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COMPUTING MöBIUS TRANSFORMS OF BOOLEAN

FUNCTIONS AND CHARACTERISING COINCIDENT
BOOLEAN FUNCTIONS

Josef Pieprzyk1 and Xian-Mo Zhang1

Abstract. The Möbius transform of Boolean functions is
often involved in cryptographic design and analysis. This
work is composed of two parts. In the first part we com-
pute Möbius transform by different methods and study its
cryptographic properties. In the second part we focus on
the special case when a Boolean function is identical with
its Möbius transform. We call such functions coincident.
We further characterise coincident functions and study their
cryptographic properties.
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1. Introduction to This Work

Recent developments in algebraic analysis of ciphers put an
emphasis on methods and techniques that treat a cryptographic
system as a collection of Boolean functions, describe them by their
algebraic normal forms (ANFs), and then examine their algebraic
properties such as sparseness, algebraic degree, number of overde-
fined relations, number of monomials, etc. A prerequisite for an
efficient algebraic analysis is the ability to represent Boolean func-
tions and their relations by their short algebraic forms. Moreover,
most of time the designers of Boolean functions are working with
their truth tables and the translation from a truth table to its
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unique algebraic normal form (ANF) is not immediate. The aim
of this work is to investigate the Möbius transform and its sig-
nificance in Cryptography. What is interesting about the Möbius
transform is that it allows to define a class of Boolean functions
whose ANFs can be written easily from their truth tables (and vice
versa). This nice property can be useful for analysis and design of
small cryptographic S-boxes. More importantly, it could be used
to justify security level of a cryptographic scheme if its truth table
is big enough so it is impossible to construct its truth table and
as the results, it is impossible to determine its ANF. It is a well-
known fact that a Boolean function f of n variables (x1, . . . , xn)
can be uniquely represented a polynomial in Formula (1) where g
is also a function of n variables that characterises f . We call g the
Möbius transform of f . In this work we denote this relation by
g = µ(f). We present three methods to compute µ(f). We then
study cryptographic properties of µ(f). We further propose the
concept of coincident functions. A Boolean function f is called
coincident if f is identical with µ(f). We consider an example,
f(x1, x2, x3) = x3 ⊕ x2 ⊕ x1 ⊕ x1x3 ⊕ x1x2x3. From the ANF of
f , we know that the truth table of µ(f) is (01101101). On the
other hand, by computing, we know that the truth table of f is
also (01101101). Then f is a coincident function on (GF (2))3. In
general if the ANF/truth table of a coincident function is given
then we know its truth table/ANF without computing. We char-
acterise the coincident functions and examine their cryptographic
properties such as algebraic degree and nonlinearity.

The rest of the paper is organised as follows. Section 2 is a brief
introduction to Boolean functions. We compute the Möbius trans-
form µ(f) of a Boolean function f by using matrix, polynomial and
recursive formulas in Sections 3, 4 and 5 respectively. In Section
6, we compute µ(f) after the variables are permuted. In Section
7 we prove that deg(f) + deg(µ(f)) ≥ n where n is the number of
the variables. We propose so-called coincident functions in Section
8 and then we characterise coincident functions by using matrix,
polynomial and recursive relations in Sections 9, 15 and 16 respec-
tively. We study operations of coincident functions in Section 10.
In Section 11 we divide Boolean functions into cosets with respect
to coincident functions and then we enumerate coincident func-
tions in Section 12. In Section 13 we show a basis of coincident
functions so as to get all coincident functions simply. In Section
14 we illustrate coincident functions by examples. Based on the
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above results, we propose more properties of coincident functions
in Section 17. To show the high degree of coincident functions, we
give a lower bound on the degree of coincident functions in Section
18. Based on special properties of coincident functions, we study
their nonlinearity and algebraic degree in Sections 19. Section 20
concludes the work.

2. Introduction to Boolean Functions

Throughout the paper we use the following notations. The
vector space of n-tuples of elements from GF (2) is denoted by
(GF (2))n. We write all vectors in (GF (2))n as (0, . . . , 0, 0) =
α0, (0, . . . , 0, 1) = α1, . . ., (1, . . . , 1, 1) = α2n−1, and call αi the
binary representation of integer i, i = 0, 1, . . . , 2n − 1. A Boolean
function f is a mapping from (GF (2))n to GF (2) or simply, a
function f on (GF (2))n. We write f more precisely as f(x) or
f(x1, . . . , xn) where x = (x1, . . . , xn). The truth table of a function
f on (GF (2))n is a (0, 1)-sequence defined by (f(α0), f(α1), . . . ,
f(α2n−1)), The Hamming weight of a (0, 1)-sequence ξ, denoted
by HW (ξ), is defined as the number of nonzero coordinates of ξ.
In particular, if ξ is the truth table of a function f , then HW (ξ)
is called the Hamming weight of f , denoted by HW (f). f is said
to be balanced if HW (f) = 2n−1. The Hamming distance between
functions f and g on (GF (2))n, denoted by d(f, g) is defined as
d(f, g) = HW (f⊕g). The function f can be uniquely represented
by a polynomial

f(x1, . . . , xn) =
⊕

α∈(GF (2))n

g(a1, . . . , an)xa1
1 · · · xan

n (1)

where α = (a1, . . . , an), and g is also a function on (GF (2))n,
called the Möbius transform of f . The polynomial representa-
tion of f is called the algebraic normal form (ANF) of the function
f and each xa1

1 · · · xan
n is called a monomial (term) in the ANF of f .

The algebraic degree, or simply degree, of f , denoted by deg(f), is
defined as deg(f) = max(a1,...,an) {HW (a1, . . . , an) | g(a1, . . . , an) = 1}.
f is called affine if its ANF has the following form: f(x) =
a1x1⊕· · ·⊕anxn⊕c where x = (x1, . . . , xn), a1, . . . , an, c ∈ GF (2)
are constant. In particular f is called linear if c = 0.
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3. Computing µ(f) by Matrix

In this section we describe the Möbius Transform by using ma-
trix.

Notation 1. Let Rn denote the set of all functions on (GF (2))n.
In this work we write µ(f) = g where g is the Möbius transform
of f , defined in Formula (1).

By definition, it is easy to verify that the Möbius Transform µ
is a one-to-one linear mapping from Rn to Rn.

Notation 2. We define 2n × 2n (0, 1)-matrix, denoted by Tn,
such that the ith row of Tn is the truth table of xa1

1 · · · xan
n where

(a1, . . . , an) is the binary representation of the integer i.

Theorem 3.1. Tn, defined in Notation 2, satisfies the following

recursive relation: T0 = 1, Ts =

[

Ts−1 Ts−1

O2s−1 Ts−1

]

, where O2s−1

denotes the 2s−1 × 2s−1 zero matrix, s = 1, 2, . . ..

