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Systematic Generation of Cryptographically Robust S-boxesAbstractSubstitution boxes (S-boxes) are a crucial component of DES-like block ciphers. This research ad-dresses problems with previous approaches towards constructing S-boxes, and proposes a new de�nitionfor the robustness of S-boxes to di�erential cryptanalysis, which is the most powerful cryptanalytic at-tack known to date. A novel method based on group Hadamard matrices is developed to systematicallygenerate S-boxes that satisfy a number of critical cryptographic properties. Among the properties arethe high nonlinearity, the strict avalanche characteristics, the balancedness, the robustness against dif-ferential cryptanalysis, and the immunity to linear cryptanalysis. An example is provided to illustratethe S-box generating method.1 IntroductionDi�erential cryptanalysis discovered by Biham and Shamir [?, ?] is currently the most powerful cryptan-alytic attack to (secret-key) block ciphers, especially to DES-like substitution-permutation ciphers. Theattack applies also to other cryptographic primitives such as one-way hash functions.Since di�erential cryptanalysis was introduced, researchers have devoted a large number of e�orts todesigning substitution boxes (S-boxes) in order to strengthen the security of a block cipher against theattack [?, ?, ?, ?, ?, ?]. Although these S-boxes are interesting in terms of their security against di�erentialcryptanalysis, they bear a number of shortcomings which render them unattractive in practice. Theseshortcomings will be fully addressed in Section ??. Here we mention briey two of them: (1) The S-boxesare based on permutation polynomials on �nite �elds, and hence have an equal number of input and outputbits. Note that existing ciphers including DES, LOKI and FEAL employ S-boxes with less output bitsthan input bits. Though dropping an appropriate number of component functions from a permutationpolynomial yields an S-box with less output bits, there is no guarantee that the resulting S-box is robustagainst di�erential cryptanalysis. (2) None of the component functions of the S-boxes satis�es the strictavalanche criterion (SAC). The SAC is considered as an indispensable requirement for S-boxes employedby a modern block cipher.This research initiates the investigation of methods for systematically constructing S-boxes with anumber of essential cryptographic properties. These properties include: security against di�erential crypt-analysis, immunity to the very recently discovered linear cryptanalysis [?], the SAC, balancedness, highnonlinearity, and uncorrelatedness. (Two or more Boolean functions are said to be uncorrelated if theirsum gives a nonlinearly balanced function). A novel S-box construction method based on group Hadamardmatrices is presented. An n-input s-output S-box (namely, an n� s S-box) constructed using this method,where s > bn=2c, has the features now described.1. It is at least (1� 2�t)-robust against di�erential cryptanalysis, where t is a parameter subject to thecondition that (s� bn=2c) > t >= 3. For instance, when t =3, 5, or 7, the robustness is 0.875, 0.97 or0.99 respectively. (See Section ?? for the de�nition of robustness.)2. The sum of any subset of the component functions is a nonlinearly balanced function. Hence thecomponent functions are all uncorrelated.3. The nonlinearity of any component function is at least 2n�1� 2s�t�1, which is a very high value, andits maximum algebraic degree is n � s + t + 1.4. All component functions satisfy the SAC.5. For each s-bit vector y, there are exactly 2n�s n-bit vectors that are mapped to y. That is, the S-boxis a regular many-to-one mapping. 2



These statements are very informal. The interested reader is directed to Section ?? for precise descriptions.Section ?? introduces basic notations and de�nitions, and Section ?? addresses problems with pre-viously proposed methods for constructing S-boxes. A new de�nition for robustness against di�erentialcryptanalysis is introduced in the same section. Our �rst attempt to construct S-boxes is described inSection ??, while improvements towards the robustness of the S-boxes are described in Section ??. Thisis followed by a discussion of further re�nement in Section ??. An analysis of the number of di�erentS-boxes that can be obtained by our method is conducted in Section ??. Section ?? shows that theS-boxes constructed are also immune to linear cryptanalysis. An interesting relation between the SAC andthe pro�le of the di�erence distribution table of an S-box is revealed in the same section. To illustrate theconstruction method, an example is shown in Section ??. The paper is closed by some �nal remarks inSection ??.2 Basic De�nitionsThe vector space of n tuples of elements from GF (2) is denoted by Vn. Vectors in Vn and integers in[0; 2n � 1] have a natural one-to-one correspondence. This allows us to switch from a vector in Vn to itscorresponding integer in [0;2n � 1], and vice versa.Let f be a (Boolean) function from Vn to GF (2) (or simply, a function on Vn). The sequence of f isde�ned as ((�1)f(�0), (�1)f(�1), : : :, (�1)f(�2n�1)), while the truth table of f is de�ned as (f(�0), f(�1),: : :, f(�2n�1)), where �i, i = 0; 1; : : : ; 2n � 1, denote the vectors in Vn. f is said to be balanced if its truthtable has an equal number of zeros and ones.We call h(x) = a1x1 � � � � � anxn � c an a�ne function, where x = (x1; : : : ; xn) and aj ; c 2 GF (2). Inparticular, h will be called a linear function if c = 0. The sequence of an a�ne (linear) function will becalled an a�ne (linear) sequence.The Hamming weight of a vector x, denoted by W (x), is the number of ones in x. Let f and gbe functions on Vn. Then d(f; g) = Pf(x) 6=g(x) 1, where the addition is over the reals, is called theHamming distance between f and g. Let '0; : : : ; '2n+1�1 be the a�ne functions on Vn. Then Nf =mini=0;:::;2n+1�1 d(f;'i) is called the nonlinearity of f . It is well-known that the nonlinearity of f on Vnsatis�es Nf <= 2n�1 � 2 12n�1. An extensive investigation of highly nonlinear balanced functions has beencarried out in [?].Let � = (a1; : : : ; an) 2 Vn and � = (b1; : : : ; bn) 2 Vn. Then the scalar product of � and �, denotedby h�;�i, is de�ned by h�;�i = Lnj=1 ajbj , where the addition and the multiplication are over GF (2). Afunction f on Vn is said to be bent if 2�n2 Xx2Vn(�1)f(x)�h�;xi = �1for every � 2 Vn, where x = (x1; : : : ; xn) [?]. Here f(x)�h�; xi is considered as a real valued function. Bentfunctions exist only when n is even, and they achieve the maximum nonlinearity of 2n�1 � 2 12n�1 [?, ?].The concept of SAC was originally introduced in [?].De�nition 1 Let f be a function on Vn and let x = (x1; : : : ; xn). If f(x)� f(x��) for every � 2 Vn withW (�) = 1, we say that f satis�es the strict avalanche criterion (SAC).Let f0 and f1 be functions on Vt. Then f(x0; x1; : : : ; xt) = (1� x0)f0(x1; : : : ; xt) � x0f1(x1; : : : ; xt) isa function on Vt+1. The truth table of f is obtained by concatenating the truth tables of f0 and f1. Forthis reason we say that f is the concatenation of f0 and f1. Similarly we can de�ne the concatenation3



