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2 Boolean FunctionsDe�nition 1. We consider functions from Vn to GF (2) (or simply functionson Vn), Vn is the vector space of n tuples of elements from GF (2). Usually wewrite a function f on Vn as f(x), where x = (x1; : : : ; xn) is the variable vectorin Vn. The truth table of a function f on Vn is a (0; 1)-sequence de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of f is a (1;�1)-sequence de-�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 =(0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix oforder 2n de�ned by M = ((�1)f(�i��j)) where � denotes the addition in GF (2).f is said to be balanced if its truth table contains an equal number of ones andzeros.Given two sequences ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their component-wise product is de�ned by ~a �~b = (a1b1; � � � ; ambm). In particular, if m = 2n and~a, ~b are the sequences of functions f and g on Vn respectively, then ~a � ~b is thesequence of f � g where � denotes the addition in GF (2).Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two sequences or vectors,the scalar product of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of thecomponent-wisemultiplications. In particular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multiplication are over GF (2), andwhen ~a and ~b are (1;�1)-sequences, h~a;~bi =Pmi=1 aibi, where the addition andmultiplication are over the reals.An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � c, where aj; c 2 GF (2), j = 1; 2; : : : ; n. Furthermore f iscalled a linear function if c = 0.A (1;�1)-matrix A of order m is called a Hadamard matrix if AAT = mIm,where AT is the transpose of A and Im is the identity matrix of order m. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing recursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :Let `i, 0 � i � 2n�1, be the i row of Hn. It is known that `i is the sequenceof a linear function 'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where�i is the ith vector in Vn according to the ascending alphabetical order.The Hamming weight of a (0; 1)-sequence �, denoted by HW (�), is the num-ber of ones in the sequence. Given two functions f and g on Vn, the Hammingdistance d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x) � g(x).The equality in the following lemma is called Parseval's equation (Page 416[4]).Lemma 1. Let f be a function on Vn and � denote the sequence of f . Then2n�1Xi=0 h�; `ii2 = 22n



where `i is the ith row of Hn, i = 0; 1; : : :; 2n � 1.De�nition 2. The nonlinearity of a function f on Vn, denoted by Nf , is theminimal Hamming distance between f and all a�ne functions on Vn, i.e., Nf =mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�ne functions onVn.The following characterizations of nonlinearity will be useful (for a proof seefor instance [5]).Lemma 2. The nonlinearity of f on Vn can be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequences of linear functions on Vn.The nonlinearity of functions on Vn is upper bounded by 2n�1 � 2 12n�1.De�nition 3. Let f be a function on Vn. For a vector � 2 Vn, denote by �(�)the sequence of f(x��). Thus �(0) is the sequence of f itself and �(0) � �(�) isthe sequence of f(x) � f(x � �). Set�f (�) = h�(0); �(�)i;the scalar product of �(0) and �(�). �f (�) is also called the auto-correlation off with a shift �.We can simply write �f (�) as �(�) if no confusion takes place.De�nition 4. Let f be a function on Vn. We say that f satis�es the propagationcriterion with respect to � if f(x) � f(x � �) is a balanced function, wherex = (x1; : : : ; xn) and � is a vector in Vn. Furthermore f is said to satisfy thepropagation criterion of degree k if it satis�es the propagation criterion withrespect to every non-zero vector � whose Hamming weight is not larger than k(see [6]).The strict avalanche criterion (SAC) [9] is the same as the propagation cri-terion of degree one.Obviously,�(�) = 0 if and only if f(x)�f(x��) is balanced, i.e., f satis�esthe propagation criterion with respect to �.De�nition 5. Let f be a function on Vn. � in Vn is called a linear structure off if j�(�)j = 2n (i.e., f(x) � f(x � �) is a constant).For any function f , �(�0) = 2n, where �0 is the zero vector on Vn. It is easyto verify that the set of all linear structures of a function f form a linear subspaceof Vn, whose dimension is called the linearity of f . It is also well-known that iff has non-zero linear structure, then there exists a nonsingular n� n matrix B