Proof. We prove the theorem by induction on n. Since T1 =
[

1 1
0 1

]

, it is easy to verify that the theorem is true when n = 1.

More precisely, the 0th row (1, 1) of T1 is the truth table of the
constant function f(x1) = x0

1 = 1 and the 1st row (0, 1) of T1 is the
truth table of the function f(x1) = x1. Assume that the lemma
is true when 1 ≤ n ≤ s − 1. Let n = s. Consider the monomial
xa1

1 · · · xas
s . There exist two cases to be considered: a1 = 0 (Case

1) and a1 = 1 (Case 2). In Case 1 xa1
1 · · · xas

s = xa2
2 · · · xas

s . By
the induction assumption, the ith row of Ts−1 is the truth table
of xa2

2 · · · xas
s . Due to the relation between Ts and Ts−1, it is easy

to verify that the ith row of Ts is the truth table of xa1
1 x

a2
2 · · · xas

s

with a1 = 0. In Case 2 xa1
1 · · · xas

s = x1x
a2
2 · · · xas

s . Due to the rela-
tion between Ts and Ts−1, it is easy to verify that the ith row of
Ts is the truth table of xa1

1 x
a2
2 · · · xas

s with a1 = 1. �

Example 3.2. By using Theorem 16.1, we can construct T1, T2,
T3, . . .. T1 has two rows (1 1) and (0 1). T2 has four rows (1 1 1
1), (0 1 0 1), (0 0 1 1) and (0 0 0 1). T3 has eight rows: (1 1 1 1 1
1 1 1), (0 1 0 1 0 1 0 1), (0 0 1 1 0 0 1 1), (0 0 0 1 0 0 0 1), (0 0 0
0 1 1 1 1), (0 0 0 0 0 1 0 1), (0 0 0 0 0 0 1 1) and (0 0 0 0 0 0 0 1).
It is noted that (1, 0, 1) is the binary representation of integer 5.
By the definition of Tn, the 5th row of T3, (0 0 0 0 0 1 0 1), is the
truth table of x1

1x
0
2x

1
3 = x1x3. �
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Lemma 3.3. (i) T 2
s = I2s where I2s is the 2s×2s identity matrix,

(ii) (Ts ⊕ I2s)2 = 02s where 02s is the 2s × 2s zero matrix, (iii)
Ts(Ts ⊕ I2s)= (Ts ⊕ I2s)Ts =Ts ⊕ I2s , where s = 1, 2, . . ..

Proof. (i) can be proved by induction. (ii) and (iii) are immediate
consequences of (i). �

Theorem 3.4. Let f and g be functions on (GF (2))n. Denote
the truth tables of f and g by ξ and η respectively. Then the
following statements are equivalent: (i) g = µ(f), (ii) f = µ(g),
(iii) ηTn = ξ, (iv) ξTn = η.

Proof. Assume that (i) holds. We now prove (iii). It is noted
that ηTn is a linear combination of the rows of Tn. Recall that
η = (g(α0), g(α1), . . . , g(α2n−1)). By the definition of Tn, ηTn is
the truth table of f . Then ηTn = ξ. This proves that (iii) holds.
Assume that (iii) holds. Let g′ = µ(f) and η′ be the truth table
of g′. Since we have proved (i) =⇒ (iii), we know that η′Tn = ξ.
Comparing η′Tn = ξ with ηTn = ξ, since Tn is invertible, we
know η′ = η and then g′ = g. We then have proved that (i)
holds. Therefore we have proved (i) ⇐⇒ (iii). Symmetrically, (ii)
⇐⇒ (iv). Due to (i) of Lemma 3.3, (iii) ⇐⇒ (iv). The proof is
completed. �

It is noted that the equivalence between (i) and (ii) of Theorem
3.4 was previously proved in [4]. However we regain it here by
using a different concept. Theorem 3.4 enables us to compute the
truth table/ANF from the ANF/truth table of a function by using
the matrix Tn.

Example 3.5. Assume that we know the ANF of f on (GF (2))3:
f(x1, x2, x3) = 1 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3. Set g = µ(f). From
the ANF of f , we know that g has the truth table (10111001). By
using Theorem 3.4, (10111001)T3= (11010011) is the truth table of
f . Conversely, assume that we know the truth table of function f
on (GF (2))3: (11010011). By using Theorem 3.4, (11010011)T3=
(10111001) is the truth table of the µ(f). Therefore we obtain the
ANF of f : f(x1, x2, x3) = 1 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x2x3. �

Theorem 3.6. µ2 is identity transformation, or in other words,
µ−1 = µ.

Proof. The theorem is true due to (i) of Lemma 3.3. �
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4. Computing µ(f) by Polynomials

In this section we express Möbius Transform by using polyno-
mials.

Notation 3. For any α ∈ (GF (2))n, we define a function Dα on
(GF (2))n as follows: Dα(x) = (1⊕a1⊕x1) · · · (1⊕an ⊕xn) where
x = (x1, . . . , xn), α = (a1, . . . , an).

Furthermore, it is known that for any function f on (GF (2))n,
we have

f(x) =
⊕

α∈(GF (2))n

f(α)Dα(x) (2)

For any two functions f and f ′ on (GF (2))n, f(x) ⊕ f ′(x) =
⊕

α∈(GF (2))n (f(α)⊕f ′(α))Dα(x) and f(x)·f ′(x) =
⊕

α∈(GF (2))n (f(α)·

f ′(α))Dα(x) where the second formula holds due to Dα(β) =
{

1 if β = α
0 if β 6= α

,

Lemma 4.1. For any α ∈ (GF (2))n, we have (i) µ(Dα)(x) =
xa1

1 · · · xan
n where α = (a1, . . . , an), (ii) µ(xa1

1 · · · xan
n ) = Dα(x).

Proof. Due to Theorem 3.6, (i) and (ii) are equivalent. Therefore
we only need to prove (i). It is noted that the truth table ξ of
Dα(x) is all-zero vector of length 2n except for the ith coordinate
where α is the binary representation of i. Set η = ξTn. Clearly η
is exactly the ith row of Tn. According to Theorem 3.4, η is the
truth table of µ(Dα(x)). On the other hand, due to the definition
of Tn, the ith row of Tn is the truth table of xa1

1 · · · xan
n . Thus we

have proved that µ(Dα)(x) and xa1
1 · · · xan

n have the same truth
table and thus (i) holds. �

The following conclusion is true due to Formula (2) and Lemma
4.1.

Theorem 4.2. Let f be a function on (GF (2))n.

