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Abstract

Cheating in multisecret sharing is considered. Multise-
cret sharing is defined by a mappingF : GF (pt)n −→
GF (pt)m that provides a generic model. In this model,
we propose nonlinear multisecret sharing that is immune
against cheaters. Two cheating strategies are considered.
In the first one, all cheaters always submit their invalid
shares and they collectively know their own valid shares.
In the second one, some cheaters may submit their valid
shares while again sharing their knowledge about their
valid shares. The combiner (or recovery algorithm) in-
teracts with shareholders by collecting shares from them
and distributing the recovered secrets back to active par-
ticipants. Two different scenarios are considered when the
combiner recreates all secrets (this is simultaneous recov-
ery) or gradually (so called sequential recovery). Prob-
abilities of successful cheating are derived and construc-
tions for cheating immune multisecret sharing are given.
Keywords: Secret Sharing, Multisecret Secret Sharing,
Cheating Immune Secret Sharing

1 Introduction

Cheating prevention in secret sharing and group oriented
cryptography becomes one of the central security issues.
Roughly saying, secret sharing is cheater-immune if a
cheater is not better off than a participant who follows
the protocol honestly. Tompa and Woll [8] demonstrated
how Shamir secret sharing can be subject to cheating so

after the recovery phase, honest participants are left with
an invalid secret while cheaters are able to compute the
valid one.

The problem of cheating prevention was investigated in
[6]. It was shown that secret sharing can be constructed in
such a way that cheaters after revealing an invalid secret
by the combiner (or recovery algorithm), are getting no
information about the valid secret. In a sense, the knowl-
edge about the valid secret of honest and dishonest partic-
ipants is the same with an obvious exception that cheaters
know that the recovered secret is invalid while the honest
ones will learn about this fact later when the recovered
secret fails to trigger the intended action.

Multisecret sharing was probably first discussed in [5].
General formulation of the problem for the case when
m different secrets are shared among participants with a
single access structure was studied in [1]. Some further
works can be found in [3, 4, 2].

Clearly, cheating participants in multisecret sharing
schemes have more possibilities to deviate during the re-
construction of secrets depending on how the combiner
who collects shares is working and also how the secrets
are reconstructed. To make our considerations explicit we
assume a simple multisecret sharing model in which ev-
ery n participants can recover the secrets. The combiner
who reconstructs the secrets can return all secrets (paral-
lel reconstruction) or secret by secret (sequential recon-
struction) where secrets are recreated in a some publicly
known order. ¿From now on we assume that the combiner
is implemented in such a way that it accepts shares and
after getting the appropriate number of them, reveals the



reconstructed secret to all active participants (shares are
never revealed by the combiner). This of course, does not
restrict dishonest participants who may reveal their shares
to each other.

2 Notations

Multisecret sharingis defined by a mappingF : GF (pt)n

−→ GF (pt)m. F is called the defining mapping (or dis-
tribution rule) and is publicly accessible. Each vector
α ∈ GF (pt)n determines a collection ofn shares held
by n participants and the vectorF (α) ∈ GF (pt)m speci-
fies a collection ofm secrets. In particular, whenm = 1,
the defining mapping becomes the defining function that
was studied in [6].

We consider two basic cheating strategies that are pos-
sible for dishonest participants to undertake. The strate-
gies characterise the way the combiner works:
• simultaneous recovery of all secrets – in this case dis-
honest participants can modify all their shares or perhaps,
they can collectively decide that some portion of their
valid shares will be submitted to the combiner (those two
scenarios will be considered). Note that the knowledge of
cheaters is restricted to the shares they hold,
• sequential recovery of secrets – again dishonest partic-
ipants submit a collection of invalid shares to the com-
biner who returns a single secret. The recovery process
of a single secret is independent as dishonest participants
can deliver a different collection of invalid shares for each
recovery. Observe that the knowledge of cheaters changes
after each recovery as they obtain a secret returned by the
combiner.

We assume that the combiner is honest and returns the
secret corresponding to the submitted shares and after the
recovery it “forgets” all shares and secrets.

LetGF (pt) denote a finite field withpt elements where
p is a prime number andt is a positive integer. We write
GF (pt)n to denote the vector space ofn tuples of ele-
ments fromGF (pt). Then each vectorα ∈ GF (pt)n can
be expressed asα = (a1, . . . , an) wherea1, . . . , an ∈
GF (pt). TheHamming weightof a vectorα ∈ GF (pt)n,
denoted byHW (α), is the number of nonzero coordi-
nates ofα.

We consider a mappingF : GF (pt)n −→ GF (pt)m

written either F (x) or F (x1, . . . , xn) where x =

(x1, . . . , xn) and eachxj ∈ GF (pt). F is said to
be regular if F (x) takes each vector inGF (pt)m pre-
cisely pt(n−m) times whilex goes through each vector
in GF (pt)n once. A regular mappingGF (pt)n −→
GF (pt)m exists only whenn ≥ m. A mappingf :
GF (pt)n −→ GF (pt) is called afunctiononGF (pt)n.
A regular functionf is also called abalancedfunction. A
mappingF : GF (pt)n −→ GF (pt)m can be expressed
asF = (f1, . . . , fm) or F (x) = (f1(x), . . . , fm(x)),
where each coordinatefj is a function onGF (pt)n and
x ∈ GF (pt)n.