over GF (2) such that f(xB) = g(y) � h(z), where x = (y; z), y 2 Vp, z 2 Vq ,g is a function on Vp and g has no non-zero linear structure, and h is a linearfunction on Vq. Hence q is equal to the linearity of f .The following lemma is the re-statement of a relation proved in Section 2of [2].Lemma 3. Let f be a function on Vn and � denote the sequence of f . Then(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2)where �j is the binary representation of an integer j, j = 0; 1; : : : ; 2n� 1 and `iis the ith row of Hn.There exist a number of equivalent de�nitions of correlation immune func-tions [1, 3]. It is easy to verify that the following de�nition is equivalent toDe�nition 2.1 of [1]:De�nition 6. Let f be a function on Vn and let � be its sequence. Then fis called a kth-order correlation immune function if and only if h�; `i = 0 forevery `, the sequence of a linear function '(x) = h�; xi on Vn constrained by1 � HW (�) � k.For convenience sake in this paper we give the following statement.Lemma 4. Let f be a function on Vn and let � be its sequence. Then h�; `ii = 0,where `i is the ith row of Hn, if and only if f(x) � h�i; xi is balanced, where �iis the binary representation of integer i, i = 0; 1; : : : ; 2n � 1.In fact, `i is the sequence of linear function '(x) = h�i; xi. This provesLemma 4. Due to Lemma 4 and De�nition 6, we concludeLemma 5. Let f be a function on Vn and let � be its sequence. Then f is akth-order correlation immune function if and only if f(x) � h�; xi where � isany vector in Vn, constrained by 1 � HW (�) � k.De�nition 7. A function f on Vn is called a bent function [7] if h�; `ii2 = 2nfor every i = 0; 1; : : : ; 2n � 1, where `i is the ith row of Hn.A bent function on Vn exists only when n is even, and it achieves the maxi-mum nonlinearity 2n�1 � 2 12n�1. From [7] we have the following:Theorem 1. Let f be a function on Vn. The following statements are equivalent:(i) f is bent, (ii) the nonlinearity of f , Nf , satis�es Nf = 2n�1 � 2 12n�1, (iii)�(�) = 0 for any non-zero � in Vn, (iv) the matrix of f is an Hadamard matrix.Bent functions have following properties [7]:Proposition 1. Let f be a bent function on Vn and � denote the sequence of f .Then (i) the degree of f is at most 12n, (ii) for any nonsingular n� n matrix Bover GF (2) and any vector � 2 Vp, g(x) = f(xB � �) is a bent function, (iii)for any a�ne function  on Vn, f �  is a bent function, (iv) 2� 12n�Hn is thesequence of a bent function.



The following is from [10] (called Theorem 18 in that paper).Lemma 6. Let f be a function on Vn (n � 2), � be the sequence of f , and p isan integer, 2 � p � n. If h�; `ji � 0 (mod 2n�p+2), where `j is the jth row ofHn, j = 0; 1; : : : ; 2n � 1, then the degree of f is at most p� 1.3 Plateaued Functions3.1 rth-order Plateaued FunctionsThe concept of plateaued functions was �rst introduced in [12]. In addition to theconcept, the same paper also studies the existence, properties and constructionmethods of plateaued functions.Notation 1. Let f be a function on Vn and � denote the sequence of f . Set =f =fijh�; `ii 6= 0; 0 � i � 2n� 1g where `i is the ith row of Hn, i = 0; 1; : : : ; 2n� 1.We will simply write =f as = when no confusion arises.De�nition 8. Let f be a function on Vn and � denote the sequence of f . If thereexists an even number r, 0 � r � n, such that#= = 2r and each h�; `ji2 takes thevalue of 22n�r or 0 only, where `j denotes the jth row of Hn, j = 0; 1; : : :; 2n�1,then f is called a rth-order plateaued function on Vn. f is also called a plateauedfunction on Vn if we ignore the particular order r.Due to Parseval's equation, the condition #= = 2r can be obtained fromthe condition \each h�; `ji2 takes the value of 22n�r or 0 only, where `j denotesthe jth row of Hn, j = 0; 1; : : : ; 2n � 1". For convenience sake, however, bothconditions are mentioned in De�nition 8.The following can be immediately obtained from De�nition 8.Proposition 2. Let f be a function on Vn. We conclude (i) if f is a rth-orderplateaued function then r must be even, (ii) f is an nth-order plateaued functionif and only if f is bent, (iii) f is a 0th-order plateaued function if and only if fis a�ne.The next result is a consequence of Theorem 3 of [8].Proposition 3. A partially-bent function is a plateaued function.However, it is important to note that the converse of Proposition 3 has beenshown to be false [12].



