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Abstract. The focus of this paper is on nonlinear characteristics of
cryptographic Boolean functions. First, we introduce the notion of plateaued
functions that have many cryptographically desirable properties. Second,
we establish a sequence of strengthened inequalities on some of the most
important nonlinearity criteria, including nonlinearity, propagation and
correlation immunity, and prove that critical cases of the inequalities co-
incide with characterizations of plateaued functions. We then proceed to
prove that plateaued functions include as a proper subset all partially-
bent functions that were introduced earlier by Carlet. This settles an
open question that arises from previously known results on partially-
bent functions. In addition, we construct plateaued, but not partially-
bent, functions that have many properties useful in cryptography.
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1 Motivations

In the design of cryptographic functions, one often faces the problem of ful-
filling the requirements of a multiple number of nonlinearity criteria. Some of
the requirements contradict others. The most notable example is perhaps bent
functions — while these functions achieve the highest possible nonlinearity and
satisfy the propagation criterion with respect to every non-zero vector, they
are not balanced, not correlation immune and exist only when the number of
variables is even.

Another example that clearly demonstrates how some nonlinear character-
istics may impede others is partially-bent functions introduced in [2]. These
functions include bent functions as a proper subset. Partially-bent functions are
interesting in that they can be balanced and also highly nonlinear. However, ex-
cept those that are bent, all partially-bent functions have non-zero linear struc-
tures, which are considered to be cryptographically undesirable.



The primary aim of this paper is to introduce a new class of functions to facil-
itate the design of cryptographically good functions. It turns out that these cryp-
tographically good functions maintain all the desirable properties of partially-
bent functions while possess no non-zero liner structures. This class of functions
are called plateaued functions. To study the properties of plateaued functions,
we establish a sequence of inequalities concerning nonlinear characteristics of
functions. We show that plateaued functions can be characterized by the crit-
ical cases of these inequalities. In particular, we demonstrate that plateaued
functions reach the upper bound on nonlinearity given by the inequalities.

We also examine relationships between plateaued functions and partially-
bent functions. We show that partially-bent functions must be plateaued while
that the converse is not true. This disproves a conjecture and motivates us to
construct plateaued functions without non-zero linear structures. Other useful
properties of plateaued functions include that they exist for both even and odd
numbers of variables, can be balanced and correlation immune.

2 Boolean Functions

Definition 1. We consider functions from V,, to GF(2) (or simply functions
on Vp ), Vi is the vector space of n tuples of elements from GF(2). Usually we
write a function f on Vi, as f(x), where x = (w1,...,2y) is the variable vector
in V,,. The truth table of a function f on V, is a (0,1)-sequence defined by
(fleg), flar),..., flagn_1)), and the sequence of f is a (1,—1)-sequence de-
fined by (—=1)f(0) (—1)fle) (=1)f(e2n=1)) where ag = (0,...,0,0), oy =
(0,...,0,1), ..., agn-1_1y = (1,...,1,1). The matrix of f is a (1, —1)-matriz of
order 2" defined by M = ((—=1)7(*:®2)) where @& denotes the addition in GF(2).
f is said to be balanced if its truth table contains an equal number of ones and
2€708.

Given two sequences @ = (ay, -, &) and b= (b1, -+, bm), their component-
wise product is defined by axb = (a1b1, -, amby) and the scalar product of @ and
I;, denoted by (a, I~)>, is defined as the sum of the component-wise multiplications,
where the operations are defined in the underlying field. In particular, if m = 27
and a, b are the sequences of functions f and g on V), respectively, then a b is
the sequence of f & g where @ denotes the addition in GF(2).

An affine function f on V,, is a function that takes the form of f(zy,...,z,) =
a121 P - -Dant, Sc, where @ denotes the addition in GF(2) and a;, ¢ € GF(2),
j=1,2, ... n. Furthermore f is called a linear function if ¢ = 0.

A (1, —1)-matrix A of order m is called a Hadamard matrix if AAT = mI,,,
where AT is the transpose of A and I,, is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2", denoted by H,, is generated by the
following recursive relation



Let £;, 0 <i < 2" —1, be the ¢ row of H,,. Then /; i1s the sequence of a linear
function ¢;(x) defined by the scalar product ¢;(z) = {a;, z), where oy € V,, is
the binary representation of integer ¢, : = 0,1,...,27 — 1.

The Hamming weight of a (0, 1)-sequence &, denoted by W (&), is the number
of ones in the sequence. Given two functions f and g on V,, the Hamming
distance d(f,g) between them is defined as the Hamming weight of the truth
table of f(z) @ g(x), where x = (21,...,2p).