of 2s functions on Vt. To simplify the description of the concatenation of functions, we introduce a newnotation. Let s >= 1 and � = (i1; : : : ; is) be a vector in Vs. Then D� is a function on Vs de�ned byD�(y) = (�i1 � y1) � � � (�is � ys)where y = (y1; : : : ; ys) and �i = 1� i. For instance, when s = 2 we have D0;0(y1; y2) = (1� y1)(1� y2), andwhen s = 3 we have D1;0;1(y1; y2; y3) = y1(1 � y2)y3. Clearly D�(y) = 1 if and only if y = �. To furthersimplify our description, D� will also be denoted by Di where i is the integer in [0;2s � 1] whose binaryrepresentation is �.Let f0, f1, : : :, f2s�1 be functions on Vt. Then the concatenation of these functions isf(y; x) = 2s�1Mi=0 [Di(y)fi(x)]where y = (y1; : : : ; ys) and x = (x1; : : : ; xt). Note that f is a function on Vs+t. The following lemma isderived from Theorems 4 and 5 of [?].Lemma 1 Let t >= s, f0, f1, : : :, f2s�1 be distinct nonzero linear functions on Vt, and r be an arbitraryfunction on Vs. Also let g(y; x) = 2s�1Mi=0 [Di(y)fi(x)]� r(y):Then1. g is balanced,2. the nonlinearity of g satis�es Ng >= 2s+t�1 � 2t�1,3. g(z)� g(z � ) is balanced for all  = (�; �) with W (�) 6= 0, where � 2 Vs and � 2 Vt.A mapping (tuple of functions) (f1; : : : ; fs), where each fi is a function on Vn and n >= s, is said to beregular if for each vector y 2 Vs there are exactly 2n�s vectors in Vn that are mapped to y. In [?], thefollowing result is proved:Theorem 1 A mapping (f1; : : : ; fs), where each fi is a function on Vn and n >= s, is regular if and onlyif all nonzero linear combinations of f1, : : :, fs are balanced.A good S-box must be a regular mapping. Otherwise some output vectors appear more often thanothers when the input to the S-box is chosen uniformly at random, and a cryptosystem that employs suchan S-box might be vulnerable to a cryptanalyst who exploits the bias.3 Di�erential CryptanalysisThe essence of di�erential cryptanalysis is that it exploits particular entries in the di�erence distributiontables of S-boxes employed by a block cipher. Entries with higher values are particularly useful to theattack. The di�erence distribution table of an n � s S-box is a 2n � 2s matrix. The rows of the matrix,indexed by the vectors in Vn, represent the change in the input, while the columns, indexed by the vectorsin Vs, represent the change in the output of the S-box. An entry in the table indexed by (�X;�Y ) indicatesthe number of input vectors which, when changed by �X (in the sense of bit-wise XOR), result in a changein the output by �Y (also in the sense of bit-wise XOR). Note that an entry in the table can only take an4



even value, the sum of the values in a row is always 2n, and the �rst row is always (2n; 0; : : : ; 0). Also notethat the �rst column indicates the smoothness of the S-box, namely the characteristic that a change in theinput does not result in a change in the output. As is discussed below, the smoothness is an extremelyuseful characteristic to di�erential cryptanalysis.To thwart di�erential cryptanalysis, the di�erence distribution tables of the S-boxes employed by aDES-like block cipher must not contain entries with large values (not counting the �rst entry in the �rstrow). Based on this observation, the initial reaction was to construct S-boxes with at (i.e. uniform)di�erence distribution tables [?, ?]. However, as was pointed out in [?, ?], having no large values is notsu�cient to prevent di�erential cryptanalysis, and in fact, a block cipher that employs S-boxes with atdi�erence distribution tables is easily breakable by di�erential cryptanalysis that exploits the iterativecharacteristics of the cipher (see De�nition 12 of [?]). Among the various possible iterative characteristics,the one that uses the smoothness of an S-box, i.e., values in the �rst column of the di�erence distributiontable, is particularly e�ective. In conjunction with other techniques, this characteristic can be used tobreak, at least in principle, a DES-like block cipher with an arbitrary number of rounds. Sections 6 and 7of [?] provide a comprehensive description of this topic. Therefore, in addition to the requirement of havingno large values, the di�erence distribution table of an S-box should also contain as less nonzero entries aspossible in its �rst column. This prompts us to introduce the following de�nition:De�nition 2 Let F = (f1; : : : ; fs) be an n� s S-box, where fi is a function on Vn, i = 1; : : : ; s, and n >= s.Denote by L the largest value in the di�erence distribution table of F , and by R the number of nonzeroentries in the �rst column of the table. In either case the value 2n in the �rst row is not counted. Thenwe say that F is "-robust against di�erential cryptanalysis, where " is de�ned by" = (1� R2n )(1� L2n ):Note that there is another issue with the pro�le of the di�erence distribution table of an S-box, namelythe fraction of nonzero entries contained by the table. In general, if an S-box is not robust againstdi�erential cryptanalysis, then the smaller the fraction of nonzero entries in the table, the faster thedi�erential cryptanalytic attack [?, ?]. That is, the performance of di�erential cryptanalysis is proportionalto the fraction of zero entries. This problem, however, is not signi�cantly relevant to robust S-boxes,including those constructed in this paper, and hence has not been taken into consideration in de�ningrobustness.The robustness of an n � s S-box is small if R or L is large. For instance, the robustness of an n � sS-box is merely 12n (1� L2n ) < 12n if its di�erence distribution table contains only nonzero entries in its �rstcolumn. Such an S-box is extremely prone to di�erential cryptanalysis. Examples of such weak S-boxesinclude those with at di�erence distribution tables proposed in [?, ?].Large robustness is obtained only when both R and L are small. An S-box attains the maximumrobustness when R and L achieve their smallest possible values simultaneously. Clearly, the smallestpossible value for L is 2n�s. As an S-box which achieves this value has a at di�erence distribution table,we have R = 2n � 1 and hence the robustness is less than 12n . Therefore to make R small, L must be atleast 2n�s+1. In the following discussions we suppose that L >= 2n�s+1. Two cases, n > s and n = s, areconsidered in order to determine the set of possible small values for R.When n > s, an S-box de�nes a many-to-one mapping. For such an S-box, we have R >= 1. Thus therobustness against di�erential cryptanalysis is bounded from above by (1� 12n )(1� 2�s+1). To decide S-boxes which achieve the upper bound for robustness, consider an n� s S-box whose di�erence distributiontable has the following pro�le: each row, except the �rst, of the table contains an equal number of zero andnonzero entries, and the nonzero entries all contain a value 2n�s+1. Thus we have L = 2n�s+1. The upperbound would be achieved if R = 1. However, it has been proved in [?] that if each row, except the �rst, of5



the table contains an equal number of zero and nonzero entries, then R must be 2n�1�2s�1. Consequentlythe robustness of the S-box is less than 34 . This example indicates that �nding a good combination of Rand L is not easy. It is not clear to the authors whether or not the upper bound (1 � 12n )(1� 2�s+1) isactually attainable. Nevertheless, it will be seen in Sections ?? and ?? that there exist S-boxes whoserobustness is very close the upper bound.Next we consider the case when n = s, namely when an S-box is a permutation Vn. As any change inthe input to a permutation results in a change in the output, the �rst column of its di�erence distributiontable contains only zeros except for the �rst entry. Therefore the maximum robustness against di�erentialcryptanalysis is (1 � 2�n+1). The maximum robustness is attained by a permutation with the followingdi�erence distribution table: except for the �rst row, half of the entries in a row contain the value 2 whilethe other half contain the value 0. Such S-boxes have been extensively investigated in [?, ?, ?, ?]. TheseS-boxes, however, su�er some or all of the drawbacks described below, which render them unattractive inpractice.1. Their component functions are quadratic. This is true for all the permutations in [?, ?], the �rst typeof permutations in [?], and some of the permutations in [?]. A block cipher that employs functionswith such a low algebraic degree as S-boxes would be vulnerable to more classic cryptanalytic attacksthan the state-of-the-art di�erential cryptanalysis.2. It has been suggested that an n � s S-box, where s < n, be constructed by omitting componentfunctions from a permutation on Vn [?, ?, ?, ?]. However, in general, omitting component functionsof a (1�2�n+1)-robust permutation does not yield a robust n�s S-box. In particular, we have provedin [?] that for any n � n S-box whose component functions are quadratic, dropping a componentfunction results in an n � (n � 1) S-box whose robustness against di�erential cryptanalysis is only2n�12n (1� 2�n+2) < 12 . The robustness decays drastically as more component functions are dropped.We conjecture that a similar phenomenon happens even in the more general case where componentfunctions of an n � n S-box are not quadratic.3. An S-box is said to satisfy the SAC if its component functions all satisfy the SAC. This property isconsidered to be at least as essential as the robustness against di�erential cryptanalysis. This issuehas been completely neglected in [?, ?, ?, ?, ?], and none of the S-boxes constructed in those paperssatis�es the SAC.4. The S-boxes, with the following two exceptions, only accept an odd number of input bits. Applicationsof such S-boxes are limited.The �rst exception is some of the S-boxes constructed in [?] which accept an even number of inputbits. Unfortunately the component functions of these S-boxes are all quadratic.The second exception is the inverse function on GF (2n) de�ned byF (X) = ( 0 if X = 01=X otherwiseResults proved in [?] indicate that the robustness of F (X) against di�erential cryptanalysis is(1 � 2�n+1) when n is odd, and (1 � 2�n+2) when n is even. As the input to the function hasto be checked against the value zero, it would be very inconvenient to use the function in practicalapplications. Although this inconvenience can be removed by using look up tables, the amount ofmemory required in storing the tables becomes intolerable when n is large.6



