
On Relationships among Avalanhe,Nonlinearity and Correlation ImmunityYuliang Zheng1 and Xian-Mo Zhang21 Monash University, Frankston, Melbourne, VIC 3199, Australiayuliang.zheng�monash.edu.au, http://www.netomp.monash.edu.au/links/2 The University of Wollongong, Wollongong, NSW 2522, Australiaxianmo�s.uow.edu.auAbstrat. We establish, for the �rst time, an expliit and simple lowerbound on the nonlinearity Nf of a Boolean funtion f of n variablessatisfying the avalanhe riterion of degree p, namely, Nf � 2n�1 �2n�1� 12 p. We also show that the lower bound is tight, and identify allthe funtions whose nonlinearity attains the lower bound. As a furtherontribution of this paper, we prove that exept for very few ases, thesum of the degree of avalanhe and the order of orrelation immunity of aBoolean funtion of n variables is at most n�2. These new results furtherhighlight the signi�ane of the fat that while avalanhe property is inharmony with nonlinearity, it goes against orrelation immunity.Key Words:Avalanhe Criterion, Boolean Funtions, Correlation Immunity, Nonlinearity,Propagation Criterion.1 IntrodutionConfusion and di�usion, introdued by Shannon [16℄, are two important prini-ples used in the design of seret key ryptographi systems. These priniples anbe enfored by using some of the nonlinear properties of Boolean funtions in-volved in a ryptographi transformation. More spei�ally, a high nonlinearitygenerally has a positive impat on onfusion, whereas a high degree of avalanheenhanes the e�et of di�usion. Nevertheless, it is also important to note thatsome nonlinear properties ontradit others. These motivate researhers to in-vestigate into relationships among various nonlinear properties of Boolean fun-tions.One an onsider three di�erent relationships among nonlinearity, avalanheand orrelation immunity, namely, nonlinearity and avalanhe, nonlinearity andorrelation immunity, and avalanhe and orrelation immunity. Zhang and Zheng[20℄ studied how avalanhe property inuenes nonlinearity by establishing anumber of upper and lower bounds on nonlinearity. Carlet [3℄ showed that one



may determine a number of di�erent nonlinear properties of a Boolean fun-tion, if the funtion satis�es the avalanhe riterion of a high degree. Zheng andZhang [26℄ proved that Boolean funtions satisfying the avalanhe riterion ina hyper-spae oinide with ertain bent funtions. They also established loserelationships among plateaued funtions with a maximum order, bent funtionsand the �rst order orrelation immune funtions [24℄. Seberry, Zhang and Zhengwere the �rst to researh into relationships between nonlinearity and orrelationimmunity [14℄. Very reently Zheng and Zhang have sueeded in deriving a newtight upper bound on the nonlinearity of high order orrelation immune fun-tions [25℄. In the same paper they have also shown that orrelation immune fun-tions whose nonlinearity meets the tight upper bound oinide with plateauedfuntions introdued in [24, 23℄. All these results help further understand hownonlinearity and orrelation immunity are at odds with eah other.The aim of this work is to widen our understanding of other onnetionsamong nonlinearity properties of Boolean funtions, with a spei� fous onrelationships between nonlinearity and avalanhe, and between avalanhe andorrelation immunity. We prove that if a funtion f of n variables satis�es theavalanhe riterion of degree p, then its nonlinearity Nf must satisfy the ondi-tion of Nf � 2n�1�2n�1� 12p. We also identify the ases when the equality holds,and haraterize those funtions that have the minimum nonlinearity. This resulttells us that a high degree of avalanhe guarantees a high nonlinearity.In the seond part of this paper, we look into the question