Let x = (x1, . . . , xn) and δ = (δ1, . . . , δn) be two
vectors inGF (pt)n. Define a vectorx+

δ ∈ GF (pt)n,
whosej-th coordinate isxj if δj 6= 0, or 0 if δj = 0.
In addition, we define a vectorx−δ ∈ GF (pt)n, whose
j-th coordinate is0 if δj 6= 0, or xj if δj = 0. Clearly
(β+γ)+δ = β+

δ +γ+
δ , (β+γ)−δ = β−

δ +γ−δ andβ+
δ +β−

δ =
β hold for anyβ, γ ∈ GF (pt)n, alsoδ+δ = δ, δ−δ = 0.
Let τ = (τ1, . . . , τn) andδ = (δ1, . . . , δn) be two vectors
inGF (pt)n. We writeτ � δ to denote the property that if
τj 6= 0 thenδj 6= 0. In addition, we writeτ ≺ δ to denote
the property thatτ � δ andHW (τ) < HW (δ). Clearly
if τ � δ thenτ + δ � δ. In particular, ifδ′ � δ and
HW (δ′) = HW (δ) we writeδ ⊲⊳ δ′. It is easy to verify
thatδ ⊲⊳ δ′ ⇐⇒ δ′ � δ andδ � δ′ ⇐⇒ bothx+

δ = x+
δ′

andx−δ = x−δ′ hold for anyx ∈ GF (pt)n, where⇐⇒
denotes “if and only if”.

3 Simultaneous Recovery of Se-
crets with Cheaters using Invalid
Shares only

3.1 Probability of Successful Cheating

In this work we use a mappingF : GF (pt)n −→
GF (pt)m that defines a multisecret sharing. Letδ be a
nonzero vector inGF (pt)n, τ � δ andµ ∈ GF (pt)m.
F can be equivalently represented in the form of tableT
with rows containing(α, F (α)). SetRF (δ, τ, µ)= {x−δ |
F (x−δ + τ) = µ}. We also simply writeRF (δ, τ, µ) as
R(δ, τ, µ) if no confusion occurs. The following state-
ment can be formulated.

Lemma 1 Let δ be a nonzero vector inGF (pt)n, τ ∈
GF (pt)n, τ � δ, andµ ∈ GF (pt)m. Then for any given



mappingF : GF (pt)n −→ GF (pt)m, (i) R(δ, τ, µ) =
R(δ′, τ, µ) if δ ⊲⊳ δ′, (ii) R(δ, α+

δ , µ) = R(δ, γ+
δ , µ) for

any α, γ ∈ GF (pt)n with α+
δ = γ+

δ , (iii) there exists
someµ ∈ GF (pt)m such thatR(δ, τ, µ) 6= ∅, where∅
denotes the empty set.

Given a mappingF : GF (pt)n −→ GF (pt)m. We in-
troduce the following notations:
• Let α ∈ GF (pt)n be the sequence ofn shares held by
the groupP = {P1, . . . , Pn} of n participants and the
multisecretµ = F (α).
• The collection of cheaters is determined by the sequence
δ = (δ1, δ2, . . . , δn) wherePi is a cheater⇐⇒ δi is
nonzero.
• At the pooling time, the cheaters submit their shares. It
is assumed that the cheaters always submit invalid shares.
The honest participants always submit their valid shares.
We consider the vectorα+ δ. From the properties ofα+

δ

andα−
δ , we can write thatα + δ = α−

δ + α+
δ + δ. Thus

the combiner obtainsα+δ that splits into two parts:α−
δ –

the part submitted by honest participants, andα+
δ +δ – the

part submitted by the cheaters. The combiner (or recovery
algorithm) returns an invalid multisecretµ∗ = F (α+ δ).
Note that the cheaters always change their shares. We as-
sume that there exists at least one cheater, in other words,
δ is nonzero orHW (δ) > 0.
• α+

δ determines valid shares held by the cheaters. The
setR(δ, α+

δ , µ), or{x−δ |F (x−δ +α+
δ ) = µ}, determines a

collection of rows ofT with the correct multisecretµ and
valid shares held by the cheaters.
• The setR(δ, α+

δ + δ, µ∗), or {x−δ |F (x−δ + α+
δ + δ) =

µ∗}, represents the view of the cheaters after getting back
µ∗ from the combiner.

In this work thecheatingmeans the action of cheaters
by submitting incorrect shares, andsuccessful cheating
means the case that the cheaters not only submit incorrect
shares but also guess the correct secret.

The mappingF is called thedefining mappingas it
determines the multisecret sharing. The nonzero vector
δ = (δ1, . . . , δn) is called acheating vector, α is called
an original vector. The value ofρδ,α = #(R(δ, α+

δ +
δ, µ∗) ∩ R(δ, α+

δ , µ))/#R(δ, α+
δ + δ, µ∗), expresses the

probability of successful cheating with respect toδ and
α, where#X denotes the number of elements in the set
X . As an original vectorα is always inR(δ, α+

δ +δ, µ∗)
∩ R(δ, α+

δ , µ), the probability of successful cheating al-

ways satisfiesρδ,α > 0. Clearly the number of cheaters is
equal toHW (δ).

Theorem 1 Given a multisecret sharing scheme with its
defining mappingF : GF (pt)n −→ GF (pt)m. Let δ ∈
GF (pt)n with 0 < HW (δ) < n be a cheating vector and
α be an original vector inGF (pt)n. If ρδ,α < p−tm then
there exists a vectorγ ∈ GF (pt)n such thatρδ,γ > p−tm.