(i) if the truth table (f(α0), f(α1), . . . , f(α2n−1)) of f , where
αi is the binary representation of integer i, i = 0, 1, . . . , 2n−
1, is known then µ(f)(x) =

⊕

α∈(GF (2))n f(α)xa1
1 · · · xan

n ,

(ii) if the ANF of f , or, f(x) =
⊕

α∈(GF (2))n g(α)xa1
1 · · · xan

n ,

where α = (a1, . . . , an), and g = µ(f), is given then µ(f)(x) =
⊕

α∈(GF (2))n g(α)Dα(x).
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Theorem 4.2 enables us to write the ANF/truth table from the
truth table/ANF by using polynomials.

5. Computing µ(f) by Recursive Relations

In this section we compute the Möbius Transform of a function
by recursive formulas.

Theorem 5.1. It is noted that any function f on (GF (2))n as
f(x) = x1g(y)⊕h(y) where x = (x1, . . . , xn) and y = (x2, . . . , xn).
Then µ(f)(x) = x1(µ(g)(y) ⊕ µ(h)(y)) ⊕ µ(h)(y).

Proof. Let ξ, η, ζ denote the truth tables of f , g and h respectively.
It is easy to verify that ξ = (ζ, η ⊕ ζ). Let ξ′ denote the truth
table of µ(f). According to Theorem 3.4, the truth table of µ(f)
can be computed as ξTn = (ζ, η ⊕ ζ)Tn= (ζTn−1, ηTn−1). Again,
due to Theorem 3.4, ζTn−1 and ηTn−1 are the truth tables of
µ(h) and µ(g) respectively. Therefore, it is easy to verify that
µ(f)(x) = x1(µ(g(y) ⊕ h(y)) ⊕ µ(h)(y). �

Theorem 5.1 changes the Möbius Transform into the same prob-
lem with a less dimension.

6. Computing µ(f) after a Permutations on Variables

Notation 4. Let f be a function on (GF (2))n. Let P be a per-
mutation on {1, . . . , n}. Define the function fP as fP (x1, . . . , xn)
= f(xP (1), . . . , xP (n)).

Theorem 6.1. Let f be a function on (GF (2))n and g = µ(f).
Then µ(fP ) = gP .

Proof. Due to (1), f can be expressed as f(x1, . . . , xn)=
⊕

α∈(GF (2))n g(a1, . . . , an)xa1
1 · · · xan

n where α = (a1, . . . , an). Then

fP (x1, . . . , xn)=
⊕

α∈(GF (2))n g(a1, . . . , an)xa1

P (1) · · · x
an

P (n). It is noted

that xa1

P (1) · · · x
an

P (n) is identical with x
a

P−1(1)

1 · · · x
a

P−1(n)
n where P−1

denotes the inverse of P . Set aP−1(i) = bi and then ai = bP (i),

i = 1, . . . , n. Therefore g(a1, . . . , an)xa1

P (1) · · · x
an

P (n) is identical

with g(bP (1), . . . , bP (n))x
b1
1 · · · xbn

n . Then we have proved that

fP (x1, . . . , xn) =
⊕

β∈(GF (2))n g(bP (1), . . . , bP (n))x
b1
1 · · · xbn

n where

β = (b1, . . . , bn). By definition, we know that the Möbius trans-
form of fP is gP , or in other words, µ(fP ) = gP . �
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It should be noted that the permutation P in Theorem 6.1 is
defined on the set of indexes {1, . . . , n} but P cannot be extended
to be a permutation on the vector space (GF (2))n.

7. A Lower Bound on deg(f) + deg(µ(f))

In this section we present a result: the sum of degree of any
nonzero Boolean function with n variables and the degree of its
Möbius transform is lower bounded by n.

Theorem 7.1. Let f be a nonzero function on (GF (2))n. Then
deg(f) + deg(µ(f)) ≥ n.

Proof. We prove the theorem by induction on n. It is easy to verify
the theorem is true for n = 1 because µ(f1) = f2, µ(f2) = f1 and
µ(f3) = f3 where f1(x1) = 1 ⊕ x1, f2(x1) = 1 and f3(x1) = x1.
We assume that the theorem holds for 1 ≤ n ≤ s − 1. Consider
the case of n = s. Let f be a function on (GF (2))s. We can
express f as f(x) = x1g(y) ⊕ h(y) where x = (x1, . . . , xn), y =
(x2, . . . , xn), g and h are functions on (GF (2))n−1. According to
Theorem 5.1, µ(f)(x) = x1(µ(g)(y) ⊕ µ(h)(y)) ⊕ µ(h)(y). There
exist two cases to be considered: g 6= h (Case 1) and g = h
(Case 2). We now consider Case 1. Case 1 is composed of three
cases: deg(µ(g)) > deg(µ(h)) (Case 1.1), deg(µ(g)) < deg(µ(h))
(Case 1.2) and deg(µ(g)) = deg(µ(h)) (Case 1.3). For Case 1.1,
deg(f) + deg(µ(f))≥ 1 + deg(g) + 1 + deg(µ(g) ⊕ µ(h)) = 1 +
deg(g) + 1 + deg(µ(g)). By the induction assumption, deg(g) +
deg(µ(g)) ≥ s−1 and then deg(f)+deg(µ(f))≥ 1+s. For Case 1.2,
deg(f)+deg(µ(f))≥ deg(h)+1+deg(µ(g)⊕µ(h)) = deg(h)+1+
deg(µ(h)). By the induction assumption, deg(h) + deg(µ(h)) ≥
s − 1 and then deg(f) + deg(µ(f))≥ s. For Case 1.3, deg(f) +
deg(µ(f))≥ 1 + deg(g) + deg(µ(h)) = 1 + deg(h) + deg(µ(h)). By
the induction assumption, deg(h) + deg(µ(h)) ≥ s − 1 and then
deg(f) + deg(µ(f))≥ s. We next consider Case 2. In Case 2,
deg(f)+deg(µ(f))= 1+deg(g)+deg(µ(h))= 1+deg(h)+deg(µ(h)).
By the induction assumption, deg(h)+deg(µ(h)) ≥ s−1 and then
deg(f) + deg(µ(f))≥ s. We have proved that the theorem is true
for n = s. Therefore we have proved the theorem. �

It is noted that the lower bound in Theorem 7.1 can be reached.
For example, if f(x) = (1 ⊕ x1) · · · (1 ⊕ xn) = Dα0(x) where α0
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denotes the zero vector in (GF (2))n, according to Lemma 4.1,
µ(f) is the constant one. Then deg(f) + deg(µ(f)) = n+ 0 = n.

8. Concept of Coincident Boolean Functions

In this section we propose a special kind of Boolean functions.

Definition 8.1. Let f be a function on (GF (2))n. If f and µ(f)
are identical, or in other words, f(α) = 1 if and only if xa1

1 · · · xan
n is

a monomial in the ANF of f , for any α = (a1, . . . , an) ∈ (GF (2))n,
then f is called a coincident function.