of how avalanheand orrelation immunity hold bak eah other. We prove that with very fewexeptions, the sum of the degree of avalanhe property and the order of orre-lation immunity of a Boolean funtion with n variables is less than or equal ton � 2. This result learly tells us that we annot expet a funtion to ahieveboth a high degree of avalanhe and a high order of orrelation immunity.2 Boolean FuntionsWe onsider funtions from Vn to GF (2) (or simply funtions on Vn), where Vnis the vetor spae of n tuples of elements from GF (2). The truth table of afuntion f on Vn is a (0; 1)-sequene de�ned by (f(�0); f(�1); : : : ; f(�2n�1)),and the sequene of f is a (1;�1)-sequene de�ned by ((�1)f(�0); (�1)f(�1),: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1 =(1; : : : ; 1; 1). A funtion is said to be balaned if its truth table ontains 2n�1zeros and an equal number of ones. Otherwise it alled unbalaned.Thematrix of f is a (1;�1)-matrix of order 2n de�ned byM = ((�1)f(�i��j))where � denotes the addition in Vn.Given two sequenes ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their omponent-wise produt is de�ned by ~a �~b = (a1b1; � � � ; ambm). In partiular, if m = 2n and~a, ~b are the sequenes of funtions f and g on Vn respetively, then ~a � ~b is thesequene of f � g where � denotes the addition in GF (2).Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two sequenes or vetors,the salar produt of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of the



omponent-wise multipliations. In partiular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multipliation are over GF (2), andwhen ~a and ~b are (1;�1)-sequenes, h~a;~bi =Pmi=1 aibi, where the addition andmultipliation are over the reals.An aÆne funtion f on Vn is a funtion that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � , where aj ;  2 GF (2), j = 1; 2; : : : ; n. Furthermore f isalled a linear funtion if  = 0.A (1;�1)-matrix N of order n is alled a Hadamard matrix if NNT = nIn,where NT is the transpose of N and In is the identity matrix of order n. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing reursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :Let `i, 0 � i � 2n� 1, be the i row of Hn. It is known that `i is the sequeneof a linear funtion 'i(x) on Vn, de�ned by the salar produt 'i(x) = h�i; xi,where �i is the binary representation of an integer i.The Hamming weight of a (0; 1)-sequene �, denoted by HW (�), is the num-ber of ones in the sequene. Given two funtions f and g on Vn, the Hammingdistane d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x)� g(x), where x = (x1; : : : ; xn).3 Cryptographi Criteria of Boolean FuntionsThe following riteria for ryptographi Boolean funtions are often onsidered:(1) balane, (2) nonlinearity, (3) avalanhe, (4) orrelation immunity, (5)algebrai degree, (6) absene of non-zero linear strutures. In this paper wefous on avalanhe, nonlinearity and orrelation immunity.Parseval's equation (Page 416 [8℄) is a useful tool in this researh: Let f be afuntion on Vn and � denote the sequene of f . ThenP2n�1i=0 h�; `ii2 = 22n where`i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.The nonlinearity of a funtion f on Vn, denoted by Nf , is the minimal Ham-ming distane between f and all aÆne funtions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f;  i)where  1,  2, : : :,  2n+1 are all the aÆne funtions on Vn. High nonlinearity anbe used to resist a linear attak [9℄. The following haraterization of nonlinearitywill be useful (for a proof see for instane [10℄).Lemma 1. The nonlinearity of f on Vn an be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequene of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequenes of linear funtions on Vn.



