
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and By = {B;]j = 1,...,2k + 1}, there exists a unique nondegenerate matrix A of order 2k + 1
with entries from G F(2) such that a;A = §;, 7 = 1,...,2k + 1. In particular, this is true when
a; =~*and By = (1,0,...,0). Let @ = (21, 29,...,2,) and let g* be the function obtained from ¢
by employing linear transformation on the input coordinates of ¢:

g (z) = g(xA).

Since A is nondegenerate, by Lemma 10, ¢* is balanced and has the same nonlinearity as that
of g. Now we show that ¢* satisfies the propagation criterion with respect to all non-zero vectors
except 7.

Let v be a non-zero vector in Varq with v # v*. Consider the following function ¢*(x) & ¢*(x &
v) = g(zA) & g(aAB~vA) = g(y) B g(y B vA) where y = xA. Note that A is nondegenerate and
thus y runs through Va1 while & runs through Vagyq. Since v # ~* we have vA # (1,0,...,0). By
Lemma 20, ¢(y) G g(y B~vA) runs through the values zero and one an equal number of times. Hence
g*(x) & g*(x & 7) is balanced. Consequently, ¢* satisfies the propagation criterion with respect to
all non-zero vectors in Vs, 1 but 4*. This completes the proof. O

As a consequence of Theorem 5, we obtain, by letting v* = (1,1,...,1), highly nonlinear bal-
anced functions on V554 satisfying the propagation criterion of degree 2k. This is described in the
following;:

Corollary 6 Let [ be a bent function on Vo and let g*(x1,...,20141) = 1 B flx1 & w9, 21 B
Ty .., 01 B Xopp1). Then ¢° is a balanced function on Varyr and satisfies the propagation criterion
of degree 2k. The nonlinearity of g* satisfies Ny« = 2% — 2k,

Proof. Let e;, 5 =1,2,...,2k + 1, be a vector in V441 whose jth coordinate is 1 and all other
coordinates are 0. In the proof of Theorem 5, we let an =0 = (1,...,1), a; =¢;,j =2,...,2k+1
and 8; =e¢;,3 =1,...,2k+ 1. Then there is a unique nondegenerate matrix A of order 2k + 1 such
that a;A=3;, 5 =1,...,2k+ 1. It is easy to verify that A has the following form:

€ok+1

Thus we have g*(2) = g(zA) = g(x1, 1B xg, ..., 01D 22441) = 11D f(21P w2, v1PXs, ..., 1P Tok41),
where g(x) = x1 @ f(xg,...,T2%41), and @ = (21, 22,...,22k41). By Theorem 5 ¢* satisfies the
propagation criterion with respect to all non-zero vectors in V5541 except the all-one vector v* =
(1,1,...,1). Consequently ¢g* satisfies the propagation criterion of degree 2k. O

6.2.2 On Vg

Theorem 6 For any non-zero vectors vy,7; € Vor (k 2 2) with 7 # ~3, there exist balanced
functions on V. satisfying the propagation criterion with respect to all but three non-zero vectors
in Var. The three vectors where the propagation criterion is not satisfied are v7, v5 and v & 3.
The nonlinearities of the functions are al least 22— — 2%,
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Proof. The proof is essentially the same as that for Theorem 5. The major difference lies in the
selection of bases By = {a;|j = 1,...,2k} and By = {8;|y = 1,...,2k}. By linear algebra, we
can let oy =77, as =73, /1 = (1,0,0,...,0), and B3 = (0,1,0,...,0). By the same reasoning as
in the proof of Theorem 5, we can see that ¢* defined by ¢*(x) = g(xA) satisfies the propagation
criterion with respect to all but the following three non-zero vectors in V51 45, 75 and ~; @ ~5. Here
r = (21,22,...,29), g(x) = 21 B a2 B f(as,...,22), and f, a bent function on Va,_s, are all the
same as in (9), and A is the unique nondegenerate matrix such that o;A = g;, j = 1,...,2k. O

Similarly to the case on V311, we can obtain highly nonlinear balanced functions satisfying the
high degree propagation criterion, by properly selecting vectors 47 and ~;. Unlike the case on Vapyq,
however, the degree of propagation criterion the functions can achieve is %k, but not 2k — 1. The
construction method is described in the following corollary.

