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The primary aim of this paper is to introduce a new class of functions to facil-itate the design of cryptographically good functions. It turns out that these cryp-tographically good functions maintain all the desirable properties of partially-bent functions while possess no non-zero liner structures. This class of functionsare called plateaued functions. To study the properties of plateaued functions,we establish a sequence of inequalities concerning nonlinear characteristics offunctions. We show that plateaued functions can be characterized by the crit-ical cases of these inequalities. In particular, we demonstrate that plateauedfunctions reach the upper bound on nonlinearity given by the inequalities.We also examine relationships between plateaued functions and partially-bent functions. We show that partially-bent functions must be plateaued whilethat the converse is not true. This disproves a conjecture and motivates us toconstruct plateaued functions without non-zero linear structures. Other usefulproperties of plateaued functions include that they exist for both even and oddnumbers of variables, can be balanced and correlation immune.2 Boolean FunctionsDe�nition 1. We consider functions from Vn to GF (2) (or simply functionson Vn), Vn is the vector space of n tuples of elements from GF (2). Usually wewrite a function f on Vn as f(x), where x = (x1; : : : ; xn) is the variable vectorin Vn. The truth table of a function f on Vn is a (0; 1)-sequence de�ned by(f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of f is a (1;�1)-sequence de-�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 =(0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix oforder 2n de�ned by M = ((�1)f(�i��j)) where � denotes the addition in GF (2).f is said to be balanced if its truth table contains an equal number of ones andzeros.Given two sequences ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their component-wise product is de�ned by ~a�~b = (a1b1; � � � ; ambm) and the scalar product of ~a and~b, denoted by h~a;~bi, is de�ned as the sum of the component-wise multiplications,where the operations are de�ned in the underlying �eld. In particular, if m = 2nand ~a, ~b are the sequences of functions f and g on Vn respectively, then ~a � ~b isthe sequence of f � g where � denotes the addition in GF (2).An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) =a1x1�� � ��anxn�c, where � denotes the addition in GF (2) and aj ; c 2 GF (2),j = 1; 2; : : : ; n. Furthermore f is called a linear function if c = 0.A (1;�1)-matrix A of order m is called a Hadamard matrix if AAT = mIm,where AT is the transpose of A and Im is the identity matrix of order m. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing recursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :



Let `i, 0 � i � 2n� 1, be the i row of Hn. Then `i is the sequence of a linearfunction 'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where �i 2 Vn isthe binary representation of integer i, i = 0; 1; : : : ; 2n � 1.The Hamming weight of a (0; 1)-sequence �, denoted by W (�), is the numberof ones in the sequence. Given two functions f and g on Vn, the Hammingdistance d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x) � g(x), where x = (x1; : : : ; xn).De�nition 2. The nonlinearity of a function f on Vn, denoted by Nf , is theminimal Hamming distance between f and all a�ne functions on Vn, i.e., Nf =mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�ne functions onVn.The following characterizations of nonlinearity will be useful (for a proof seefor instance [6]).Lemma 1. The nonlinearity of f can be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequence of f and `i is the ith row of Hn, i = 0; 1; : : :; 2n � 1.De�nition 3. Let f be a function on Vn. For a vector � 2 Vn, denote by �(�)the sequence of f(x��). Thus �(0) is the sequence of f itself and �(0) � �(�) isthe sequence of f(x) � f(x � �). Set �(�) = h�(0); �(�)i, the scalar product of�(0) and �(�). �(�) is also called the auto-correlation of f with a shift �.De�nition 4. Let f be a function on Vn. We say that f satis�es the propagationcriterion with respect to � if f(x) � f(x � �) is a balanced function, wherex = (x1; : : : ; xn) and � is a vector in Vn. Furthermore f is said to satisfy thepropagation criterion of degree k if it satis�es the propagation criterion withrespect to every non-zero vector � whose Hamming weight is not larger than k(see [7]).The strict avalanche criterion (SAC) [11] is the same as the propagationcriterion of degree one.Obviously,�(�) = 0 if and only if f(x)�f(x��) is balanced, i.e., f satis�esthe propagation criterion with respect to �.De�nition 5. Let f be a function on Vn. � 2 Vn is called a linear structure off if j�(�)j = 2n.For any function f , �(�0) = 2n, where �0 = 0, the zero vector on Vn. Hencethe zero vector is a linear structure of every function on Vn. It is easy to verifythat the set of all linear structures of a function f form a subspace of Vn, whosedimension is called the linearity of f . It is also well-known that if f has non-zerolinear structures, then there exists a nonsingular n�nmatrixB over GF (2) suchthat f(xB) = g(y) � h(z), where x = (y; z), x 2 Vn, y 2 Vp, z 2 Vq, p+ q = n, g