3.2 (n� 1)th-order Plateaued Functions on VnFollowing the general results on rth-order plateaued functions on Vn [12], in thispaper we examine in greater depth the properties and construction methods of(n � 1)th-order plateaued functions on Vn. These properties will be useful inresearch into bent functions.Proposition 4. Let p be a positive odd number and g be a (p � 1)th-orderplateaued function on Vp. Then(i) the nonlinearity of g, Ng, satis�es Ng = 2p�1 � 2 12 (p�1),(ii) the degree of g is at most 12(p + 1),(iii) g has at most one non-zero linear structure,(iv) for any nonsingular p � p matrix B over GF (2) and any vector � 2 Vp,h(y) = g(yB � �) is also a (p� 1)th-order plateaued function, where y 2 Vp,(v) for any a�ne function  on Vp, g �  is also a (p � 1)th-order plateauedfunction on Vp.Proof. Due to Lemmas 2 and 6, (1) and (ii) are obvious. We now prove (iii).Applying Lemma 3 to function g, we have(�(�0);�(�1); : : : ;�(�2p�1))Hp = (h�; e0i2; h�; e1i2; : : : ; h�; e2p�1i2)where �j is the binary representation of an integer j, j = 0; 1; : : : ; 2p � 1 andei is the ith row of Hp. Multiplying the above equality by itself, we obtain2pP2p�1j=0 �2(�j) = P2p�1j=0 h�; e1i4. Note that �(�0) = 2p and that g is a (p �1)th-order plateaued function on Vp. Hence 2p(22p +P2p�1j=1 �2(�j)) = 23p+1. Itfollows that P2p�1j=1 �2(�j) = 22p. This proves that g has at most one non-zerolinear structure and hence (iii) is true. (iv) and (v) are easy to verify. utTheorem 2. Let p be a positive odd number and g be a (p�1)th-order plateauedfunction on Vp that has no non-zero linear structure. Then there exists a non-singular 2p � 2p matrix B over GF (2), such that h(y) = g(yB), where y 2 Vp,is a (p � 1)th-order plateaued function on Vp and also a 1st-order correlationimmune function.Proof. Set 
 = f�j� 2 Vp; h�; e�i = 0g, where e� is identi�ed with ei and � isthe binary representation of an integer i, 0 � i � 2p � 1.Since #
 = 2p�1, the rank of 
, denoted rank(
), satis�es rank(
) � p�1.We now prove rank(
) = p. Assume that rank(
) = p�1. Since #
 = 2p�1, 
is identi�ed with a (p� 1)-dimensional linear subspace of Vp. Recall that we canuse a nonsingular a�ne transformation on the variables to transform a linearsubspace into any other linear subspace with the same dimension. Without lossof the generality, we assume that 
 is composed of �0; �1; : : : ; �2p�1�1, where



each �j is the binary representation of an integer j, 0 � j � 2p � 1. By usingLemma 3, we have(h�; e0i2; h�; e1i2; : : : ; h�; e2p�1i2)Hp = 2p(�g(�0);�g(�1); : : : ;�g(�2p�1))and hence(0; 0; : : : ; 0; 2p+1; 2p+1; : : : ; 2p+1)Hp = 2p(�g(�0);�g(�1); : : : ;�g(�2p�1))where the number of zeros is equal to 2p�1. By using the construction of Hp andcomparing the terms in the above equality, we �nd that �g(�2p�1 ) = �2p. Thatis, �2p�1 is a non-zero linear structure of g. This contradicts the assumption in theproposition, that g has no non-zero linear structure. This proves rank(
) = p.Hence we can choose p linearly independent vectors 
1; : : : ; 
p from 
.Let �j denote the vector in Vp, whose jth term is one and all other terms arezeros, j = 1; : : : ; p. De�ne a p � p matrix B over GF (2), such that 
jB = �j ,j = 1; : : : ; p. Set h(y) = g(yBT ), where y 2 Vp and BT is the transpose of B.Due to (iv) of Proposition 4, h(y) is a (p� 1)th-order plateaued function on Vp.Next we prove that h(y) is a 1st-order correlation immune function.Note that h(y) � h�j; yi = g(ybT ) � h�j ; yi = g(z) � h�j; z(BT )�1i wherez = yBT .On the other hand,h�j ; z(BT )�1i = z(BT )�1�Tj = z(B�1)T�Tj = z(�jB�1)T = z
Tj = hz; 
jiIt follows that h(y) � h�j; yi = g(z) � h
j ; zi where z = yBT .Note that e
j is the sequence of linear function  
j = h
j ; yi. Since 
j 2 
,h�; e
j i = 0. Due to Lemma 4, g(z) � h
