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t. We establish, for the �rst time, an expli
it and simple lowerbound on the nonlinearity Nf of a Boolean fun
tion f of n variablessatisfying the avalan
he 
riterion of degree p, namely, Nf � 2n�1 �2n�1� 12 p. We also show that the lower bound is tight, and identify allthe fun
tions whose nonlinearity attains the lower bound. As a further
ontribution of this paper, we prove that ex
ept for very few 
ases, thesum of the degree of avalan
he and the order of 
orrelation immunity of aBoolean fun
tion of n variables is at most n�2. These new results furtherhighlight the signi�
an
e of the fa
t that while avalan
he property is inharmony with nonlinearity, it goes against 
orrelation immunity.Key Words:Avalan
he Criterion, Boolean Fun
tions, Correlation Immunity, Nonlinearity,Propagation Criterion.1 Introdu
tionConfusion and di�usion, introdu
ed by Shannon [16℄, are two important prin
i-ples used in the design of se
ret key 
ryptographi
 systems. These prin
iples 
anbe enfor
ed by using some of the nonlinear properties of Boolean fun
tions in-volved in a 
ryptographi
 transformation. More spe
i�
ally, a high nonlinearitygenerally has a positive impa
t on 
onfusion, whereas a high degree of avalan
heenhan
es the e�e
t of di�usion. Nevertheless, it is also important to note thatsome nonlinear properties 
ontradi
t others. These motivate resear
hers to in-vestigate into relationships among various nonlinear properties of Boolean fun
-tions.One 
an 
onsider three di�erent relationships among nonlinearity, avalan
heand 
orrelation immunity, namely, nonlinearity and avalan
he, nonlinearity and
orrelation immunity, and avalan
he and 
orrelation immunity. Zhang and Zheng[20℄ studied how avalan
he property in
uen
es nonlinearity by establishing anumber of upper and lower bounds on nonlinearity. Carlet [3℄ showed that one



may determine a number of di�erent nonlinear properties of a Boolean fun
-tion, if the fun
tion satis�es the avalan
he 
riterion of a high degree. Zheng andZhang [26℄ proved that Boolean fun
tions satisfying the avalan
he 
riterion ina hyper-spa
e 
oin
ide with 
ertain bent fun
tions. They also established 
loserelationships among plateaued fun
tions with a maximum order, bent fun
tionsand the �rst order 
orrelation immune fun
tions [24℄. Seberry, Zhang and Zhengwere the �rst to resear
h into relationships between nonlinearity and 
orrelationimmunity [14℄. Very re
ently Zheng and Zhang have su

eeded in deriving a newtight upper bound on the nonlinearity of high order 
orrelation immune fun
-tions [25℄. In the same paper they have also shown that 
orrelation immune fun
-tions whose nonlinearity meets the tight upper bound 
oin
ide with plateauedfun
tions introdu
ed in [24, 23℄. All these results help further understand hownonlinearity and 
orrelation immunity are at odds with ea
h other.The aim of this work is to widen our understanding of other 
onne
tionsamong nonlinearity properties of Boolean fun
tions, with a spe
i�
 fo
us onrelationships between nonlinearity and avalan
he, and between avalan
he and
orrelation immunity. We prove that if a fun
tion f of n variables satis�es theavalan
he 
riterion of degree p, then its nonlinearity Nf must satisfy the 
ondi-tion of Nf � 2n�1�2n�1� 12p. We also identify the 
ases when the equality holds,and 
hara
terize those fun
tions that have the minimum nonlinearity. This resulttells us that a high degree of avalan
he guarantees a high nonlinearity.In the se
ond part of this paper, we look into the question of how avalan
heand 
orrelation immunity hold ba
k ea
h other. We prove that with very fewex
eptions, the sum of the degree of avalan
he property and the order of 
orre-lation immunity of a Boolean fun
tion with n variables is less than or equal ton � 2. This result 
learly tells us that we 
annot expe
t a fun
tion to a
hieveboth a high degree of avalan
he and a high order of 
orrelation immunity.2 Boolean Fun
tionsWe 
onsider fun
tions from Vn to GF (2) (or simply fun
tions on Vn), where Vnis the ve
tor spa
e of n tuples of elements from GF (2). The truth table of afun
tion f on Vn is a (0; 1)-sequen
e de�ned by (f(�0); f(�1); : : : ; f(�2n�1)),and the sequen
e of f is a (1;�1)-sequen
e de�ned by ((�1)f(�0); (�1)f(�1),: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1 =(1; : : : ; 1; 1). A fun
tion is said to be balan
ed if its truth table 
ontains 2n�1zeros and an equal number of ones. Otherwise it 
alled unbalan
ed.Thematrix of f is a (1;�1)-matrix of order 2n de�ned byM = ((�1)f(�i��j))where � denotes the addition in Vn.Given two sequen
es ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their 
omponent-wise produ
t is de�ned by ~a �~b = (a1b1; � � � ; ambm). In parti
ular, if m = 2n and~a, ~b are the sequen
es of fun
tions f and g on Vn respe
tively, then ~a � ~b is thesequen
e of f � g where � denotes the addition in GF (2).Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two sequen
es or ve
tors,the s
alar produ
t of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of the