From Lemma 1 and Parseval's equation, it is easy to verify that Nf � 2n�1�2 12n�1 for any funtion f on Vn. A funtion f on Vn is alled a bent funtion ifh�; `ii2 = 2n for every i, 0 � i � 2n � 1 [13℄. Hene f is a bent funtion on Vnif and only Nf = 2n�1 � 2 12n�1. It is known that a bent funtion on Vn existsonly when n is even.Let f be a funtion on Vn. We say that f satis�es the avalanhe riterionwith respet to � if f(x)�f(x��) is a balaned funtion, where x = (x1; : : : ; xn)and � is a vetor in Vn. Furthermore f is said to satisfy the avalanhe riterionof degree k if it satis�es the avalanhe riterion with respet to every non-zerovetor � whose Hamming weight is not larger than k. 1 From [13℄, a funtionf on Vn is bent if and only if f satis�es the avalanhe riterion of degree n.Note that the strit avalanhe riterion (SAC) [18℄ is the same as the avalanheriterion of degree one.Let f be a funtion on Vn. For a vetor � 2 Vn, denote by �(�) the sequeneof f(x� �). Thus �(0) is the sequene of f itself and �(0) � �(�) is the sequeneof f(x)�f(x��). Set �f (�) = h�(0); �(�)i, the salar produt of �(0) and �(�).�(�) is alled the auto-orrelation of f with a shift �. We omit the subsript of�f (�) if no onfusion ours. Obviously, �(�) = 0 if and only if f(x)�f(x��)is balaned, i.e., f satis�es the avalanhe riterion with respet to �. In the asethat f does not satisfy the avalanhe riterion with respet to a vetor �, itis desirable that f(x) � f(x � �) is almost balaned. Namely we require thatj�f (�)j take a small value.Let f be a funtion on Vn. � 2 Vn is alled a linear struture of f if j�(�)j =2n (i.e., f(x)�f(x��) is a onstant). For any funtion f , we have �(�0) = 2n,where �0 is the zero vetor on Vn. It is easy to verify that the set of all linearstrutures of a funtion f form a linear subspae of Vn, whose dimension is alledthe linearity of f . A non-zero linear struture is ryptographially undesirable.It is also well-known that if f has non-zero linear strutures, then there exists anonsingular n� n matrix B over GF (2) suh that f(xB) = g(y)�  (z), wherex = (y; z), y 2 Vp, z 2 Vq , g is a funtion on Vp that has no non-zero linearstrutures, and  is a linear funtion on Vq .The following lemma is the re-statement of a relation proved in Setion 2of [4℄.Lemma 2. For every funtion f on Vn, we have(�(�0); �(�1); : : : ; �(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2):where � denotes the sequene of f , `i is the ith row of Hn, and �i is the vetorin Vn that orresponds to the binary representation of i, i = 0; 1; : : : ; 2n � 1.1 The avalanhe riterion was alled the propagation riterion in [12℄, as well as in allour earlier papers dealing with the subjet. Historially, Feistel was apparently the�rst person who oined the term of \avalanhe" and realized its importane in thedesign of a blok ipher [6℄. Aording to Coppersmith [5℄, a member of the teamwho designed DES, avalanhe properties were employed in seleting the S-boxes usedin the ipher, whih ontributed to the strength of the ipher against various attaksinluding di�erential [1℄ and linear [9℄ attaks.