According to the definition of coincident functions and Theo-
rem 3.4, we conclude as follows.

Theorem 8.2. Let f be a function on (GF (2))n and g = µ(f).
Denote the truth tables of f and g by ξ and η. Then the following
statements are equivalent: (i) f is coincident, (ii) g is coincident,
(iii) ξTn = ξ, (iv) ηTn = η, (v) f and g are identical, (vi) ξ and
η identical.

Example 8.3. Consider the function f on (GF (2))4: f(x1, x2, x3, x4)=
x2x4 ⊕ x2x3 ⊕ x1x2 ⊕ x1x3x4 ⊕x1x2x4 ⊕x1x2x3. From the ANF
of f , we know that the truth table of µ(f) is (0000011000011110).
By computing, the truth table of f is also (0000011000011110).
Then f is coincident on (GF (2))4.

Since any coincident function is identical with its Möbius Trans-
form, we can have the truth table/ANF of a coincident function
from its ANF/truth table without computing.

9. Characterisations and Constructions of Coincident Boolean
Functions (by Matrix)

In this section we characterise coincident functions by using
matricies.

Notation 5. Set T ∗
n = Tn ⊕ I2n , n = 1, 2, . . ..

Due to Theorem 8.2, we can state as follows.

Theorem 9.1. Let f be a function on (GF (2))n and g = µ(f).
Then the following statements are equivalent: (i) f is coincident,
(ii) g is coincident, (iii) the truth table ξ of f satisfies ξT ∗

n = 0

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’07
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where 0 denotes the all-zero vector of length 2n, (iv) the truth table
η of g satisfies ηT ∗

n = 0.

Lemma 9.2. (i) T ∗
n =

[

T ∗
n−1 Tn−1

O2n−1 T ∗
n−1

]

, n = 1, 2, . . ., (ii) (T ∗
n)2 =

02n , (iii) TnT
∗
n = T ∗

nTn = T ∗
n .

Proof. (i) is obvious due to the relation between Tn and T ∗
n . (ii)

and (iii) are equivalent to (ii) and (iii) of Lemma 3.3 respectively.
�

We prove Theorems 9.3 and 9.4 in the full paper.

Theorem 9.3. Let f be a function on (GF (2))n. Then the fol-
lowing statements are equivalent:

(i) f is coincident,
(ii) the truth table of f can be expressed as (ζT ∗

n−1, ζ) where ζ

is a (0, 1)-vector of length 2n−1,
(iii) the truth table of f can be expressed as (ζT ∗

n−1, ζ ⊕ϑT ∗
n−1)

where ϑ is any (0, 1)-vector of length 2n−1.

Theorem 9.4. Let f be a function on (GF (2))n. Then f is co-
incident if and only if the truth table of f can be expressed as ηT ∗

n

where η is a (0, 1)-vector of length 2n.

Clearly we can give Theorem 9.4 an equivalent statement as
follows.

Theorem 9.5. Let f be a function on (GF (2))n. Then f is co-
incident if and only if the truth table of f is a linear combination
of rows of T ∗

n .

Theorems 9.3, 9.4 and 9.5 can be applied to construct coinci-
dent functions.

10. Operations of Coincident Functions

According to Theorem 9.4, the following statement holds.

Corollary 10.1. If both f and g are coincident functions on
(GF (2))n then f ⊕ g is coincident.

But, f · g is not necessarily coincident even both f and g are
coincident. For example, both f1 = x2x3 ⊕ x1x3 ⊕ x1x2x3 and
f2 = x2x3 ⊕ x1x2 ⊕ x1x2x3 are coincident functions on (GF (2))3

but f1f2 = x2x3 is not coincident on (GF (2))3. However, when f
and g have disjoint variables the conclusion is right.
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Notation 6. Let A = (aij) an m × n matrix over GF (2) and B
be a p × q matrix over GF (2). The Kronecker product of A and
B, denoted by A× B, is an mp × nq matrix, defined as A× B =








a11B a12B · · · a1mB
a21B a22B · · · a2mB

· · ·
an1B an2B · · · anmB









.

The following lemma is a special case of Formula (23) in [3].

Lemma 10.2. Let A and B be m ×m and n × n matrices over
GF (2) respectively, ξ and η be vectors in (GF (2))m and (GF (2))n

respectively. Then (ξ × η)(A×B) = (ξA) × (ηB).

Lemma 10.3. Tn = Tp × Tn−p, p = 0, 1, . . . , n, where × is the
Kronecker Product.

Proof. It is noted that Tn = T1 × Tn−1. Therefore the lemma can
be proved by induction �

By a straightforward verification, we can prove the following
Lemma.

Lemma 10.4. Let f1 and f2 on (GF (2))m and (GF (2))n respec-
tively. Define a function on (GF (2))m+n as f(y, z) = f1(y) · f2(z)
where y ∈ (GF (2))m and z ∈ (GF (2))n. Let ξ1 and ξ2 denote the
truth tables of f1 and f2 respectively. Then ξ1 × ξ2 is the truth
table of a coincident function f .

Theorem 10.5. Let f1 and f2 be coincident functions on (GF (2))m

and (GF (2))n respectively. Define a function f on (GF (2))m+n

as f(x, y) = f1(x) · f2(y). Then f is a coincident function f on
(GF (2))m+n.

Proof. Let ξ1 and ξ2 denote the truth tables of f1 and f2 respec-
tively. Due to Lemma 10.4, ξ1 × ξ2 is the truth table of a coinci-
dent function f . By using Lemmas 10.3 and 10.2, (ξ1 × ξ2)Tm+n=
(ξ1 × ξ2)(Tm × Tn)= (ξ1Tm)× (ξ2Tn). According to Theorem 8.2,
ξ1Tm = ξ1 and ξ2Tn = ξ2. Therefore (ξ1 × ξ2)Tm+n= ξ1 × ξ2.
Again, Theorem 8.2, we know that ξ1 × ξ2 is the truth table of a
coincident function on (GF (2))m+n. �

In general, the product of two coincident functions is not nec-
essarily coincident. However the operation is special.
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Theorem 10.6. Let f and f ′ be both coincident functions on
(GF (2))n whose ANFs are given as f(x) =

⊕

α∈(GF (2))n g(α)xa1
1 · · · xan

n

and
f ′(x) =

⊕

α∈(GF (2))n g′(α)xa1
1 · · · xan

n respectively where g = µ(f)

and g′ = µ(f ′). Then f(x) · f ′(x) =
⊕

α∈(GF (2))n g(α)g′(α)Dα(x).