omponent-wise multipli
ations. In parti
ular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multipli
ation are over GF (2), andwhen ~a and ~b are (1;�1)-sequen
es, h~a;~bi =Pmi=1 aibi, where the addition andmultipli
ation are over the reals.An aÆne fun
tion f on Vn is a fun
tion that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � 
, where aj ; 
 2 GF (2), j = 1; 2; : : : ; n. Furthermore f is
alled a linear fun
tion if 
 = 0.A (1;�1)-matrix N of order n is 
alled a Hadamard matrix if NNT = nIn,where NT is the transpose of N and In is the identity matrix of order n. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing re
ursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :Let `i, 0 � i � 2n� 1, be the i row of Hn. It is known that `i is the sequen
eof a linear fun
tion 'i(x) on Vn, de�ned by the s
alar produ
t 'i(x) = h�i; xi,where �i is the binary representation of an integer i.The Hamming weight of a (0; 1)-sequen
e �, denoted by HW (�), is the num-ber of ones in the sequen
e. Given two fun
tions f and g on Vn, the Hammingdistan
e d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x)� g(x), where x = (x1; : : : ; xn).3 Cryptographi
 Criteria of Boolean Fun
tionsThe following 
riteria for 
ryptographi
 Boolean fun
tions are often 
onsidered:(1) balan
e, (2) nonlinearity, (3) avalan
he, (4) 
orrelation immunity, (5)algebrai
 degree, (6) absen
e of non-zero linear stru
tures. In this paper wefo
us on avalan
he, nonlinearity and 
orrelation immunity.Parseval's equation (Page 416 [8℄) is a useful tool in this resear
h: Let f be afun
tion on Vn and � denote the sequen
e of f . ThenP2n�1i=0 h�; `ii2 = 22n where`i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.The nonlinearity of a fun
tion f on Vn, denoted by Nf , is the minimal Ham-ming distan
e between f and all aÆne fun
tions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f;  i)where  1,  2, : : :,  2n+1 are all the aÆne fun
tions on Vn. High nonlinearity 
anbe used to resist a linear atta
k [9℄. The following 
hara
terization of nonlinearitywill be useful (for a proof see for instan
e [10℄).Lemma 1. The nonlinearity of f on Vn 
an be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequen
e of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequen
es of linear fun
tions on Vn.



From Lemma 1 and Parseval's equation, it is easy to verify that Nf � 2n�1�2 12n�1 for any fun
tion f on Vn. A fun
tion f on Vn is 
alled a bent fun
tion ifh�; `ii2 = 2n for every i, 0 � i � 2n � 1 [13℄. Hen
e f is a bent fun
tion on Vnif and only Nf = 2n�1 � 2 12n�1. It is known that a bent fun
tion on Vn existsonly when n is even.Let f be a fun
tion on Vn. We say that f satis�es the avalan
he 
riterionwith respe
t to � if f(x)�f(x��) is a balan
ed fun
tion, where x = (x1; : : : ; xn)and � is a ve
tor in Vn. Furthermore f is said to satisfy the avalan
he 
riterionof degree k if it satis�es the avalan
he 
riterion with respe
t to every non-zerove
tor � whose Hamming weight is not larger than k. 1 From [13℄, a fun
tionf on Vn is bent if and only if f satis�es the avalan
he 
riterion of degree n.Note that the stri
t avalan
he 
riterion (SAC) [18℄ is the same as the avalan
he
riterion of degree one.Let f be a fun
tion on Vn. For a ve
tor � 2 Vn, denote by �(�) the sequen
eof f(x� �). Thus �(0) is the sequen
e of f itself and �(0) � �(�) is the sequen
eof f(x)�f(x��). Set �f (�) = h�(0); �(�)i, the s
alar produ
t of �(0) and �(�).�(�) is 
alled the auto-
orrelation of f with a shift �. We omit the subs
ript of�f (�) if no 
onfusion o