is a function on Vp and g has no non-zero linear structures, h is a linear functionon Vq . Hence q is equal to the linearity of f .There exist a number of equivalent de�nitions of correlation immune func-tions [1, 4]. It is easy to verify that the following de�nition is equivalent toDe�nition 2.1 of [1]:De�nition 6. Let f be a function on Vn and let � be its sequence. Then fis called a kth-order correlation immune function if and only if h�; `i = 0 forevery `, the sequence of a linear function '(x) = h�; xi on Vn constrained by1 � W (�) � k.The following lemma is the re-statement of a relation proved in Section 2of [2].Lemma 2. For every function f on Vn, we have(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2):where `i is the ith row of Hn, j = 0; 1; : : :; 2n � 1.3 Bent Functions and Partially-bent FunctionsNotation 1 Let f be a function on Vn, � the sequence of f and `i denote theith row of Hn, i = 0; 1; : : :; 2n � 1. Set = = fi j 0 � i � 2n � 1; h�; `ii 6= 0g,< = f� j �(�) 6= 0; � 2 Vng and �M = maxfj�(�)jj� 2 Vn; � 6= 0gIt is easy to verify that #=, #< and�M are invariant under any nonsingularlinear transformation on the variables, where # denotes the cardinal number ofa set.Since P2n�1j=0 h�; `ji2 = 22n (Parseval's equation, Page 416, [5]) and �(�0) =2n, neither = nor < is an empty set. = re
ects the correlation immunity prop-erty of f , while < re
ects its propagation characteristics and �M forecasts theavalanche property of the function. Therefore information on #=, #< and �Mis useful in determining important cryptographic characteristics of f .De�nition 7. A function f on Vn is called a bent function [8] if h�; `ii2 = 2nfor every i = 0; 1; : : : ; 2n � 1, where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.A bent function on Vn exists only when n is even, and it achieves the maxi-mum nonlinearity 2n�1 � 2 12n�1. From [8] and Parseval's equation, we have thefollowing:Theorem 1. Let f be a function on Vn and � denote the sequence of f . Then thefollowing statements are equivalent: (i) f is bent, (ii) for each i, 0 � i � 2n� 1,h�; `ii2 = 2n where `i is the ith row of Hn, i = 0; 1; : : : ; 2n�1, (iii) #< = 1, (iv)�M = 0, (v) the nonlinearity of f , Nf , satis�es 2n�1 � 2 12n�1, (vi) the matrixof f is an Hadamard matrix.



An interesting theorem of [2] explores a relationship between #= and #<.This result can be expressed as follows.Theorem 2. For any function f on Vn, we have (#=)(#<) � 2n, where theequality holds if and only if there exists a nonsingular n�n matrix B over GF (2)and a vector � 2 Vn such that f(xB��) = g(y)�h(z), where x = (y; z), x 2 Vn,y 2 Vp, z 2 Vq, p+ q = n, g is a bent on Vp and h is a linear function on Vq .Based on the above theorem, the concept of partially-bent functions was alsointroduced in the same paper [2].De�nition 8. A function on Vn is called a partially-bent function if (#=)(#<) =2n.One can see that partially-bent functions include both bent functions anda�ne functions. Applying Theorem 2 together with properties of linear struc-tures, or using Theorem 2 of [10] directly, we haveProposition 1. A function f on Vn is a partially-bent function if and only ifeach j�(�)j takes the value of 2n or 0 only. Equivalently, f is a partially-bentfunction if and only if < is composed of linear structures.Some partially-bent functions have a high nonlinearity and satisfy the SACor the propagation criterion of a high degree. Furthermore, some partially-bentfunctions are balanced. All these properties are useful in cryptography.4 Plateaued FunctionsNow we introduce a new class of functions called plateaued functions. Here isthe de�nition.De�nition 9. Let f be a function on Vn and � denote the sequence of f . If thereexists an even number r, 0 � r � n, such that#= = 2r and each h�; `ji2 takes thevalue of 22n�r or 0 only, where `j denotes the jth row of Hn, j = 0; 1; : : :; 2n�1,then f is called a rth-order plateaued function on Vn. f is also called a plateauedfunction on Vn if we ignore the particular order r.Due to Parseval's equation, the condition #= = 2r can be obtained from thecondition \each h�; `ji2 takes the value of 22n�r or 0 only, where `j denotes thejth row of Hn, j = 0; 1; : : :; 2n � 1". For the sake of convenience, however, wementioned both conditions in De�nition 9.The following result can be obtained immediately from De�nition 9.Proposition 2. Let f be a function on Vn. Then we have (i) if f is a rth-orderplateaued function then r must be even, (ii) f is an nth-order plateaued functionif and only if f is bent, (iii) f is a 0th-order plateaued function if and only if fis a�ne.