Proof. Due to Formula (2), f(x) =
⊕

α∈(GF (2))n f(α)Dα(x) and

f ′(x) =
⊕

α∈(GF (2))n f ′(α)Dα(x). Then

f(x) · f ′(x) =
⊕

α∈(GF (2))n f(α)f ′(α)Dα(x). Since both f and f ′

are coincident, f is identical with g and f ′ is identical with g′. We
then have proved the theorem. �

11. A Classification of Boolean Functions

Definition 11.1. Define a mapping Ψ from Rn to Rn, where Rn

has been defined in Notation 1: Ψ(f) = h if and only if ξT ∗
n = ζ

where f, h ∈ Rn, ξ and ζ are truth tables of f and h respectively.

By definition, the following statement is obvious.

Lemma 11.2. Ψ, defined in Definition 11.1, is a linear mapping.

Due to Theorem 9.4, we state as follows.

Lemma 11.3. Ψ(f) is coincident for any function f on (GF (2))n.

Notation 7. For each coincident function h on (GF (2))n, set
ℵh = {f |Ψ(f) = h}.

Lemma 11.4. ℵ0 is the collection of all coincident functions on
(GF (2))n and ℵ0 is a linear subspace of (GF (2))n.

Proof. Let f be a function on (GF (2))n and ξ be the truth table of
f . Then f ∈ ℵ0 ⇐⇒ Ψ(f) = 0 ⇐⇒ ξT ∗

n = 0 ⇐⇒ f is coincident.
This proves that ℵ0 is the collection of all coincident functions.
According to Corollary 10.1, all coincident functions form a linear
subspace of of (GF (2))n. �

Applying linear algebra to Ψ, ℵ0 and Rn, we obtain the follow-
ing results (Theorems 11.5, 11.6 and Corollary 11.7).

Theorem 11.5. Let f1, f2 be functions in (GF (2))n. Then there
exists some h ∈ ℵ0 such that f1, f2 ∈ ℵh if and only if f1⊕f2 ∈ ℵ0.

Theorem 11.6. For any fixed h ∈ ℵ0 and any fixed f ∈ ℵh, ℵh

= f ⊕ ℵ0, where f ⊕ ℵ0= {f ⊕ h|h ∈ ℵ0}.
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Corollary 11.7. Rn, the set of all functions on (GF (2))n, can
be partitioned as Rn =

⋃

h∈ℵ0
ℵh, where ℵh ∩ ℵh′ = ∅, where ∅

denotes the empty set, for any h, h′ ∈ ℵ0 with h 6= h′.

12. Enumeration of Coincident Functions

Theorem 12.1. #ℵh = 22n−1
for each h ∈ ℵ0, where #X de-

notes the number of elements in the set X and n is the number

of the variables of functions. In particular, #ℵ0 = 22n−1
, or in

other words, there precisely exist 22n−1
coincident functions on

(GF (2))n.

Proof. By linear algebra, #ℵh has a constant value N for all h ∈
ℵ0. In particular, #ℵ0 = N . According to Corollary 11.7, we
know that #Rn =

∑

h∈ℵ0
#ℵh and then 22n

= N ·N . This proves

that N = 22n−1
. �

Corollary 12.2. The matrix T ∗
n has a rank 2n−1.

Proof. According to Theorem 12.1, there precisely exist 22n−1
co-

incident functions on (GF (2))n. Then the corollary is true due to
Theorem 9.5. �

Corollary 12.3. Let f be a function on (GF (2))n. Then Ψ(f) =
h if and only if f⊕µ(f) = h where Ψ has been defined in Definition
11.1.

Proof. Let ξ and ζ be the truth tables of f and h respectively.
It is clear that Ψ(f) = h ⇐⇒ ξT ∗

n = ζ ⇐⇒ ξ ⊕ ξTn = ζ ⇐⇒
f ⊕ µ(f) = h. �

13. A Basis of Coincident Functions

In this section we improve Theorem 9.5.

Lemma 13.1. All the 2n−1 rows of the matrix
[

T ∗
n−1 Tn−1

]

form a basis of rows of T ∗
n .

Proof. Due to Lemma 9.2, T ∗
n =

[

T ∗
n−1 Tn−1

02n−1 T ∗
n−1

]

. Then
[

T ∗
n−1 Tn−1

]

is a submatrix of T ∗
n . It is noted that

[

T ∗
n−1 Tn−1

]

has a rank

2n−1 because Tn−1 is nonsingular. On the other hand, due to
Corollary 12.2, the rank of T ∗

n is also 2n−1. Therefore the Lemma
holds. �
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Combing Lemma 13.1 and Theorem 9.5, we state as follows.

Theorem 13.2. All the 2n−1 functions on (GF (2))n, whose truth
tables are the rows of

[

T ∗
n−1 Tn−1

]

, form a basis of all the co-
incident functions on (GF (2))n.

According to Theorem 13.2, we can state as follows.

Theorem 13.3. Let f be a function on (GF (2))n. Then f is
coincident if and only if the truth table of f is a linear combination
of rows of

[

T ∗
n−1 Tn−1

]

.

Theorem 13.3 is an improvement on Theorem 9.5.

14. Examples of Coincident Functions

Example 14.1. According to Theorem 12.1, there precisely ex-

ist 223−1
= 16 coincident functions on (GF (2))3. According to

Theorem 13.3, all the linear combinations of rows of [T ∗
2 , T2] =









0 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1









are the truth tables of coincident

functions on (GF (2))3: (01111111), (00010101), (00010011), (00000001),
(00000111), (00000110), (01101010), (00010100), (01101101), (01101011),
(01111110), (01101100), (01111000), (01111001), (00010010), (00000000).
We directly write the ANFs of the 16 coincident functions on
(GF (2))3: x3⊕x2⊕x1⊕x2x3⊕x1x3⊕x1x2⊕x1x2x3, x2x3⊕x1x3⊕
x1x2x3, x2x3⊕x1x2⊕x1x2x3, x1x2x3, x1x3⊕x1x2⊕x1x2x3, x1x3⊕
x1x2, x3⊕x2⊕x1⊕x1x2, x2x3⊕x1x3, x3⊕x2⊕x1⊕x1x3⊕x1x2x3,
x3 ⊕ x2 ⊕ x1 ⊕ x1x2 ⊕ x1x2x3, x3 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2,
x3⊕x2⊕x1⊕x1x3, x3⊕x2⊕x1⊕x2x3, x3⊕x2⊕x1⊕x2x3⊕x1x2x3,
x2x3 ⊕ x1x2, 0 �

15. Characterisations and Constructions of Coincident Func-
tions (by Polynomial)

In this section we characterise coincident functions in polyno-
mial form. We prove Theorem 15.1 in the full paper.