Corollary 7 Suppose that 2k = 3t 4+ ¢ where ¢ = 0,1 or 2. Then there exist balanced functions on
Var that satisfy the propagation criterion of degree 2t — 1 (when ¢ = 0 or 1), or 2t (when ¢ = 2).
The nonlinearities of the functions are al least 22— — 2%,

Proof. Set ¢, =0,¢c; =1if ¢ =1 and set ¢, = ¢ = %c otherwise. Let 77 = (ay, ..., azipe) and
V3 = (blv ) b3t—|—c)7 where

1 forj=1,...,2 4 e,
9= 0 forj=2t+c1+1,...,3t+c.
b 0 fory=1,....t4+ ¢,
P11 forj=t4+ec+1,....3t+c

By Theorem 6 there exists a balanced function ¢* on V3 satisfying the propagation criterion
with respect to all but three non-zero vectors in V55, The three vectors are 47, 75 and vy & +5. The
nonlinearity of ¢g* satisfies Ny« = 22871 — 2k,

Note that W(~7) = 2t +¢1, W(75) = 2t + 2, and W (v & ~5) = 2t +2¢; = 2t 4+ ¢. The minimum
among the three weights is 2t +¢;. Therefore, for any nonzero vector v € Vo with W(y) = 2t4¢—1,
we have v # ~;7,75 or v; &7;. By Theorem 6, ¢*(x) & g*(x &) is balanced. ;From this we conclude
that ¢* satisfies the propagation criterion of order 2t + ¢; — 1. The proof is completed by noting
that g =0ifc=00rl and ¢g =11if c= 2. O

6.3 Discussions and Examples

Comparing (6) with (8), one can see that the difference between the two constructions lies in the
selection of the affine functions. In (6) a non-constant affine function h is selected, while in (8) a
constant 1 is employed. In a sense, the two constructions complement one another. This is also
true in the case of (7) and (9).

Functions obtained by (8) and (9) can achieve a wide range of algebraic degrees, namely 2, ..., k
and 2,...,k — 1 respectively. (See also the discussions in Section 5.3.) Recently, Detombe and
Tavares obtained, while studying the design of S-boxes, balanced quadratic functions on V5541 that
satisfy the propagation criterion with respect to all but one vectors in Vagy1. (They called these
functions near bent functions.) They obtained the functions by the use of the cubing technique
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suggested by Pieprzyk [Pie91]. Propagation characteristics of quadratic functions were also studied
extensively in [PGV91]. However, applicability of these quadratic functions in practice is limited
by the following two facts:

1. Their algebraic degree is only 2.

2. They are all equivalent in structure in the sense that they can be transformed into one another
by linear transformation of input coordinates.

In the following we provide two concrete examples to illustrate our methods for constructing
highly nonlinear balanced functions that satisfy the high degree propagation criterion.

Example 3 We consider balanced functions on Vz. Note that f(xy, 9,23, x4, 25,26) = x122 B
x314 D w576 P Tow4e 1s a bent function on Vg. It is obtained by the use of Dillon and Maiorana’s

construction [Dil72, KSW85]. Now let

9(1’17 T2,T3,T4,T5,Te, 51?7)
= 21 ® f(x2, 23, 24, %5, Ts, T7)

= 1D 2223 D 2425 D TeX7 D T32527.
By Corollary 6, the following function

g (x1, 29, 25, 04, 5,06, 07) = 1B fag B xg,x1 B w3, 201 B x4, 1 B x5, 21 D X6, 21 B 1)
= 1@ (21 B a2)(21 B as) D (r1 B xa)(1 D x5) B
(x1 @ 26)(21 B x7) D (21 B 3)(r1 B 25) (21 D 27)

satisfies the propagation criterion of degree 6. The propagation criterion is not satisfied only by the
all-one vector (1,1,1,1,1,1,1).

On the other hand, assume that v* = (0,0,1,0,1,1,0). Let e¢; be a vector on V7 whose jth
coordinate is 1 and other coordinates are 0, where j = 1,2,...,7. Let oy = = (1,1,1,1,1,1,1),
ay = ey, a3 = ey and a; = ¢;, ] =4,5,6,7. And let 3; = ¢;, 7 =1,...7. Thus {aq,...,ar} and

{B1,..., 7} are two bases of V7. By matrix manipulation we can find the following matrix
[0 0 100 0 0]
01 000O0O0O
1000110
A=10 00 1 0 0 0
0000T1UO00
0000O0T1FPO0
000000 1)

that satisfies o;A = f;, 7 =1,...,7. By Theorem 5

h*($17$27$37$47$57$6,$7)
g((:}cl,:1;2,:1;3,:1;4,:1;5,:1;6,:1;7)A)
= g(xs, 29, 21, 24,73 D 5,23 D T, T7)

= 3@ xoxy B ay(ws @ x5) B (13D x6)xr B (23D v5)27
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is a balanced function on V; satistying the propagation criterion with respect to all v € V; with
v #(0,0,1,0,1,1,0).
Note that Ny« = Ny« 2 26 — 2% = 56, which in fact is the maximum nonlinearity of functions on

Vi [CKHFMSS5).