Table 1: Robustness of S-boxes Used by DESS-Box L R "S1 16 37 0.316S2 16 33 0.363S3 16 37 0.316S4 16 24 0.469S5 16 31 0.387S6 16 33 0.363S7 16 35 0.340S8 16 36 0.328L : The largest value in the di�erence distribution table, not countingthe value 26 in the �rst row.R : The number of nonzero entries in the �rst column of the di�erencedistribution table, not counting the �rst entry containing a value26." : Robustness against di�erential cryptanalysis. It is calculated by" = (1� R26 )(1� L26 ).Interesting results on constructing S-boxes have been presented in [?]. These include a few 5�5 S-boxeswhich are (1�2�4)-robust against di�erential cryptanalysis. Although these S-boxes satisfy the SAC, theyall bear the other three shortcomings. In addition, since the method relies on exhaustive search, it isbeyond the currently available computing power to �nd a larger, say 7� 7, S-box with similar properties.A �nal remark is that the construction methods used in [?, ?, ?, ?, ?, ?] are essentially the samefrom a technical point of view: they are all based on permutation polynomials on GF (2n). Although suchpermutations are easy to analyze, they have a very restricted form and consist of only a small portionamong all the permutations on GF (2n).In the following sections we take a completely di�erent approach, which is based on group Hadamardmatrices, towards constructing S-boxes. The S-boxes generated using the new approach will free of all thedrawbacks addressed above. Before going into the description of the new approach, we note that DESemploys eight 6� 4 S-boxes. The di�erence distribution tables of the S-boxes can be found in [?]. >Fromthe tables it can be seen that the fractions of nonzero entries in the tables are between 0.70 and 0.80.Table ?? shows that the robustness of the eight S-boxes against di�erential cryptanalysis is between 0.316and 0.469. The values are far less than (1� 164)(1� 2�3) = 0:861, the upper bound for the robustness of a6� 4 S-box. This might partially explain why di�erential cryptanalysis of DES was so successful.4 Constructing S-boxes (Part I) | The First AttemptWe present our method for constructing robust S-boxes in three steps. The �rst step which is described inthis section shows how to construct S-boxes whose component functions are highly nonlinear and also satisfythe SAC. A shortcoming of these S-boxes is that they are not robust against di�erential cryptanalysis. Thisshortcoming is removed in the second step which is described in the next section. This is followed by anothersection describing the third step which discusses further re�nement on the results.7



4.1 Bent Functions Which Form a GroupIn [?], bent functions which form an additive group were constructed. These functions are the startingpoint of our method for generating S-boxes, and hence are reviewed in the following.A (1;�1)-matrix of order n will be called a Hadamard matrix if HHT = nIn, where HT is the transposeof H [?]. A Sylvester-Hadamard matrix ( or Walsh-Hadamard matrix) is a matrix of order 2n generatedin the following way: Hn = " Hn�1 Hn�1Hn�1 �Hn�1 # ; n = 1; 2; : : : ;H0 = 1:Let G be a group under operation � (dot), and let p = (p1; : : : ; pn), q = (q1; : : : ; qn) be two vectors oflength n, whose entries pj ; qj come from G. De�ne the operation � such that p� q = (p1 � q1; : : : ; pn � qn),and the inverse of q such that q�1 = (q�11 ; : : : ; q�1n ). We say that p and q are s-orthogonal if p � q�1 =(p1 � q�11 ; : : : ; pn � q�1n ) contains every element in G precisely s times.A generalized Hadamard matrix [?, ?] of type s for the group G is a square matrix with entries from Gwhose rows and columns are both s-orthogonal. A group Hadamard matrix [?] is a generalized Hadamardmatrix whose rows and columns both form a group under the operation �. Note that in a group Hadamardmatrix of type s for G, there exist a row acting the role of identity, and each of the other rows containseach element of G precisely s times. A similar observation applies to the columns of the matrix.Now let " be a primitive element of GF (2k), and let C be a (2k � 1)� (2k � 1) matrix whose (i; j)thentry, 0 <= i; j <= 2k � 2, is de�ned as cij = "j+i (mod 2k�1). Denote by D the extended 2k � 2k matrix264 0 � � � 0... C0 375.Note that each entry of D is a polynomial in ", whose algebraic degree is at most k � 1. Thereforeeach entry can be expressed as a0 � a1"� � � � � ak�1"k�1, where ai 2 GF (2). Replacing "i by xi+1, where0 <= i <= k � 1, we obtain a multi-variable polynomial a0x1 � a1x2 � � � � � ak�1xk, which can be viewed asa linear function on Vk. Denote by E be the matrix obtained from D by applying the replacement to allits entries. In [?], the following interesting result was provedLemma 2 Denote by �k the additive group consisting of all linear functions on Vk. Then E is a groupHadamard matrix of type 1 for �k. That is, both the rows and the columns of the matrix E form a groupunder the component-wise polynomial addition with the zero row and the zero column as their identifyelements respectively, and each linear function on Vk appears precisely once in each nonzero row and alsoin each nonzero column.Concatenating the linear functions in the ith row of E results in a function fi on V2k:fi(y; x) = 2k�1Mj=0 [Dj(y)eij(x)] (1)where y = (y1; : : : ; yk) and x = (x1; : : : ; xk). From [?], we know that f1, f2, : : :, f2k�1 are all distinct bentfunctions on V2k, and that f0, f1, : : :, f2k�1 form a additive group with f0 = 0 as its identify element. Inthe same paper it was also shown thatTheorem 2 The following statements hold:(i) let f be a nonzero linear combination of the k functions f1, f2, : : :, fk that are de�ned by (??),namely f(y; x) = Lkj=1[cjfj(y; x)], where y = (y1; : : : ; yk), x = (x1; : : : ; xk) and cj 2 GF (2). Thenf = fi for some 1 <= i <= 2k � 1. Conversely, any fi, 1 <= i <= 2k � 1, can be expressed as a nonzerolinear combination of f1, f2, : : :, fk; 8



(ii) for any 1 <= j <= 2k � 1, write e1j = a11x1 � � � � � a1kxk;e2j = a21x1 � � � � � a2kxk;...ekj = ak1x1 � � � � � akkxk ;then A = (aij), whose entries come from GF (2), is a nondegenerate matrix of order k.4.2 S-boxes Satisfying the SACWe have shown that concatenating the functions in a row of E, except the �rst row, results in a bentfunction. Note that a bent function is not balanced. In the following we consider the concatenation of anincomplete or partial row in E.Let n be an integer with k < n < 2k. We select 2n�k distinct columns from the 2k � 1 nonzerocolumns of E. Denote by H = (hij) the 2k � 2n�k matrix consisting of the 2n�k selected columns, where0 <= i <= 2k � 1 and 0 <= j <= 2n�k � 1.Let gi be the function obtained by concatenating the ith row of H = (hij), namelygi(y; x) = 2n�k�1Mj=0 [Dj(y)hij(x)] (2)where 0 <= i <= 2k � 1, y = (y1; : : : ; yn�k) and x = (x1; : : : ; xk).Lemma 3 Let g be a nonzero linear combination of g1, : : :, gk that are de�ned in (??), namely g(y; x) =Lki=1[cigi(y; x)], where ci 2 GF (2). Then(i) g is balanced,(ii) the nonlinearity of g satis�es Ng >= 2n�1 � 2k�1,(iii) g(z)� g(z � ) is balanced for any  = (�;�) with W (�) 6= 0, where � 2 Vn�k and � 2 Vk,(iv) the maximum algebraic degree of g is n � k + 1,(v) G = (g1; : : : ; gk) is a regular mapping.Proof. (i) of Theorem ?? implies that g, a nonzero linear combination of g1, : : :, gk, matches gi for some1 <= i <= 2k � 1. Note that g1, : : :, g2k�1 are all concatenations of nonzero linear functions. By Lemma ??,(i), (ii) and (iii) hold.Now we show that (iv) is true. First we note that since the rows of the matrix E from which H isobtained form a group (see Lemma ??), there is a 1 <= t <= 2k � 1 such that g can be expressed as theconcatenation of the functions in a row of H indexed by t, namely, g(y; x) =L2n�k�1j=0 [Dj(y)htj(x)]. Con-sider the function g1 which is de�ned by g1(y; x) = L2n�k�1j=0 [Dj(y)h1j(x)]. When the following conditionis satis�ed 2n�k�1Mj=0 h1j(x) 6= 0 (3)the term y1 � � � yn�kL2n�k�1j=0 h1j(x) will not be canceled in the �nal expression of g1, and hence g1 achievesthe maximum algebraic degree n� k + 1. 9