Definition 2. The nonlinearity of a function f on V,, denoted by Ny, is the
mimmal Hammang distance between f and all affine functions on V,,, v.e., Ny =
min—y 5 on+1r d(f, ;) where 1, @, ..., @ansr are all the affine functions on
Vi

The following characterizations of nonlinearity will be useful (for a proof see
for instance [6]).

Lemma 1. The nonlinearity of f can be expressed by
1
Ny =27 = omax{|(€, £)],0 < i< 2" - 1

where £ s the sequence of f and ¥; is the ith row of H,, 1 =0,1,...,2" — 1.

Definition 3. Let f be a function on V,,. For a vector o € V,,, denote by &(«)
the sequence of f(x ® «). Thus £(0) is the sequence of f itself and £(0) *&(w) is
the sequence of f(x) @ f(x & «). Set A(a) = {£(0),&(w)), the scalar product of
£(0) and &(w). A(w) is also called the auto-correlation of f with a shift o.

Definition 4. Let f be a function on V,,. We say that f satisfies the propagation
criterion with respect to « if f(x) ® f(z @ «) is a balanced function, where
= (x1,...,2n) and « is a vector in V,,. Furthermore f is said to satisfy the
propagation criterion of degree k if it satisfies the propagation criterion with
respect to every non-zero vector o whose Hamming weight is not larger than k

(see [7]).

The strict avalanche criterion (SAC) [11] is the same as the propagation
criterion of degree one.
Obviously, A(a) = 0 if and only if f(z)® f(#® «) is balanced, i.e., f satisfies

the propagation criterion with respect to a.

Definition 5. Let f be a function on V,,. a € V,, is called a linear structure of

Fif|A(a)| =27,

For any function f, A(ap) = 27, where ag = 0, the zero vector on V,,. Hence
the zero vector is a linear structure of every function on V,,. It is easy to verify
that the set of all linear structures of a function f form a subspace of V,,, whose
dimension is called the linearity of f. It is also well-known that if f has non-zero
linear structures, then there exists a nonsingular n x n matrix B over GF(2) such
that f(xB) = g(y) ® h(z), where 2 = (y,2), z € V,, y €V, z€ V,, p+qg=n,yg



is a function on V,, and ¢ has no non-zero linear structures, h is a linear function
on V,. Hence ¢ is equal to the linearity of f.

There exist a number of equivalent definitions of correlation immune func-
tions [1,4]. Tt is easy to verify that the following definition is equivalent to
Definition 2.1 of [1]:

Definition 6. Let f be a function on V, and let & be its sequence. Then f
is called a kth-order correlation immune function if and only if (£,€) = 0 for
every {, the sequence of a linear function p(x) = {(a,z) on V, constrained by

1< W(a) < k.

The following lemma is the re-statement of a relation proved in Section 2

of [2].
Lemma 2. For every function f on V,, we have

(A(ag), Alar), ..., Alaan_ 1)) Hy = ((€,€0)%, (€, 61)%, .. (€, lan_1)?).

where U; 1s the ith row of H,, 7 =0,1,...,2" — 1.

3 Bent Functions and Partially-bent Functions

Notation 1 Let f be a function on V,, & the sequence of f and £; denote the
ith row of Hp, i = 0,1,...,2" = 1. Set S = {i | 0 < i < 2" — 1, {£,4) # 0},
R={a|Ala) #0, a €V} and Ay = max{|A(a)||a € V,,, o £ 0}

It is easy to verify that #3, #R and Ay are invariant under any nonsingular
linear transformation on the variables, where # denotes the cardinal number of
a set. .

Since 2]2:51<5’£j>2 = 227 (Parseval’s equation, Page 416, [5]) and A(aq) =
27 neither & nor R is an empty set. I reflects the correlation immunity prop-
erty of f, while ® reflects its propagation characteristics and Ay forecasts the
avalanche property of the function. Therefore information on #3, #R and Ay
is useful in determining important cryptographic characteristics of f.

Definition 7. A function f on V, is called a bent function [8] if (€,¢;)? = 27
for everyi=10,1,... 2" — 1, where {; is the ith row of H,, 1 =0,1,...,2" — 1.

A bent function on V,, exists only when n is even, and it achieves the maxi-
. . 1 .
mum nonlinearity 2"~ — 22"~1. From [8] and Parseval’s equation, we have the
following:

Theorem 1. Let f be a function on 'V, and & denote the sequence of f. Then the
following statements are equivalent: (i) f is bent, (ii) for each i, 0 < i <27 —1,
(€,6;)? = 2™ where €; is the ith row of Hy,, i =0,1,...,2" =1, (i) #R = 1, (iv)
Apyr =0, (v) the nonlinearity of f, Ny, satisfies 2"~ 1 — 23n=1 (vi) the matriz
of f is an Hadamard matriz.