j ; zi is balanced. Hence h(y) � h�j; yi isbalanced. By using Lemma 5, we have proved that h(y) is a 1st-order correlationimmune function. utTheorem 3. Let p be a positive odd integer and g be a (p�1)th-order plateauedfunction on Vp. If g has a non-zero linear structure, then there exists a non-singular 2p � 2p matrix B over GF (2), such that g(yB) = cx1 � h(z) wherey = (x1; x2; : : : ; xp), z = (x2; : : : ; xn), each xj 2 GF (2) and the function h is abent function on Vp�1.Proof. Since g has a non-zero linear structure, there exists a nonsingular 2p �2p matrix B over GF (2), such that g�(y) = g(yB) = cx1 � h(z) where y =(x1; x2; : : : ; xp), z = (x2; : : : ; xn) and h is a function on Vp�1. We only need toprove that h is bent. Without loss of generality, assume that c = 1. Then wehave g�(y) = x1�h(z). Let � denote the sequence of h. Hence the sequence of g�,denoted by �, satis�es � = (�;��). Let ei denote the ith row of Hp�1. From thestructure of Sylvester-Hadamard matrices, (ei; ei) is the ith row of Hp, denotedby `i, i = 0; 1; : : : ; 2p�1� 1, and (ei;�ei) is the (2p�1 + i)th row of Hp, denotedby `2p�1+i, i = 0; 1; : : : ; 2p�1 � 1. Obviouslyh�; `ii = 0; i = 0; 1; : : : ; 2p�1 � 1 (1)



Since g� is a (p � 1)th-order plateaued function on Vp, (1) impliesh�; `2p�1+ii = �2 12 (p+1); i = 0; 1; : : : ; 2p�1 � 1 (2)Note that h�; `2p�1+ii = 2h�; eii, i = 0; 1; : : : ; 2p�1 � 1. From (2), h�; eii =�2 12 (p�1), i = 0; 1; : : : ; 2p�1 � 1. This proves that h is a bent function on Vp�1.ut4 Complementary (n� 1)th-order Plateaued Functionson VnTo explore new properties of bent functions, we propose the following new con-cept.De�nition 9. Let p be a positive odd number and g1, g2 be two functions onVp. Denote the sequences of g1 and g2 by �1 and �2 respectively. Then g1 andg2 are said to be complementary (p � 1)th-order plateaued functions on Vp ifthey are (p� 1)th-order plateaued functions on Vp, and satisfy the property thath�1; eii = 0 if and only if h�2; eii 6= 0, and h�1; eii 6= 0 if and only if h�2; eii = 0.The following Lemma can be found in [11]:Lemma 7. Let k � 2 be a positive integer and 2k = a2 + b2 where a � b � 0and both a and b are integers. Then a2 = 2k and b = 0 when k is even, anda2 = b2 = 2k�1 when n is odd.Proposition 5. Let p be a positive odd number and g1, g2 be two functions onVp. Denote the sequences of g1 and g2 by �1 and �2 respectively. Then g1 andg2 are complementary (p � 1)th-order plateaued functions on Vp if and only ifh�1; eii2 + h�2; eii2 = 2p+1, where ei is the ith row of Hp, i = 0; 1; : : : ; 2p � 1.Proof. The necessity is obvious. We now prove the su�ciency. We keep using allthe notations in De�nition 9. Assume that h�1; eii2 + h�2; eii2 = 2p+1, where eiis the ith row of Hp, i = 0; 1; : : : ; 2p� 1. Since p+ 1 is even, by using Lemma 7,we conclude h�1; eii2 = 2p+1 or 0, i = 0; 1; : : :; 2p � 1. Similarly h�2; eii2 = 2p+1or 0, i = 0; 1; : : :; 2p � 1. It is easy to see that g1 and g2 are complementary(p� 1)th-order plateaued functions on Vp. utTheorem 4. Let p be a positive odd number and g1, g2 be two functions on Vp.Then g1 and g2 are complementary (p� 1)th-order plateaued functions on Vp ifand only if for every non-zero vector � in Vp, �g1(�) = ��g2 (�).Proof. Applying Lemma 3 to function g1 and g2, we obtain(�g1(�0) +�g2(�0);�g1(�1) +�g2(�1); : : : ;�g1(�2p�1) +�g2(�2p�1))Hp= (h�1; e0i2 + h�2; e0i2; h�1; e1i2 + h�2; e1i2; : : : ; h�1; e2p�1i2 + h�2; e2p�1i2) (3)



where �i is the binary representation of integer i and ei is the ith row of Hp,i = 0; 1; : : : ; 2p � 1.Assume that g1 and g2 are complementary (p�1)th-order plateaued functionson Vp. From (3), we have(�g1(�0) +�g2(�0);�g1(�1) +�g2(�1); : : : ;�g1(�2p�1) +�g2(�2p�1))Hp= (2p+1; 2p+1; : : : ; 2p+1) (4)or (�g1(�0) +�g2(�0);�g1(�1) +�g2(�1); : : : ;�g1(�2p�1) +�g2(�2p�1))= 2(1; 1; : : :; 1)HpComparing the jth terms in the two sides of the above equality, we have�g1(�)+�g2(�) = 2p+1, for � = 0, and �g1(�) +�g2(�) = 0, for � 6= 0.Conversely, assume that �g1(�) +�g2(�) = 0, for � 6= 0. From (3), we have(2p+1; 0; : : : ; 0)Hp= (h�1; e0i2 + h�2; e0i2; h�1; e1i2 + h�2; e1i2; : : : ; h�1; e2p�1i2 + h�2; e2p�1i2)It follows that h�1; eii2 + h�2; eii2 = 2p+1, i = 0; 1; : : : ; 2p � 1. This proves thatg1 and g2 are complementary (p� 1)th-order plateaued functions on Vp. utBy using Theorem 4, we concludeProposition 6. Let p be a positive odd number and g1, g2 be complementary(p� 1)th-order plateaued functions on Vp. Then(i) � is a non-zero linear structure of g1 if and only if � is a non-zero linearstructure of g2,(ii) one and only one of g1 and g2 is balanced.Proof. (i) can be obtained from Theorem 4.(ii)We keep using the notations in De�nition 9. FromProposition 5, h�1; e0i2 =2p+1 if and only if h�2; e0i2 = 0, and h�1; e0i2 = 0 if and only if h�2; e0i2 = 2p+1.Note that e0 is the all-one sequence hence h�j ; e0i = 0 implies gj is balanced.Hence one and only one of g1 and g2 is balanced. utProposition 7. Let p be a positive odd number and g1, g2 be complementary(p�1)th-order plateaued functions on Vp. For any �; 