Now suppose that the the condition (??) is satis�ed. Recall that the columns of E form a group as well(see Lemma ??), and that each linear function in Vk appears precisely once in each nonzero column. Theseproperties of E, together with the fact that L2n�k�1j=0 h0j(x) = 0, implies that when the condition (??) issatis�ed, we have L2n�k�1j=0 hij(x) 6= 0 for all 2 <= i <= 2k � 1. In other words, g2, : : :, g2k�1 all achieve themaximum algebraic degree n� k + 1.To ensure that the condition (??) is satis�ed, �rst we select 2n�k�1 columns from the nonzero columnsof E. Next we select a column from the nonzero columns of E that have not been touched so far, andcheckL2n�k�1j=0 h1j(x). The selection and checking step continues until the condition (??) is satis�ed. Sinceeach linear function on Vk appears precisely once in a nonzero row of E, after the �rst 2n�k � 1 columnsare selected, there is at most one column in the untouched columns of E such that L2n�k�1j=0 h1j(x) = 0.Therefore the maximum algebraic degree is always achievable. This proves (iv).(v) follows from (i) and Theorem ??. utA problem with G = (g1; : : : ; gk) is that it does not satisfy the SAC. Using the following Lemma ??which was �rst proved in [?], the problem can be circumvented by a suitable nondegenerate linear transfor-mation on the coordinates of the mapping. Note that the balancedness, the nonlinearity and the algebraicdegree of a function are not a�ected by a nondegenerate linear transformation on coordinates [?].Lemma 4 Let f1, f2, : : :, fm be functions on Vn. Suppose that A is an n � n nondegenerate matrix onGF (2) with the property that for each row �i of A, 1 <= i <= n, and for each function fj , 1 <= j <= m,fj(x)� fj(x� �i) is balanced. Then f1(xA), f2(xA), : : :, fm(xA) all satisfy the SAC.Let A be a n � n nondegenerate matrix with nonzero values in the �rst n � k entries of its rows. Asimple example follows: A = " In�k 0(n�k)�kJk�(n�k) Ik # (4)where I denotes the identity matrix, 0 the zero matrix, and J the matrix whose entries are all ones.Another example that introduces more inter-coordinate dependencies is as follows:A = " In�k 0(n�k)�kBk�(n�k) Ik # " In�k C(n�k)�k0k�(n�k) Ik #= " In�k C(n�k)�kBk�(n�k) Bk�(n�k)C(n�k)�k � Ik # (5)where B is a matrix not containing zero rows and C is an arbitrary matrix, both on GF (2).Denote by � the mapping after applying the linear transformation A to the coordinates of G =(g1; : : : ; gk), namely, �(x) = (�1(x); : : : ; �k(x))= (g1(xA); : : : ; gk(xA)): (6)>From (iii) of Lemma ?? and Lemma ?? it follows:Theorem 3 The nonzero linear combinations of the component functions of � = (�1; : : : ; �k) which isde�ned by (??) are all nonlinearly balanced and ful�ll the SAC. Their nonlinearity is at least 2n�1� 2k�1,and their maximum algebraic degree is n � k + 1. 10



Although � = (�1; : : : ; �k) satis�es some of the main requirements for an S-box with regard to non-linearity, SAC and balancedness, the majority of the rows in its di�erence distribution table contain nozeros. By a similar argument to that for Lemma ?? in Subsection ??, it can be shown that the di�erencedistribution table has the following pro�le:1. in 2k � 1 cases, 2n�k out of the 2k entries in a row contain a value 2k, while the other 2k � 2n�kentries contain a value zero;2. in the other 2n � 2k cases (not counting the �rst row), all the entries in a row contain a value 2n�k .Hence the robustness of � against di�erential cryptanalysis is only 2k2n (1� 12n�k ) < 12n�k .This shortcoming will be removed in the following section. Before going into the detailed descriptionof how it is removed, we note that Lemma ??, together with the discussions about the SAC ful�llingproperties and the di�erence distribution tables of G = (g1; : : : ; gk) and � = (�1; : : : ; �k), also holds in thecase when gi is de�ned in the following more general form:gi(y; x) = 2n�k�1Mj=0 [Dj(y)hij(x)]� ri(y) (7)where ri is an arbitrary function on Vn�k.5 Constructing S-boxes (Part II) | ImprovementThis section discusses how to strengthen S-boxes constructed in (??) so that they are much more robustagainst di�erential cryptanalysis. We start with a permutation on V3 which has many desirable properties.Next we combine an s � k S-box G = (g1; : : : ; gk) with the permutation on V3 to obtain an n � (k + 3)S-box, where gi is constructed by (??). Then we show that the new S-box is very robust against di�erentialcryptanalysis.5.1 A Permutation on V3Recall that each primitive polynomial de�nes an m-sequence (see [?]). Consider (1; 0; 0; 1; 0; 1; 1), anm-sequence of length 7 generated by the primitive polynomial 1 � x � x3 with (1;0; 0) as its startingvector. Shifting cyclically the m-sequence to the left gives two new m-sequences (0; 0; 1; 0; 1;1; 1) and(0; 1; 0;1; 1; 1; 0). The three m-sequences can be viewed as the truth tables of functions on V3 after ap-pending a zero at the left end of each of the sequences. The functions corresponding to the three truthtables are m1(w) = y1 � y3 � y2y3m2(w) = y1 � y2 � y1y2 � y2y3m3(w) = y1y2 � y2y3 � y1y3 9>=>; (8)where w = (y1; y2; y3). The three functions de�ne a mapping on V3:M3 = (m1; m2;m3):It is not hard to verify that M3 is a permutation on V3. In addition, by using properties of m-sequencesor by straightforward veri�cation, one can see that M3 has the two properties described below.1. Let m(w) = c1m1(w) � c2m2(w) � c3m3(w) be a nonzero linear combination of m1; m2;m3, wherec1; c2; c3 2 GF (2). Then m is a nonlinearly balanced function. The nonlinearity of m is 2. Note that2 is the maximum nonlinearity of a function on V3.11



2. Let � be a nonzero vector in V3. When w runs through V3, M3(w) �M3(w � �) runs through 4vectors in V3 twice each, and never through the other 4 vectors.5.2 Robust S-boxesNow we combine the permutation on V3 with functions constructed by (??) to obtain an S-box muchmore robust against di�erential cryptanalysis. Let n and s be integers with n >= s > (bn=2c + 3), and letk = s � 3. Also let r1 = r2 = � � � = rk = 0, rk+1 = m1, rk+2 = m2 and rk+3 = m3. De�ne s = k + 3functions on Vn in the following way:fi(y1; : : : ; yn�k ; x1; : : : ; xk) = gi(y1; : : : ; yn�k ; x1; : : : ; xk)� ri(y1; y2; y3) (9)where gi is de�ned by (??) and i = 1; : : : ; k + 3.The following lemma will be used in discussing properties of the functions constructed by (??).Lemma 5 Let g(x1; : : : ; xs) be a function on Vs. Extend g into a function f on Vs+t by adding t dummy-coordinates, namely, f(x1; : : : ; xs; y1; : : : ; yt) = g(x1; : : : ; xs). Then(i) if g is balanced then f is balanced,(ii) Nf >= 2tNg, where Nf and Ng denote the nonlinearities of f and g respectively.Proof. Note that f(x1; : : : ; xs; y1; : : : ; yt) = f (y1; : : : ; yt; x1; : : : ; xs)= 2t�1Mi=0 [Di(y1; : : : ; yt)g(x1; : : : ; xs)]:Thus f is obtained by concatenating g for 2t times. This proves (i).Let � be the sequence of g. Then � = (�; : : : ; �) is the sequence of f . Let L be an arbitrary a�nesequence of length 2t+s. By Lemma 10 of [?], L is a row of Ht+s = Ht 
 Hs, where Hn is the Sylvester-Hadamard matrix of order 2n and 
 denotes the Kronecker product. Then L can be expressed as L = `t
`swhere `t is an a�ne sequence of length 2t and `s is an a�ne sequence of length 2s. Let `t = (a1; : : : ; a2t).Then L = (a1`s; : : : ; a2t`s) and jh�;Lij <= 2tXj=1 jh�; `sij = 2tjh�; `sij:Since the nonlinearity of g is Ng, by Lemma 12 of [?], we have jh�; `sij <= 2s � 2Ng. Hencejh�;Lij <= 2t(2s � 2Ng)As L is arbitrary, again by Lemma 12 of [?], we have Nf >= 2tNg. utNow we have the following result:Lemma 6 Let y = (y1; : : : ; yn�k), x = (x1; : : : ; xk), w = (y1; y2; y3) and z = (y; x). Let f (y; x) =Lk+3j=1 [cjfj(y; x)] be a nonzero linear combination of f1; : : : ; fk+3 that are de�ned in (??). Then(i) f is balanced, 12