Th following is a consequence of Theorem 3 of [10].Proposition 3. Every partially-bent function is a plateaued function.In the coming sections we characterize plateaued functions and disprove theconverse of Proposition 3.5 Characterizations of Plateaued FunctionsFirst we introduce H�older's Inequality [3]. It states that for real numbers aj � 0,bj � 0, j = 1; : : : ; k, p and q with p > 1 and 1p + 1q = 1, the following is true:(Pkj=1 apj )1=p(Pkj=1 bqj)1=q � Pkj=1 ajbj where the quality holds if and only ifthere exists a constant � � 0 such that aj = �bj for each j = 1; : : : ; k.In particular, set p = q = 2 in H�older's Inequality. We concludekXj=1 ajbj �vuut( kXj=1 a2j )( kXj=1 b2j) (1)where the quality holds if and only if there exists a constant � � 0 such thataj = �bj for each j = 1; : : : ; k.Notation 2 Let f be a function on Vn and � denote the sequence of f . Let �denote the real valued (0; 1)-sequence de�ned as � = (c0; c1; : : : ; c2n�1) wherecj = �1 if �j 2 =0 otherwise and �j 2 Vn, that is the binary representation of integer j.Write �Hn = (s0; s1; : : : ; s2n�1) (2)where each sj is an integer.We note that �26664 h�; `0i2h�; `1i2...h�; `2n�1i237775 =P2n�1j=0 h�; `ji2 = 22n where the second equal-ity holds thanks to Parseval's equation. By using Lemma2, we have �Hn26664 �(�0)�(�1)...�(�2n�1)37775 =22n. Noticing �(�0) = 2n, we obtain s02n +P2n�1j=1 sj�(�j) = 22n. Since�(�j) = 0 if �j 62 < (3)s02n +P�j2<;j>0 sj�(�j) = 22n. As s0 = #=, where # denotes the cardinalnumber of a set, we have P�j2<;j>0 sj�(�j) = 2n(2n �#=). Note that2n(2n �#=) = X�j2<;j>0 sj�(�j) � X�j2<;j>0 jsj�(�j)j � sM�M(#<� 1) (4)



Hence the following inequality holds.sM�M(#<� 1) � 2n(2n �#=) (5)From (2), #= � 2n = 2n�1Xj=0 s2j or #=(2n �#=) = 2n�1Xj=1 s2j (6)Theorem 3. Let f be a function on Vn and � denote the sequence of f . Then2n�1Xj=0 �2(�j) � 23n#=where the equality holds if and only if f is a plateaued function.Proof. By using (4), (1) and (6), we obtain22n � X�j2< sj�(�j) � X�j2< jsj�(�j)j �s(X�j2< s2j )(X�j2<�2(�j))�vuut(2n�1Xj=0 s2j )(2n�1Xj=0 �2(�j)) �vuut#=2n 2n�1Xj=0 �2(�j) (7)Hence 23n#= �P2n�1j=0 �2(�j). We have proved the inequality in the theorem.Assume that the equality in the theorem holds i.e., P2n�1j=0 �2(�j) = 23n#= .This implies that all the qualities in (7) hold. Hence22n = X�j2< sj�(�j) = X�j2< jsj�(�j)j =s(X�j2< s2j )(X�j2<�2(�j))=vuut(2n�1Xj=0 s2j )(2n�1Xj=0 �2(�j)) =vuut#=2n 2n�1Xj=0 �2(�j) (8)Applying the property of H�older's Inequality to (8), we conclude thatj�(�j)j = �jsjj; �j 2 < (9)where � > 0 is a constant. Applying (9) and (6) to (8), we have22n = X�j2< jsj�(�j)j =vuut#=2n�2 2n�1Xj=0 s2j = �#=2n (10)



From (10), we have P�j2< sj�(�j) = P�j2< jsj�(�j)j. Hence (9) can be ex-pressed more accurately as follows�(�j) = �sj; �j 2 < (11)where � > 0 is a constant. From (8), it is easy to see thatP�j2< s2j =P2n�1j=0 s2j .Hence sj = 0 if �j 62 < (12)Combining (11), (12) and (3), we have�(s0; s1; : : : ; s2n�1) = (�(�0);�(�1); : : : ;�(�2n�1)) (13)Comparing (13) and (2), we obtain��Hn = (�(�0);�(�1); : : : ;�(�2n�1)) (14)Further comparing (14) and the equation in Lemma 2, we obtain2n�� = (h�; `0i2; : : : ; h�; `2n�1i2) (15)Noticing that � is a real valued (0; 1)-sequence, containing #= ones and by usingParseval's equation, we obtain 2n�(#=) = 22n. Hence �(#=) = 2n, and thereexists an integer r with 0 � r � n such that #= = 2r and � = 2n�r. From (15)it is easy to see that h�; `ji2 = 22n�r or 0. Hence r must be even. This provesthat f is a plateaued function.Conversely