urs. Obviously, �(�) = 0 if and only if f(x)�f(x��)is balan
ed, i.e., f satis�es the avalan
he 
riterion with respe
t to �. In the 
asethat f does not satisfy the avalan
he 
riterion with respe
t to a ve
tor �, itis desirable that f(x) � f(x � �) is almost balan
ed. Namely we require thatj�f (�)j take a small value.Let f be a fun
tion on Vn. � 2 Vn is 
alled a linear stru
ture of f if j�(�)j =2n (i.e., f(x)�f(x��) is a 
onstant). For any fun
tion f , we have �(�0) = 2n,where �0 is the zero ve
tor on Vn. It is easy to verify that the set of all linearstru
tures of a fun
tion f form a linear subspa
e of Vn, whose dimension is 
alledthe linearity of f . A non-zero linear stru
ture is 
ryptographi
ally undesirable.It is also well-known that if f has non-zero linear stru
tures, then there exists anonsingular n� n matrix B over GF (2) su
h that f(xB) = g(y)�  (z), wherex = (y; z), y 2 Vp, z 2 Vq , g is a fun
tion on Vp that has no non-zero linearstru
tures, and  is a linear fun
tion on Vq .The following lemma is the re-statement of a relation proved in Se
tion 2of [4℄.Lemma 2. For every fun
tion f on Vn, we have(�(�0); �(�1); : : : ; �(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2):where � denotes the sequen
e of f , `i is the ith row of Hn, and �i is the ve
torin Vn that 
orresponds to the binary representation of i, i = 0; 1; : : : ; 2n � 1.1 The avalan
he 
riterion was 
alled the propagation 
riterion in [12℄, as well as in allour earlier papers dealing with the subje
t. Histori
ally, Feistel was apparently the�rst person who 
oined the term of \avalan
he" and realized its importan
e in thedesign of a blo
k 
ipher [6℄. A

ording to Coppersmith [5℄, a member of the teamwho designed DES, avalan
he properties were employed in sele
ting the S-boxes usedin the 
ipher, whi
h 
ontributed to the strength of the 
ipher against various atta
ksin
luding di�erential [1℄ and linear [9℄ atta
ks.



The 
on
ept of 
orrelation immune fun
tions was introdu
ed by Siegenthaler[17℄. Xiao and Massey gave an equivalent de�nition [2, 7℄: A fun
tion f on Vn is
alled a kth-order 
orrelation immune fun
tion if Px2Vn f(x)(�1)h�;xi = 0 forall � 2 Vn with 1 � HW (�) � k, where in the the sum, f(x) and h�; xi areregarded as real-valued fun
tions. From Se
tion 4.2 of [2℄, a 
orrelation immunefun
tion 
an also be equivalently restated as follows: Let f be a fun
tion onVn and let � be its sequen
e. Then f is 
alled a kth-order 
orrelation immunefun
tion if h�; `i = 0 for every `, where ` is the sequen
e of a linear fun
tion'(x) = h�; xi on Vn 
onstrained by 1 � HW (�) � k. It should be noted thath�; `i = 0, if and only if f(x)�'(x) is balan
ed. Hen
e f is a kth-order 
orrelationimmune fun
tion if and only if f(x) � '(x) is balan
ed for ea
h linear fun
tion'(x) = h�; xi on Vn where 1 � HW (�) � k. Correlation immune fun
tionsare used in the design of running-key generators in stream 
iphers to resist a
orrelation atta
k. Relevant dis
ussions on 
orrelation immune fun
tions, andmore generally on resilient fun
tions, 
an be found in [22℄.4 A Tight Lower Bound on Nonlinearity of BooleanFun
tions Satisfying Avalan
he Criterion of Degree pLet (a0; a1; : : : ; a2n�1) and (b0; b1; : : : ; b2n�1) be two real-valued sequen
es oflength 2n, satisfying(a0; a1; : : : ; a2n�1)Hn = (b0; b1; : : : ; b2n�1) (1)Let p be an integer with 1 � p � n� 1. Rewrite (1) as(a0; a1; : : : ; a2n�1)(Hn�p �Hp) = (b0; b1; : : : ; b2n�1) (2)where � denotes the Krone
ker produ
t [19℄. Let ej denote the ith row of Hp,j = 0; 1; : : : ; 2p � 1. For any �xed j with 0 � j � 2p � 1, 
omparing the jth,(j + 2p)th, : : :, (j + (2n�p � 1)2p)th terms in both sides of (2), we have(a0; a1; : : : ; a2n�1)(Hn�p � eTj ) = (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p)Write (a0; a1; : : : ; a2n�1) = (�0; �1; : : : ; �2n�p�1) where ea
h �i is of length2p. Then we have(h�0; eji; h�1; eji; : : : ; h�2n�p�1; eji)Hn�p = (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p)or equivalently, 2n�p(h�0; eji; h�1; eji; : : : ; h�2n�p�1; eji)= (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p)Hn�p (3)Let `i denote the i row of Hn�p, where j = 0; 1; : : : ; 2n�p � 1. In addi-tion, write (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p) = �j , where j = 0; 1; : : : ; 2p � 1.Comparing the ith terms in both sides of (3), we have 2n�ph�i; eji = h�j ; `iiwhere �i = (ai�2p ; a1+i�2p ; : : : ; a2p�1+i�2p). These dis
ussions lead to the follow-ing lemma.