Theorem 15.1. Let h be a function on (GF (2))n. Then the fol-
lowing statements are equivalent: (i) h is coincident, (ii) there ex-
ists a function f on (GF (2))n such that h = f⊕µ(f) or h = Ψ(f)
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where Ψ has been defined in Definition 11.1, (iii) Ψ(h) is the zero
function.

Due to Lemma 4.1 and Theorem 15.1, we state as follows.

Lemma 15.2. For any α = (a1, . . . , an) ∈ (GF (2))n, Dα(x) ⊕
xa1

1 · · · xan
n is coincident.

Combing Theorem 15.1 and Lemma 4.1, we state as follows.

Theorem 15.3. Let h be a function on (GF (2))n. Then h is coin-
cident if and only if h is a linear combination of all the functions in
the form Dα(x) ⊕ xa1

1 · · · xan
n where α = (a1, . . . , an) ∈ (GF (2))n.

Proof. The sufficiency holds due to Lemma 15.2. We only prove
the necessity. Assume that f is coincident. Due to Theorem 15.1,
h = f ⊕ µ(f) where f is a function on (GF (2))n. From Formula
(2), f(x) =

⊕

α∈(GF (2))n f(α)Dα(x). According to Theorem 4.2,

µ(f)(x) =
⊕

α∈(GF (2))n f(α)xa1
1 · · · xan

n . Then f(x) ⊕ µ(f)(x) =
⊕

α∈(GF (2))n f(α) (Dα(x)⊕xa1
1 · · · xan

n ). This proves the necessity.
�

Theorem 15.4. Let f be a function on (GF (2))n whose ANF
of f is given as f(x) =

⊕

α∈(GF (2))n g(α)xa1
1 · · · xan

n where α =

(a1, . . . , an) ∈ (GF (2))n and g = µ(f). Then the following state-
ments are equivalent: (i) f is coincident,
(ii) f(x) =

⊕

α∈(GF (2))n f(α)xa1
1 · · · xan

n ,

(iii) f(x) =
⊕

α∈(GF (2))n g(α)Dα(x).

Proof. Due to Formula 2, f(x) =
⊕

α∈(GF (2))n f(α)Dα(x). On the

other hand, due to Formula 1, f(x) =
⊕

α∈(GF (2))n g(α)xa1
1 · · · xan

n

where α = (a1, . . . , an). Then f is coincident ⇐⇒ f and g are
identical. Thus we have proved the theorem. �

Theorems 15.1, 15.3 and 15.4 can be applied to construct coin-
cident functions.

Notation 8. Let β = (b1, . . . , bn) and α = (a1, . . . , an) be (0,
1)-vectors. Then β � α means that if bj = 1 then aj = 1. In
particular, β ≺ α means that β � α but β 6= α.

The following result is well-known to coding theorists (see p.372
of [1]):

Lemma 15.5. Let f be a function on (GF (2))n and α = (a1, . . . , an)
be a vector in (GF (2))n. Then the term xa1

1 · · · xan
n appears in the

ANF of f if and only if
⊕

β�α f(β) = 1.
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Lemma 15.6. Let f be a function on (GF (2))n. Then f is coin-
cident if and only if f(α) =

⊕

β�α f(β).

Proof. Let g = µ(f). Due to Lemma 15.5, g(α) =
⊕

β�α f(β) for

any α ∈ (GF (2))n. It is noted that f is coincident ⇐⇒ f = g ⇐⇒
f(α) =

⊕

β�α f(β) for each α ∈ (GF (2))n. �

Theorem 15.7. Let f be a function on (GF (2))n. Then f is
coincident if and only if for any α ∈ (GF (2))n,

⊕

β≺α f(β) = 0.

Proof. It is noted that f(α) =
⊕

β�α f(β) ⇐⇒
⊕

β≺α f(β) = 0.
Therefore the theorem is true due to Lemma 15.6. �

Due to Theorem 8.2, f is coincident if and only if µ(f) is co-
incident. Then the following conclusions follow Lemma 15.6 and
Theorem 15.7 respectively.

Corollary 15.8. Let f be a function on (GF (2))n and g = µ(f).
Then f is coincident if and only if g(α) =

⊕

β�α g(β).

Corollary 15.9. Let f be a function on (GF (2))n and g = µ(f).
Then f is coincident if and only if for any α ∈ (GF (2))n,

⊕

β≺α g(β) =
0.

16. Characterisations and Constructions of Coincident Func-
tions (by Recursive Formulas)

In this section we characterise coincident functions by recursive
relations.

Theorem 16.1. Let f be a function on (GF (2))n. Then f is
coincident if and only if there exists a function g on (GF (2))n−1

such that f(x) = x1g(y) ⊕ Ψ(g)(y) where Ψ has been defined in
Definition 11.1. Furthermore, if f is nonzero then g is nonzero.

Proof. Since f can be expressed as f(x) = x1g(y) ⊕ h(y) where
both g and h are functions on (GF (2))n−1, due to Theorem 5.1,
µ(f)(x) = x1µ(g⊕h)(y)⊕µ(h)(y). It is noted that f is coincident
⇐⇒ f = µ(f) ⇐⇒ g = µ(g ⊕ h) and h = µ(h) ⇐⇒ h = µ(h)
and h = µ(g) ⊕ g ⇐⇒ h = µ(g) ⊕ g (due to Theorem 15.1). Due
to Corollary 12.3, g ⊕ µ(g) = Ψ(g). This proves the main part of
the theorem. Therefore if f is nonzero then g is nonzero then g is
nonzero. �

Recursively applying Theorem 16.1, we state as follows.
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Theorem 16.2. Let f be a function on (GF (2))n. Then f is co-
incident if and only if there exists a function fi on (GF (2))n−i, i =
1, . . . , n, such that f(x1, . . . , xn) = x1f1(x2, . . . , xn)⊕x2f2(x3, . . . , xn)⊕
· · · ⊕ xn−1fn−1(xn) ⊕ fn(xn) where
xifi(xi+1, . . . , xn)⊕· · ·⊕xn−1fn−1(xn)⊕f(xn) = Ψ(xi−1fi−1(xi, . . . , xn)⊕
· · · ⊕ xn−1fn−1(xn) ⊕ fn(xn)), i = 2, . . . , n.

Theorems 16.1, 16.2 and 15.4 can be applied to construct coin-
cident functions.

17. More Properties of Coincident Functions

Theorem 17.1. Let f be a function on (GF (2))n and P be a
permutation on {1, . . . , n}. Then f is coincident if and only if fP

is coincident, where fP is defined in Notation 4, i.e.,
fP (x1, . . . , xn)=f(xP (1), . . . , xP (n)).