assume that f is a plateaued function. Then there exists an evennumber r, 0 � r � n, such that #= = 2r and h�; `ji2 = 22n�r or 0, Due toLemma 2, we have P2n�1j=0 �2(�j) = 2�nP2n�1j=0 h�; `ji4 = 2�n � 2r � 24n�2r =23n�r. Hence we have proved P2n�1j=0 �2(�j) = 23n#= .Lemma 3. Let f be a function on Vn and � denote the sequence of f . Then thenonlinearity Nf of f satis�es Nf � 2n�1� 2n�1p#= , where the equality holds if andonly if f is a plateaued function.Proof. Set pM = maxfjh�; `jijj j = 0; 1; : : : ; 2n � 1g, where `j is the jth row ofHn, 0 � j � 2n � 1. Using Parseval's equation, we obtain p2M#= � 22n. Due toLemma 1, Nf � 2n�1 � 2n�1p#= .Assume that f is a plateaued function. Then there exists an even numberr, 0 � r � n, such that #= = 2r and each h�; `ji2 takes either the value of22n�r or 0 only, where `j denotes the jth row of Hn, j = 0; 1; : : : ; 2n� 1. HencepM = 2n�12 r. By using Lemma 1, we have Nf = 2n�1�2n�12 r�1 = 2n�1� 2n�1p#= .Conversely assume that Nf = 2n�1 � 2n�1p#= . From Lemma 1, we have alsoNf = 2n�1 � 12pM . Hence pMp#= = 2n. Since both pM and p#= are in-tegers and powers of two, we can let #= = 2r, where r is an integer with0 � r � n. Hence pM = 2n� r2 . Obviously r is even. From Parseval's equa-tion, Pj2=h�; `ji2 = 22n, and the fact that p2M#= = 22n, we conclude thath�; `ji2 = 22n�r for all j 2 =. This proves that f is a plateaued function.



From the proof of Lemma 3, we can see that Lemma 3 can be stated in adi�erent way as follows.Lemma 4. Let f be a function f on Vn and � denote the sequence of f . SetpM = maxfjh�; `jijj j = 0; 1; : : : ; 2n � 1g, where `j is the jth row of Hn, 0 �j � 2n � 1. Then pMp#= � 2n where the equality holds if and only if f is aplateaued function.Summarizing Theorem 3, Lemmas 3 and 4, we concludeTheorem 4. Let f be a function on Vn and � denote the sequence of f . SetpM = maxfjh�; `jijj j = 0; 1; : : : ; 2n � 1g, where `j is the jth row of Hn, 0 �j � 2n � 1. Then the following statements are equivalent: (i) f is a plateauedfunction on Vn, (ii) there exists an even number r, 0 � r � 2n, such that#= = 2r and each h�; `ji2 takes the value of 22n�r or 0 only, where `j denotesthe jth row of Hn, j = 0; 1; : : : ; 2n � 1, (iii) P2n�1j=0 �2(�j) = 23n#= , (iv) thenonlinearity of f , Nf , satis�es Nf = 2n�1 � 2n�1p#= , (v) pMp#= = 2n, (vi)Nf = 2n�1 � 2�n2�1qP2n�1j=0 �2(�j).Proof. Due to De�nition 9, Theorem 3, Lemmas 3 and 4, (i), (ii), (iii), (iv) and(v) hold. (vi) follows from (iii) and (iv).Theorem 5. Let f be a function on Vn and � denote the sequence of f . Thenthe nonlinearity Nf of f satis�esNf � 2n�1 � 2�n2 �1vuut2n�1Xj=0 �2(�j)where the equality holds if and only if f is a plateaued function on Vn.Proof. Set pM = maxfjh�; `jijj j = 0; 1; : : :; 2n � 1g. Multiplying the equality inLemma2 by itself, we have 2nP2n�1j=0 �2(�j) =P2n�1j=0 h�; `ji4 � p2MP2n�1j=0 h�; `ji2.Applying Parseval's equation to the above equality, we have P2n�1j=0 �2(�j) �2np2M . Hence pM � 2�n2qP2n�1j=0 �2(�j). By using Lemma 1, we have provedthe inequalityNf � 2n�1�2� n2�1qP2n�1j=0 �2(�j). The rest part of the theoremcan be proved by using Theorem 4.Theorem 3, Lemmas 3 and 4 and Theorem 4 represent characterizations ofplateaued functions.To close this section, let us note that since �(�0) = 2n and #= � 2n,we have 2n�1 � 2�n2�1qP2n�1j=0 �2(�j) � 2n�1 � 2n2 �1 and 2n�1 � 2n�1p#= �2n�1� 2n2 �1. Hence both inequalities Nf � 2n�1� 2�n2�1qP2n�1j=0 �2(�j) andNf � 2n�1 � 2n�1p#= are improvements on a more commonly used inequalityNf � 2n�1 � 2n2�1.