Lemma 3. Let (a0; a1; : : : ; a2n�1) and (b0; b1; : : : ; b2n�1) be two real-valued se-quen
es of length 2n, satisfying(a0; a1; : : : ; a2n�1)Hn = (b0; b1; : : : ; b2n�1)Let p be an integer with 1 � p � n � 1. For any �xed i with 0 � i � 2n�p � 1and any �xed j with 0 � j � 2p� 1, let �i = (ai�2p ; a1+i�2p , : : : , a2p�1+i�2p) and�j = (bj ; bj+2p ; bj+2�2p , : : :, bj+(2n�p�1)2p). Then we have2n�ph�i; eji = h�j ; `ii; i = 0; 1; : : : ; 2n�p � 1; j = 0; 1; : : : ; 2p � 1 (4)where `i denotes the ith row of Hn�p and ej denotes the jth row of Hp.Lemma 3 
an be viewed as a re�ned version of the Hadamard transformation(1), and it will be a useful mathemati
al tool in proving the following two lemmas.These two lemmas will then play a signi�
ant role in proving the main resultsof this paper.Lemma 4. Let f be a non-bent fun
tion on Vn, satisfying the avalan
he 
rite-rion of degree p. Denote the sequen
e of f by �. If there exists a row L� of Hnsu
h that jh�; L�ij = 2n� 12 p, then �2t+p+2p�1 is a non-zero linear stru
ture of f ,where �2t+p+2p�1 is the ve
tor in Vn 
orresponding to the integer 2t+p +2p � 1,t = 0; 1; : : : ; n� p� 1.Proof. First we note that p > 0. Sin
e f is not bent, p � n � 1. Let us �rstrewrite the equality in Lemma 2 as follows(�(�0); �(�1); � � � ; �(�2n�1))Hn = (h�; L0i2; h�; L1i2; : : : ; h�; L2n�1i2) (5)where �i is the ve
tor in Vn 
orresponding to the integer i, and Li is the ithrow of Hn, i = 0; 1; : : : ; 2n � 1. Set i = 0 in (4). Then we have 2n�ph�0; eji =h�j ; `0i. Sin
e f satis�es the avalan
he 
riterion of degree p and HW (�j) � p,j = 1; : : : 2p � 1, we have�(�0) = 2n; �(�1) = � � � = �(�2p�1) = 0 (6)Applying 2n�ph�0; eji = h�j ; `0i to (5), we obtain2n�p�(�0) = 2n�p�1Xu=0 h�; Lj+u�2pi2or equivalently 2n�p�1Xu=0 h�; Lj+u�2pi2 = 22n�p (7)Sin
e L� is a row of Hn, it 
an be expressed as L� = Lj0+u0�2p , where 0 � j0 �2p�1 and 0 � u0 � 2n�p�1. Set j = j0 in (7), we haveP2n�p�1u=0 h�; Lj0+u�2pi2 =22n�p. From h�; Lj0+u0�2pi2 = h�; L�i2 = 22n�p (8)