 2 Vp, set g�1(y) = g1(y��)and g�2(y) = g2(y� 
). Then g�1(y) and g�2(y) are complementary (p� 1)th-orderplateaued functions on Vp.Proof. Since g1, g2 are complementary (p � 1)th-order plateaued functions onVp, from Theorem 4, for any non-zero vector � in Vp, �g1(�) = ��g2(�). On



the other hand, it is easy to verify �g�2 (�) = �g2(�), where � is any vectorin Vp. Hence for any non-zero vector � in Vp, �g1(�) = ��g�2 (�). Again, byusing Theorem 4, we have proved that g1, g�2 are complementary (p�1)th-orderplateaued functions on Vp. By the same reasoning, we can prove that g�1 and g�2are complementary (p� 1)th-order plateaued functions on Vp. utNow �x �, i.e., �x g�1 in Proposition 7, and let 
 be arbitrary. We can seethat there exist more than one function that can team up with g�1 to formcomplementary (p � 1)th-order plateaued functions on Vp. This shows that therelationship of complementary (p � 1)th-order plateaued functions on Vp is nota one-to-one correspondence.Theorem 5. Let p be a positive odd number and �1, �2 be two (1;�1) sequencesof length 2p. Set �1 = 2� 12 (p+1)(�1+ �2)Hp and �2 = 2� 12 (p+1)(�1 � �2)Hp. Then�1 and �2 are the sequences of complementary (p�1)th-order plateaued functionson Vp if and only if �1 and �2 are the sequences of complementary (p�1)th-orderplateaued functions on Vp.Proof. Assume that �1 and �2 are the sequences of complementary (p�1)th-orderplateaued functions on Vp respectively. It can be veri�ed straightforwardly thatboth �1 and �2 are (1;�1) sequences. Hence both �1 and �2 are the sequencesof functions on Vp.Furthermore we have�1Hp = 2 12 (p+1)(12(�1 + �2)); �2Hp = 2 12 (p+1)(12(�1 � �2)) (5)Note that both 12 (�1 + �2) and 12 (�1 � �2) are (0; 1;�1) sequences. From (5),h�1; eii and h�2; eii, where ei is the ith row of Hp, i = 0; 1; : : : ; 2p � 1, take thevalue of �2 12 (p+1) or 0 only. On the other hand, it is easy to see that the ithterm of 12 (�1 � �2) is non-zero if and only if the ith term of 12(�1 � �2) is zero.This proves that h�1; eii 6= 0 if and only if h�2; eii = 0, also h�1; eii = 0 if andonly if h�2; eii 6= 0, i = 0; 1; : : :; 2p� 1. By using Proposition 5 �1 and �2 are thesequences of complementary (p� 1)th-order plateaued functions on Vp.Conversely, Assume that �1 and �2 are the sequences of complementary (p�1)th-order plateaued functions on Vp. Note that �1 = 2� 12 (p+1)(�1 + �2)Hp and�2 = 2�12 (p+1)(�1 � �2)Hp. Inverse the above deduction, we have proved that �1and �2 are the sequences of complementary (p � 1)th-order plateaued functionson Vp. utIn Section 5, we will prove that the existence of complementary (n � 2)th-order plateaued functions on Vn�1 is equivalent to the existence of bent functionson Vn.



5 Relating Bent Functions on Vn to Complementary(n� 2)th-order Plateaued Functions on Vn�1Lemma 8. Let n be a positive even number and f be a function on Vn. Denotethe sequence of f by � = (�1; �2), where both �1 and �2 are of length 2n�1. Let�1 and �2 be the sequences of functions f1 and f2 on Vn�1 respectively. Thenf is bent if and only if f1 and f2 are complementary (n � 2)th-order plateauedfunctions on Vn�1.Proof. Obviously, �Hn = (h�; `0i; h�; `1i; : : : ; h�; `2n�1i) where `j is the jth rowof Hn, j = 0; 1; : : : ; 2n � 1. Hence(�1; �2) �Hn�1 Hn�1Hn�1 �Hn�1 � = (h�; `0i; h�; `1i; : : : ; h�; `2n�1i) (6)For each j, 0 � j � 2n�1�1, comparing the jth terms in the two sides of equality(6), also comparing the 2n�1 + j terms in the two sides of the equality, we �ndh�1; eji + h�2; eji = h�; `ji; h�1; eji � h�2; eji = h�; `2n�1+ji (7)ej is the jth row of Hn�1, j = 0; 1; : : :; 2n�1 � 1.Assume that f is bent. From Theorem 1, jh�; `jij = 2 12n and jh�; `2n�1+jij =2 12n, j = 0; 1; : : : ; 2n�1� 1.Due to (7), jh�1; eji + h�2; ejij = jh�1; eji � h�2; ejij = 2 12n. This causesh�1; eji = 2 12n and h�2; eji = 0 otherwise h�1; eji = 0 and h�2; eji = 2 12n. Thisproves that f1 and f2 are complementary (n�2)th-order plateaued functions onVn�1.Conversely, assume that f1 and f2 are complementary (n�2)th-order plateauedfunctions on Vn�1. From Proposition 5, for each i, 0 � i � 2n�1 � 1, h�1; eiiand h�1; eii take the value of �2 12n or 0 only. Furthermore h�1; eii = 0 impliesh�2; eii 6= 0, and h�1; eii 6= 0 implies h�2; eii = 0. From (7), h�; `ji = �2 12n andh�; `2n�1+ji � 2 12n, j = 0; 1; : : : ; 2n�1 � 1. Due to Theorem 1, f is bent. utLemma 8 can be brie
