
New Bounds on the Nonlinearity of Boolean FunctionsXian-Mo ZhangDepartment of Computer ScienceUniversity of WollongongWollongong, NSW 2522, Australiaxianmo@cs.uow.edu.auYuliang ZhengThe Peninsula School of Computing and Information TechnologyMonash University, FrankstonMelbourne, VIC 3199, Australiayzheng@fcit.monash.edu.auAbstractIt is a well known fact that the nonlinearity of a function f on Vn is bounded from above by 2n�1�212n�1. In computer security practice, cryptographic functions are usually constructively obtained insuch a way that they support certain mathematical or cryptographic requirements. Hence an importantquestion is how to calculate the nonlinearity of a function when extra information is available. In thispaper we derive four (two upper and two lower) bounds on the nonlinearity of a function (see Table 1on Page 9). Strengths and weaknesses of each bound are also examined. We anticipate that these fourbounds will be very useful in calculating the nonlinearity of a cryptographic function when certain extrainformation on the function is available.1 IntroductionThe signi�cance of nonlinear functions in cryptology is best illustrated by the success of linear cryptanalyticattacks recently discovered by Matsui in [6]. Realizing its importance, cryptographer often wish to �ndout the nonlinearity of a cryptographic function, or when the exact value is not easily obtainable, a lowerand/or an upper bound on the nonlinearity.A well-known fact about the upper bound on nonlinearity is Nf <= 2n�1 � 2 12n�1, where Nf denotesthe nonlinearity of f and f is a function from Vn (the n-dimensional vector space on GF (2)) to GF (2).In contrast, less is known about the lower bound on nonlinearity, other than (to the authors knowledge)some progress made in [11, 14], as well as such trivial facts as Nf > 0 if and only if f is nonlinear.In computer security practice, such as the design of a substitute-box employed by a private key encryp-tion algorithm or a one-way hashing algorithm, or a nonlinear feedback function used in a pseudorandomsequence generator, one usually generates a nonlinear function in such a way that the function wouldsatisfy certain mathematical or cryptographic criteria. A question one would face is how to calculate thenonlinearity of the function using extra information available on the function. If the exact value of thenonlinearity cannot be easily obtained, the next question is how to estimate the nonlinearity using theextra information on the function.This paper addresses the two questions mentioned above. In particular, we derive four formulas forestimating the nonlinearity of a function, among which two are about upper bound while the other are about1



lower bounds. We hope that these bounds will be helpful in estimating the nonlinearity of a cryptographicfunction when extra information on the function is available.The rest of the paper is organized as follows: Section 2 introduces the basic notions and notations usedin this paper. Section 3 proves two upper bounds on nonlinearity, while Section 4 provides details on twolower bounds on nonlinearity.For a reader who is more interested in the results than in technical details of the proofs, Table 1 onPage 9 summarizes the four bounds on nonlinearity.2 De�nitionsWe consider Boolean functions from Vn to GF (2) (or simply functions on Vn), Vn is the vector space ofn tuples of elements from GF (2). The truth table of a function f on Vn is a (0;1)-sequence de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)),where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0;1), : : :, �2n�1�1 = (1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrixof order 2n de�ned by M = ((�1)f(�i��j)). f is said to be balanced if its truth table contains an equalnumber of ones and