6 Other Cryptographic Properties of Plateaued FunctionsBy using Lemma 1, we concludeProposition 4. Let f be a rth-order plateaued function on Vn. Then the non-linearity Nf of f satis�es Nf = 2n�1 � 2n� r2�1.The following result is the same as Theorem 18 of [12].Lemma 5. Let f be a function on Vn (n � 2), � be the sequence of f , and p isan integer, 2 � p � n. If h�; `ji � 0 (mod 2n�p+2), where `j is the jth row ofHn, j = 0; 1; : : : ; 2n � 1, then the degree of f is at most p� 1.Using Lemma 5, we obtainProposition 5. Let f be a rth-order plateaued function on Vn. Then the alge-braic degree of f , denoted by deg(f), satis�es deg(f) � r2 + 1.We note that the upper bound on degree in Proposition 5 is tight for r < n.For the case of r = n, the function, mentioned in Proposition 5, is a bent functionon Vn. [8] gives a better upper bound on degree of bent function on Vn. Thatbound is n2 .The following property of plateaued functions can be veri�ed by noting theirde�nition.Proposition 6. Let f be a rth-order plateaued function on Vn, B be any non-singular n� n matrix over GF (2) and � be any vector in Vn. Then f(xB � �)is also a rth-order plateaued function on Vn.Theorem 6. Let f be a rth-order plateaued function on Vn. Then the linearityof f , q, satis�es q � n� r, where the equality holds if and only if f is partially-bent.Proof. There exists a nonsingular n�nmatrixB over GF (2) such that f(xB) =g(y) � h(z), where x = (y; z), y 2 Vp, z 2 Vq, p + q = n, g is a function on Vpand g has no non-zero linear structures, h is a linear function on Vq . Hence q isequal to the linearity of f . Set f�(x) = f(xB).Let �, � and � denote the sequences of f�, g and h respectively. It is easy toverify � = ���, where � denotes the Kronecker product [13]. From the structureof Hn, each row of Hn, L, can be expressed as L = `� e, where ` is a row of Hpand e is a row of Hq. It is easy to verifyh�; Li = h�; `ih�; ei (16)Since h is linear, � is a row of Hq. Replace e by � in (16), we haveh�; L0i = h�; `ih�; �i = 2qh�; `i (17)where L0 = `� � is still a row of Hn.