The onept of orrelation immune funtions was introdued by Siegenthaler[17℄. Xiao and Massey gave an equivalent de�nition [2, 7℄: A funtion f on Vn isalled a kth-order orrelation immune funtion if Px2Vn f(x)(�1)h�;xi = 0 forall � 2 Vn with 1 � HW (�) � k, where in the the sum, f(x) and h�; xi areregarded as real-valued funtions. From Setion 4.2 of [2℄, a orrelation immunefuntion an also be equivalently restated as follows: Let f be a funtion onVn and let � be its sequene. Then f is alled a kth-order orrelation immunefuntion if h�; `i = 0 for every `, where ` is the sequene of a linear funtion'(x) = h�; xi on Vn onstrained by 1 � HW (�) � k. It should be noted thath�; `i = 0, if and only if f(x)�'(x) is balaned. Hene f is a kth-order orrelationimmune funtion if and only if f(x) � '(x) is balaned for eah linear funtion'(x) = h�; xi on Vn where 1 � HW (�) � k. Correlation immune funtionsare used in the design of running-key generators in stream iphers to resist aorrelation attak. Relevant disussions on orrelation immune funtions, andmore generally on resilient funtions, an be found in [22℄.4 A Tight Lower Bound on Nonlinearity of BooleanFuntions Satisfying Avalanhe Criterion of Degree pLet (a0; a1; : : : ; a2n�1) and (b0; b1; : : : ; b2n�1) be two real-valued sequenes oflength 2n, satisfying(a0; a1; : : : ; a2n�1)Hn = (b0; b1; : : : ; b2n�1) (1)Let p be an integer with 1 � p � n� 1. Rewrite (1) as(a0; a1; : : : ; a2n�1)(Hn�p �Hp) = (b0; b1; : : : ; b2n�1) (2)where � denotes the Kroneker produt [19℄. Let ej denote the ith row of Hp,j = 0; 1; : : : ; 2p � 1. For any �xed j with 0 � j � 2p � 1, omparing the jth,(j + 2p)th, : : :, (j + (2n�p � 1)2p)th terms in both sides of (2), we have(a0; a1; : : : ; a2n�1)(Hn�p � eTj ) = (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p)Write (a0; a1; : : : ; a2n�1) = (�0; �1; : : : ; �2n�p�1) where eah �i is of length2p. Then we have(h�0; eji; h�1; eji; : : : ; h�2n�p�1; eji)Hn�p = (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p)or equivalently, 2n�p(h�0; eji; h�1; eji; : : : ; h�2n�p�1; eji)= (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p)Hn�p (3)Let `i denote the i row of Hn�p, where j = 0; 1; : : : ; 2n�p � 1. In addi-tion, write (bj ; bj+2p ; bj+2�2p ; : : : ; bj+(2n�p�1)2p) = �j , where j = 0; 1; : : : ; 2p � 1.Comparing the ith terms in both sides of (3), we have 2n�ph�i; eji = h�j ; `iiwhere �i = (ai�2p ; a1+i�2p ; : : : ; a2p�1+i�2p). These disussions lead to the follow-ing lemma.



Lemma 3. Let (a0; a1; : : : ; a2n�1) and (b0; b1; : : : ; b2n�1) be two real-valued se-quenes of length 2n, satisfying(a0; a1; : : : ; a2n�1)Hn = (b0; b1; : : : ; b2n�1)Let p be an integer with 1 � p � n � 1. For any �xed i with 0 � i � 2n�p � 1and any �xed j with 0 � j � 2p� 1, let �i = (ai�2p ; a1+i�2p , : : : , a2p�1+i�2p) and�j = (bj ; bj+2p ; bj+2�2p , : : :, bj+(2n�p�1)2p). Then we have2n�ph�i; eji = h�j ; `ii; i = 0; 1; : : : ; 2n�p � 1; j = 0; 1; : : : ; 2p � 1 (4)where `i denotes the ith row of Hn�p and ej denotes the jth row of Hp.Lemma 3 an be viewed as a re�ned version of the Hadamard transformation(1), and it will be a useful mathematial tool in proving the following two lemmas.These two lemmas will then play a signi�ant role in proving the main resultsof this paper.Lemma 4. Let f be a non-bent funtion