zeros.An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) = a1x1 � � � � � anxn � c,where aj ; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is called a linear function if c = 0.De�nition 1 The Hamming weight of a (0;1)-sequence s, denoted by W (s), is the number of ones inthe sequence. Given two functions f and g on Vn, the Hamming distance d(f; g) between them is de�nedas the Hamming weight of the truth table of f(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity off , denoted by Nf , is the minimum Hamming distance between f and all a�ne functions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f;'i) where '1, '2, : : :, '2n+1 are all the a�ne functions on Vn.Note that the maximum nonlinearity of functions on Vn coincides with the covering radius of the �rstorder binary Reed-Muller code RM(1; n) of length 2n, which is bounded from above by 2n�1 � 2 12n�1 (seefor instance [3]). Hence Nf <= 2n�1 � 2 12n�1 for any function on Vn.Next we introduce the de�nition of propagation criterion from [8].De�nition 2 Let f be a function on Vn. We say that f satis�es1. the propagation criterion with respect to � if f(x) � f(x � �) is a balanced function, where x =(x1; : : : ; xn) and � is a vector in Vn.2. the propagation criterion of degree k if it satis�es the propagation criterion with respect to all � 2 Vnwith 1 <= W (�) <= k.f(x) � f (x � �) is also called the directional derivative of f in the direction �. Further work on thetopic can be found in [7].Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise product is de�ned bya � b = (a1b1; : : : ; ambm).De�nition 3 Let f be a function on Vn. For a vector � 2 Vn, denote by �(�) the sequence of f(x � �).Thus �(0) is the sequence of f itself and �(0)��(�) is the sequence of f(x)�f(x��). Set the auto-correlationof f with a shift �, �(�) = h�(0); �(�)i:2



De�nition 4 Let f be a function on Vn. The Walsh-Hadamard transform of f is de�ned asf̂ (�) = 2�n2 Xx2Vn(�1)f(x)�h�;xiwhere � = (a1; : : : ; an) 2 Vn, x = (x1; : : : ; xn), h�;xi is the scalar product of � and x, namely, h�; xi =Lni=1 aixi, and f(x)� h�; xi is regarded as a real-valued function.A (1;�1)-matrix H of order m is called a Hadamard matrix if HHt = mIm, where Ht is the transposeof H and Im is the identity matrix of order m. A Sylvester-Hadamard matrix of order 2n, denoted by Hn,is generated by the following recursive relationH0 = 1; Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : : (1)Let `i, 0 <= i <= 2n � 1, be the i row (column) of Hn. By Lemma 1 of [10], `i is the sequence of a linearfunction 'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where �i is the ith vector in Vn according tothe ascending lexicographic order.The Walsh-Hadamard transform, also called the discrete Fourier transform, has numerous applicationsin areas ranging from physical science to communications engineering. It appears in several slightly di�erentforms [9, 5, 4]. The above de�nition follows the line in [9]. It can be equivalently written as(f̂(�0); f̂(�1); : : : ; f̂ (�2n�1)) = 2� n2 �Hnwhere �i is the ith vector in Vn according to the ascending order, � is the sequence of f and Hn is theSylvester-Hadamard matrix of order 2n.De�nition 5 A function f on Vn is called a bent function if its Walsh-Hadamard transform satis�esf̂(�) = �1for all � 2 Vn.Bent functions on Vn exist only when n is even [9]. They achieve the highest possible nonlinearity2n�1 � 2 12n�1.The following lemma will be used in this paper (For a proof see for instance Lemma 6 of [10].)Lemma 1 The nonlinearity of a function f on Vn can be calculated byNf = 2n�1 � 12 maxfjh�; `iij; 0 <= i <= 2n � 1gwhere � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, the sequences of the linearfunctions on Vn.3 Two Upper Bounds on NonlinearityLet f be a function on Vn and � be the sequence of f . The following is a special form of the Wiener-Khintchine Theorem [1]:(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; : : : ; h�; `2n�1i2): (2)By exploring (2) in di�erent ways, we will obtain two upper bounds on the nonlinearity of functions.3