Note that f� is also a rth-order plateaued function on Vn. Hence h�; Litakes the value of �2n�12 r or zero only. Due to (17), h�; `i takes the value of�2n�12 r�q = �2p� 12 r or zero only. This proves that g is a rth-order plateauedfunction on Vp. Hence r � p and r � n� q, i.e., q � n� r.Assume that q = n� r. Then p = r. From (17), each h�; `i takes the value of�2 r2 = �2 p2 or zero only, where ` is any row of Hp. Hence applying Parseval'sequation to g, we can conclude that for each row ` of Hp, h�; `i cannot take thevalue of zero. In other words, for each row ` of Hp, h�; `i takes the value of �2 p2only. Hence we have proved that g is a bent function on Vp. Due to Theorem 2, fis partially-bent. Conversely, assume that f is partially-bent. Due to Theorem 2,g is a bent function on Vp. Hence each h�; `i takes the value of �2 p2 only, where` is any row of Hp. Note that both � and e are rows of Hq hence h�; ei takesthe value 2q or zero only. From (16), we conclude that h�; Li takes the value�2q+ p2 or zero only. Recall f is a rth-order plateaued function on Vn. Henceq + p2 = n� r2 . This implies that r = p, i.e., q = n� r.7 Relationships between Partially-bent Functions andPlateaued FunctionsTo examine more profound relationships between partially-bent functions andplateaued functions, we introduce one more characterization of partially-bentfunctions as follows.Theorem 7. For every function f on Vn, we have2n �#=#= � �M2n (#<� 1)where the equality holds if and only if f is partially-bent.Proof. From Notation 2, we have sM � s0 = #=. As a consequence of (5),we obtain the inequality in the theorem. Next we consider the equality in thetheorem. Assume that the equality holds, i.e.,�M (#<� 1)#= = 2n(2n �#=) (18)From (4), 2n(2n �#=) � X�j2<;j>0 jsj�(�j)j� �M X�j2<;j>0 jsjj � �M (#<� 1)#= (19)From (18), we can see that all the equalities in (19) hold. Hence�M(#<� 1)#= = X�j2<;j>0 jsj�(�j)j (20)



Note that jsjj � #= and j�(�j)j � �M , for j > 0. Hence from (20), we obtainjsjj = #= whenever �j 2 < and j > 0 (21)and j�(�j)j = �M for all �j 2 < with j > 0.Applying (21) to (6), and noticing s0 = #=, we obtain #=�2n =P2n�1j=0 s2j �P�j2< s2j = (#<)(#=)2. This results in 2n � (#<)(#=). Together with theinequality in Theorem 2, it proves that (#<)(#=) = 2n, i.e., f is a partially-bent function.Conversely assume that f is a partially-bent function, i.e., (#=)(#<) = 2n.Then the inequality in the theorem is specialized as�M (2n �#=) � 2n(2n �#=) (22)We need to examine two cases. Case 1: #= = 2n. Obviously the equality in(22) holds. Case 2: #= 6= 2n. From (22), we have �M � 2n. Thus �M = 2n.This completes the proof.Next we consider a non-bent function f . With such a function we have �M 6=0. Thus from Theorem 7, we have the following result.Corollary 1. For every non-bent function f on Vn, we have(#=)(#<) � 2n(2n �#=)�M +#=where the equality holds if and only if f is partially-bent (but not bent).Proposition 7. For every non-bent function f , we have2n(2n �#=)�M +#= � 2nwhere the equality holds if and only if #= = 2n or f has a non-zero linearstructure.Proof. Since �M � 2n, the inequality is obvious. On the other hand, it is easyto see that the equality holds if and only if (2n ��M)(2n �#=) = 0.From Proposition 7, one observes that for any non-bent function f , Corollary1 implies Theorem 2.Theorem 8. Let f be a rth-order plateaued function. Then the following state-ments are equivalent: (i) f is a partially-bent function, (ii) #< = 2n�r, (iii)�M(#<� 1) = 22n�r � 2n, (iv) the linearity q of f satis�es q = n� r.Proof. (i) =) (ii). Since f is a partially-bent function, we have (#=)(#<) = 2n.As f is a rth-order plateaued function, #= = 2r and hence #< = 2n�r.