(ii) when f(z) 6= Lk+3j=k+1[cjrj(w)], the nonlinearity of f is at least 2n�1 � 2k�1, and the maximumalgebraic degree of f is n� k+1. Otherwise, the nonlinearity of f is at least 2n�2, and the algebraicdegree of f is 2,(iii) when f(z) 6=Lk+3j=k+1[cjrj(w)], f(z)� f(z � ) is balanced for any  = (�;�) with W (�) 6= 0, where� 2 Vn�k and � 2 Vk,(iv) (f1, : : :, fk+3) is a regular mapping.Proof. Note that f can be written asf(z) = k+3Mj=1[cjgj(z)]� k+3Mj=k+1[cjrj(w)]:It is easy to see that f (z) 6= 0, and there are only two cases to be consideredCase 1 | f(z) =Lk+3j=1 [cjgj(z)]�Lk+3j=k+1[cjrj(w)] with Lk+3j=1 [cjgj(z)] 6= 0.Case 2 | f(z) =Lk+3j=k+1[cjrj(w)] = ck+1m1(w)� ck+2m2(w)� ck+3m3(w).>From Lemma ?? and the discussion on the construction (??) at the end of Subsection ??, it followsthat f is balanced in Case 1. And due to the �rst property of the permutation on V3 (see section ??) and(i) of Lemma ??, f is balanced in Case 2. This proves (i).The �rst half of (ii), which corresponds to Case 1, follows from Lemma ??, as well as the discussionon the construction (??). In Case 2, the algebraic degree of f is clearly 2. By (ii) of Lemma ??, thenonlinearity of f is at least 2n�3 � 2 = 2n�2.Finally (iii) follows from Lemma ??, while (iv) follows from (i) and Theorem ??. utLet A be a n�n nondegenerate matrix, whose ith row i, i = 1; : : : ; k+3, can be written as i = (�i; �i),where �i 2 Vn�k , W (�i) 6= 0 and �i 2 Vk. Then by Lemma ??, f1, f2, : : :, fk+3 de�ned by (??) can all betransformed into SAC-ful�lling functions:	(z) = ( 1(z); : : : ;  k+3(z))= (f1(zA); : : : ; fk+3(zA)): (10)Thus we have the following theorem:Theorem 4 Let 	,  1, : : :,  k+3 and A be the same as in (??). Let  (z) = Lk+3j=1 [cj j(z)] be a nonzerolinear combination of  1; : : : ;  k+3, where z = (z1; : : : ; zk+3) and cj 2 GF (2). Then(i)  is balanced,(ii) in 2k+3 � 8 cases, which include the cases when  =  j, j = 1; : : : ; k + 3, the nonlinearity of  isat least 2n�1 � 2k�1, and the maximum algebraic degree of  is n � k + 1. In the other 7 cases, thenonlinearity of  is at least 2n�2, and the algebraic degree of  is 2,(iii)  satis�es the SAC if  (z) 6=Lk+3j=k+1[cjrj(zA)],(iv) 	 = ( 1; : : : ;  k+3) is a regular mapping.In the following we prove that the robustness of 	 = ( 1; : : : ;  k+3) against di�erential cryptanalysis is(78+2�n+k�3�2�2n+2k). When n = k+3, 	 is a permutation on Vn, and its robustness against di�erentialcryptanalysis is 78 . 13



5.3 Pro�le of the Di�erence Distribution TableNow we discuss the di�erence distribution table of 	 = ( 1; : : : ;  k+3) constructed by (??). The followingresults will simplify our discussions.Let gj be a function on Vn, j = 1; : : : ; s, and let G = (g1; : : : ; gs). Also let A be a nondegenerate matrixof order s over GF (2). Consider F (x) = (g1(x); : : : ; gs(x))A. Note that A is applied to the output of G.For any � 2 Vs, G(x) = (g1(x); : : : ; gs(x)) = � if and only if F (x) = (g1(x); : : : ; gs(x))A = �A. Therefore,while x runs through Vn, G(x) runs through � exactly the same number of times as that F (x) runs through�A.Now let B be a nondegenerate matrix of order n over GF (2), and let F (x) = (g1(xB); : : : ; gs(xB)).Since G(x) = F (xB�1), G(x) = � if and only if F (xB�1) = � , where � 2 Vs. This implies that, while xruns through Vn, G(x) and F (x) run through � the same number of times.In summary, the pro�le of the di�erence distribution table of an S-box is not altered by a nondegeneratelinear transformation on outputs or a nondegenerate linear transformation on inputs. The observation isused in analyzing the di�erence distribution table of 	 = ( 1; : : : ;  k+3).Lemma 7 Let 	 = ( 1; : : : ;  k+3) be an S-box constructed in (??). Also let z = (z1; : : : ; zn) and  = (�;�)be a nonzero vector in Vn. Then(i) for 2k � 1 cases of , 	(z) � 	(z � ) runs through 2n�k vectors in Vk+3 2k times each, but notthrough the other 2k+3 � 2n�k vectors,(ii) for other 2n�3� 2k cases of , 	(z)�	(z� ) runs through 2k vectors in Vk+3 2n�k times each, butnot through the other 2k+3 � 2k vectors,(iii) for the remaining 2n � 2n�3 cases of , 	(z) � 	(z � ) runs through 2k+2 vectors in Vk+3 2n�k�2times each, but not through the other 2k+2 vectors,(iv) the �rst column of the di�erence distribution table of 	 contains a value 2n�k in (2n�k�3 � 1)2kentries, and a value zero in the other entries (not counting the �rst entry).Proof. Let F = (f1; : : : ; fk+3), where fi is constructed by (??). Then 	(z) = F (zA), and hence	(z)�	(z � ) = F (zA)� F (zA� A). Thus the problem of discussing the di�erence distribution tableof 	 is reduced to that of F .Let z = (y; x), y = (y1; : : : ; yn�k), x = (x1; : : : ; xk) and w = (y1; y2; y3). Write  = (�;�), where� 2 Vn�k and � 2 Vk, and � = (�; �) where � 2 V3 and � 2 Vn�k�3. By (??) we haveF (z) = (g1(z); : : : ; gk(z); gk+1(z)�m1(w);gk+2(z)�m2(w); gk+3(z)�m3(w)):Hence F (z)� F (z � ) = (g1(z)� g1(z � ); : : : ; gk(z)� gk(z � );gk+1(z)� gk+1(z � )�m1(w)�m1(w � �);gk+2(z)� gk+2(z � )�m2(w)�m2(w � �);gk+3(z)� gk+3(z � )�m3(w)�m3(w � �)):As gk+1, gk+2 and gk+3 are nonzero linear combinations of g1, : : :, gk, F (z)� F (z � ) can be written asF (z)� F (z � ) = (Q(z)� Q(z � ))B for some nondegenerate matrix B, whereQ(z) = (g1(z); : : : ; gk(z);m1(w);m2(w);m3(w)):14