y restated as follows:Theorem 6. Let n be a positive even number and f be a function on Vn.Then f is bent if and only if the two functions on Vn�1, f(0; x2; : : : ; xn) andf(1; x2; : : : ; xn), are complementary (n�2)th-order plateaued functions on Vn�1.Proof. It is easy to verify that f(x1; : : : ; xn) = (1 � x1)f(0; x2; : : : ; xn) �x1f(1; x2; : : : ; xn). Set f1(x2; : : : ; xn) = f(0; x2; : : : ; xn) and f2(x2; : : : ; xn) =f(1; x2; : : : ; xn). Denote the sequences of f1 and f2 by �1 and �2 respectively.Obviously, the sequence of f , denoted by �, satis�es � = (�1; �2). By usingLemma 8, we have proved the theorem. utDue to Theorem 6, the following proposition is obvious.



Proposition 8. Let n be a positive even number and f be a function on Vn.Then f is bent if and only if the two functions on Vn�1,f(x1; : : : ; xj�1; 0; xj+1; : : : ; xn) andf(x1; : : : ; xj�1; 1; xj+1; : : : ; xn) are complementary (n�2)th-order plateaued func-tions on Vn�1. j = 1; : : : ; n.The following theorem follows Theorem 6 and Proposition 7.Theorem 7. Let n be a positive even number and f be a function on Vn. Writex = (x1; : : : ; xn) and y = (x2; : : : ; xn) where xj 2 GF (2), j = 1; : : : ; n. Setf1(x2; : : : ; xn) = f(0; x2; : : : ; xn) and f2(x2; : : : ; xn) = f(1; x2; : : : ; xn). Then fis bent if and only if g(x) = (1� x1)f1(y � 
1)� x1f2(y � 
2) is bent, where 
1and 
2 are any two vectors in Vn�1.By using Theorem 5 and Lemma 8, we concludeTheorem 8. Let � = (�1; �2) be a (1;�1) sequence of length 2n, where both �1and �2 are of length 2n�1. Then � is the sequence of a bent function if and onlyif 2� 12n((�1 + �2)Hn�1; (�1 � �2)Hn�1) is the sequence of a bent function.Theorems 6, 7 and 8 represent new characterisations of bent functions. Inaddition, Theorems 7 and 8 provide methods of constructing new bent functionfrom known bent functions.6 Non-quadratic Bent FunctionsDe�nition 10. Let f be a function on Vn and W be an r-dimensional linearsubspace of W . From linear algebra, Vn can be divided into 2n�r disjoint cosetsof W : Vn = U0 [ U1 [ � � � [ U2n�r�1where U0 = W , #Uj = 2r , j = 0; 1; : : : ; 2n�r � 1, and for any two vectors 
and � in Vn, � and 
 belong to the same coset Uj if and only if �� 
 2W . Thepartition is unique if the order of the cosets is ignored. Each Uj can be expressedas Uj = 
j �W where 
j is a vector in Vn and 
j �W denotes f
j ��j� 2Wghowever 
j is not unique. For a coset U = 
 �W , de�ne a function g on Wsuch that g(�) = f(
 � �) for every � 2 W . Then g is called the restriction off to coset 
 �W . In particular, the restriction of f to linear subspace W is afunction h on W such that h(�) = f(�) for every � 2 W .Proposition 9. Let f be a bent function on Vn and W be an arbitrary (n� 1)-dimensional linear subspace. Let Vn divided into two disjoint cosets: Vn = W [U .Then the restriction of f to linear subspace W , fW , and the restriction of f tocoset U , fU , are complementary (n� 2)th-order plateaued functions on Vn�1.Proof. In fact, W � = f(0; x2; : : : ; xn)jx2; : : : ; xn 2 GF (2)g forms an (n � 1)-dimensional linear subspace and U� = f(1; x2; : : : ; xn)jx2; : : : ; xn 2 GF (2)g is a