An interesting theorem of [2] explores a relationship between #3 and #R.
This result can be expressed as follows.

Theorem 2. For any function f on Vi, we have (#F3)(#R) > 2", where the
equality holds if and only if there exists a nonsingular n x n matriz B over GF(2)
and a vector § € Vi, such that f(xBBS) = g(y)Dh(z), where x = (y,z), © € Vy,
YEV, 2€V,, p+q=mn, gsabent onV, and h s @ linear function on V.

Based on the above theorem, the concept of partially-bent functions was also
introduced in the same paper [2].

Definition 8. A function on 'V, is called a partially-bent function if (#3)(#R) =
2",

One can see that partially-bent functions include both bent functions and
affine functions. Applying Theorem 2 together with properties of linear struc-
tures, or using Theorem 2 of [10] directly, we have

Proposition 1. A function f on V,, is a partially-bent function if and only if
each |A(a)| takes the value of 2" or 0 only. Fquivalently, f is a partially-bent
function if and only if R is composed of linear structures.

Some partially-bent functions have a high nonlinearity and satisfy the SAC
or the propagation criterion of a high degree. Furthermore, some partially-bent
functions are balanced. All these properties are useful in cryptography.

4 Plateaued Functions

Now we introduce a new class of functions called plateaued functions. Here 1is
the definition.

Definition 9. Let f be a function on V,, and & denote the sequence of f. If there
exists an even numberr, 0 < r < n, such that #3 = 2" and each (€, (;)? takes the
value of 2°"=" or 0 only, where {; denotes the jth row of H,, j = 0,1,...,2" —1,
then f is called a rth-order plateaued function on V,,. f is also called a plateaued
function on V,, if we ignore the particular order r.

Due to Parseval’s equation, the condition #3 = 2" can be obtained from the
condition “each (¢, ¢;)? takes the value of 22"~" or 0 only, where ¢; denotes the
jth row of H,, 5 = 0,1,...,2" — 17. For the sake of convenience, however, we
mentioned both conditions in Definition 9.

The following result can be obtained immediately from Definition 9.

Proposition 2. Let f be a function on V,,. Then we have (i) if f is a rth-order
plateaued function then v must be even, (ii) f is an nth-order plateaued function
if and only if [ is bent, (iii) f is a Oth-order plateaued function if and only if f

s affine.



Th following is a consequence of Theorem 3 of [10].
Proposition 3. Every partially-bent function is a plateaued function.

In the coming sections we characterize plateaued functions and disprove the
converse of Proposition 3.

5 Characterizations of Plateaued Functions

First we introduce Hélder’s Inequality [3]. It states that for real numbers a; > 0,
b >0,5=1,...,k, pand ¢ with p > 1 and %—I— % = 1, the following is true:

(Zk ap)l/p(zj?zl b;]»)l/q > Zle ajb; where the quality holds if and only if

=177
there exists a constant v > 0 such that a; = vb; foreach j =1,... k.

In particular, set p = ¢ = 2 in Holder’s Inequality. We conclude

where the quality holds if and only if there exists a constant v > 0 such that
a; = vh; foreach j=1,... k.

Notation 2 Let f be a function on V,, and £ denote the sequence of f. Let x
denote the real valued (0,1)-sequence defined as x = (cg,c1,...,can_1) where

{1 ifo; €S
Cj =

0 otherwise and oy € Vy, that is the binary representation of integer j.

Write
xHp = (50,51, .,520_1) (2)
where each s; s an integer.
<€a £0>2
(€, 0n)* 2" =1 2 2n
We note that y : = ijo (€,4;)7 = 2°" where the second equal-
<€a £2n—1>2
A(ao)
. . . Alan)
ity holds thanks to Parseval’s equation. By using Lemma 2, we have y H,, .
Alagn_1)
22" Noticing A(ag) = 27, we obtain sg2" + 2]2:11 5; A(aj) = 22", Since
A(a]):()lfoz] Q% (3)

502" + Zaje%,j>05jﬂ(aj) = 22" As sg = #S, where # denotes the cardinal
Aay) = 27(2" — #3). Note that

number of a set, we have Zaje%,j>0 s

(2= #3) = Y s < Y [sidag)] < swAu(#R - 1) (4)

aER,j>0 aER,j>0



Hence the following inequality holds.

s Ap (F#R — 1) > 27(27 — #3) (5)
From (2),
2™ —1 2™ —1
#3-2"= > ST or #I(2" - #9) = > 5] (6)
j=0 j=1

Theorem 3. Let f be a function on V, and £ denote the sequence of f. Then

where the equality holds if and only if f s a plateaued function.
Proof. By using (4), (1) and (6), we obtain

27 < N s Aag) < Y s Al < [0 (DD A%ay)

a;ER a;ER a;ER a;ER
2mn—1 2n—1 2mn—1
(DT P < | #or T 2 (")
Jj=0 j=0

Hence = < Zz —1 A?(aj). We have proved the inequality in the theorem.