we have h�; Lj0+u�2pi = 0; for all u, 0 � u � 2n�p � 1, u 6= u0 (9)Set i = 2t and j = j0 in Lemma 3, where 0 � t � n� p� 1, we have2n�ph�2t ; ej0i = h�j0 ; `2ti (10)where `2t is the 2tth row ofHn�p and ej0 is the j0th row ofHp, j = 0; 1; : : : ; 2p�1.As f satis�es the avalan
he 
riterion of degree p and HW (�j) � p, j = 2t+p; 1+2t+p; : : : ; 2p � 2 + 2t+p, we have�(�2t+p) = �(�1+2t+p) = � � � = �(�2p�2+2t+p) = 0 (11)Applying (10) to (5), and 
onsidering (8), (9) and (11), we have2n�p�(�2p�1+2p+t) = �22n�pand thus �(�2p�1+2p+t) = �2nThis proves that �2p�1+2p+t is indeed a non-zero linear stru
ture of f , wheret = 0; 1; : : : ; n� p� 1. utLemma 5. Let f be a non-bent fun
tion on Vn, satisfying the avalan
he 
rite-rion of degree p. Denote the sequen
e of f by �. If there exists a row L� of Hn,su
h that jh�; L�ij = 2n� 12p, then p = n� 1 and n is odd.Proof. Sin
e jh�; L�ij = 2n� 12p, p must be even. Due to p > 0, we must havep � 2. We now prove the lemma by 
ontradi
tion. Assume that p 6= n� 1. Sin
ep < n, we have p � n � 2. As jh�; L�ij = 2n� 12p, from Lemma 4, �2t+p+2p�1is a non-zero linear stru
ture of f , where t = 0; 1; : : : ; n � p � 1. Noti
e thatn � p � 1 � 1. Set t = 0; 1. Thus both �2p+2p�1 and �2p+1+2p�1 are non-zerolinear stru
tures of f . Sin
e all the linear stru
tures of a fun
tion form a linearsubspa
e, �2p+2p�1 � �2p+1+2p�1 is also a linear stru
ture of f . Hen
e�(�2p+2p�1 � �2p+1+2p�1) = �2n (12)On the other hand, sin
e f satis�es the avalan
he 
riterion of degree p andHW (�2p+2p�1 � �2p+1+2p�1) = 2 � p, we 
on
lude that�(�2p+2p�1 � �2p+1+2p�1) = 0. This 
ontradi
ts (12). Thus we have p > n� 2.The only possible value for p is p = n� 1. Sin
e p is even, n must be odd. utTheorem 1. Let f be a fun
tion on Vn, satisfying the avalan
he 
riterion ofdegree p. Then(i) the nonlinearity Nf of f satis�es Nf � 2n�1 � 2n�1� 12p,(ii) the equality in (i) holds if and only if one of the following two 
onditionsholds:



(a) p = n�1, n is odd and f(x) = g(x1�xn; : : : ; xn�1�xn)�h(x1; : : : ; xn),where x = (x1; : : : ; xn), g is a bent fun
tion on Vn�1, and h is an aÆnefun
tion on Vn.(b) p = n, f is bent and n is even.Proof. Due to (7), i.e., P2n�p�1u=0 h�; Lj+u�2pi2 = 22n�p, we have h�; Lj+u�2pi2 �22n�p. Sin
e u and j are arbitrary, by using Lemma 1, we have Nf � 2n�1 �2n�1� 12 p. Now assume that Nf = 2n�1 � 2n�1� 12p (13)From Lemma 1, there exists a row L� of Hn su
h that jh�; L�ij = 2n� 12p. Two
ases need to be 
onsidered: f is non-bent and f is bent. When f is non-bent,thanks to Lemma 5, we have p = n� 1 and n is odd. Considering Proposition 1of [3℄, we 
on
lude that f must takes the form mentioned in (a). On the otherhand, if f is bent, then p = n and n is even. Hen
e (b) holds.Conversely, assume that f takes the form in (a). Applying a nonsingularlinear transformation on the variables, and 
onsidering Proposition 3 of [11℄, wehave Nf = 2Ng. Sin
e g is bent, we have Nf = 2n�1�2 12 (n�1). Hen
e (13) holds,where p = n� 1. On the other hand, it is obvious that (13) holds whenever (b)does. ut5 Relationships between Avalan
he and CorrelationImmunityTo prove the main theorems, we introdu
e two more results. The following lemmais part of Lemma 12 in [15℄.Lemma 6. Let f1 be a fun
tion on Vs and f2 be a fun
tion on Vt. Thenf1(x1; : : : ; xs) � f2(y1; : : : ; yt) is a balan
ed fun
tion on Vs+t if f1 or f2 is bal-an
ed.Next we look at the stru
ture of a fun
tion on Vn that satis�es the avalan
he
riterion of degree n� 1.Lemma 7. Let f be a fun
tion on Vn. Then(i) f is non-bent and satis�es the avalan
he 
riterion of degree n � 1, if andonly if n is odd and f(x) = g(x1�xn; : : : ; xn�1�xn)� 
1x1�� � �� 
nxn� 
,where x = (x1; : : : ; xn), g is a bent fun
tion on Vn�1, and 
1; : : : ; 
n and 
are all 
onstants in GF (2),(ii) f is balan
ed and satis�es the avalan
he 
riterion of degree n�1, if and onlyif n is odd and f(x) = g(x1 � xn; : : : ; xn�1 � xn) � 
1x1 � � � � � 
nxn � 
,where g is a bent fun
tion on Vn�1, and 
1; : : : ; 
n and 
 are all 
onstant inGF (2), satisfying Lnj=1 
j = 1.