Proof Let F (α) = µ andF (α + δ) = µ∗. By def-
inition, R(δ, α+

δ , µ) = {x−δ |F (x−δ + α+
δ ) = µ} and

R(δ, α+
δ + δ, µ∗) = {x−δ |F (x−δ + α+

δ + δ) = µ∗}.
We partitionR(δ, α+

δ + δ, µ∗) into ptm parts:R(δ, α+
δ +

δ, µ∗) = ∪λ∈GF (pt)mQλ whereQλ = R(δ, α+
δ +δ, µ∗)∩

R(δ, α+
δ , λ+ µ). Clearly

#R(δ, α+
δ + δ, µ∗) =

∑

λ∈GF (pt)m

#Qλ (1)

Note thatR(δ, α+
δ +δ, λ∗)∩R(δ, α+

δ , λ) = Q0. There-
fore

ρδ,α =

#(R(δ, α+
δ + δ, µ∗) ∩R(δ, α+

δ , µ))/#R(δ, α+
δ + δ, µ∗)

= #Q0/#R(δ, α+
δ + δ, µ∗) (2)

Since ρδ,α < p−tm, from (2), #Q0/#R(δ, α+
δ +

δ, µ∗) < p−tm. It follows that

#Q0 < p−tm#R(δ, α+
δ + δ, µ∗) (3)

¿From (1) and (3), we know that
∑

λ∈GF (pt)m,λ6=0 #Qλ > (1−p−tm)#R(δ, α+
δ +δ, µ∗).

Thus there exists someλ′ ∈ GF (pt)m with λ′ 6= 0
such that #Qλ′ > p−tm#R(δ, α+

δ + δ, µ∗). By
definition, Qλ′ = {x−δ |F (x−δ + α+

δ + δ) = µ∗,
F (x−δ + α+

δ ) = λ′ + µ}. Then there exists a vec-
tor β−

δ ∈ Qν and thenF (β−
δ + α+

δ + δ) = µ∗,
F (β−

δ + α+
δ ) = λ′ + µ. Set γ = β−

δ + α+
δ . Thus

F (γ + δ) = µ∗ and F (γ) = λ′ + µ. Clearly
γ+
δ = α+

δ and γ−δ = β−
δ . Next we chooseγ as an

original vector. Due toR(δ, γ+
δ + δ, µ∗) = {x−δ

|F (x−δ + γ+
δ + δ) = µ∗}, R(δ, γ+

δ , λ
′ + µ) =

{x−δ |F (x−δ + γ+
δ ) = λ′ + µ} and γ+

δ = α+
δ , we

know thatR(δ, γ+
δ + δ, µ∗) ∩ R(δ, γ+

δ , λ
′ + µ) = Qλ′

and ρδ,γ = #(R(δ, γ+
δ + δ, µ∗) ∩ R(δ, γ+

δ , λ
′ +

µ))/#R(δ, γ+
δ + δ, µ∗) = #Qλ′/#R(δ, γ+

δ + δ, µ∗) =
#Qλ′/#R(δ, α+

δ + δ, µ∗) > p−tm.



Corollary 1 Given a multisecret sharing scheme with its
defining mappingF : GF (pt)n −→ GF (pt)m. Then
max{ρδ,α|α ∈ GF (pt)n} ≥ p−tm for any fixed nonzero
vectorδ ∈ GF (pt)n.

3.2 k-Cheating Immune Multisecret Shar-
ing

Given a multisecret sharing with its defining mappingF
onGF (pt)n. For a fixed nonzeroδ ∈ GF (pt)n, due to
Theorem 1, it is desirable thatρδ,α = p−tm holds for
everyα ∈ GF (pt)n. A multisecret sharing is said to be
k-cheating immuneif ρδ,α = p−tm holds for everyδ ∈
GF (pt)n with 1 ≤ HW (δ) ≤ k and everyα ∈ GF (pt)n.

Theorem 2 Given a multisecret sharing with its defining
mappingF : GF (pt)n −→ GF (pt)m. Then the multise-
cret sharing isk-cheating immune⇐⇒ for any integerl
with 1 ≤ l ≤ k, any δ ∈ GF (pt)n with HW (δ) = l,
anyτ � δ and anyµ, ν ∈ GF (pt)m, the following condi-
tions hold simultaneously: (i)#R(δ, τ, ν) = pt(n−l−m),
(ii) #(R(δ, τ, ν) ∩R(δ, τ + δ, µ)) = pt(n−l−2m).

The proof is given in the Appendix.

Theorem 3 Given a multisecret sharing with its defin-
ing mappingF : GF (pt)n −→ GF (pt)m. Then the
following statements are equivalent: (i) the multisecret
sharing isk-cheating immune, (ii) for any integerl with
1 ≤ l ≤ k, any δ ∈ GF (pt)n with HW (δ) =
l, any τ � δ and anyµ, ν ∈ GF (pt)m, we have
#(R(δ, τ, ν) ∩ R(δ, τ + δ, µ)) = pt(n−l−2m), (iii) for
suchl, δ, τ , µ andν mentioned in (ii), the system of equa-

tions:

{

F (x−δ + τ + δ) = µ
F (x−δ + τ) = ν

has preciselypt(n−l−2m)

solutions onx−δ .

Proof Clearly (ii)⇐⇒ (iii). Due to Theorem 2, (i)=⇒
(ii). To complete the proof, we only need prove that (ii)
=⇒ (i). Assume that (ii) holds. Thus#(R(δ, τ, ν) ∩
R(δ, τ + δ, µ)) = pt(n−l−2m) for everyµ, ν ∈ GF (pt)m.
Note thatR(δ,τ,ν)= ∪µ∈GF (pt)m R(δ, τ, ν) ∩ R(δ, τ +
δ, µ) and then#R(δ, τ, ν) =

∑

µ∈GF (pt)m #(R(δ, τ, ν

) ∩ R( δ, τ + δ, µ)). This proves that#R(δ, τ, ν) =
pt(n−l−m). Using Theorem 2, we have proved that (i)
holds.

Corollary 2 Given a multisecret sharing with its defining
mappingF : GF (pt)n −→ GF (pt)m. If the multisecret
sharing isk-cheating immune, then (i)n ≥ 2m + k, (ii)
F is regular.