Assume that the equality in the theorem holds 1.e., 2]2;61 A%(aj) = 2
This implies that all the qualities in (7) hold. Hence

27" = Z Z |sj Alej)| = (Z s7)( Z A?(ay))
a;ER a;ER a;ER a;ER
an—1 an—1 on_1
=\ (D 5 Z Axaj) = | #3270 Y A%(ay) (8)
Jj=0 j=0

Applying the property of Hélder’s Inequality to (8), we conclude that

[Aleg)| = vsjl, aj € R (9)

where v > 0 is a constant. Applying (9) and (6) to (8), we have

= 3 Isi Ayl =

Osz%

(10)




From (10), we have Z%E% siA(e;) = Z%E% |s; A(erj)|. Hence (9) can be ex-

pressed more accurately as follows
Alaj) =vsj, a; €R (11)

where v > 0 is a constant. From (8), it is easy to see that Z%E% 5]2» = 2]2;51 5]2».
Hence

s =0if oj ¢ R (12)
Combining (11), (12) and (3), we have
V(50,51, .., 520-1) = (A(ovo), Aar), .. ., A(orgn_1)) (13)
Comparing (13) and (2), we obtain
VX Hn = (A(ao), Alar), - .., Alazn_1)) (14)

Further comparing (14) and the equation in Lemma 2, we obtain

2"wx = ((€,60)?, ..., (€, 0an_1)?) (15)

Noticing that x is a real valued (0, 1)-sequence, containing #< ones and by using
Parseval’s equation, we obtain 2"v(#S) = 227, Hence v(#S) = 27, and there
exists an integer » with 0 < r < n such that #3 = 2" and v = 2"". From (15)
it is easy to see that (¢,6;)* = 22"~" or 0. Hence r must be even. This proves
that f is a plateaued function.

Conversely assume that f is a plateaued function. Then there exists an even
number r, 0 < r < n, such that #$ = 27 and (¢, 4;)* = 2?"~" or 0, Due to
Lemma 2, we have Z?;Elﬂz(aj) = 27" Z?ial(f,ﬁj)‘l = 97" . 9r . 94n-r —

257=7_ Hence we have proved 2]2;51 A?(aj) = I5

Lemma 3. Let f be a function on V,, and & denote the sequence of f. Then the
nonlinearity Ny of f satisfies Ny < =1 2L here the equality holds if and

V#S

23n

only if f is a plateaued function.

Proof. Set pyr = max{|(¢,4;)|| 7 = 0,1,...,2" — 1}, where ¢; is the jth row of
H,, 0 <j<2"—1. Using Parseval’s equation, we obtain p?,#3 > 2. Due to

Lemma 1, N; < 27~1 — i
f— VES

Assume that f is a plateaued function. Then there exists an even number

r, 0 < r < n, such that #3 = 27 and each (¢,¢;)? takes either the value of

22"=" or 0 only, where ¢; denotes the jth row of H,, j = 0,1,...,2" — 1. Hence

= 973", By usin Lemma 1, we have N —gn-l_gn-3r—1 _gn-1_ 2" 1
M y g I \/#—3

2n—1
ES
Ny = 2n=1 — %pM. Hence py/#S = 27. Since both pyr and /#S are in-
tegers and powers of two, we can let #3 = 2", where r is an integer with
0 < r < n. Hence pyy = 27~ %. Obviously r is even. From Parseval’s equa-
tion, Zjeg(f,ﬁj)z = 2% and the fact that p3,#3 = 2?7, we conclude that

(€,4;)* =27~ for all j € S. This proves that f is a plateaued function.

Conversely assume that N; = 2771 — . From Lemma 1, we have also



From the proof of Lemma 3, we can see that Lemma 3 can be stated in a
different way as follows.

Lemma 4. Let f be a function f on V, and & denote the sequence of f. Set
pyv = max{|(§, L) j = 0,1,...,2" — 1}, where {; is the jth row of Hy, 0 <
J < 2% — 1. Then pay/#S > 2" where the equality holds if and only if f is a
plateaued function.