Proof. (i) holds due to Proposition 1 of [3℄.Assume that f is balan
ed and satis�es the avalan
he 
riterion of degreen� 1. Sin
e f is balan
ed, it is non-bent. From (i) of the lemma, f(x) = g(x1 �xn; : : : ; xn�1 � xn)� 
1x1 � � � � � 
nxn � 
, where x = (x1; : : : ; xn), g is a bentfun
tion on Vn�1, and 
1; : : : ; 
n and 
 are all 
onstant inGF (2). Set uj = xj�xn,j = 1; : : : ; n � 1. We have f(u1; : : : ; un�1; xn) = g(u1; : : : ; un�1) � 
1u1 � � � � �
n�1un�1�(
1�� � ��
n)xn�
. Sin
e g(u1; : : : ; un�1)�
1x1�� � ��
n�1un�1 is abent fun
tion on Vn�1, it is unbalan
ed. On the other hand, sin
e f is balan
ed,we 
on
lude that Lnj=1 
j 6= 0, namely, Lnj=1 
j = 1. This proves the ne
essityfor (ii). Using the same reasoning as in the proof of (i), and taking into a

ountLemma 6, we 
an prove the suÆ
ien
y for (ii). ut5.1 The Case of Balan
ed Fun
tionsTheorem 2. Let f be a balan
ed qth-order 
orrelation immune fun
tion on Vn,satisfying the avalan
he 
riterion of degree p. Then we have p+ q � n� 2.Proof. First we note that q > 0 and p > 0. Sin
e f is balan
ed, it 
annot bebent. We prove the theorem in two steps. The �rst step deals with p+q � n�2,and the se
ond step with p+ q � n� 1.We start with proving that p + q � n � 1 by 
ontradi
tion. Assume thatp + q � n. Set i = 0 and j = 0 in (4), we have 2n�ph�0; e0i = h�0; `0i. Sin
e fsatis�es the avalan
he 
riterion of degree p and HW (�j) � p, j = 1; : : : 2p�1, weknow that (6) holds. Note thatHW (�u�2p) � n�p � q for all u, 0 � u � 2n�p�1.Sin
e f is a balan
ed qth-order 
orrelation immune fun
tion, we haveh�; L0i = h�; L2pi = h�; L2�2pi = � � � = h�; L(2n�p�1)�2pi = 0 (14)Applying 2n�ph�0; e0i = h�0; `0i to (5), and noti
ing (6) and (14), we would have2n�p�(�0) = 0, i.e., 22n�p = 0. This 
annot be true. Hen
e we have proved thatp+ q � n� 1.Next we 
omplete the proof by showing that p + q � n � 2. Assume for
ontradi
tion that the theorem is not true, i.e., p + q � n � 1. Sin
e we havealready proved that p+ q � n� 1, by assumption we should have p+ q = n� 1.Note that HW (�u�2p) � n� p� 1 = q for all u with 0 � u � 2n�p � 2, and f isa balan
ed qth-order 
orrelation immune fun
tion, where q = n � p� 1. Hen
e(14) still holds, with the ex
eption that the a
tual value of h�; L(2n�p�1)�2pi is not
lear yet. Applying 2n�ph�0; e0i = h�0; `0i to (5), and noti
ing (6) and (14), wehave 2n�p�(�0) = h�; L(2n�p�1)�2pi2. Thus we have h�; L(2n�p�1)�2pi2 = 22n�p.Due to Lemma 5, we have p = n � 1. Sin
e q � 1, we obtain p + q � n. This
ontradi
ts the inequality p + q � n � 1, that we have already proved. Hen
ep+ q � n� 2 holds. ut5.2 The Case of Unbalan
ed Fun
tionsWe turn our attention to unbalan
ed fun
tions. A dire
t proof of the followingLemma 
an be found in [21℄.