Proof Let l = k in Theorem 2, we have#(R(δ, τ, ν)∩
R(δ, τ + δ, µ)) = pt(n−k−2m) ≥ 1. This proves thatn ≥
2m + k. Again from Theorem 2 we have#R(δ, τ, ν) =
pt(n−k−m), for anyτ � δ and anyν ∈ GF (pt)m. This
means that for each fixedτ with τ � δ, the mapping
F (x−δ + τ) is regular. Thus the mappingF is regular.

Due to Corollary 2, ak-cheating immune multise-
cret sharing, defined by a mappingF : GF (pt)n −→
GF (pt)m, exists only whenn ≥ 2m+ k.

4 Simultaneous Recovery of Secrets
with Cheaters using Valid and In-
valid Shares

4.1 Probability of Successful Cheating

Given a mappingF : GF (pt)n −→ GF (pt)m. We intro-
duce the following notations. As before we can seeF as a
tableT with rows containing(δ, F (δ)). We also assume
that the combiner returns all secrets (or the multisecret for
short).
• Letα ∈ GF (pt)n be the sequence of shares held by the
groupP = {P1, . . . , Pn} of n participants and the secret
µ = F (α).
• The collection of cheaters is determined by the sequence
δ = (δ1, δ2, . . . , δn) wherePi is a cheater⇐⇒ if δi 6= 0.
• At the pooling time, the cheaters submit their shares.
This time it is assumed that cheaters may submit a mixture
of valid and invalid shares. The honest participants al-
ways submit their valid shares. The collection of cheaters
who submit invalid shares is determined by the sequence
τ = (τ1, . . . , τn) whereτj = 0 ⇐⇒ Pj is honest orPj
is a cheater who submits a valid share, in other words,
τj 6= 0 ⇐⇒ Pj is a cheater who submits an invalid share.
Clearly τ � δ. We assume that there exists at least one
cheater who submits invalid share, in other words, we
only consider the case thatτ is nonzero orHW (τ) > 0.
We consider the vectorα+τ . Due to the properties of op-
erationsα+

δ andα−
δ , we can writeα+ τ = α−

δ +α+
δ + τ .

The combiner obtainsα+ τ that splits into two parts:α−
δ



– the part submitted by honest participants andα+
δ + τ

the part submitted by cheaters. The combiner returns an
invalid multisecretµ∗ = F (α+ τ).
• R(δ, α+

δ + τ, µ∗), or {x−δ |F (x−δ + α+
δ + τ) = µ∗},

whereα+
δ determines valid shares held by the cheaters,

represents the view of the cheater after getting backµ∗

from the combiner.
• The setR(δ, α+

δ , µ), or {x−δ |f(x−δ + α+
δ ) = µ}, deter-

mines a collection of rows ofT with the correct multise-
cretµ and valid shares held by the cheaters.

As mentioned in Section 3, the cheating means the ac-
tion of cheaters by submitting incorrect shares, and suc-
cessful cheating means the case when cheaters are able to
guess the correct secret.

In generalised model of cheating,τ is used to deter-
mine how to cheat whileδ is only used to determine which
participants are dishonest, therefore we can defineδ as a
(0, 1)-vector inGF (pt)n. However, in basic model of
cheating,δ is not only used to determine which partic-
ipants are dishonest but also used to determine how to
cheat, thusδ has a more general form.

The mappingF is called thedefining mappingof
multisecret sharing. We assume that the combiner re-
turns multisecrets (all secrets). The nonzero vectorδ =
(δ1, . . . , δn) is called acheating vector, the nonzero vec-
tor τ � δ is called anactive cheating vector, α is called
anoriginal vector. The value ofρδ,τ,α = #(R(δ, α+

δ +
τ, µ∗) ∩ R(δ, α+

δ , µ))/#R(δ, α+
δ + τ, µ∗) expresses the

probability of successful cheating with respect toδ, τ and
α. As an original vectorα is always inR(δ, α+

δ +τ, µ∗)∩
R(δ, α+

δ , µ), the probability of successful cheating always
satisfiesρδ,τ,α > 0. Clearly the number of cheaters is
equal toHW (δ) and the number of active cheaters is
equal toHW (τ). In particular, ifτ = δ, we regain basic
model of cheating.

4.2 Strictly k-cheating Immune Multisecret
Sharing

By using the same arguments as in the proof of Theorem
1, we can state:

Theorem 4 Given a multisecret sharing with its defining
mappingF : GF (pt)n −→ GF (pt)m. Letδ ∈ GF (pt)n;
0 < HW (δ) < n, be a cheating vector, letτ � δ; τ 6= 0,
be an active cheating vector, and letα ∈ GF (pt)n be an

original vector (representing valid shares). Ifρδ,τ,α <
p−tm then there exists a vectorγ ∈ GF (pt)n such that
ρδ,τ,γ > p−tm.

Corollary 3 Given a multisecret sharing with its defining
mappingF : GF (pt)n −→GF (pt)m. Thenmax{ρδ,τ,α |
α ∈ GF (pt)n} ≥ p−tm for any fixedδ andτ with τ � δ
andτ 6= 0.

For the same reason mentioned in Section 3.2, we intro-
duce the concept ofk-cheating immunity. Given a secret
sharing with its defining mappingF onGF (pt)n. Let k
be an integer with1 ≤ k ≤ n − 1. The secret sharing
is said to bestrictly k-cheating immuneif the probabil-
ity of successful cheating satisfiesρδ,τ,α = p−tm for ev-
ery δ ∈ GF (pt)n and anyτ � δ with 1 ≤ HW (τ) ≤
HW (δ) ≤ k and everyα ∈ GF (pt)n. The following
theorem establishes a relationship between the two mod-
els of cheating immunity.