3.1 The First Upper BoundOur �rst upper bound can be regarded as a straightforward application of (2). For simplicity, write�� = (�(�0);�(�1); : : : ;�(�2n�1))and �� = (h�; `0i2; : : : ; h�; `2n�1i2):Then (2) is simpli�ed to ��Hn = ��. This causes (��Hn)(��Hn)T = ����T , i.e.,2n 2n�1Xj=0 �2(�j) = 2n�1Xj=0 h�; `ji4:Thus there exists a j0, 0 <= j0 <= 2n � 1, such thath�; `j0i4 >= 2n�1Xj=0 �2(�j):Note that �(�0) = �(0) = 2n. Hence from Lemma 1, we haveTheorem 1 For any function f on Vn, the nonlinearity of f satis�esNf <= 2n�1 � 12 4vuut22n + 2n�1Xj=1 �2(�j):It is easy to verify that the equality in Theorem 1 holds if and only if f is bent.3.2 The Second Upper BoundIn order to derive the second upper bound on nonlinearity, we generalize (2) in the following direction. Forany integer t, 0 <= t <= n, rewrite (2) as(�(�0);�(�1); : : : ;�(�2n�1))(Hn�t �Ht) = (h�; `0i2; : : : ; h�; `2n�1i2)where � denotes the Kronecker product (see p.442, [12]).Now set �j = 2t�1Xk=0 h�; `j2t+ki2;where j = 0; 1; : : : ; 2n�t�1, Let e = (1; : : : ; 1) be the all-one sequence of length 2t and I denote the identitymatrix of order 2n�t. Then(�(�0);�(�1); : : : ;�(�2n�1))(Hn�t �Ht)(I � eT ) = (h�; `0i2; : : : ; h�; `2n�1i2)(I � eT ):Note that (Hn�t �Ht)(I � eT ) = (Hn�tI)� (HteT ) and HteT = (2t; 0; : : : ; 0)T . Hence(�(�0);�(�1); : : : ;�(�2n�1))(Hn�t � (2t; 0; : : : ; 0)T ) = (�0; �1; : : : ; �2n�t�1)and 2t(�(�0);�(�2t);�(�2�2t); : : : ;�(�(2n�t�1)2t))Hn�t = (�0; �1; : : : ; �2n�t�1):Thus we have proved the following result: 4



Lemma 2 Let f be a function on Vn and � be the sequence of f . For any integer t, 0 <= t <= n, set�j =P2t�1k=0 h�; `j2t+ki2, where j = 0; 1; : : : ; 2n�t � 1. Then2t(�(�0);�(�2t);�(�2�2t); : : : ;�(�(2n�t�1)2t))Hn�t = (�0; �1; : : : ; �2n�t�1): (3)The generality of (3) than (2) can be seen by noting the fact that the two equations become identicalwhen t = 0.Now compare the jth components in the two sides of (3), we have2t 2n�t�1Xk=0 ak�(�k�2t) = �j ; (4)where j = 0; 1; : : : ; 2n�t � 1 and (a0; a1; : : : ; a2n�t�1) denotes the jth row (column) of Hn�t. Since wealso have �j = P2t�1k=0 h�; `j2t+ki2, for any �xed j there is a k0, 0 <= k0 <= 2t � 1, such that jh�; `j2t+k0ij >=qP2n�t�1k=0 ak�(�k�2t). As �(�0) = 2n, by using Lemma 1, we haveNf <= 2n�1 � 12vuut2n + 2n�t�1Xk=1 ak�(�k�2t):Now note that �0; �2t ; �2�2t; : : : ; �(2n�t�1)2t form a (n�t)-dimensional linear subspace of Vn with f�2t; �2t+1 ; : : : ; �2n�1gas its basis, and that the nonlinearity of a function is invariant under a nondegenerate linear transformationon the input coordinates. Set r = n � t. By using a nondegenerate linear transformation on the inputcoordinates, we have proved the following lemma:Lemma 3 For any integer r, 0 <= r <= n, let �1, : : :, �r be r linearly independent vectors in Vn. Writej = c1�1 � � � � � cr�r, where j = 0; 1; : : : ; 2r � 1 and (c1; : : : ; cr) is the binary representation of integer j.Then Nf <= 2n�1 � 12vuut2n + 2r�1Xj=1 aj�(j)holds for every row (column), denoted by (a0; a1; : : : ; a2r�1), of Hr, where a0 = 1 due to the structure of aSylvester-Hadamard matrix.In practice, simpler forms than that in Lemma 3 would be preferred. This can be achieved by lettingr = 1 in Lemma 3. This results in Nf <= 2n�1 � 12q2n ��(�);for any nonzero vector � 2 Vn. Thus we have derived a simple formula for the upper bound on nonlinearity:Theorem 2 For any function f on Vn, the nonlinearity of f satis�esNf <= 2n�1 � 12p2n +�max;where �max = maxfj�(�)jj� 2 Vn; � 6= 0g.It is easy to verify that the equality in Theorem 2 holds if and only if f is bent.In situations where a more accurate estimate of nonlinearity is required, slightly more involved formscan be used. In particular, by substituting r with 2 in Lemma 3, we have5