Lemma 8. Let k � 2 be a positive integer and 2k = a2 + b2, where both a andb are integers with a � b � 0. Then a = 2 12k and b = 0 when k is even, anda = b = 2 12 (k�1) otherwise.Theorem 3. Let f be an unbalan
ed qth-order 
orrelation immune fun
tion onVn, satisfying the avalan
he 
riterion of degree p. Then(i) p+ q � n,(ii) the equality in (i) holds if and only if n is odd, p = n� 1, q = 1 and f(x) =g(x1 � xn; : : : ; xn�1 � xn) � 
1x1 � � � � � 
nxn � 
, where x = (x1; : : : ; xn),g is a bent fun
tion on Vn�1, 
1; : : : ; 
n and 
 are all 
onstants in GF (2),satisfying Lnj=1 
j = 0.Proof. Sin
e f is 
orrelation immune, it 
annot be bent. On
e again we nowprove (i) by 
ontradi
tion. Assume that p + q > n. Hen
e n � p < q. We keepall the notations in Se
tion 5.1. Note that HW (�u�2p) � n � p < q for all uwith 1 � u � 2n�p � 1. Sin
e f is an unbalan
ed qth-order 
orrelation immunefun
tion, we have (14) again, with the understanding that h�; L0i 6= 0. Applying2n�ph�0; e0i = h�0; `0i to (5), and noti
ing (6) and (14) with h�; L0i 6= 0, wehave 2n�p�(�0) = h�; L0i2. Hen
e h�; L0i2 = 22n�p and p must be even. Sin
ef is not bent, noti
ing Lemma 5, we 
an 
on
lude that p = n� 1 and n is odd.Using (ii) of Lemma 7, we havef(x) = g(x1 � xn; : : : ; xn�1 � xn)� 
1x1 � � � � � 
nxn � 
where x = (x1; : : : ; xn), g is a bent fun
tion on Vn�1, and 
1; : : : ; 
n and 
 are all
onstants in GF (2), satisfyingLnj=1 
j = 0. One 
an verify that while xj � f(x)is balan
ed, j = 1; : : : ; n, xj �xi� f(x) is not if j 6= i. Hen
e f is 1st-order, butnot 2nd-order, 
orrelation immune. Sin
e q > 0, we have q = 1 and p + q = n.This 
ontradi
ts the assumption that p + q > n. Hen
e we have proved thatp+ q � n.We now prove (ii). Assume that p + q = n. Sin
e n � p = q, we 
an apply2n�ph�0; e0i = h�0; `0i to (5), and have (6) and (14) with h�; L0i 6= 0. By usingthe same reasoning as in the proof of (i), we 
an arrive at the 
on
lusion that(ii) holds. utTheorem 4. Let f be an unbalan
ed qth-order 
orrelation immune fun
tion onVn, satisfying the avalan
he 
riterion of degree p. If p+ q = n� 1, then f alsosatis�es the avalan
he 
riterion of degree p + 1, n is odd and f must take theform mentioned in (ii) of Theorem 3.Proof. Let p + q = n � 1. Note that HW (�u�2p) � n � p � 1 = q for all u,0 � u � 2n�p � 2. Sin
e f is unbalan
ed and qth-order 
orrelation immune, wehave (14), although on
e again h�; L0i 6= 0 and the value of h�; L(2n�p�1)�2pi isnot 
lear yet. Applying 2n�ph�0; e0i = h�0; `0i to (5), noti
ing (6) and (14), withthe understanding that h�; L0i 6= 0 and h�; L(2n�p�1)�2pi is not de
ided yet, wehave 2n�p�(�0) = h�; L0i2 + h�; L(2n�p�1)�2pi2. That ish�; L0i2 + h�; L(2n�p�1)�2pi2 = 22n�p (15)