Theorem 5 Given a multisecret sharing with its defining
mappingF : GF (pt)n −→ GF (pt)m. Then the multise-
cret sharing is strictlyk-cheating immune⇐⇒ for any
integerr with 0 ≤ r ≤ k − 1, any subset{j1, . . . , jr}
of {1, . . . , n} and anya1, . . . , ar ∈ GF (pt), the map-
ping F (x1, . . . , xn)|xj1=a1,...,xjr =ar

, with the variables
xi1 , . . . , xin−r

, where{i1, . . . , in−r} ∪ {j1, . . . , jr} =
{1, . . . , n}, is the defining mapping of a(k − r)-cheating
immune secret sharing.

Proof Assume that the multisecret sharing is strictly
k-cheating immune (model in Section 4.1). Denote
F (x1, . . . , xn)|xj1=a1,...,xjr =ar

byG. ThenG is a map-
ping: GF (pt)n−r −→ GF (pt)m. Comparing the model
in Section 3.1 with the model in Section 4.1, we know
thatG is the defining mapping of(k − r)-cheating im-
mune secret sharing (model in Section 3.1). This proves
the necessity. By definition, we can prove the sufficiency
by inverting the above reasoning.

5 Secret Sharing versus Multisecret
Sharing

We regardGF (ptm) as a simple extension ofGF (pt)
and then there exists an elementǫ ∈ GF (ptm) such that



each element inGF (ptm) can be uniquely expressed as
b1 + b2ǫ + · · · + bmǫ

m−1 where eachbj ∈ GF (pt).
Let f be a function onGF (ptm)n, i.e., a mapping:
GF (ptm)n −→ GF (ptm), and ψ be a nonzero linear
mapping:GF (ptm) −→ GF (pt). ¿Fromf andψ, we
now define a mappingFf,ψ: GF (pt)n −→ GF (pt)m

such thatFf,ψ(a1, . . . an) = (b1, . . . , bm), where each
aj , bi ∈ GF (pt), ⇐⇒ f(c1, . . . cn) = c, whereaj =
ψ(cj), j = 1, . . . , n, andc = b1 + b2ǫ+ · · · + bmǫ

m−1.

Theorem 6 Given a secret sharing with its defining func-
tion f on GF (ptm)n. Let ψ be a nonzero linear map-
ping fromGF (ptm) toGF (pt). If the secret sharing isk-
cheating immune then the mappingFf,ψ : GF (pt)n −→
GF (pt)m is the defining mapping ak-cheating immune
multisecret sharing.

Proof Let δ be any vector inGF (pt)n with HW (δ) = l,
where1 ≤ l ≤ k, andτ be any vector inGF (pt)n with
τ � δ. Consider the system of equations:

{

Ff,ψ(x−δ + τ + δ) = (a1, . . . , am)
Ff,ψ(x−δ + τ) = (b1, . . . , bm)

(4)

where eachaj , bj ∈ GF (pt), and

{

f(x−δ + τ + δ) = a1 + a2ǫ+ · · · + amǫ
m−1

f(x−δ + τ) = b1 + b2ǫ+ · · · + bmǫ
m−1 (5)

Due to Theorem 3, Equations (5) have precisely
ptm(n−l−2) solutions. Note that for each elementa ∈
GF (pt), there precisely existpt(m−1) elementsc ∈
GF (ptm) such thatψ(c) = a. Therefore for each vec-
tor (a1, . . . , an−l) ∈ GF (pt)n−l, there precisely exist
pt(m−1)(n−l) vectors(c1, . . . , cn−l) ∈ GF (ptm)n−l such
that(ψ(c1), . . . , ψ(cn−l)) = (a1, . . . , an−l). Summaris-
ing the above, we know that Equations (4) have precisely
ptm(n−l−2)/pt(m−1)(n−l) = pt(n−l−2m) solutions. Due
to Theorem 3, we have proved that the mappingFf,ψ:
GF (pt)n −→ GF (pt)m is the defining mapping ak-
cheating immune multisecret sharing.

Combining Theorems 5 and 6, we can prove the fol-
lowing statement.

Corollary 4 Given secret sharing with its defining func-
tion f onGF (ptm)n. Letψ be a nonzero linear mapping
fromGF (ptm) toGF (pt). If the secret sharing is strictly

k-cheating immune then the mappingFf,ψ: GF (pt)n −→
GF (pt)m is the defining mapping of a strictlyk-cheating
immune multisecret sharing.

The construction of ak-cheating immune secret sharing
defined by a function has been studied [6]. Therefore ap-
plying Theorems 6 and 4, we can construct ak-cheating
immune secret sharing defined by a mapping from ak-
cheating immune secret sharing defined by a function.
Using Corollary 4 and construction given in [6], we can
obtain strictly cheating immune secret sharing defined by
a mapping. The constructions will be shown in Examples
1 and 2.

Theorem 7 Let F be a mapping: GF (pt)n −→
GF (pt)m. Write F (x) = (f1(x), . . . , fm(x)) where
eachfj is a function onGF (pt)n and x ∈ GF (pt)n.
Let s be an integer with1 ≤ s ≤ m and{j1, . . . , js} ⊆
{1, . . . , n}. Define a mappingH : GF (pt)n −→GF (pt)s

such thatH(x) = (fj1(x), . . . , fjs(x)). If F is the defin-
ing mapping of ak-cheating immune multisecret sharing,
so isH .