(i) Nf <= 2n�1 � 12p2n +�(�) + �() + �(� � ),(ii) Nf <= 2n�1 � 12p2n +�(�)��()��(� � ),(iii) Nf <= 2n�1 � 12p2n ��(�) + �()��(� � ),(iv) Nf <= 2n�1 � 12p2n ��(�)��() + �(� � ).where � and  are nonzero vectors in Vn with � 6= . These four formulas are subsumed in the followingcorollary:Corollary 1 Let f be a function on Vn. Then1. for any nonzero vectors �;  2 Vn with � 6= , the nonlinearity f satis�esNf <= 2n�1 � 12q2n + j�(�)j+ j�()j � j�(� � )j;2. for j�(�j1)j >= j�(�j2)j >= � � � >= j�(�j2n�1)j where (j1; : : : ; j2n�1) is a permutation of (1; : : : ; 2n � 1),the nonlinearity f satis�esNf <= 2n�1 � 12q2n + j�(�j1)j+ j�(�j2)j � j�(�j3)j:4 Two Lower Bounds on NonlinearityIn comparison with upper bounds, far less is known about lower bounds on nonlinearity, although someprogress in this direction has been made in [11, 14]. This section proves two lower bounds on nonlinearity, ofwhich the �rst lower bound has an extremely simple form while the second reveals an intimate relationshipbetween the lower bound on nonlinearity and the propagation characteristic.4.1 The First Lower BoundLet � = (a0; a1; : : : ; a2n�1) = (b0; b1; : : : ; b2n�1�1) be the sequence of a function on Vn where each bj =(a2j ; a2j+1) is called a basis. A basis, say bj , is called a (++)-basis if bj = �(1; 1) and is called a (+�)-basisif bj = �(1;�1). A fact is that any (1;�1)-sequence of length 2n (n >= 2) is a concatenation of (++)-basesand (+�)-bases.In the following discussion, the number of (++)-bases in a sequence under consideration will be denotedby �(++) and the number of (+�)-bases by �(+�).Lemma 4 Let � be the sequence of a function f on Vn. Then �(++) = 2n�2 + 14�(�1) and �(+�) =2n�2 � 14�(�1), where �1 = (0; : : : ; 0; 1), the binary representation of integer 1.Proof. Write � = a0; a1; a2; a3; : : : ; a2n�2; a2n�1. Thus �(�1) = a1; a0; a3; a2; : : : ; a2n�1; a2n�2 and thus�(�1) = h�; �(�1)i = 2n�1�1Xj=0 (a2ja2j+1 + a2j+1a2j):Note that a2ja2j+1 + a2j+1a2j = ( 2 if (a2ja2j+1) is a (++)-basis�2 if (a2ja2j+1) is a (+�)-basisThus �(�1) = 2(�(++) � �(+�)). On the other hand, 2(�(++) + �(+�)) = 2n. Hence �(++) =2n�2 + 14�(�1) and �(+�) = 2n�2 � 14�(�1). ut6



Lemma 5 For any function f on Vn, the nonlinearity of f satis�esNf >= 2n�2 � 14 j�(�1)j:Proof. Obviously, W (f) >= �(+�). By using Lemma 4, W (f) >= 2n�2 � 14�(�1), where W (f) is theHamming weight of f i.e. the number of ones f assumes.Set gj(x) = f (x)�'j(x), where 'j is the linear function on Vn, whose sequence is `i, j = 0; 1; : : : ; 2n�1.Similarly to �(�) for f , we can write �(j) to denote the auto-correlation of gj . It is easy to verify that�(j)(�1) = ( �(�1) if 'j(�1) = 0��(�1) if 'j(�1) = 1By the same reasoning for W (f), we haveW (f � 'j) >= ( 2n�2 � 14�(�1) if 'j(�1) = 02n�2 + 14�(�1) if 'j(�1) = 1Finally, note that d(f;'j) = W (f � 'j). Hence we have Nf >= 2n�2 � 14 j�(�1)j. utTheorem 3 For any function f on Vn, the nonlinearity of f satis�esNf >= 2n�2 � 14�min;where �min = minfj�(�)jj� 2 Vn; � 6= 0g.Proof. For any �xed s, 0 <= s <= 2n � 1, let A be a nondegenerate matrix of order n, over GF (2), suchthat �1A = �s. De�ne g(x) = f(xA). Set xA = u. Hence g(x) = f(u) where xA = u. Note thatg(x)� g(x� �1) = f (xA)� f(xA� �1A) = f(u)� f(u� �s): (5)Similarly to �(�) de�ned for f , we can write �0(�) as the auto-correlation of g.From (5), �0(�1) = �(�s). By using Lemma 5, Ng >= 2n�2 � 14 j�0(�1)j: Since A is nondegenerate,Ng = Nf . Hence Nf >= 2n�2 � 14 j�(�s)j: As s is arbitrary, Nf >= 2n�2 � 14�min: ut4.2 The Second Lower BoundIn [2] it was pointed out that if f , a function on Vn, satis�es the propagation criterion with respect to allbut a subset < of vectors in Vn, then the nonlinearity of f satis�esNf >= 2n�1 � 2n2�1j<j12 : (6)More recently, a further improvement has been made in [11]:Nf >= 2n�1 � 2n� 12 ��1 (7)where � is the maximum dimension of the linear sub-spaces in f0g[<c and <c = Vn�<. (see Theorem 11,[11]). 7