on Vn, satisfying the avalanhe rite-rion of degree p. Denote the sequene of f by �. If there exists a row L� of Hnsuh that jh�; L�ij = 2n� 12 p, then �2t+p+2p�1 is a non-zero linear struture of f ,where �2t+p+2p�1 is the vetor in Vn orresponding to the integer 2t+p +2p � 1,t = 0; 1; : : : ; n� p� 1.Proof. First we note that p > 0. Sine f is not bent, p � n � 1. Let us �rstrewrite the equality in Lemma 2 as follows(�(�0); �(�1); � � � ; �(�2n�1))Hn = (h�; L0i2; h�; L1i2; : : : ; h�; L2n�1i2) (5)where �i is the vetor in Vn orresponding to the integer i, and Li is the ithrow of Hn, i = 0; 1; : : : ; 2n � 1. Set i = 0 in (4). Then we have 2n�ph�0; eji =h�j ; `0i. Sine f satis�es the avalanhe riterion of degree p and HW (�j) � p,j = 1; : : : 2p � 1, we have�(�0) = 2n; �(�1) = � � � = �(�2p�1) = 0 (6)Applying 2n�ph�0; eji = h�j ; `0i to (5), we obtain2n�p�(�0) = 2n�p�1Xu=0 h�; Lj+u�2pi2or equivalently 2n�p�1Xu=0 h�; Lj+u�2pi2 = 22n�p (7)Sine L� is a row of Hn, it an be expressed as L� = Lj0+u0�2p , where 0 � j0 �2p�1 and 0 � u0 � 2n�p�1. Set j = j0 in (7), we haveP2n�p�1u=0 h�; Lj0+u�2pi2 =22n�p. From h�; Lj0+u0�2pi2 = h�; L�i2 = 22n�p (8)



we have h�; Lj0+u�2pi = 0; for all u, 0 � u � 2n�p � 1, u 6= u0 (9)Set i = 2t and j = j0 in Lemma 3, where 0 � t � n� p� 1, we have2n�ph�2t ; ej0i = h�j0 ; `2ti (10)where `2t is the 2tth row ofHn�p and ej0 is the j0th row ofHp, j = 0; 1; : : : ; 2p�1.As f satis�es the avalanhe riterion of degree p and HW (�j) � p, j = 2t+p; 1+2t+p; : : : ; 2p � 2 + 2t+p, we have�(�2t+p) = �(�1+2t+p) = � � � = �(�2p�2+2t+p) = 0 (11)Applying (10) to (5), and onsidering (8), (9) and (11), we have2n�p�(�2p�1+2p+t) = �22n�pand thus �(�2p�1+2p+t) = �2nThis proves that �2p�1+2p+t is indeed a non-zero linear struture of f , wheret = 0; 1; : : : ; n� p� 1. utLemma 5. Let f be a non-bent funtion on Vn, satisfying the avalanhe rite-rion of degree p. Denote the sequene of f by �. If there exists a row L� of Hn,suh that jh�; L�ij = 2n� 12p, then p = n� 1 and n is odd.Proof. Sine jh�; L�ij = 2n� 12p, p must be even. Due to p > 0, we must havep � 2. We now prove the lemma by ontradition. Assume that p 6= n� 1. Sinep < n, we have p � n � 2. As jh�; L�ij = 2n� 12p, from Lemma 4, �2t+p+2p�1is a non-zero linear struture of f , where t = 0; 1; : : : ; n � p � 1. Notie thatn � p � 1 � 1. Set t = 0; 1. Thus both �2p+2p�1 and �2p+1+2p�1 are non-zerolinear strutures of f . Sine all the linear strutures of a funtion form a linearsubspae, �2p+2p�1 � �2p+1+2p�1 is also a linear struture of f . Hene�(�2p+2p�1 � �2p+1+2p�1) = �2n (12)On the other hand, sine f satis�es the avalanhe riterion of degree p andHW (�2p+2p�1 � �2p+1+2p�1) = 2 � p, we onlude that�(�2p+2p�1 � �2p+1+2p�1) = 0. This ontradits (12). Thus we have p > n� 2.The only possible value for p is p = n� 1. Sine p is even, n must be odd. utTheorem 1. Let f be a funtion on Vn, satisfying the avalanhe riterion ofdegree p. Then(i) the nonlinearity Nf of f satis�es Nf � 2n�1 � 2n�1� 12p,(ii) the equality in (i) holds if and only if one of the following two onditionsholds:



(a) p = n�1, n is odd and f(x) = g(x1�xn; : : : ; xn�1�xn)�h(x1; : : : ; xn),where x = (x1; : : : ; xn), g is a bent funtion on Vn�1, and h is an aÆnefuntion on Vn.(b) p = n, f is bent and n is even.Proof. Due to (7), i.e., P2n�p�1u=0 h�; Lj+u�2pi2 = 22n�p, we have h�; Lj+u�2pi2 �22n�p. Sine u and j are arbitrary, by using Lemma 1, we have Nf � 2n�1 �2n�1� 12 p. Now assume that Nf = 2n�1 � 2n�1� 12p (13)From Lemma 1, there exists a row L� of Hn suh that jh�; L�ij = 2n� 12p. Twoases need to be onsidered: f is non-bent and f is bent. When f is non-bent,thanks to Lemma 5, we have p = n� 1 and n is odd. Considering Proposition 1of [3℄, we onlude that f must takes the form mentioned in (a). On the otherhand, if f is bent, then p = n and n is even. Hene (b) holds.Conversely, assume that f takes the form in (a). Applying a nonsingularlinear transformation on the variables, and onsidering Proposition 3 of [11℄, wehave Nf = 2Ng. Sine g is bent, we have Nf = 2n�1�2 12 (n�1). Hene (13) holds,where p = n� 1. On the other hand, it is obvious that (13) holds whenever (b)does. ut5 Relationships between Avalanhe and CorrelationImmunityTo prove the main theorems, we introdue two more results. The following lemmais part of Lemma 12 in [15℄.Lemma 6. Let f1 be a funtion on Vs and f2 be a funtion on Vt. Thenf1(x1; : : : ; xs) � f2(y1; : : : ; yt) is a balaned funtion on Vs+t if f1 or f2 is bal-aned.Next we look at the struture of a funtion on Vn that satis�es the avalanheriterion of degree n� 1.Lemma 7. Let f be a funtion on Vn. Then(i) f is non-bent and satis�es the avalanhe riterion of degree n � 1, if andonly if n is odd and f(x) = g(x1�xn; : : : ; xn�1�xn)� 1x1�� � �� nxn� ,where x = (x1; : : : ; xn), g is a bent funtion on Vn�1, and 1; : : : ; n and are all onstants in GF (2),(ii) f is balaned and satis�es the avalanhe riterion of degree n�1, if and onlyif n is odd and f(x) = g(x1 � xn; : : : ; xn�1 � xn) � 1x1 � � � � � nxn � ,where g is a bent funtion on Vn�1, and 1; : : : ; n and  are all onstant inGF (2), satisfying Lnj=1 j = 1.



Proof. (i) holds due to Proposition 1 of [3℄.Assume that f is balaned and satis�es the avalanhe riterion of degreen� 1. Sine f is balaned, it is non-bent. From (i) of the lemma, f(x) = g(x1 �xn; : : : ; xn�1 � xn)� 1x1 � � � � � nxn � , where x = (x1; : : : ; xn), g is a bentfuntion on Vn�1, and 1; : : : ; n and  are all onstant inGF (2). Set uj = xj�xn,j = 1; : : : ; n � 1. We have f(u1; : : : ; un�1; xn) = g(u1; : : : ; un�1) � 1u1 � � � � �n�1un�1�(1�� � ��n)xn�. Sine g(u1; : : : ; un�1)�1x1�� � ��n�1un�1 is abent funtion on Vn�1, it is unbalaned. On the other hand, sine f is balaned,we onlude that Lnj=1 j 6= 0, namely, Lnj=1 j = 1. This proves the neessityfor (ii). Using the same reasoning as in the proof of (i), and taking into aountLemma 6, we an prove the suÆieny for (ii). ut5.1 The Case of Balaned FuntionsTheorem 2. Let f be a balaned qth-order orrelation immune funtion on Vn,satisfying the avalanhe riterion of degree p. Then we have p+ q � n� 2.Proof. First we note that q > 0 and p > 0. Sine f is balaned, it annot bebent. We prove the theorem in two steps. The �rst step deals with p+q � n�2,and the seond step with p+ q � n� 1.We start with proving that p + q � n � 1 by ontradition. Assume thatp + q � n. Set i = 0 and j = 0 in (4), we