Proof Without loss of generality, we only prove the theo-
rem in the special case thatj1 = 1, . . . , js = s. Consider
the system of equations:

{

H(x−δ + τ + δ) = ω
H(x−δ + τ) = σ

(6)

whereω, σ ∈ GF (pt)s.
SinceF is the defining mapping of ak-cheating im-

mune multisecret sharing, due to Theorem 3, for any inte-
gerl with 1 ≤ l ≤ k, anyδ ∈ GF (pt)n withHW (δ) = l,
anyτ � δ and anyµ, ν ∈ GF (pt)m, the system of equa-

tions:

{

F (x−δ + τ + δ) = µ
F (x−δ + τ) = ν

has preciselypt(n−l−2m)

solutions onx−δ . On the other hand, there precisely ex-
ist pt(m−s) vectorsµ ∈ GF (pt)m satisfyingµ = (ω, y)
wherey ∈ GF (pt)m−s and there precisely existpt(m−s)

vectorsν ∈ GF (pt)m satisfyingν = (σ, z) wherez ∈
GF (pt)m−s. It is easy to see that the system of equations
(6) has preciselypt(n−l−2m)·p2t(m−s) = pt(n−l−2s) solu-
tions onx−δ . Applying Theorem 3 toH , we have proved
thatH is the defining mapping of ak-cheating immune
multisecret sharing.

The above theorem can be rephrased to the following
statement.



Theorem 8 Let F be a mapping: GF (pt)n −→
GF (pt)m such thatF (x) = (f1(x), . . . , fm(x)) where
eachfj is a function onGF (pt)n andx ∈ GF (pt)n. If
F is the defining mapping of ak-cheating immune mul-
tisecret sharing then eachfj is the defining function of a
k-cheating immune secret sharing.

Applying Theorem 5 to Theorem 8, we obtain

Corollary 5 Let F be a mapping: GF (pt)n −→
GF (pt)m such thatF (x) = (f1(x), . . . , fm(x)) where
eachfj is a function onGF (pt)n andx ∈ GF (pt)n. If
F is the defining mapping of a strictlyk-cheating immune
multisecret sharing then eachfj is the defining function
of a strictlyk-cheating immune sharing.

Theorem 9 Let F be a mapping: GF (pt)n −→
GF (pt)m andB is a nonsingularm × m matrix over
GF (pt). Define another mappingG: GF (pt)n −→
GF (pt)m such thatG(x) = (F (x))B. If F is the defin-
ing mapping of ak-cheating immune multisecret sharing,
so isG.

Proof For any integerl with 1 ≤ l ≤ k, any
δ ∈ GF (pt)n with HW (δ) = l, any τ � δ and
anyµ, ν ∈ GF (pt)m, consider the system of equations:
{

G(x−δ + τ + δ) = µ
G(x−δ + τ) = ν

that is equivalent to

{

F (x−δ + τ + δ) = µB−1

F (x−δ + τ) = νB−1 (7)

SinceF is the defining mapping of ak-cheating im-
mune multisecret sharing, due to Theorem 3, (7) has pre-
ciselypt(n−l−2m) solutions onx−δ . ThereforeG has pre-
ciselypt(n−l−2m) solutions onx−δ . Again using Theorem
3,G is also the defining mapping of ak-cheating immune
multisecret sharing.

Theorem 10 Let F be a mapping: GF (pt)n −→
GF (pt)m such thatF (x) = (f1(x), . . . , fm(x)) where
eachfj is a function onGF (pt)n andx ∈ GF (pt)n. If
F is the defining mapping of ak-cheating immune mul-
tisecret sharing then any nonzero linear combination of
f1, . . . , fm, i.e., b1f1 + · · · + bmfm where eachbj ∈
GF (pt) and (b1, . . . , bm) 6= (0, . . . , 0), is the defining
function of ak-cheating immune secret sharing.

Proof Let (b1, . . . , bm) be a nonzero vector inGF (pt)m.
LetB be a nonsingularm×mmatrix overGF (pt), whose
first column is(b1, . . . , bm)T whereXT denote the trans-
pose of the matrixX . SetG(x) = (g1(x), . . . , gm(x)) =
(f1(x), . . . , fm(x))B. Using Theorem 9, we know that
G is the defining mapping of ak-cheating immune multi-
secret sharing. Applying Theorem 8 toG, we know that
g1 is the defining function of ak-cheating immune secret
sharing. Sinceg1 = b1f1 + · · · + bmfm, we have proved
that b1f1 + · · · + bmfm is the defining function of ak-
cheating immune secret sharing.

Applying Theorem 5 to Theorem 10, we obtain

Corollary 6 Let F be a mapping: GF (pt)n −→
GF (pt)m such thatF (x) = (f1(x), . . . , fm(x)) where
eachfj is a function onGF (pt)n and x ∈ GF (pt)n.
If F is the defining mapping of a strictlyk-cheating im-
mune multisecret sharing then any nonzero linear combi-
nation off1, . . . , fm is the defining function of a strictly
k-cheating immune secret sharing.

Due to Theorem 10 (Corollary 6), we havef1, . . . , fm
that arem coordinate functions of the mappingF . De-
note the set of all the nonzero linear combinations of
f1, . . . , fm, by Ω = {g1, . . . , gptm−1}. Then eachgj is
the defining function of a (strictly)k-cheating immune
secret sharing. Clearlygj ± gi ∈ Ω for j 6= i, and thus
gj ± gi is the defining function of a (strictly)k-cheating
immune secret sharing. Due to Corollary 2,gj ± gi is
balanced. This means that anyfj does not give any in-
formation on any otherfi with i 6= j as balance means
unbiased for every element inGF (pt). Note thatΩ∪{0},
where0 denotes the zero function onGF (pt)n form an
m-dimensional linear space overGF (pt).

6 Constructions

The following two examples indicate how to construct a
multisecret sharing mentioned in Theorem 10 and Corol-
lary 6.