Example 4 Consider balanced functions on Vj,. Note that n can be written as n = 2k = 3t + ¢,
where £ = 6,1 = 4 and ¢ = 0. Again by using Dillon and Maiorana’s construction we have the
following bent function on Vjg:

f(l’Ba T4, Ts5,T6y T7, T8, T9, T10, T11, 51?12)

= x3T4 D T5x6 D x7T8 D T9T10 D T11T12 D T4TeTrT10T12.
By Corollary 5

9(51?17 L2, L3, L4, L5, L6, L7, X8, Lo, :1?10)
x1 @ o @ f(as, T4, T5, Ts, T7, Ts, To, T10, T11, T12)
= T1 DTy D V324 D 526 D T7Ts O ToT10 D T11T12 D TuTeTsT10T12

is balanced and satisfies the propagation criterion with respect all non-zero vectors v € Vi3 with
v # (¢1,¢2,0,0,0,0,0,0,0,0,0,0), where ¢1,¢2 € GF(2). The nonlinearity of ¢ satisfies N, =
211 95 = 1984, which is comparable to 2! — 25 — 2 = 2014, the upper bound of the nonlinearity
of a balanced function on Vs (see Corollary 2).

Let ¢; be the vector in Vi3, whose the jth coordinate is 1 and other coordinates are all 0, where
jg=1,...,12.

Let 4y =(1,1,1,1,1,1,1,1,0,0,0,0), 5 = (0,0,0,0,1,1,1,1,1,1,1,1) and set

* *
By = {717727627637647657667677 68761076117612}7
By = {617627637647657667677 €s, €9, €10, 6117612}-

Now let A be a matrix defined by

O OO OO OO oo oo o
O OO R OO oo oo oo
O OO OO OO oo oo oo~
[enllen il el el el el el =N
OO O oo oo oo, O o
OO O R OO o, O oo
O OO R OO R OO o o
O OO P O, OO OO o
OO O P HF OO oo oo

O R P OO oo oo oo
O P O R OO oo oo oo
R OO R OO oo oo oo

jam)

It is not hard to check that v A = ey, 13 A = €3, e2A = €3, e3A = €4, e4A = €5, esA = €g, €egA = €7,
erA = eg, esA = eg, €10A = €10, €114 = €11, €124 = €12, Let

s
g (51?1751?2751?3751?4751?5751?6751?7,51?8,51?9,51?10,51?11,51?12)
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9((51?1751?2751?3751?4751?5751?6751?7,51?8,51?9,51?10,51?11,51?12)14)
= g(x1, xg, 1 B 29, 11 B X3, 1 D Tg, 1 D x5 B To, 1 P x6 B T,

x1 @B x7 O T, T1 B T8 D To, T B T10, To D T11, T D T12).

By Theorem 6 the function ¢* is balanced and its nonlinearity satisfies N, = 2! —2¢ = 1984. In
addition, g™ satisfies the propagation criterion with respect all but three non-zero vectors in Vi5. The
three non-zero vectors are vy = (1,1,1,1,1,1,1,1,0,0,0,0), v3 = (0,0,0,0,1,1,1,1,1,1,1,1) and
i =~1dy =(1,1,1,1,0,0,0,0,1,1,1,1). By Corollary 7, ¢* satisfies the propagation criterion of
degree 2t — 1 =T.

7 Concluding Remarks

We have studied properties of balancedness and nonlinearity of Boolean functions including concate-
nating, splitting, modifying and multiplying sequences. Systematic methods have been presented for
constructing highly nonlinear balanced functions satisfying the SAC or the high degree propagation
criterion. A technique has been developed that allows us to transform vectors where the propaga-
tion criterion is not satisfied into other vectors, while preserving the nonlinearity and balancedness
of the functions. This paper has also introduced a number of interesting problems which remain
to be solved. We discuss one of them before closing the paper. For V5541, functions constructed
according to (8) are optimal in the sense that they fulfill the propagation criterion with respect
to 2281 — 2 non-zero vectors, and after the affine transformation of coordinates, they satisfy the
propagation criterion of degree 2k. For Vi, the number of non-zero vectors given by (9) is 22 — 4
and the degree after the transformation is %. It is left as future work to examine whether there
are highly nonlinear balanced functions on V3 satistying the propagation criterion of degree 2k —1,
and if there are, to find methods for constructing such functions.
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