(ii) =) (iii). It is obviously true when r = n. Now consider the case of r < n.Using Theorem 7, we have 2n�#=#= � �M2n (#<� 1) which is specialized as2n�r � 1 � �M2n (2n�r � 1) (23)From (23) and the fact that �M � 2n, we obtain 2n�r � 1 � �M2n (2n�r � 1) �2n�r � 1. Hence �M = 2n or r = n. (iii) obviously holds when �M = 2n. Whenr = n, we have #< = 1 and hence (iii) also holds.(iii) =) (i). Note that (iii) implies 2n�#=#= = �M2n (#<� 1) where #= = 2r.By Theorem 7, f is partially-bent.Due to Theorem 6, (iv) () (i).8 Construction of Plateaued Functions and Disproof ofThe Converse of Proposition 3Lemma 6. For any positive integers t and k with k < 2t < 2k, there exist 2tnon-zero vectors in Vk, say �0; �1, : : :, �2t�1, such that for any non-zero vector� 2 Vk, the 2t-set f'�0(�); '�1 (�); : : : ; '�2t�1 (�)g, contains both zero and one,where '� is the linear function on Vk de�ned by '�(x) = h�; xi.Proof. We choose k linearly independent vectors in Vk, say �1; : : : ; �k. Fromlinear algebra, (h�1; �i; : : : ; h�k; �i) goes through all the non-zero vectors in Vkexactly once while � goes through all the non-zero vectors in Vk.Hence there exists a unique �� satisfying (h�1; ��i; : : : ; h�k; ��i) = (1; : : : ; 1).Furthermore, for any non-zero vector � 2 Vk with � 6= ��, fh�1; �i; : : : ; h�k; �igcontains both one and zero.Let �0 be a non-zero vector in Vk, such that h�0; ��i = 0. Obviously �0 62f�1; : : : ; �kg. If 2t > k + 1, choose other 2t � k � 1 non-zero vectors in Vk,�k+1; : : : ; �2t�1, such that �0; �1; : : : ; �k; �k+1; : : : ; �2t�1 are mutually distinct.It is easy to see that for any non-zero vector � 2 Vk, f�0; �1; : : : ; �2t�1g containsboth one and zero. This proves the lemma.The following example proves the existence of rth-order plateaued functionson Vn, where 0 < r < n, and disproves the converse of Proposition 3. Wenote that in this section, we will not discuss nth-order and 0th-order plateauedfunction on Vn as they are bent and a�ne functions respectively.Example 1. Let t and k be positive integers with k < 2t < 2k. Let �0; �1; : : : ; �2t�1be the 2t non-zero vectors in Vk de�ned in Lemma 6. Let �j denote the sequenceof '�j , j = 0; 1; : : : ; 2t � 1. Set � = �0; �1; : : : ; �2t�1. Let n = k + t and f be thefunction on Vn whose sequence is �.By using the properties of Hn, it is easy to verify that each h�; `ji takes thevalue of �2k or 0 only, where `i is the ith row of Hn, i = 0; 1; : : :; 2n � 1. UsingParseval's equation, we obtain #= = 22n�2k. Let r = 2n � 2k = 2t. Then f isa rth-order plateaued function on Vn. Due to n = k + t, r = 2n� 2k = 2t andt < k, 0 < r < n holds.



We now consider �(�) with the function f . Let � = (
; �) where 
 2 Vt,� 2 Vk. Note that�(�) = (P
j�
i=
 h�j; �i(�)i; if 
 6= 0P2t�1j=0 h�j ; �j(�)i; if 
 = 0 but � 6= 0 (24)where 
j 2 Vt is the binary representation of an integer j, j = 0; 1; : : : ; 2n � 1.Since '�j 6= '�i if j 6= i, where '�(x) = h�; xi, '�j (x)�'�i(x� �) is a non-zero linear function and hence balanced. We have now proved h�j ; �i(�)i = 0 forj 6= i. Hence �(�) = 0 when 
 6= 0.On the other hand, for any linear function ' on Vk, we have '(x) � '(x ��) = '(�). Hence h�j; �j(�)i = 2k if and only if '�j (�) = 0. In addition,h�j; �j(�)i = �2k if and only if '�j (�) = 1. By using Lemma 6, we have�(�) =P2t�1j=0 h�j ; �j(�)i 6= �2t � 2k = �2n for � 6= 0.In summary, we have�(�)8<:= 0 if 
 6= 06= �2n if 
 = 0 and � 6= 0= 2n if � = 0 (25)Since f is a rth-order plateaued function on Vn and r < n, f is not bent, on theother hand, (25) shows that f has non-zero linear structures. Hence we concludethat f is not partially-bent. Hence we have proved that f is plateaued but notpartially-bent. This disproves the converse of Proposition 3.f has some other interesting properties. In particular, due to Proposition4, the nonlinearity Nf of f satis�es Nf = 2n�1 � 2n� r2�1. Note that the se-quence of any non-zero linear function is (1;�1)-balanced. Hence each �j and � =�0; �1; : : : ; �2t�1 are (1;�1)-balanced. This implies that f is (0; 1)-balanced. Sincethe function f is not partially-bent, by using Theorem 2, we have (#=)(#<) >2n. This proves that #< > 2n�r. On the other hand, from (25), we have#< � 2k = 2n�12 r . Thus we can conclude that 2n�r < #< � 2n�12 r .We end this example by noting that such functions as f exist on Vn both forn even and odd.Now we summarize the relationships among bent, partially-bent and plateauedfunctions. Let Bn denote the set of bent functions on Vn, Pn denote the set ofpartially-bent functions on Vn and Fn denote the set of plateaued functions onVn. Then the above results imply that Bn � Pn � Fn, where � denotes therelationship of proper subset. We further let Gn denote the set of plateauedfunctions on Vn that do not have non-zero linear structures and are not bentfunctions. The relationships among these classes of functions are shown in Fig-ure 1. Example 1 proves that Gn is nonempty.Next we consider how to improve the function in Example 1 so as to obtaina rth-order plateaued function on Vn satisfying the SAC and all the propertiesmentioned in Example 1.