Example 1 Define a functionχ2k+1 on GF (ptm)2k+1

by χ2k+1(x1, . . . , x2k+1) = x1x2 + x2x3 + · · ·
+x2kx2k+1 + x2k+1x1 and then define a function
χ4k+2 on GF (ptm)4k+2 by χ4k+2(x1, . . . , x4k+2) =
χ2k+1(x1, . . . , x2k+1) +χ2k+1(x2k+2, . . . , x4k+2).



Let k and s be positive integers withs ≥ k + 1,
n1, . . . , ns = 4k + 1 or 4k + 2, and n = n1 +
· · · + ns. Define a function onGF (ptm)n such as
f(x) = χn1(y) + · · · + χns

(z) wherex = (y, . . . , z),
y ∈ GF (ptm)n1 , . . . , z ∈ GF (ptm)ns , andχn1 , . . . , χns

have disjoint variables mutually. ¿From [6], the secret
sharing with the defining functionf is k-cheating im-
mune. Letψ be a nonzero linear mapping:GF (ptm) −→
GF (pt). Due to Theorem 6, the mappingFf,ψ: GF (pt)n

−→ GF (pt)m is the defining mapping ak-cheating im-
mune multisecret sharing.

Example 2 Let λn,p be a function onGF (ptm)n

(n ≥ 2p2 + p) defined byλn,p(x1, . . . , xn) = x1+
∑n

j=1(xjx[j+1](n)
+xjx[j+2](n)

+ · · · +xjx[j+p](n)
)

where[i](n) denotes the integerj such that1 ≤ j ≤ n
and j ≡ i mod n (we replacei by [i](n) as i is possi-
bly greater thann). Let s be an integer withs ≥ 2p,
n1, . . . , ns = 2p2 + p or 2p2 + p + 1, andn = n1 +
· · ·+ns. Define a function onGF (ptm)n such asf(x) =
λn1,p(y) + · · · + λns,p(z) wherex = (y, . . . , z), y ∈
GF (ptm)n1 , . . . , z ∈ GF (ptm)ns , andλni,p, . . . , λnj ,p

have disjoint variables ifi 6= j. From [6], the secret
sharing with the defining functionf is strictly p-cheating
immune. Letψ be a nonzero linear mapping:GF (ptm)
−→ GF (pt). Due to Corollary 4, the mappingFf,ψ :
GF (pt)n −→GF (pt)m is the defining mapping a strictly
p-cheating immune multisecret sharing.

7 Sequential Recovery of Secrets

Given a multisecret sharing with its defining mappingF :
GF (pt)n −→ GF (pt)m such thatF = (f1, . . . , fm)
where eachfj is a function onGF (pt)n. In the multi-
secret sharing schemes mentioned in Sections 3 and 4, we
stipulate that the multisecret as a vector(b1, . . . , bm) that
determinesm secrets. We assume that those secrets are
recovered simultaneously.

In this section, we consider a scenario where the com-
biner will recover single secrets (instead of the multise-
cret) in a some order (perhaps imposed by the partici-
pants) and return the recovered secrets to active partici-
pants. We will study two basic cheating strategies
• cheaters use the same cheating vector and the same orig-
inal vector for all recoveries – this case is equivalent to the

simultaneous recovery of secrets,
• cheaters modify their cheating vectors depending on the
returned secrets.

Assume that the participants sequentially perform
m secret sharing schemes with defining functions
f1, . . . , fm by taking cheating vectorsδ1, . . . , δm ∈
GF (pt)n and original vectors.β1, . . . , βm ∈ GF (pt)n

and original vectors. Since the secret of each secret shar-
ing defined byfj is independent to the secret of secret
sharing defined byfi if i 6= j, the probability of suc-
cessful cheating is identical withρδ1,β1 · · · ρδm,βm

, where
ρδi,βi

denotes the probability of successful cheating of the
secret sharing defined byfi with respect to the cheating
vectorδi and the original vectorβi. We notice that each
ρδi,βi

can be calculated by the definition of probability
of successful cheating. Obviously the probability of suc-
cessful cheating of sequentially recovery is invariable un-
der a permutation on the order of participants. In partic-
ular,F = (f1, . . . , fm) is the mapping of ak-th immune
secret sharing, then using Theorem 10, we conclude that
ρδ1,β1 = · · · = ρδm,βm

= p−t. Therefore the probability
of successful cheating is identical withp−tm.

As for the model that cheaters submit a mixture of
valid and invalid shares, using the same arguments, we
conclude that the probability of successful cheating is
identical with ρδ1,β1 · · · ρδm,βm

. In particular, F =
(f1, . . . , fm) is the mapping of ak-th immune secret shar-
ing, then using Theorem 10, we conclude thatρδ1,β1 =
· · · = ρδm,βm

= p−t. Therefore the probability of suc-
cessful cheating is identical withp−tm.

8 Conclusions and Remarks

We define a multisecret sharing by its defining mapping
F : GF (pt)n −→ GF (pt)m. For n participants, each
vectorα ∈ GF (pt)n is a share and the vectorF (α) ∈
GF (pt)m is the multisecret corresponding to the shareα.
It has been proven that the probability of recovery of cor-
rect multisecret by cheaters is can be made as small as
p−tm. Clearly, cheaters who are interested in getting a
single secret may get it with the probability no smaller
thanp−t. In a sense each recovered invalid secret pro-
vides no information about the valid secret but also gives
no help in gaining information about other secrets.