Summarizing Theorem 3, Lemmas 3 and 4, we conclude

Theorem 4. Let f be a function on V, and & denote the sequence of f. Set
pyv = max{|(§,4)|| j = 0,1,...,2" — 1}, where {; is the jth row of Hy, 0 <
J < 2" — 1. Then the following statements are equivalent: (i) f is a plateaued
function on V,, (ii) there exists an even number r, 0 < r < 27, such that

#3 = 2" and each (£,¢;)? takes the value of 2*"~" or 0 only, where {; denotes
the jth row of Hy, j = 0,1,...,2" =1, (iii) 7 " A% (ay) = ;—% (iv) the
2n—1

nonlinearity of f, Ny, satisfies Ny = 2"~ — o= (v) puv#S = 27, (vi)
Ny =201 = 2751 /5270 h A2(ay).

j=0
Proof. Due to Definition 9, Theorem 3, Lemmas 3 and 4, (i), (ii), (iii), (iv) and
(v) hold. (vi) follows from (iii) and (iv).

Theorem 5. Let f be a function on V, and & denote the sequence of f. Then
the nonlinearity Ny of f satisfies

2n—1

3 4%a)

where the equality holds if and only if f is a plateaued function on V,.

Nf S 2n—1 _ 2—%—1

Proof. Set pyr = max{[(¢,4;}|| s =0,1,...,2" — 1}. Multiplying the equality in
Lemma 2 by itself, we have 2" 2]2»251 A?(aj) = ijal(f, ) < p3y 2]2:51<€’ 0;)2.
Applying Parseval’s equation to the above equality, we have Zjial A?(aj) <
27p2,. Hence pyr > 27 7% Zjlal A?(«;). By using Lemma 1, we have proved

the inequality Ny < 2771 —27%71 2]2;51 A?(a;). The rest part of the theorem

can be proved by using Theorem 4.

Theorem 3, Lemmas 3 and 4 and Theorem 4 represent characterizations of
plateaued functions.
To close this section, let us note that since A(ag) = 2" and #J < 27,

we have 2771 — 2_%_1@/2]2;51A2(aj) < 7=t _2%-1 and 2771 — % <

27~1 —2%-1 Hence both inequalities Ny < 27~! —2-3-1 2]2;51 A?(ay) and

%

Ny < 27—t — \2/7;—:\ are improvements on a more commonly used inequality
$




6 Other Cryptographic Properties of Plateaued Functions

By using Lemma 1, we conclude

Proposition 4. Let f be a rth-order plateaued function on V. Then the non-
linearity Ny of f satisfies Ny = 2"~ — n-z-l

The following result is the same as Theorem 18 of [12].

Lemma 5. Let f be a function on Vi, (n > 2), £ be the sequence of f, and p is
an integer, 2 < p < n. If (,4;) =0 (mod 2"7P*2) where {; is the jth row of
H,,7=0,1,...,2" — 1, then the degree of f is at most p — 1.

Using Lemma 5, we obtain

Proposition 5. Let f be a rth-order plateaued function on V. Then the alge-
braic degree of f, denoted by deg(f), satisfies deg(f) < 5 + 1.

We note that the upper bound on degree in Proposition 5 is tight for r» < n.
For the case of » = n, the function, mentioned in Proposition 5, is a bent function
on V. [8] gives a better upper bound on degree of bent function on V. That
bound is 7.

The following property of plateaued functions can be verified by noting their

definition.

Proposition 6. Let f be a rth-order plateaued function on V,, B be any non-
singular n x n matriz over GF(2) and o be any vector in V,,. Then f(¢B @ «)
15 also a rth-order plateaued function on V,.

Theorem 6. Let f be a rth-order plateaued function on V,,. Then the linearity
of f, q, satisfies ¢ < n — r, where the equality holds if and only if f is partially-
bent.

Proof. There exists a nonsingular n x n matrix B over G F(2) such that f(zB) =
g(y) @ h(z), where z = (y,2), y € V,, z € V, p+ ¢ = n, g is a function on V,
and g has no non-zero linear structures, A is a linear function on V. Hence ¢ is
equal to the linearity of f. Set f*(z) = f(«B).

Let &, 7 and ¢ denote the sequences of f*, ¢ and h respectively. It is easy to
verify € = 9 x (, where x denotes the Kronecker product [13]. From the structure
of H,, each row of H,, L, can be expressed as L. = £ X ¢, where { is a row of H,
and e is a row of H,. It is easy to verify

(€ L) = (n.0)(C,€) (16)
Since h is linear, ¢ is a row of H,. Replace e by ¢ in (16), we have
(€, L) = (n,0{¢.¢) =2%(n, ) (17)

where L' = ¢ x { is still a row of H,,.