coset of W . By using a nonsingular linear transformation on the variables, wecan transform W into W � and U into U� simultaneously.. By using Theorem 6,we have proved the Proposition. utProposition 9 shows that the restriction of f to any (n�1)-dimensional linearsubspace is still cryptographically strong.We now prove the following characteristic property of quadratic bent func-tions.Lemma 9. Let f be a bent function on Vn. Then for any (n � 1)-dimensionallinear subspace W , the restriction of f to W has a non-zero linear structure ifand only if f is quadratic.Proof. Let f be quadratic and W be an arbitrary (n � 1)-dimensional linearsubspace. Since n�1 is odd, the restriction of f toW , denoted by g, is not bent.Hence due to (iii) of Theorem 1, there exists a non-zero vector � inW , such thatg(y) � g(y � �) is not balanced. On the other hand, since g is also quadratic,g(y) � g(y � �) is a�ne. It is easy to see that any non-balanced a�ne functionmust be constant. This proves that � is a non-zero linear structure of g.We now prove the converse: \if for any (n � 1)-dimensional linear subspaceW , the restriction of f toW has a non-zero linear structure, then f is quadratic"by induction on the dimension n.Let n = 2. Bent functions on V2 must be quadratic. For n = 4, from (i) ofProposition 1, bent functions on V4 must be quadratic.Assume that the converse is true for 4 � n � k� 2 where k is even. We nowprove the converse for n = k.Let f be a bent function on Vk such that for any (k � 1)-dimensional linearsubspace W the restriction of f to W has a non-zero linear structure.It is easy to see that f can be expressed as f(x) = x1g(y) � h(y) wherey = (x2; : : : ; xk), both g and h are functions on Vk�1. From Theorem 6,f(0; x2; : : : ; xk) = h(y) and f(1; x2; : : : ; xk) = g(y) � h(y) are complementary(k � 2)th-order plateaued functions on Vk�1.Since f(0; x2; : : : ; xk)jx2; : : : ; xk 2 GF (2)g forms a (k�1)-dimensional linearsubspace, due to the assumption about f : \the restriction of f to any (k � 1)-dimensional linear subspace has a non-zero linear structure", f(0; x2; : : : ; xk) =h(y) has a non-zero linear structure. Without loss of generality, we can assumethat the vector � in Vk�1, � = (1; 0; : : : ; 0), is the non-zero linear structureof h(y). It is easy to see h(y) = cx2 � b(z) where c is a constant in GF (2),z = (x3; : : : ; xk) and b(z) is a function on Vk�2. Without loss of generality, weassume that c = 1. From Theorem 3, b(z) is a bent function on Vk�2.It is easy to see �h(�) = �2k�1. From Theorem 4, � = (1; 0; : : : ; 0) isalso a linear structure of g(y) � h(y) and �g�h = 2k�1. Hence g(y) � h(y)can be expressed as g(y) � h(y) = dx2 � p(z), where z = (x3; : : : ; xk). Due toTheorem 3, p(z) is a bent function on Vk�2. Since �g�h(�) = 2k�1, d = 0. Henceg(y) = h(y) � p(z) = x2 � b(z)� p(z) and hencef(x) = x1(x2 � b(z) � p(z)) � x2 � b(z) (8)



Since f(x1; 0; x3; : : : ; xk)jx1; x3; : : : ; xk 2 GF (2)g forms a (k�1)-dimensionallinear subspace, f(x1; 0; x3; : : : ; xk) is the restriction of f to this (k�1)-dimensionallinear subspace. Due to the assumption about f , f(x1; 0; x3; : : : ; xk) has a non-zero linear structure, denoted by 
, 
 2 Vk�1. From (8),f 0(u) = f(x1; 0; x3; : : : ; xn) = x1(b(z) � p(z)) � b(z), where u 2 Vk�1 andu = (x1; x3; x4; : : : :xk).There exist two cases of 
.Case 1: 
 = (0; �) where � 2 Vk�2. Since 
 6= 0, � is non-zero. It is easy tosee f 0(u)� f 0(u� 
) = x1(b(z)� b(z � �)� p(z) � p(z � �)) � b(z) � b(z � �).Since f 0(u) � f 0(u � 
) is a constant, b(z) � b(z � �) � p(z) � p(z � �) = 0and b(z) � b(z � �) = c0, where c0 is constant. On the other hand, since b(z) isbent and � 6= 0, b(z)� b(z � �) is balanced and hence it is not constant. This isa contradiction. This proves that Case 1 cannot take place.Case 2: 
 = (1; �) where � 2 Vk�2 and � is not necessarily non-zero. It is easyto see f 0(u)� f 0(u� 
) = x1(b(z)� b(z� �)� p(z)� p(z � �))� b(z)� p(z� �).Since f 0(u) � f 0(u � 
) is a constant, b(z) � b(z � �) � p(z) � p(z � �) = 0and b(z) � p(z � �) = c00, where c00 is constant, and hence b(z � �)� p(z) = c00.From (8), f(x) = x1x2 � x1(b(z) � b(z � �)� c00) � x2 � b(z) (9)We now turn to the restriction of f to another (k�1)-dimensional linear sub-space. Write U� = f(x3 : : : ; xk)j x3; : : : ; xk 2 GF (2)g and U� = f(x1; x2)jx1; x2 2GF (2)g. Hence U� is a (k � 2)-dimensional linear subspace and U� is a 2-dimensional linear subspace, and Vk = (U�; U�), where (X;Y ) = f(�; �)j� 2X; � 2 Y g.Let � denote an arbitrary (k � 3)-dimensional linear subspace in U�. Hence(U�; �) is a (k � 1)-dimensional linear subspace.Let f 00(y) denote the restriction of f to (U�; �), where y 2 (U�; �). Hencey can be expressed as y = (x1; x2; v) with v = (v1; : : : ; vk�2) 2 �, wherev1; : : : ; vk�2 2 GF (2) but not arbitrary because � is a proper subset of Vk�2.From (9), f 00(y) can be expressed as f 00(y) = x1x2 � x1(b0(v) � b00(v) � a)�x2� b0(v), where b0(v) denotes the restriction of b(z) to � and b00(v) denotes therestriction of b(z � �) to �.From the assumption about f , f 00 has a non-zero linear structure 