A shortcoming with (6) and (7) is that when j<j is large, estimates provided by (6) and (7) are too farfrom the real value. For example, let g be a bent function on Vn (n must be even). Suppose n >= 4. Nowwe construct a function f on Vn: f (x) = g(x) if x 6= 0 and f(0) = 1�g(0). Since W (g) is even, W (f) mustbe odd. Hence f does not satisfy the propagation characteristics with respect to any vectors and hencej<j = 2n. In this case both (6) and (7) give the trivial inequality Nf >= 0. This problem is addressed inthe rest of this section.Let f , a function on Vn, satisfy the propagation criterion with respect to all but a subset < of vectorsin Vn. For any integer t, 0 <= t <= n, set
 = f�0; �2t ; �2�2t; : : : ; �(2n�t�1)2tg:Recall �0; �2t ; �2�2t; : : : ; �(2n�t�1)2t form a (n�t)-dimensional linear subspace of Vn, and f�2t ; �2t+1 ; : : : ; �2n�1gis a basis of this subspace.From (4), �j <= 2t(�(�0) + (j< \ 
j � 1)�max);where �max = maxfj�(�)jj� 2 Vn; � 6= 0g and �j =P2t�1k=0 h�; `j2t+ki2, j = 0; 1; : : : ; 2n�t � 1. Henceh�; `j2t+ki2 <= 2t(�(�0) + (j< \ 
j � 1)�max);j = 0; 1; : : : ; 2n�t � 1, k = 0; 1; : : : ; 2t � 1.Note that �(�0) = 2n. By using Lemma 1, the nonlinearity of f satis�esNf >= 2n�1 � 2 12 t�1q2n + (j< \ 
j � 1)�max:Set r = n� t. By using a nondegenerate linear transformation on the variables, we haveTheorem 4 Let f , a function on Vn, satisfy the propagation criterion with respect to all but a subset <of vectors in Vn. Let W be any r-dimensional linear subspace of Vn, r = 0; 1; : : : ; n. Then the nonlinearityof f satis�es Nf >= 2n�1 � 212 (n�r)�1q2n + (j< \W j � 1)�max;where �max = maxfj�(�)jj� 2 Vn; � 6= 0g.Since j�(�)j <= 2n for each � 2 Vn, from Theorem 4, we haveCorollary 2 Let f , a function on Vn, satisfy the propagation criterion with respect to all but a subset <of vectors in Vn. Let W be any r-dimensional linear subspace of Vn, r = 0; 1; : : : ; n. Then the nonlinearityof f satis�es Nf >= 2n�1 � 2n� 12 r�1qj< \W j:Theorem 4 is more general and gives a better estimate of lower bound than all other known lowerbounds. To see this, let W = Vn i.e. r = n. Hence we have Nf >= 2n�1 � 12p2n + (j<j � 1)�max. As�max <= 2n, this estimate is clearly better than (6). On the other hand, if < \ W = f�0 = 0g thenNf >= 2n�1 � 2n� 12 r�1, which is exactly (7).Corollary 2 shows a subtle relationship between the nonlinearity and the propagation characteristic:the nonlinearity is not only inuenced by the size of < but also by the distribution of <. This is expressedin a di�erent way in the following corollary: 8



Table 1: Upper and Lower Bounds on NonlinearityUpper Theorem 1: Nf <= 2n�1 � 12 4q22n +P2n�1j=1 �2(�j)Bounds Theorem 2: Nf <= 2n�1 � 12p2n +�maxLower Theorem 3: Nf >= 2n�2 � 14 j�minjBounds Theorem 4: Nf >= 2n�1 � 2 12 (n�r)�1p2n + (j< \W j � 1)�maxwhere�(�) = h�(0); �(�)i is the auto-correlation of f with a shift �,�max = maxfj�(�)jj� 2 Vn; � 6= 0g,�min = minfj�(�)jj� 2 Vn; � 6= 0g,< is the set of vectors where the propagation criterion is not ful�lled by f , andW is any r-dimensional linear subspace of Vn, r = 0; 1; : : : ; n.Corollary 3 Let f , a function on Vn, satisfy the propagation criterion with respect to all but a subset <of vectors in Vn. If the nonlinearity of f satis�esNf <= 2n�1 � 2n� 12 r�1p;where r is an integer, 0 <= r <= n, and p > 0, then there is a r-dimensional linear subspace of Vn, say W ,such that j< \W j >= p2.Table 1 summarizes the