Note that f* is also a rth-order plateaued function on V,,. Hence (£, L)
takes the value of £2"~3" or zero only. Due to (17), {n, ¢) takes the value of
+9773"=4 = £9P 37 or gzero only. This proves that ¢ is a rth-order plateaued
function on V,. Hence r <pand r<n—gq,ie, ¢ <n—r.

Assume that ¢ = n —r. Then p = r. From (17), each (1, ¢) takes the value of
+2% = £2% or zero only, where £ is any row of H,. Hence applying Parseval’s
equation to g, we can conclude that for each row £ of Hp, (1, £) cannot take the
value of zero. In other words, for each row ¢ of H,, (1, {) takes the value of +27%
only. Hence we have proved that ¢ is a bent function on V. Due to Theorem 2, f
is partially-bent. Conversely, assume that f is partially-bent. Due to Theorem 2,
¢ is a bent function on V,. Hence each (1, £} takes the value of +2% only, where
£ is any row of H,. Note that both ¢ and e are rows of H, hence ((,e) takes
the value 29 or zero only. From (16), we conclude that (£, L) takes the value
+29+% or zero only. Recall f is a rth-order plateaued function on V. Hence
¢+ 5 =n— 5. This implies that r = p,ie., g =n —r.

7 Relationships between Partially-bent Functions and
Plateaued Functions

To examine more profound relationships between partially-bent functions and
plateaued functions, we introduce one more characterization of partially-bent
functions as follows.

Theorem 7. For every function f on V,, we have

2 —#3 _ Ay
¥ = o

(#R-1)

where the equality holds if and only if f s partially-bent.

Proof. From Notation 2, we have sy < sp = #3. As a consequence of (5),
we obtain the inequality in the theorem. Next we consider the equality in the
theorem. Assume that the equality holds, i.e.,

App(#R — D#FES =27 (2" — #9) (18)
From (4),
22— #) < Y siAy)]
Osz%,j>0
<Ay Y sl < Am(#R - D#S (19)

az;ER,F>0

From (18), we can see that all the equalities in (19) hold. Hence

Ay(#R-D#ES = D [5;4(a;)] (20)

ajER,G>0



Note that |s;| < #3 and |A(«;)| < Apg, for j > 0. Hence from (20), we obtain
|s;| = #3 whenever «; € R and j > 0 (21)

and |A(e;)| = Ap for all o; € R with j > 0.

Applying (21) to (6), and noticing sqg = #S, we obtain #3-2" = Zjial 5]2» >
Z%E% 5]2» = (#R)(#3)2. This results in 27 > (#R)(#S). Together with the
inequality in Theorem 2, it proves that (#R)(#S) = 27, i.e., f is a partially-
bent function.

Conversely assume that f is a partially-bent function, i.e., (#3)(#R) = 2.
Then the inequality in the theorem is specialized as

App(27 — #3) > 27 (2" — #9) (22)

We need to examine two cases. Case 1: #3 = 2”. Obviously the equality in
(22) holds. Case 2: #S # 27. From (22), we have Ay > 27, Thus Ay = 2",
This completes the proof.

Next we consider a non-bent function f. With such a function we have Ayy #
0. Thus from Theorem 7, we have the following result.

Corollary 1. For every non-bent function f on V,,, we have

27(2" — #9)

(#)#R) > =

+ #9

where the equality holds if and only if f is partially-bent (but not bent).

Proposition 7. For every non-bent funciion f, we have

27(2" — #9)

> 2"
G #Y 2

where the equality holds if and only iof #3 = 2" or f has a non-zero linear
structure.

Proof. Since Ayp < 27, the inequality is obvious. On the other hand, it is easy
to see that the equality holds if and only if (27 — Ap)(2" — #3) = 0.

From Proposition 7, one observes that for any non-bent function f, Corollary
1 implies Theorem 2.

Theorem 8. Let f be a rth-order plateaued function. Then the following state-
ments are equivalent: (i) f is a partially-bent function, (ii) #R = 2", (iii)
Apy(#R — 1) = 22777 — 2 (i) the linearity q of f satisfies ¢ = n —r.

Proof. (i) = (ii). Since f is a partially-bent function, we have (#3)(#R) = 2".
As f is a rth-order plateaued function, #3J = 2" and hence #f = 277",



(ii) = (iii). It is obviously true when » = n. Now consider the case of r < n.