have 2n�ph�0; e0i = h�0; `0i. Sine fsatis�es the avalanhe riterion of degree p and HW (�j) � p, j = 1; : : : 2p�1, weknow that (6) holds. Note thatHW (�u�2p) � n�p � q for all u, 0 � u � 2n�p�1.Sine f is a balaned qth-order orrelation immune funtion, we haveh�; L0i = h�; L2pi = h�; L2�2pi = � � � = h�; L(2n�p�1)�2pi = 0 (14)Applying 2n�ph�0; e0i = h�0; `0i to (5), and notiing (6) and (14), we would have2n�p�(�0) = 0, i.e., 22n�p = 0. This annot be true. Hene we have proved thatp+ q � n� 1.Next we omplete the proof by showing that p + q � n � 2. Assume forontradition that the theorem is not true, i.e., p + q � n � 1. Sine we havealready proved that p+ q � n� 1, by assumption we should have p+ q = n� 1.Note that HW (�u�2p) � n� p� 1 = q for all u with 0 � u � 2n�p � 2, and f isa balaned qth-order orrelation immune funtion, where q = n � p� 1. Hene(14) still holds, with the exeption that the atual value of h�; L(2n�p�1)�2pi is notlear yet. Applying 2n�ph�0; e0i = h�0; `0i to (5), and notiing (6) and (14), wehave 2n�p�(�0) = h�; L(2n�p�1)�2pi2. Thus we have h�; L(2n�p�1)�2pi2 = 22n�p.Due to Lemma 5, we have p = n � 1. Sine q � 1, we obtain p + q � n. Thisontradits the inequality p + q � n � 1, that we have already proved. Henep+ q � n� 2 holds. ut5.2 The Case of Unbalaned FuntionsWe turn our attention to unbalaned funtions. A diret proof of the followingLemma an be found in [21℄.



Lemma 8. Let k � 2 be a positive integer and 2k = a2 + b2, where both a andb are integers with a � b � 0. Then a = 2 12k and b = 0 when k is even, anda = b = 2 12 (k�1) otherwise.Theorem 3. Let f be an unbalaned qth-order orrelation immune funtion onVn, satisfying the avalanhe riterion of degree p. Then(i) p+ q � n,(ii) the equality in (i) holds if and only if n is odd, p = n� 1, q = 1 and f(x) =g(x1 � xn; : : : ; xn�1 � xn) � 1x1 � � � � � nxn � , where x = (x1; : : : ; xn),g is a bent funtion on Vn�1, 1; : : : ; n and  are all onstants in GF (2),satisfying Lnj=1 j = 0.Proof. Sine f is orrelation immune, it annot be bent. One again we nowprove (i) by ontradition. Assume that p + q > n. Hene n � p < q. We keepall the notations in Setion 5.1. Note that HW (�u�2p) � n � p < q for all uwith 1 � u � 2n�p � 1. Sine f is an unbalaned qth-order orrelation immunefuntion, we have (14) again, with the understanding that h�; L0i 6= 0. Applying2n�ph�0; e0i = h�0; `0i to (5), and notiing (6) and (14) with h�; L0i 6= 0, wehave 2n�p�(�0) = h�; L0i2. Hene h�; L0i2 = 22n�p and p must be even. Sinef is not bent, notiing Lemma 5, we an onlude that p = n� 1 and n is odd.Using (ii) of Lemma 7, we havef(x) = g(x1 � xn; : : : ; xn�1 � xn)� 1x1 � � � � � nxn � where x = (x1; : : : ; xn), g is a bent funtion on Vn�1, and 1; : : : ; n and  are allonstants in GF (2), satisfyingLnj=1 j = 0. One an verify that while xj � f(x)is balaned, j = 1; : : : ; n, xj �xi� f(x) is not if j 6= i. Hene f is 1st-order, butnot 2nd-order, orrelation immune. Sine q > 0, we have q = 1 and p + q = n.This ontradits the assumption that p + q > n. Hene we have proved thatp+ q � n.We now prove (ii). Assume that p + q = n. Sine n � p = q, we an apply2n�ph�0; e0i = h�0; `0i to (5), and have (6) and (14) with h�; L0i 