Thus the problem is further simpli�ed, and we only have to discuss how Q(z)�Q(z� ) runs through thevectors in Vk+3.>From (??), we haveQ(z)�Q(z � ) = ( M�2Vn�k[D�(y)(h1;�(x)]� h1;���(x� �)); : : : ;M�2Vn�k[D�(y)(hk;�(x)]� hk;���(x� �));m1(w)�m1(w� �);m2(w)�m2(w� �);m3(w)�m3(w� �)):Note that we have switched from integers to vectors in describing indexes. We distinguish the followingtwo cases: W (�) = 0 and W (�) 6= 0.Case 1: W (�) = 0 and hence W (�) 6= 0 and W (�) = 0. In this case we haveQ(z)� Q(z � ) = ( M�2Vn�k[D�(y)h1;�(�)]; : : : ;M�2Vn�k[D�(y)hk;�(�)]; 0; 0; 0)where hi;�(�) = hi;�(x)� hi;�(x� �) (Note that hi;�(x) is a linear function).As D�(y) = 1 if and only if y = �, for any �xed � 2 Vn�k, we have(Q(z)�Q(z � ))jy=� = (h1;�(�); : : : ; hk;�(�); 0; 0; 0):Now let y = � run through Vn�k . Then (Q(z) � Q(z � ))jy=� will run through 2m�k vectors in Vk+1, 2ktimes each. This follows from the fact that, if � 6= �0, then(Q(z)�Q(z � ))jy=� 6= (Q(z)�Q(z � ))jy=�0 :To show that the fact is true we only have to show(h1;�(�); : : : ; hk;�(�)) 6= (h1;�0(�); : : : ; hk;�0(�))or equivalently (h1;�(�)� h1;�(�); : : : ; hk;�(�)� hk;�(�)) 6= (0; : : : ; 0):Since the rows of the matrix E introduced in Subsection ?? form a group, there exists a �00 6= (0; : : : ; 0)such that (h1;�(�)� h1;�(�); : : : ; hk;�(�)� hk;�(�)) = (h1;�00(�); : : : ; hk;�00(�)):As W (�) 6= 0, it becomes clear that(h1;�00(�); : : : ; hk;�00(�)) 6= (0; : : : ; 0):This shows that the fact is indeed true.To summarize Case 1, while z runs through Vn, Q(z)�Q(z� ) runs through 2n�k vectors in Vk+3, 2ktimes each, and not through the other 2k+1 � 2n�k vectors.15



Case 2: W (�) 6= 0. Then(Q(z)� Q(z � ))jy=� = (h1;�(x)� h1;���(x� �); : : : ; hk;�(x)� hk;���(x� �);m1(�)�m1(�� �);m2(�)�m2(�� �);m3(�)�m3(�� �))where � = (�;%), � 2 V3, % 2 Vn�k�3. Note that since hij is a linear function, we have h1;���(x � �) =h1;���(x)� h1;���(�)Again as the columns of E de�ned in Subsection ?? form a group, there is a �0 6= (0; : : : ; 0) such that(Q(z)� Q(z � ))jy=� = (h1;�0(x)� d1; : : : ; hk;�0(x)� dk;m1(�)�m1(�� �);m2(�)�m2(�� �);m3(�)�m3(�� �))where di = hi;���(�), i = 1; : : : ; k.Recall that � = (�; �) where � 2 V3 and � 2 Vn�k�3. Two cases should be considered: W (�) = 0 andW (�) 6= 0.Case 2.1: W (�) 6= 0 and W (�) = 0. We have(Q(z)�Q(z � ))jy=� = (h1;�0(x)� d1; : : : ; hk;�0(x)� dk; 0; 0; 0):By (ii) of Theorem ??, (h1;�0(x) � d1; : : : ; hk;�0(x) � dk) forms a permutation on Vk when �, and hence�0, is �xed. Thus for any � 2 Vn�k, (h1;�0(x) � d1; : : : ; hk;�0(x) � dk) runs through each vector in Vkonce while x runs through Vk. This is equivalent to say that (Q(z) � Q(z � ))jy=� runs through each(c1; : : : ; ck; 0; 0; 0) 2 Vn precisely once. Consequently, when y = � runs through all the 2n�k vectors inVn�k , (Q(z)�Q(z � ))jy=� runs through each (c1; : : : ; ck; 0; 0; 0) 2n�k times, but never through the othervectors in Vn.Case 2.2: W (�) 6= 0 and W (�) 6= 0. Recall that for any � with W (�) 6= 0, while � runs through V3,(m1(�)�m1(���); m2(�)�m2(���);m3(�)�m3(���)) runs through 4 vectors in V3 twice each, but notthrough the other 4 vectors. Since � = (�;%), � runs through each vector in V3 2n�k�3 times while y = �runs through Vn�k . Taking into account the fact that (h1;�0(x)�d1; : : : ; hk;�0(x)�dk) forms a permutationon Vk for any �xed � 2 Vn�k , we can see that in the case when W (�) 6= 0, Q(z)� Q(z � ) runs through4 � 2k = 2k+2 vectors in Vk+3, 2 � 2n�k�3 = 2n�k�2 times each, but never through the other 2k+2 vectors inVk+3.Note that  can take 2k�1 di�erent nonzero vectors in Vn for Case 1, 2n�3�2k in Case 2.1, and 2n�2n�3in Case 2.2, and thatQ(z)�Q(z�) and F (z)�F (z�) are related by F (z)�F (z�) = (Q(z)�Q(z�))B,while F (z) and 	(z) are related by 	(z) = F (zA). This proves the �rst three parts of the theorem.Finally we consider the �rst column of the di�erence distribution table. Recall that the �rst columndi�ers from the rest of the table in the sense that it indicates the smoothness of the S-box and that it isof particular importance to di�erential cryptanalysis. When s = k+ 3 = n, the S-box is a permutation onVn, and the �rst column in its di�erence distribution table is (2n; 0; : : : ; 0)T . To examine the case whenn > s, we consider the solutions of the equation	(z)� 	(z � ) = (0; : : : 0; 0; 0; 0); (11)where  = (�;�) 6= (0; : : : ; 0), � 2 Vn�k and � 2 Vk.Similarly it can be discussed in the two cases: Case 1 whereW (�) = 0 and Case 2 whereW (�) 6= 0. Thelatter can be further divided into Case 2.1 where W (�) 6= 0 and W (�) = 0, and Case 2.2 where W (�) 6= 0and W (�) 6= 0. It is not hard to verify that the equation (??) has 2n�k solutions for z in Case 2.1, but no16



solutions in Case 1 and Case 2.2. The number of rows corresponding to Case 2.1 is (2n�k�3 � 1)2k. Thiscompletes the proof. utThe di�erence distribution table of the S-box has the following pro�le:1. the largest number in the 2k � 1 rows corresponding to Case 1 is 2k, while it is 2n�k for the 2n � 2krows corresponding to Case 2. When n is large, the number of rows for Case 2 is signi�cantly largerthan that for Case 1;2. the �rst column contains a value 2n�k in (2n�k�3� 1)2k entries, and a value zero in the other entries(not counting the �rst entry);3. each row contains zero entries, and the fraction of nonzero entries in the table is between 0:44(=0:5� 2�4) and 0:5.As a consequence, the robustness " of 	 = ( 1; : : : ;  k+3) against di�erential cryptanalysis is" = [1� (2n�k�3 � 1)2k=2n](1� 2�n+k)= 78 + 2�n+k�3 � 2�2n+2k>= 78 :Thus we have proved:Theorem 5 	 = ( 1; : : : ;  k+3) constructed in (??) is (78+2�n+k�3�2�2n+2k)-robust against di�erentialcryptanalysis.As their robustness against di�erential cryptanalysis is bounded from below by 78 , we expect S-boxesconstructed by (??) are good enough in most practical applications. Nevertheless, we will show in thefollowing section how to construct even more robust S-boxes. These S-boxes can meet even more stringentrequirements imposed by certain applications.6 Constructing S-boxes (Part III) | Re�nementWe have shown that S-boxes constructed by (??) are at least 78-robust against di�erential cryptanalysis,and that they are also very promising in terms of their nonlinearity, algebraic degrees and strict avalanchecharacteristics. Recall that (??) is obtained from (??) by applying a suitable nondegenerate lineartransformation on coordinates, while (??) is the result of combining an S-box de�ned in (??) with apermutation M3 on V3 whose component functions are de�ned by (??). We have used the two propertiesof M3 (see Subsection ??) in proving that combining (??) with (??) gives much better S-boxes. Thisapproach can be generalized to further improve the robustness of an S-box.Let t >= 3 and Mt = (m1; : : : ;mt) a permutation on Vt that has the following properties:1. any nonzero linear combination m of m1; : : : ; mt is a nonlinearly balanced function;2. for any nonzero vector � 2 Vt, when w runs through Vt, Mt(w)�Mt(w��) runs through half of thevectors in Vt twice each, but never through the other half vectors.For odd t >= 3, permutation polynomials based on the \cubing" technique [?, ?, ?, ?, ?, ?] satisfy the tworequirements. 17