Using Theorem 7, we have 27;?% < Azf,‘{’ (#R — 1) which is specialized as

Apnp

T —1<
=5

(@ - 1) (23)

From (23) and the fact that Ay < 2", we obtain 27" — 1 < Az—nM(Q”_’" -1 <
27" — 1. Hence Apr = 27 or r = n. (iii) obviously holds when Ay = 2" When
r = n, we have #£R = 1 and hence (iii) also holds.

(iii) => (i). Note that (iii) implies 27 = S (#R — 1) where #3 = 2"
By Theorem 7, f is partially-bent.

Due to Theorem 6, (iv) < (i).

8 Construction of Plateaued Functions and Disproof of
The Converse of Proposition 3

Lemma 6. For any positive integers t and k with k < 2t < 2% there exist 2
non-zero vectors in Vi, say Bo, B1, ..., Bat_1, such that for any non-zero vector
B € Vi, the 2'-set {0p,(8), 05, (B), - ¢p,._,(B)}, contains both zero and one,
where g is the linear function on Vi defined by ¢g(x) = (5, z).

Proof. We choose k linearly independent vectors in Vi, say (1,..., ;. From
linear algebra, ({51, 5),..., {8k, B)) goes through all the non-zero vectors in V
exactly once while § goes through all the non-zero vectors in Vj.

Hence there exists a unique §* satisfying ({31, 5*),..., (e, 5%)) = (1,...,1).
Furthermore, for any non-zero vector g € V3, with 8 # 8%, {{61, ), .. (6k, 2}
contains both one and zero.

Let By be a non-zero vector in Vi, such that {8y, 8*) = 0. Obviously 8y ¢
{81,..., Bk} I 28 > k + 1, choose other 2° — k — 1 non-zero vectors in Vg,
Brk41, .-, Pat_1, such that 8o, 1, ..., Bk, Bk+t1,- .-, For—1 are mutually distinct.
It is easy to see that for any non-zero vector 3 € Vi, {50, 51, - - ., Bai_1} contains
both one and zero. This proves the lemma.

The following example proves the existence of rth-order plateaued functions
on V,, where 0 < r < n, and disproves the converse of Proposition 3. We
note that in this section, we will not discuss nth-order and Oth-order plateaued
function on V;, as they are bent and affine functions respectively.

Ezample 1. Lett and k be positive integers with k < 2¢ < 2% Let 8, 81, ..., Bor_1
be the 2 non-zero vectors in Vj; defined in Lemma 6. Let ¢; denote the sequence
of pg,, j = 0,1,...,28 —1.Set £ = &,&1,...,E0_1. Let n =k 4+ and f be the
function on V;, whose sequence is &.

By using the properties of H,, it is easy to verify that each (&, ¢;) takes the
value of 2% or 0 only, where £ is the ith row of H,,i=0,1,...,2" — 1. Using
Parseval’s equation, we obtain #3 = 22?72% Let » = 2n — 2k = 2t. Then f is
a rth-order plateaued function on V,,. Due ton =k +1¢, r = 2n — 2k = 2¢ and
t < k,0<r<n holds.



We now consider A(a) with the function f. Let o = (7, 5) where y € V4,
g € Vi. Note that

Ala) = {Z%@MIW <€]a€z(6)>, ify#0

i 24
>0, &(B), iy =0but B#£0 24
where v; € V; is the binary representation of an integer j, j =0,1,...,2" — 1.

Since g, # @p, if j # i, where pg(x) = (8, ), v, (x) ® s, (2 © 3) is a non-
zero linear function and hence balanced. We have now proved (£;, &(8)) = 0 for
J # t. Hence A(e) =0 when v # 0.

On the other hand, for any linear function ¢ on Vi, we have ¢(2) @ ¢(z &
B) = ¢(B). Hence (¢;,&(B)) = 2% if and only if ¢p,(F) = 0. In addition,
(&,&(8)) = —2% if and only if ©p,(f) = 1. By using Lemma 6, we have

Alo) = S25HE 6(9) # £2 -2 = 227 for § # 0.