6= 0. By usingthe same reasoning as in the proof of (i), we an arrive at the onlusion that(ii) holds. utTheorem 4. Let f be an unbalaned qth-order orrelation immune funtion onVn, satisfying the avalanhe riterion of degree p. If p+ q = n� 1, then f alsosatis�es the avalanhe riterion of degree p + 1, n is odd and f must take theform mentioned in (ii) of Theorem 3.Proof. Let p + q = n � 1. Note that HW (�u�2p) � n � p � 1 = q for all u,0 � u � 2n�p � 2. Sine f is unbalaned and qth-order orrelation immune, wehave (14), although one again h�; L0i 6= 0 and the value of h�; L(2n�p�1)�2pi isnot lear yet. Applying 2n�ph�0; e0i = h�0; `0i to (5), notiing (6) and (14), withthe understanding that h�; L0i 6= 0 and h�; L(2n�p�1)�2pi is not deided yet, wehave 2n�p�(�0) = h�; L0i2 + h�; L(2n�p�1)�2pi2. That ish�; L0i2 + h�; L(2n�p�1)�2pi2 = 22n�p (15)



There exist two ases to be onsidered: p is even and p is odd.Case 1: p is even and thus p � 2. Sine h�; L0i 6= 0, applying Lemma 8 to (15),we have h�; L0i2 = 22n�p and h�; L(2n�p�1)�2pi = 0. Due to Lemma 5, p = n� 1.Sine q > 0, we have p+ q � n. This ontradits the assumption p+ q = n� 1.Hene p annot be even.Case 2: p is odd. Applying Lemma 8 to (15), we obtainh�; L0i2 = h�; L(2n�p�1)�2pi2 = 22n�p�1 (16)Set i = 2t, t = 0; 1; : : : ; n� p� 1, where n� p� 1 = q > 0, and j = 0 in (4),we have 2n�ph�2t ; e0i = h�0; `2ti (17)where `2t is the 2tth row of Hn�t and e0 is the all-one sequene of length 2p.Sine f satis�es the avalanhe riterion of degree p and HW (�j) � p, j =2t+p; 1 + 2t+p, : : : , 2p � 2 + 2t+p, (11) holds.Applying (17) to (5), notiing (11) and (14) with h�; L0i2 = h�; L(2n�p�1)�2pi2= 22n�p+1, we have 2n�p�(�2t+p+2p�1) = 22n�p or 0. In other words,�(�2t+p+2p�1) = 2n or 0.Note that `2t is the sequene of a linear funtion  on Vn�p where  (y) =h�2t ; yi, y 2 Vn�p, �2t 2 Vn�p orresponds to the binary representation of 2t.Due to (17), it is easy to verify that �(�2t+p+2p�1) = 2n (or 0) if and onlyif h�2n�p�1; �2ti = 0 (or 1) where �2n�p�1 2 Vn�p orresponds to the binaryrepresentation of 2n�p � 1. Note that �2n�p�1 = (0; : : : ; 0; 1; : : : ; 1) where thenumber of ones is equal to n� p. On the other hand �2t an be written as �2t =(0; : : : ; 0; 1; 0; : : : ; 0). Sine t � n � p � 1, we onlude that h�2n�p�1; �2ti = 1,for all t with 0 � t � n� p� 1. Hene �(�2t+p+2p�1) = 0 for all suh t.Note that HW (�2t+p+2p�1) = p+ 1. Permuting the variables, we an provein a similar way that �(�) = 0 holds for eah � with HW (�) = p+ 1. Hene fsatis�es the avalanhe riterion of degree p + 1. Due to p + q = n� 1, we have(p + 1) + q = n. Using Theorem 3, we onlude that n is odd and f takes theform mentioned in (ii) of Theorem 3. utFrom Theorems 3 and 4, we onludeCorollary 1. Let f be an unbalaned qth-order orrelation immune funtion onVn, satisfying the avalanhe riterion of degree p. Then(i) p + q � n, and the equality holds if and only if n is odd, p = n � 1, q = 1and f(x) = g(x1 � xn; : : : ; xn�1 � xn) � 1x1 � � � � � nxn � , where x =(x1; : : : ; xn), g is a bent funtion on Vn�1, 1; : : : ; n and  are all onstantsin GF (2), satisfying Lnj=1 j = 0,(ii) p+ q � n� 2 if q 6= 1.
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