Let n, s and t be integers with n >= s > (bn=2c + t) and t >= 3, and let k = s � t. Now (??) can begeneralized to fi(y1; : : : ; yn�k ; x1; : : : ; xk) = gi(y1; : : : ; yn�k ; x1; : : : ; xk)� ri(y1; : : : ; yt) (12)where i = 1; : : : ; k + t, gi is de�ned by (??), and r1 = r2 = � � � = rk = 0, rk+1 = m1, : : :, rk+t = mt.Let f be a nonzero linear combination of the k + t functions. Then when f(z) 6= Lk+tj=k+1[cjrj(w)],f(z) � f(z � ) is balanced for any  = (�; �), where � 2 Vn�k , W (�) 6= 0 and � 2 Vk. Let A be a(k + t)� (k + t) nondegenerate matrix, whose ith row i, i = 1; : : : ; k + t, can be written as i = (�i; �i),where �i 2 Vn�k, W (�i) >= 1 and �i 2 Vk. Then (??) is generalized to:	(z) = ( 1(z); : : : ;  k+t(z))= (f1(zA); : : : ; fk+t(zA)): (13)Note that all but 2t � 1 nonzero linear combinations of the component functions of 	 satisfy the SAC.Theorem ?? is generalized to:Theorem 6 Let n, s and t be integers with n >= s > bn=2c+ t. Let k = s� t. Also let 	,  1, : : :,  s andA be the same as in (??), and  (z) =Lsj=1[cj j(z)] be a nonzero linear combination of  1; : : : ;  s, wherez = (z1; : : : ; zn) and cj 2 GF (2). Then(i)  is balanced,(ii) in 2k+t � 2t cases, which include the cases when  =  j, j = 1; : : : ; k + t, the nonlinearity of  is atleast 2n�1 � 2k�1, and the maximum algebraic degree of  is n� k+ 1. In the other 2t� 1 cases, thenonlinearity of  is at least 2n�tNMt, and the algebraic degree of  is at least 2, where NMt denotesthe minimum among the nonlinearities of m1, : : :, mt,(iii)  satis�es the SAC, except in 2t � 1 cases. In particular,  satis�es the SAC when  =  j, j =1; : : : ; k + t,(iv) 	 = ( 1; : : : ;  k+t) is a regular mapping.Lemma ?? can be generalized accordingly. In particular, it can be shown that the fraction of nonzeroentries in the di�erence distribution table of 	 = ( 1; : : : ;  s) constructed in (??) is between (0:5�2�(t+1))and 0:5, that the largest value in the table is 2k, and that the �rst column of the table contains a value2n�k in (2n�k�t � 1)2k entries, and a value zero in the other entries (not counting the �rst entry). HenceTheorem ?? is generalized to:Theorem 7 The robustness of 	 = ( 1; : : : ;  s) constructed in (??) against di�erential cryptanalysis is(1� 2�t + 2�n+s�2t � 2�2(n+s�t)). The lower bound 1� 2�t is attained only when 	 is a permutation.Consequently, when t = 5, the robustness of 	 = ( 1; : : : ;  s) is at least 0.96875, and when t = 7 it isat least 0.9921875.7 Counting Robust S-boxesTwo S-boxes F = (f1; : : : ; fs) and G = (g1; : : : ; gs) are said to be di�erent if the two function setsff1; : : : ; fsg and fg1; : : : ; gsg di�er. We are interested in the number of di�erent S-boxes that can begenerated by our method. 18



Let n, s and t be integers with n >= s > (bn=2c+ t) and t >= 3, and let k = s� t. The matrix H consistsof 2n�k columns selected from the matrix E (see Subsection ??.) The total number of ways in which H isa selected is  2k � 12n�k !. Each way gives a di�erent matrix H. To achieve the maximum algebraic degreen� k + 1, we �rst select 2n�k � 1 columns from E and then select a column from the rest of the columnsof E in such a way that the condition (??) is satis�ed. This shows that the number of ways of achievingthe maximum algebraic degree is  2k � 12n�k � 1 ! (2k � 2n�k � 1).It is easy to verify that permuting the 2n�k columns of the matrix H results in a di�erent matrix, andthat discussions made above, in particular Lemma ??, and Theorems ?? and ??, also hold in this case.Note that there are 2n�k! di�erent ways to permute the columns of H.It should be pointed out that S-boxes generated in the above two steps, selecting and permuting,contain all those which can be obtained by selecting a di�erent primitive polynomial of algebraic degreek � 1. In other words, selecting a di�erent primitive polynomial does not yield more S-boxes.On the other hand, Theorems ?? and ?? also hold when gk+1, : : :, gk+t, which are used to obtain fk+1,: : :, fk+t in the construction (??), are replaced by any distinct functions chosen from g1, : : :, g2k�1. Thereare  2k � 1t ! possible choices, each of which gives a di�erent S-box.Finally, we can obtain more S-boxes by selecting a di�erent nondegenerate matrix in transforming f1,: : :, fk+t into SAC-ful�lling functions. These transformations, however, do not always produce di�erentS-boxes.In summary, the total number of di�erent S-boxes is at least2n�k ! 2k � 1t ! 2k � 12n�k !and when the maximum algebraic degree n� k + 1 is required, it is at least2n�k ! 2k � 1t ! 2k � 12n�k � 1 ! (2k � 2n�k � 1):8 RemarksThis section discusses the following two additional issues: immunity of the S-boxes against linear crypt-analysis and a relation between the SAC and the pro�le of a di�erence distribution table.8.1 Immunity to Linear CryptanalysisLinear cryptanalysis is yet another powerful cryptanalytic attack discovered very recently by Matsui [?].This cryptanalytic method exploits the low nonlinearity of S-boxes employed by a block cipher, and it hasbeen successfully applied in attacking FEAL and DES.Given an n � s S-box (f1; : : : ; fs), where each fi is a function on Vn, a linear cryptanalyst calculatesthe number of times that f(x1; : : : ; xn) = nMi=1(aixi)� sMj=1[bjfj(x1; : : : ; xn)] (14)assumes the value zero, for all nonzero vectors (a1; : : : ; an) 2 Vn and nonzero vectors (b1; : : : ; bs) 2 Vs. Thecryptanalyst then examines how far the numbers deviate from 2n�1. Those which deviate the farthest areparticularly useful for linear cryptanalysis. 19



In the original exposition of linear cryptanalysis [?], only counting the number of times that f assumesthe value zero was described. This approach, however, captures only half of the information that is usefulfor linear cryptanalysis. The other half is obtained by counting the number of times that f assumes thevalue one. The two halves are complementary in the sense that one can be derived from the other. Wecan treat these two halves in a uni�ed way by calculating the number of times thatg(x1; : : : ; xn) = [a0 � nMi=1(aixi)]� sMj=1[bjfj(x1; : : : ; xn)] (15)assumes the value one, where a0 2 GF (2). The �rst half of the information is obtained when a0 = 1, whilethe second half is obtained when a0 = 0.Note that the number of times that the function g de�ned by (??) assumes the value one is the Hammingdistance between Lsj=1[bjfj(x1; : : : ; xn)], a nonzero linear combination of the component functions, anda0 �Lni=1(aixi), an a�ne function on Vn. To immunize an S-box against linear cryptanalysis, it su�cesfor the Hamming distance between any nonzero linear combination of the component functions and anya�ne function not to deviate too far from 2n�1. Alternatively we have,An S-box is immune to linear cryptanalysis if the nonlinearity of each nonzero linear combina-tion of its component functions is high.As is indicated by Theorem ??, for the S-boxes constructed in this paper all nonzero linear combinationsof the component functions are highly nonlinear. Hence we conclude that they are immune against linearcryptanalysis.With S-boxes constructed in [?, ?, ?], any nonzero linear combination of the component functionsis a bent function. Hence these S-boxes have the strongest possible immunity to linear cryptanalysis.Unfortunately, as was discussed before, their component functions are not balanced, and even worse, theirdi�erence distribution tables are at and hence they are not immune to di�erential cryptanalysis.8.2 SAC vs Di�erence Distribution TableWe have shown that the component functions of a robust S-box 	 = ( 1; : : : ;  k+t) constructed by (??) inSection ?? all satisfy the SAC. In fact we have shown a much stronger result, namely, all but 2t�1 of theirnonzero linear combinations satisfy the SAC. This should be compared to � = (�1; : : : ; �k) constructedby (??). � is not robust against di�erential cryptanalysis. However, all nonzero linear combinations of itscomponent functions satisfy the SAC. This raises a question as to whether all nonzero linear combinationsof the component functions of a very robust S-box, whose di�erence distribution table contains zero entriesin all its rows, can satisfy the SAC.We prove that the answer to the question is negative. In other words, for any S-box whose di�erencedistribution table contains zero entries in all its rows, at least one nonzero linear combinations of itscomponent functions does not satisfy the SAC.Theorem 8 Let F = (f1; : : : ; fs) be an n � s S-box, where fi is a function on Vn and n >= s. If thedi�erence distribution table of F contains zero entries in all its rows, then at least one nonzero linearcombination of f1; : : : ; fs does not satisfy the SAC.Proof. Let x = (x1; : : : ; xn). Since all rows in the di�erence distribution table of F contain zero entries,we know that for any nonzero vector � 2 Vs, F (x) � F (x � �) does not run through some vectors in Vs,while x runs through Vn, or equivalently, F (x)� F (x� �) is not a regular mapping. Note thatF (x)� F (x� �) = (f1(x)� f1(x� �); : : : ; fs(x)� fs(x� �)):20