In summary, we have

=0 ify#0
Ala){ #x2"if y=0and 5 #0 (25)
=2" fa=0

Since f is a rth-order plateaued function on V,, and r» < n, f is not bent, on the
other hand, (25) shows that f has non-zero linear structures. Hence we conclude
that f i1s not partially-bent. Hence we have proved that f is plateaued but not
partially-bent. This disproves the converse of Proposition 3.

f has some other interesting properties. In particular, due to Proposition
4, the nonlinearity N; of f satisfies N; = 27~! — 27=%-1 Note that the se-
quence of any non-zero linear function is (1, —1)-balanced. Hence each &; and £ =
£0,&1, ..., &g are (1, —1)-balanced. This implies that f is (0, 1)-balanced. Since
the function f is not partially-bent, by using Theorem 2, we have (#3J)(#%) >
27, This proves that #R > 2"7". On the other hand, from (25), we have
#R < 28 = 2737 Thus we can conclude that 27" < #R < 2n=37,

We end this example by noting that such functions as f exist on V;, both for
n even and odd.

Now we summarize the relationships among bent, partially-bent and plateaued
functions. Let By denote the set of bent functions on V,,, P,, denote the set of
partially-bent functions on V,, and F, denote the set of plateaued functions on
V. Then the above results imply that B, C P, C F,, where C denotes the
relationship of proper subset. We further let G, denote the set of plateaued
functions on V,, that do not have non-zero linear structures and are not bent
functions. The relationships among these classes of functions are shown in Fig-
ure 1. Example 1 proves that Gy 1s nonempty.

Next we consider how to improve the function in Example 1 so as to obtain
a rth-order plateaued function on V;, satisfying the SAC and all the properties
mentioned in Example 1.



Fig. 1. Relationship among bent, partially bent, and plateaued functions

Frample 2. Note that if » > 2,1.e.,t > 1, then from Example 1, #& < M=ET <
27~1 In other words, #R° > 27! where R° denotes the complementary set
of ®. Hence there exist n linearly independent vectors in R¢. In other words,
there exist n linearly independent vectors with respect to which f satisfies the
propagation criterion. Hence we can choose a nonsingular n x n matrix A over
G F(2)such that g(#) = f(xA) satisfies the SAC (see [9]). The nonsingular linear

transformation A does not alter any of the properties of f in Example 1

We can further improve the function in Example 2 so as to obtain a rth-
order plateaued functions on V,, having the highest degree and satisfying all the
properties in Example 1.

Frample 3. Given any vector é = (iy,...,4;) € V4, we define a function on V; by
Ds(y) = (y1 B i1) - (y: @ 15) where y = (y1,...,y:) and i = 14 ¢ indicates the
binary complement of i.

Let &, ..i,, (i1,...,1p) € V,, be the sequence of a function f;, ., (z1,...,24)
on V,. Let £ be the concatenation of &o...00, &o...01, ..., &1...11, namely, & =
(€000, €0-015 - - -5 €1.11). Tt is easy to verify that £ is the sequence of a func-
tion on Vy1, given by

Flyr, - ¥ps 21,y 2g) = @ Dy, iy (yny o yp) fiy i, (21,05 2g). (26)
(il"'ip)evp

Let §; € V; is the binary representation of integer j, j = 0,1,...,2"—1. Write

1/)50 = Ppo> 1/)51 = ¥B1y -5 1/)52t_1 = PBai_1> where 3o, B1, ..., B2y are the same
with those in Example 1 and 5 = (3, z).



Due to (26), the function f on V4, mentioned in Example 1 can be expressed
as f(y,2) = Bisev, Ds(y)¥s(2)-

Case 1: Py, s # 0. Write Pycy, ¥s = 1, where ¢ must be a non-zero
linear function on V3. Note that each Ds(y) contains y - - -y;. Hence the term
Y1 -+ - y¢0(2) survives in the final algebraic normal form representation of f(y, z)
and hence the degree of fist+1= 3 + 1.

Case 2: Py, ¥5 = 0, ie., @]2;_01 ¢p, = 0. Note that there exist 2% — 1 non-
zero vectors in Vi and 2F —1 > 2!, Hence we can replace ¢p,._, by any non-zero
linear function ¢ on Vj, that differs from wg,, ¢g,, . .. ¢p,,_, - This reduces Case
2 to Case 1.

We have now constructed a rth-order plateaued function with degree & +
1. Applying the discussions in Examples 1 and 2, we can obtain a rth-order
plateaued function on V,, having degree 5 + 1 and satisfying all the properties
of the function constructed in Example 1.

It should be noted that the function in this example achieves the highest
possible algebraic degree given in Proposition 4. Thus the upper bound on the
algebraic degree of plateaued functions, mentioned in Proposition 5, is tight.

9 Conclusions

We have introduced and characterized a new class of functions called plateaued
functions. These functions bring together various nonlinear characteristics. We
have also shown that partially-bent functions are a proper subset of plateaued
functions, which settles an open problem related to partially-bent functions. We
have further demonstrated methods for constructing plateaued functions that
have many cryptographically desirable properties.
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