There exist two 
ases to be 
onsidered: p is even and p is odd.Case 1: p is even and thus p � 2. Sin
e h�; L0i 6= 0, applying Lemma 8 to (15),we have h�; L0i2 = 22n�p and h�; L(2n�p�1)�2pi = 0. Due to Lemma 5, p = n� 1.Sin
e q > 0, we have p+ q � n. This 
ontradi
ts the assumption p+ q = n� 1.Hen
e p 
annot be even.Case 2: p is odd. Applying Lemma 8 to (15), we obtainh�; L0i2 = h�; L(2n�p�1)�2pi2 = 22n�p�1 (16)Set i = 2t, t = 0; 1; : : : ; n� p� 1, where n� p� 1 = q > 0, and j = 0 in (4),we have 2n�ph�2t ; e0i = h�0; `2ti (17)where `2t is the 2tth row of Hn�t and e0 is the all-one sequen
e of length 2p.Sin
e f satis�es the avalan
he 
riterion of degree p and HW (�j) � p, j =2t+p; 1 + 2t+p, : : : , 2p � 2 + 2t+p, (11) holds.Applying (17) to (5), noti
ing (11) and (14) with h�; L0i2 = h�; L(2n�p�1)�2pi2= 22n�p+1, we have 2n�p�(�2t+p+2p�1) = 22n�p or 0. In other words,�(�2t+p+2p�1) = 2n or 0.Note that `2t is the sequen
e of a linear fun
tion  on Vn�p where  (y) =h�2t ; yi, y 2 Vn�p, �2t 2 Vn�p 
orresponds to the binary representation of 2t.Due to (17), it is easy to verify that �(�2t+p+2p�1) = 2n (or 0) if and onlyif h�2n�p�1; �2ti = 0 (or 1) where �2n�p�1 2 Vn�p 
orresponds to the binaryrepresentation of 2n�p � 1. Note that �2n�p�1 = (0; : : : ; 0; 1; : : : ; 1) where thenumber of ones is equal to n� p. On the other hand �2t 
an be written as �2t =(0; : : : ; 0; 1; 0; : : : ; 0). Sin
e t � n � p � 1, we 
on
lude that h�2n�p�1; �2ti = 1,for all t with 0 � t � n� p� 1. Hen
e �(�2t+p+2p�1) = 0 for all su
h t.Note that HW (�2t+p+2p�1) = p+ 1. Permuting the variables, we 
an provein a similar way that �(�) = 0 holds for ea
h � with HW (�) = p+ 1. Hen
e fsatis�es the avalan
he 
riterion of degree p + 1. Due to p + q = n� 1, we have(p + 1) + q = n. Using Theorem 3, we 
on
lude that n is odd and f takes theform mentioned in (ii) of Theorem 3. utFrom Theorems 3 and 4, we 
on
ludeCorollary 1. Let f be an unbalan
ed qth-order 
orrelation immune fun
tion onVn, satisfying the avalan
he 
riterion of degree p. Then(i) p + q � n, and the equality holds if and only if n is odd, p = n � 1, q = 1and f(x) = g(x1 � xn; : : : ; xn�1 � xn) � 
1x1 � � � � � 
nxn � 
, where x =(x1; : : : ; xn), g is a bent fun
tion on Vn�1, 
1; : : : ; 
n and 
 are all 
onstantsin GF (2), satisfying Lnj=1 
j = 0,(ii) p+ q � n� 2 if q 6= 1.



6 Con
lusionsWe have established a lower bound on nonlinearity over all Boolean fun
tionssatisfying the avalan
he 
riterion of degree p. We have shown that the lowerbound is tight. We have also 
hara
terized the fun
tions that have the minimumnonlinearity. Furthermore, we have found a mutually ex
lusive relationship be-tween the degree of avalan
he and the order of 
orrelation immunity.There are still many interesting questions yet to be answered in this line ofresear
h. As an example, we believe that the upper bounds in Theorems 2 and3 
an be further improved, espe
ially when p and q are neither too small, say
lose to 1, nor too large, say 
lose to n� 1.A
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