Theorem ?? implies that there is at least one nonzero vector (a1; : : : ; as) 2 Vs such thatsMi=1fai[fi(x)� fi(x� �)]g = sMi=1[aifi(x)]� sMi=1[aifi(x� �)]= f�(x)� f�(x� �)is not balanced, where f�(x) = Lsi=1[aifi(x)]. In particular, the argument is true when W (�) = 1. Thatis, f� does not satis�es the SAC. ut9 An ExampleThe procedure for generating an n � s S-box, where n >= s > bn=2c+ t, can be described in the followingsteps.1. Select a primitive polynomial of algebraic degree k�1, where k = s�t. Construct from the polynomiala matrix D = 264 0 � � � 0... C0 375, where C = (cij), cij = "j+i (mod 2k�1), 0 <= i; j <= 2k � 2. Note thatonly c0 = (c00; c01; : : : ; c0;2k�3; c0;2k�2) has to be calculated. The other rows of C can be obtained byrotating c0 to the left. That is, c1 = (c01; c02; : : : ; c0;2k�2; c00), c2 = (c02; c03; : : : ; c00; c01), and so on.2. Obtain from D a matrix E of linear functions on Vk by substituting "i with xi+1, where 0 <= i <= k�1.Note that E is a 2k � 2k matrix, and that the �rst row and the �rst column of E contain only zeros.3. Obtain a 2k�2n�k matrixH by selecting 2n�k distinct nonzero columns from E. When the maximumalgebraic degree n � k + 1 is required, E should be chosen so that the condition (??) is satis�ed.4. Permute the columns of H .5. Construct k+ t functions f1, : : :, fk+t by (??). Note that gk+1, : : :, gk+t can be any distinct functionschosen from g1, : : :, g2k�1.6. Select a (k+ t)� (k+ t) nondegenerate matrix A so that its ith row i, i = 1; : : : ; k+ t, can be writtenas i = (�i; �i), where �i 2 Vn�k, W (�i) >= 1 and �i 2 Vk.7. Output (f1(zA), : : :, fk+t(zA)) as an S-box.Now we construct a 12 � 10 S-box to illustrate the generating procedure. Let n = 12, s = 10, t = 3and k = 7. Choose x7 � x� 1 as the primitive polynomial. Let " be a root of x7 � x � 1 = 0.The �rst row of the 127� 127 matrix C (see Subsection ??) is "0, "1, : : :, "126, that is1; "; "2; "3; "4; "5; "6; 1� "; "� "2; : : : ; 1� "6:The second row of C is obtained by rotating the �rst row to the left by one position, the third row byrotating the second row to the left by one position, and so on. Then we have an extended 128 � 128matrix D = 264 0 � � � 0... C0 375. By substituting "i with xi+1, i = 0; 1; 2; 3; 4; 5; 6, we obtain a matrix E = (eij),0 <= i; j <= 127. In particular, the �rst row of E contains only zeros, and the second row of E is0; x1; x2; x3; x4; x5; x6; x7; x1 � x2; x2 � x3; : : : ; x1 � x721



Next we select 212�7 = 32 di�erent nonzero columns from E so that the condition (??) is satis�ed.Then we permute randomly the selected rows. In this way we obtain a matrixH = (hij), where 0 <= i <= 127and 0 <= j <= 31.Now let y = (y1; y2; y3; y4; y5), x = (x1; x2; x3; x4; x5; x6; x7), w = (y1; y2; y3), z = (y; x), and letgi(y; x) = 31Mj=0[Dj(y)hij(x)]; i = 1; 2; 3; 4; 5; 6; 7:Let g8, g9 and g10 be three distinct nonzero linear combinations of g1; : : : ; g7. Setfj(z) = gj(z); j = 1; 2; 3; 4; 5;6; 7;fj+7(z) = gj+7(x)�mj(w); j = 1; 2;3wheremj(w) = mj(y1; y2; y3) is constructed in Subsection ??. Let A be the following nondegenerate matrixA = 26666666666666666666664
1 0 1 1 1 0 1 0 0 0 0 11 1 0 1 1 1 0 1 1 1 0 01 1 1 1 1 0 0 0 0 0 1 11 1 1 0 0 0 1 0 0 1 1 11 0 0 1 0 0 1 1 1 0 1 01 1 0 1 1 0 1 1 1 0 0 01 0 0 0 0 1 1 1 0 0 1 01 0 1 0 1 0 0 1 1 0 0 11 0 0 1 1 1 1 1 0 1 1 01 1 0 0 0 1 1 1 1 1 0 01 0 0 0 1 0 0 1 1 1 0 01 0 1 0 1 0 1 0 0 1 0 0

37777777777777777777775 :The �nal S-Box is 	 = ( 1; : : : ;  10), where  (z) = fi(zA).Let  = L10j=1[cj j ] be a nonzero linear combination of  1; : : : ;  10. By Theorem ??,  has theproperties described here.1.  is balanced.2. In 210 � 8 = 1016 cases including  = fi, i = 1; : : : ; 10, the nonlinearity of  satis�es N >=212�1 � 27�1 = 1984, and the algebraic degree of  is 6. In the other 7 cases, N >= 212�2 = 1024,and the algebraic degree of  is 2.3.  satis�es the SAC except when  (z) =Lk+3j=1 [cjrj(zA)].The di�erence distribution table of the S-box has the pro�le described here:1. In 27 � 1 = 127 cases, 212�7 = 32 out of the 210 = 1024 entries in a row contain a value 27 = 128,and the other 210 � 25 = 992 entries contain a value zero.2. In other 29 � 27 = 384 cases, 27 = 128 out of the 1024 entries in a row contain a value 25 = 32, andthe other 210 � 27 = 896 entries contain a value zero.3. In the remaining 212� 29 = 3584 cases (not counting the �rst row), half of the 1024 entries in a rowcontain a value 23 = 8, and the other half contain a value zero.4. In the �rst column, the �rst entry contains a value 212 = 4096, (212�10 � 1)27 = 384 other entriescontain a value 212�7 = 32, and the remaining 3711 entries contain a value zero.Consequently, the robustness of the S-box against di�erential cryptanalysis is (78 + 2�5)(1� 2�5) � 0:878.22



10 ConclusionWe have presented a method for systematically generating cryptographically strong S-boxes. The method isbased on an interesting combinatorial structure called group Hadamard matrices. We have shown that themethod is much superior to previous approaches, and that it generates promising S-boxes in terms of theirrobustness against di�erential cryptanalysis, immunity to linear cryptanalysis, SAC ful�lling properties,high nonlinearities and algebraic degrees. We have also illustrated the construction method by an exampleof 12�10 S-boxes. Future research directions include the investigation of possible further improvements onthe algebraic degrees, the nonlinearities and the pro�les of the di�erence distribution tables of the S-boxes.
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