Proof. Set g = µ(f). Assume that f is coincident. Then g is
identical with f and then fP = gP . On the other hand, according
to Theorem 6.1, µ(fP ) = gP . Therefore we have µ(fP ) = fP and
then fP is coincident. The inverse is true because if we set fP = f ′

then f ′
P−1 = f . �

It should be noted that the permutation P in Theorem 17.1
is defined on the set of indexes {1, . . . , n} instead of the vector
space (GF (2))n. For example, f(x1, x2, x3) = x1x2x3 is coinci-
dent on (GF (2))3. Set a nonsingular linear transformation Q on
(GF (2))3: x1 = y1 ⊕ y2, x2 = y2, x3 = y3. It is seay to see
that f(Q(x1, x2, x3)) = y1y2y3 ⊕ y2y3 that is not coincident on
(GF (2))3.

Theorem 17.2. Let f be a function on (GF (2))n and P be a per-
mutation on {1, . . . , n}. Set f ′(xP (1), . . . , xP (n))= f(x1, . . . , xn).
Then f is coincident if and only if f ′ is coincident.

Proof. The theorem is true due to the equivalence between (i) and
(iii) in Theorem 15.4. �

A difference between Theorems 17.1 and 17.2 is that the per-
mutation P in Theorem 17.1 replaces xj by xP (j) while P in Theo-
rem 17.2 regards xP (j) as the jth variable but does not change the
function f . For example, if f(x1, x2, x3) = x1x2 ⊕ x2x3, P (1) = 2,
P (2) = 3 and P (3) = 1, then fP (x1, x2, x3) = x2x3 ⊕ x3x1 but
f ′(x2, x3, x1) = x2x3 ⊕ x3x1.
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Theorem 17.3. Let f be a nonzero coincident function on (GF (2))n.
Then each variable xj must appear in a monomial of the ANF of
f .

Proof. According to Theorem 16.1, f(x) = x1g(y)⊕Ψ(g)(y) where
g is a function on (GF (2))n−1. Since f is nonzero, g is nonzero.
Then x1 appears in a monomial of the ANF of f . Therefore, if
we regard any other variable xj as the 1st variable, according to
Theorem 17.2, the new function f ′ is also coincident. By the same
reasoning, xj appears in a monomial of the ANF of f ′ as well as
x1 in f . �

Theorem 17.4. Let f be a coincident function on (GF (2))n.
Then either the ANF of f has every linear term xj , or, the ANF
does not have any linear term.

Proof. Assume that the ANF of f has a linear term xj0 where
1 ≤ j0 ≤ n. Let i0 ∈ {1, . . . , n}− {j0}. Without loss of generality,
we assume that i0 < j0. Let γi denote the vector in (GF (2))n

whose ith coordinate is one and all other coordinates are zero. Let
γi,j denote the vector in (GF (2))n whose ith and jth coordinates
are one and all other coordinates are zero. According to Corollary
15.9,

⊕

β≺γi0,j0
g(β) = 0. More precisely, g(γj0)⊕g(γi0) = 0. Since

the ANF of f has a linear term xj0, g(γj0) = 1. Therefore we know
that g(γi0) = 1. This means that the ANF of f has a linear term
xi0 . Since i0 is arbitrarily included in {1, . . . , n} − {j0}, we have
proved the theorem. �

Theorem 17.5. Let f be any nonzero function on (GF (2))n.
Then there exists a nonzero function f ′ on (GF (2))n such that
f · f ′ is coincident.

Proof. For fixed f , let f ′ go through all the functions on (GF (2))n.

Since #Rn = 22n

and #ℵ0 = 22n−1
, there must exit two distinct

functions f1 and f2 such that f · f1 ∈ ℵh and f · f2 ∈ ℵh for some
h ∈ ℵ0. According to Theorem 11.5, f · (f1⊕f2) is coincident. Set
f ′ = f1 ⊕ f2. Clearly f ′ is nonzero and then f ′ is required in the
theorem. �

Corollary 17.6. If f is a coincident function then f(0) = 0.

Proof. Due to Theorem 9.4, the truth table of f can be expressed
as ξT ∗

n . It is noted that the leftmost column of T ∗
n is the all-zero

column. Then the first coordinate of ξT ∗
n turns out to be zero.

This proves that f(0) = 0. �
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Lemma 17.7. Let f be a coincident function on (GF (2))n. Then
for any integer r with 1 ≤ r ≤ n − 1 and the r-subset {1, . . . , r}
of {1, . . . , n}, f(x1, . . . , xn)|x1=0,...,xr=0 is a coincident function on
(GF (2))n−r.

Proof. According to Theorem 16.1, f(x) = x1g(y)⊕Ψ(g)(y) where
Ψ has been defined in Definition 11.1. Then f(0, x2, . . . , xn) =
Ψ(g)(x2, . . . , xn). Due to Theorem 15.1, Ψ(g) is a coincident func-
tion on (GF (2))n−1, i.e., f(0, x2, . . . , xn) is a coincident function
on (GF (2))n−1. Applying the same reasoning to Ψ(g), we know
that f(0, 0, x3, . . . , xn) is a coincident function on (GF (2))n−2. Re-
peatedly, we can prove that f(0, . . . , 0, xr+1, . . . , xn) is a coincident
function on (GF (2))n−r . �

Theorem 17.8. Let f be a coincident function on (GF (2))n.
Then for any integer r with 1 ≤ r ≤ n − 1 and any r-subset
{j1, . . . , jr} of {1, . . . , n}, f(x1, . . . , xn)|xj1

=0,...,xjr =0 is a coinci-

dent function on (GF (2))n−r.

Proof. Let {j1, . . . , jr}∪ {jr+1, . . . , jn}={1, . . . , n}. We define a
function f ′: f ′(xj1 , . . . , xjn)= f(x1, . . . , xn). According to Theo-
rem 17.2, f ′ is coincident. Applying Lemma 17.7 to f ′, we have
proved the theorem. �

18. A Lower Bound on Degree of Coincident Functions

Lemma 18.1. Let f be a coincident function on (GF (2))n. Then
deg(f) = n if and only if f(1, . . . , 1) = 1.

Proof. From the definition of coincident functions, deg(f) = n⇐⇒
x1 · · · xn is a monomial in the ANF of f ⇐⇒ f(1, . . . , 1) = 1. �

Corollary 18.2. There precisely exist 22n−1−1 coincident func-
tions on (GF (2))n having a degree n and there precisely exist

22n−1−1 coincident functions on (GF (2))n having a degree less than
n.

Proof. Due to Theorem 9.5, the truth table of a coincident func-
tion f on (GF (2))n is a linear combination of rows of T ∗

n . It is
noted that the rightmost column of T ∗

n contains ones. Then there
precisely 50% such linear combinations whose last coordinate is
one. Then according to Lemma 18.1, there precisely 50% coinci-
dent functions on (GF (2))n having a degree n. Therefore, due to
Theorem 12.1, we have proved the corollary. �
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We next indicate that all coincident functions have a high de-
gree even for coincident functions whose degree are less than n.