0, 
0 2(U�; �). Write 
0 = (a1; a2; � ) where � 2 �. Since 
0 = (a1; a2; � ) is a non-zerolinear structure of f 00, it is easy to verify a1 = a2 = 0. This proves 
0 = (0; 0; � ).Since 
0 is non-zero, � 6= 0.Hence f 00(y)�f 00(y�
0) = x1(b0(v)�b0(v�� )�b00(v)�b00(v�� ))�b0(v)�b0(v�� ). Since f 00(y)� f 00(y � 
0) is constant, b0(v)� b0(v� � )� b00(v)� b00(v� � ) = 0and b0(v) � b0(v � � ) is constant. Hence � is a non-zero linear structure of b0(v).This proves that for any (n � 3)-dimensional linear subspace �, the restrictionof b(z) to �, i.e., b0(v), has a non-zero linear structure. On the other hand,since b(z) is a bent function on Vk�2, due to the induction assumption, b(z)is quadratic. Hence b(z) � b(z � �) must be a�ne. From (9), we have provedf(x) = x1x2 � x1(b(z) � b(z � �)� a) � x2 � b(z) is quadratic when n = k. ut



Due to the low algebraic degree, quadratic functions are not cryptographicallydesirable, although some of them are highly nonlinear.The following is an equivalent statement of Lemma 9.Theorem 9. Let f be a bent function on Vn. Then f is non-quadratic if and onlyif there exists an (n�1)-dimensional linear subspace W such that the restrictionof f to W , fW , has no non-zero linear structure.Theorem 9 is an interesting characterization of non-quadratic bent functions.7 New Constructions of Cryptographic FunctionsThe relationships among a bent function on Vn and complementary (n � 2)th-order plateaued functions on Vn�1 are helpful to design cryptographic functionsfrom bent functions. In fact, from Theorem 6, any bent function on Vn can be\split" into complementary (n � 2)th-order plateaued functions on Vn�1.We prefer non-quadratic bent functions as they are useful to obtain comple-mentary plateaued functions that have no non-zero linear structures.Let f be a non-quadratic bent function on Vn. By using Theorem 9, we can�nd an (n�1)-dimensional subspace W such that the restriction of f toW , fW ,has no non-zero linear structure. For any vector � 2 Vn with � 62 W , we have(��W ) \W = ; and Vn = W [ (� �W ). From Proposition 9, the restrictionof f to � � W , f��W , and fW are complementary (n � 2)th-order plateauedfunctions on Vn�1. Due to (i) of Proposition 6, f��W has no non-zero linearstructure. Due to (ii) of Proposition 6, one and only one of fW and f��W isbalanced. From Propositions 4, we can see that both fW and f��W are highlynonlinear.Furthermore, by using Theorem 2, we can use a nonsingular linear trans-formation on the variables to transform the balanced fW or f��W into another(n�2)th-order plateaued function g on Vn�1. The resultant function is a 1st-ordercorrelation immune function. Obviously g is still balanced and highly nonlinear,and it does not have non-zero linear structure.We note that there is a more straightforward method to construct a balanced,highly nonlinear function on any odd dimensional linear space, by \concatenat-ing" known bent functions. For example, let f be a bent function on Vk, we canset g(x1; : : : ; xk+1) = x1 � f(x2; : : : ; xk+1). Then g is a balanced, highly nonlin-ear function on Vk+1, where k+ 1 is odd. Let � and � denote the sequences of gand f respectively. It is easy to see � = (�;��) and hence � is a concatenationsof � and ��. We call this method concatenating bent functions. A major problemof this method is that f contains a non-zero linear structure (1; 0; : : : ; 0).In contrast, the method of \splitting" a bent function we discussed earlierallows us to obtain functions that do not have non-zero linear structure.8 ConclusionsWe have identi�ed relationships between bent functions and complementaryplateaued functions, and discovered a new characteristic property of bent func-
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