main results obtained in this paper, namely two upper and two lower boundson the nonlinearity of cryptographic functions.5 Examples and ApplicationsObviously, the upper bounds stated in Theorems 1 and 2, as well as those in Corollary 1, all represent animprovement on the well-known upper bound Nf <= 2n�1 � 2 12n�1. We found that the two upper boundsdescribed in Theorems 1 and 2, however, have di�erent strengths and weaknesses. This is illustrated byexamining the following two di�erent cases.In the �rst case, we consider a function f on Vn satisfying the propagation criterion with respect to allbut a small subset < of vectors in Vn. In particular, when j<j = 2, by Corollary 2 of [14], there exists anondegenerate matrix A of order n over GF (2) such thatf(xA) = c1x1 � g(y)where g(y) is a bent function on Vn�1 and x = (x1; y) 2 Vn. In the same paper it was also proved that thetwo vectors in <, say �0 = 0 and �1 6= 0, satisfy �(�j) = �2n, j = 0; 1.Using Theorem 1, Nf <= 2n�1 � 12 4p22n + 22n = 2n�1 � 12 4p2 � 2 12n; (8)while using Theorem 2, Nf <= 2n�1 � 12p2n + 2n = 2n�1 � 12p2 � 2 12n: (9)9



Obviously, for this particular example, the right hand side of (9) is less than that of (8). In other wards,Theorem 2 provides a better estimate than Theorem 1 does.In the second case, we consider a function g on Vn that is de�ned as g(x) = 0 if x 6= 0 and g(0) = 1. Itis easy to check that for such a function g, �(�) = �(2n � 4) if � 6= 0, namely < = Vn.Applying Theorem 1, Nf <= 2n�1 � 12 4q22n + (2n � 1)(2n � 4)2; (10)while applying Theorem 2,Nf <= 2n�1 � 12q2n + (2n � 4) = 2n�1 � 12p2n+1 � 4: (11)One can check that the right hand side of (10) is less than that of (11). Hence for such a function gTheorem 1 provides more accurate information than Theorem 2 does.Theorem 1 generally provides a more accurate estimate on the upper bound of nonlinearity thanTheorem 2 when < is large, but less so when < is small.Let f , a function on Vn, satisfy the propagation criterion with respect to all but a subset < of vectorsin Vn. From Theorem 1, Nf <= 2n�1 � 12 4q22n + j<j�2min;where �min = minfj�(�)jj� 2 Vn; � 6= 0g.It is easy to verify that j�(�)j is divisable by four. Thus �(�) 6= 0 implies j�(�)j >= 4. From Theorem 1,Nf <= 2n�1 � 12 4q22n + 16j<j:From Theorem 3 of [13], if f is a non-bent cubic function then �max >= 212 (n+1), where �max =maxfj�(�)jj� 2 Vn; � 6= 0g.By using Theorem 2 Nf <= 2n�1 � 12q2n + 2 12 (n+1):Using Theorem 3, we obtain Theorem 12 of [11]: if a function f on Vn satis�es the propagation criterionwith respect to a vector then the nonlinearity of f satis�es Nf >= 2n�2, in other words, if the nonlinearityof f is less than 2n�2 then f does not satisfy the propagation criterion with respect to any vector.Any function on Vn, f , can be written as f(x) = p(y)xt � q(y), for a �xed t, 1 <= t <= n, wherex = (x1; : : : ; xn), y = (x1; : : : ; t � 1; t + 1; xn), p and q are functions on Vn�1. We can conclude thatthe nonlinearity of f , Nf , satis�es Nf >= 2n�2 if p is balanced. In fact, it is obvious that f satis�es thepropagation with respect to �2n�t = (0; : : : ; 0; 1; 0; : : : ; 0), where only the tth component is nonzero. FromTheorem 3, Nf >= 2n�2.6 ConclusionTwo upper and two lower bounds on the nonlinearity of a Boolean function have been established. Thesebounds could be particularly useful when certain structural information on a Boolean function is available.All the bounds have been primarily based on the auto-correlation of a function under consideration. Thisopens up a possible new avenue for future research, that is to extend the results so that they take intoaccount other factors such as linear structures, algebraic degree and global avalanche characteristics (GAC)introduced in [13]. 10
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