We have investigated two models ofk-cheating im-



mune secret sharing defined by a mapping. A relationship
between defining mappings and functions has been exam-
ined and constructions ofk-cheating immune multisecret
sharing have been given. We have shown howk-cheating
immune multisecret sharing relates to a linear space de-
fined overk-cheating immune secret sharing schemes. We
have also demonstrated thatk-cheating immunity guaran-
tees that multisecret sharing can be used for simultaneous
and sequential recovery without any impact on the proba-
bility of guessing of valid secrets by cheaters.
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Appendix: the Proof of Theorem 2

Proof Assume that the secret sharing isk-cheating im-
mune. Chooseδ as a cheating vector and any vectorα ∈
GF (pt)n as an original vector. Due to Lemma 1, there
existµ′, ν′ ∈ GF (pt)m such thatR(δ, α+

δ + δ, µ′) 6= ∅
andR(δ, α+

δ , ν
′) 6= ∅. Note thatR(δ, α+

δ + δ, µ′) can be
partitioned intopt parts:

R(δ, α+
δ + δ, µ′) =

⋃

ν∈GF (pt)m

R(δ, α+
δ + δ, µ′) ∩R(δ, α+

δ , ν) (8)

Assume thatR(δ, α+
δ + δ, µ′) ∩ R(δ, α+

δ , ν) 6= ∅ for
someν ∈ GF (pt)m. Then there exists a vectorβ−

δ ∈
R(δ, α+

δ + δ, µ′)∩R(δ, α+
δ , ν). Setγ = β−

δ +α+
δ . Since

the secret sharing isk-cheating immune,#(R(δ, γ+
δ +

δ, µ′) ∩R(δ, γ+
δ , ν))/#R(δ, γ+

δ + δ, µ′) = ρδ,γ = p−tm,
whereγ+

δ = α+
δ . Thus

#R(δ, α+
δ + δ, µ′) =

ptm#(R(δ, α+
δ + δ, µ′) ∩R(δ, α+

δ , ν)) (9)

wheneverR(δ, α+
δ + δ, µ′)∩R(δ, α+

δ , ν) 6= ∅. ¿From (8),

#R(δ, α+
δ + δ, µ′) =

∑

ν∈GF (pt)m

#(R(δ, α+
δ + δ, µ′) ∩R(δ, α+

δ , ν))(10)

Combing (9) and (10), we know thatR(δ, α+
δ +δ, µ′)∩

R(δ, α+
δ , ν) 6= ∅ for everyν ∈ GF (pt)m and thus

#(R(δ, α+
δ + δ, µ′) ∩R(δ, α+

δ , ν))

= p−tm#R(δ, α+
δ + δ, µ′) (11)

for everyν ∈ GF (pt)m. Replacingα, δ, byα+δ, (p−1)δ
respectively, due to the same arguments for (11), we have



#(R((p− 1)δ, α+
δ + pδ, ν′) ∩R((p− 1)δ, α+

δ + δ, µ)

= p−tm#R((p− 1)δ, α+
δ + pδ, ν′)

for everyµ ∈ GF (pt)m. Since the characteristic of
the finite fieldGF (pt) is p, pe = 0 for every e ∈
GF (pt). It follows that#(R((p− 1)δ, α+

δ , ν
′) ∩R((p−

1)δ, α+
δ + δ, µ′)) = p−tm#R((p− 1)δ, α+

δ , ν
′) for every

µ ∈ GF (pt)m. Using Lemma 1, we obtain

#(R(δ, α+
δ , ν

′) ∩R(δ, α+
δ + δ, µ))

= p−tm#R(δ, α+
δ , ν

′) (12)

for everyµ ∈ GF (pt)m. Recall thatR(δ, α+
δ + δ, µ′) 6=

∅ andR(δ, α+
δ , ν

′) 6= ∅. Therefore (11) and (12) imply
thatR(δ, α+

δ , ν) 6= ∅ andR(δ, α+
δ + δ, µ) 6= ∅ for every

µ, ν ∈ GF (pt)m. Due to the same reasoning for (11) and
(12), we have

#(R(δ, α+
δ + δ, µ) ∩R(δ, α+

δ , ν))

= p−tm#R(δ, α+
δ + δ, µ) (13)

#(R(δ, α+
δ , ν) ∩R(δ, α+

δ + δ, µ))

= p−tm#R(δ, α+
δ , ν) (14)

for everyµ, ν ∈ GF (pt)m. Comparing (14) with (13),
we conclude that#R(δ, α+

δ + δ, µ) = #R(δ, α+
δ , ν) for

everyµ, ν ∈ GF (pt)m. Therefore both#R(δ, α+
δ +

δ, µ) and #R(δ, α+
δ , ν) are constant. Note that

∑

ν∈GF (pt)m #R(δ, α+
δ , ν) = pt(n−l). We have proved

that

#R(δ, α+
δ , ν) = pt(n−l−m) (15)

for any ν ∈ GF (pt)m. From (15) and (14), we have
proved that

#(R(δ, α+
δ + δ, µ) ∩R(δ, α+

δ , ν)) = pt(n−l−2m) (16)

for everyµ, ν ∈ GF (pt)m. For anyτ � δ, chooseα ∈
GF (pt)n such thatα+

δ = τ . Due to (15) and (16), both
conditions (i) and (ii) hold.

Conversely assume the defining mappingF satisfies
conditions (i) and (ii). Choose anyδ ∈ GF (pt)n with

HW (δ) = l, where1 ≤ l ≤ k, as a cheating vec-
tor and anyα as an original vector. SetF (α) = µ and
F (α + δ) = µ∗. By definition,ρδ,α = #(R(δ, α+

δ +
δ, µ∗) ∩ R(δ, α+

δ , µ))/#R(δ, α+
δ + δ, µ∗). Due to condi-

tions (i) and (ii),ρδ,α = p−tm. Thus we have proved that
the secret sharing isk-cheating immune.