Theorem 18.3. Let f be a coincident function on (GF (2))n.
Then deg(f) ≥ ⌈1

2n⌉. More precisely,

(i) deg(f) ≥ 1
2n where n is even,

(ii) deg(f) ≥ 1
2 (n+ 1) where n is odd.

Proof. According to Theorem 7.1, deg(f)+deg(µ(f)) ≥ n. On the
other hand, since f is coincident, f and µ(f) are identical. Then
2deg(f) ≥ n and then deg(f) ≥ 1

2n. In particular, when n is odd,

it is noted that deg(f) ≥ 1
2n. Since n is odd and deg(f) is integer,

deg(f) ≥ 1
2(n+ 1). Summarily, deg(f) ≥ ⌈1

2n⌉. �

We now indicate that the lower bounds in Theorem 18.3 is tight.
For example, f(x1, x2, x3, x4) = x2x4⊕x2x3⊕x1x4⊕x1x3 is a coin-
cident function on (GF (2))4 having a degree two. f(x1, x2, x3) =
x3 ⊕ x2 ⊕ x1 ⊕ x2x3 ⊕ x1x3 ⊕ x1x2 is a coincident function on
(GF (2))3 having a degree two.

19. Coincident Functions with High Nonlinearity and High
Degree

Definition 19.1. The nonlinearity of a function f on (GF (2))n,
denoted by Nf , is the minimal Hamming distance between f and
all affine functions on (GF (2))n, i.e., Nf = mini=1,2,...,2n+1 d(f, ψi)
where ψ1, ψ2, . . ., ψ2n+1 are all the affine functions on (GF (2))n.

It is well-known that For any function f on (GF (n)), the non-

linearity Nf of f satisfies Nf ≤ 2n−1 − 2
1
2
n−1. We can define bent

functions, introduced first by Rothaus [2], equivalently as follows:
a function f on (GF (n)) is said to be bent if the nonlinearity Nf

reaches the maximum value Nf = 2n−1 − 2
1
2
n−1. Obviously bent

functions on (GF (2))n exist for even n.

19.1. Construction 1 (for Case of Even Variables)

The following statement can be verified straightforwardly.

Lemma 19.2. Let f1, f2 and f3 be functions on (GF (2))n. Then
d(f1, f3) ≤ d(f1, f2) + d(f2, f3).
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Theorem 19.3. Let f(x1, . . . , x2k) = x1x2 ⊕ · · · ⊕ x2k−1x2k. Set
h = f ⊕ µ(f). Then h is a coincident function on (GF (2))2k

satisfying (i) Nh ≥ 22k−1 − 2k−1 − k, (ii) deg(h) ≥ 2k − 2.

Proof. Due to Theorem 15.1, h is coincident. Let ξ and η be the
truth tables of f and µ(f) respectively. Then ξ ⊕ η is the truth
table of h. Let ψ be an affine function on (GF (2))2k and ℓ be the
truth table of ψ. By the definition of nonlinearity, d(ξ, ℓ) ≥ Nf .
On the other hand, it is obvious that HW (η) = k. Therefore
d(ξ⊕η, ξ) = k. Due to Lemma 19.2, d(ξ, ℓ) ≤ d(ξ, ξ⊕η)+d(ξ⊕η, ℓ).
Then Nf ≤ k + d(ξ ⊕ η, ℓ) or d(ξ ⊕ η, ℓ) ≥ Nf − k. Since ψ is an
arbitrarily affine function, Nh ≥ Nf − k. It is well-known that

f is bent. Then Nf = 22k−1 − 2k−1. We then have proved that

Nh ≥ 22k−1−2k−1−k. Due to Theorem 7.1, deg(f)⊕deg(µ(f)) ≥
2k. From the fact deg(f) = 2, we know that deg(µ(f)) ≥ 2k − 2.
Clearly deg(h) = deg(µ(f)), We have proved the theorem. �

Comparing Nh ≥ 22k−1 − 2k−1 − k in Theorem 19.3 to 22k−1 −
2k−1, the maximum nonlinearity of functions on (GF (2))2k , we
know the coincident function in Theorem 19.3 is highly nonlinear.

19.2. Construction 2 (for Case of Odd Variables)

Theorem 19.4. Let f(x1, x2, . . . , x2k+1) = x2x3⊕x4x5 · · ·⊕x2kx2k+1.
Set h = f⊕µ(f). Then h is a coincident function on (GF (2))2k+1

satisfying (i) Nh ≥ 22k − 2k − k, (ii) deg(h) ≥ 2k − 1.

Proof. Due to Theorem 15.1, h is coincident. Let ξ and η be the
truth tables of f and µ(f) respectively. Then ξ⊕η is the truth table
of h. Let ψ be an affine function on (GF (2))2k+1 and ℓ be the truth
table of ψ. By the definition of the nonlinearity, d(ξ, ℓ) ≥ Nf . On
the other hand, since HW (η) = k, d(ξ⊕η, ξ) = k. Due to Lemma
19.2, d(ξ, ℓ) ≤ d(ξ, ξ ⊕ η) + d(ξ ⊕ η, ℓ). Then Nf ≤ k + d(ξ ⊕ η, ℓ)
or d(ξ ⊕ η, ℓ) ≥ Nf − k. Since ψ is an arbitrarily affine function,
Nh ≥ Nf − k. Set f ′(x2, . . . , x2k+1) = x2x3 ⊕ x4x5 · · · ⊕ x2kx2k+1.

Then f ′ is a bent function on (GF (2))2k and then Nf ′ = 22k−1 −
2k−1. It is easy to see that Nf = 2Nf ′ = 22k − 2k. Therefore

we have proved that Nh ≥ 22k − 2k − k. Due to Theorem 7.1,
deg(f) ⊕ deg(µ(f)) ≥ 2k + 1. From the fact deg(f) = 2, we know
that deg(µ(f)) ≥ 2k+1−2 = 2k+1. Clearly deg(h) = deg(µ(f)),
We have proved the theorem. �
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The nonlinearity Nh ≥ 22k − 2k − k in Theorem 19.4 is high

compared to the maximum nonlinearity 2n−1 − 2
1
2
n−1 of functions

on (GF (2))n,

20. Conclusions

We have established relations between Boolean functions and
their Möbius transforms so as to compute the truth table/ANF
from the ANF/truth table of a function in different conditions. We
have indicated deg(f)+deg(µ(f)) ≥ n where n denotes the number
of variables. We have proposed the concept of coincident functions
whose ANF is identical with the ANF of its Möbius transforms.
We have characterised coincident functions so as to obtain a coin-
cident functions easily. We have studied cryptographic properties
such as algebraic degree and nonlinearity.
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