Fig. 1. Relationship among bent, partially bent, and plateaued functionsExample 2. Note that if r > 2, i.e., t > 1, then from Example 1, #< � 2n�12 r <2n�1. In other words, #<c > 2n�1 where <c denotes the complementary setof <. Hence there exist n linearly independent vectors in <c. In other words,there exist n linearly independent vectors with respect to which f satis�es thepropagation criterion. Hence we can choose a nonsingular n � n matrix A overGF (2) such that g(x) = f(xA) satis�es the SAC (see [9]). The nonsingular lineartransformation A does not alter any of the properties of f in Example 1We can further improve the function in Example 2 so as to obtain a rth-order plateaued functions on Vn having the highest degree and satisfying all theproperties in Example 1.Example 3. Given any vector � = (i1; : : : ; is) 2 Vt, we de�ne a function on Vt byD�(y) = (y1 � �i1) � � � (yt � �is) where y = (y1; : : : ; yt) and �i = 1� i indicates thebinary complement of i.Let �i1���ip , (i1; : : : ; ip) 2 Vp, be the sequence of a function fi1 ���ip (x1; : : : ; xq)on Vq . Let � be the concatenation of �0���00, �0���01, : : :, �1���11, namely, � =(�0���00; �0���01; : : : ; �1���11). It is easy to verify that � is the sequence of a func-tion on Vq+p given byf(y1; : : : ; yp; z1; : : : ; zq) = M(i1���ip)2VpDi1���ip(y1; : : : ; yp)fi1���ip(z1; : : : ; zq): (26)Let �j 2 Vt is the binary representation of integer j, j = 0; 1; : : : ; 2t�1. Write �0 = '�0 ,  �1 = '�1 , : : :,  �2t�1 = '�2t�1 , where �0; �1; : : : ; �2t�1 are the samewith those in Example 1 and '� = h�; xi.



Due to (26), the function f on Vt+k, mentioned in Example 1 can be expressedas f(y; z) =L�2Vt D�(y) �(z).Case 1: L�2Vt  � 6= 0. Write L�2Vt  � =  , where  must be a non-zerolinear function on Vk. Note that each D�(y) contains y1 � � �yt. Hence the termy1 � � �yt (z) survives in the �nal algebraic normal form representation of f(y; z)and hence the degree of f is t+ 1 = r2 + 1.Case 2:L�2Vt  � = 0, i.e.,L2t�1j=0 '�j = 0. Note that there exist 2k � 1 non-zero vectors in Vk and 2k�1 > 2t. Hence we can replace '�2t�1 by any non-zerolinear function ' on Vk, that di�ers from '�0 , '�1 , : : : '�2t�1 . This reduces Case2 to Case 1.We have now constructed a rth-order plateaued function with degree r2 +1. Applying the discussions in Examples 1 and 2, we can obtain a rth-orderplateaued function on Vn having degree r2 + 1 and satisfying all the propertiesof the function constructed in Example 1.It should be noted that the function in this example achieves the highestpossible algebraic degree given in Proposition 4. Thus the upper bound on thealgebraic degree of plateaued functions, mentioned in Proposition 5, is tight.9 ConclusionsWe have introduced and characterized a new class of functions called plateauedfunctions. These functions bring together various nonlinear characteristics. Wehave also shown that partially-bent functions are a proper subset of plateauedfunctions, which settles an open problem related to partially-bent functions. Wehave further demonstrated methods for constructing plateaued functions thathave many cryptographically desirable properties.AcknowledgementThe second author was supported by a Queen Elizabeth II Fellowship (227 231002).References1. P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation-immune func-tions. In Advances in Cryptology - CRYPTO'91, volume 576, Lecture Notes inComputer Science, pages 87{100. Springer-Verlag, Berlin, Heidelberg, New York,1991.2. Claude Carlet. Partially-bent functions. Designs, Codes and Cryptography, 3:135{145, 1993.3. Friedhelm Erwe. Di�erential And Integral Calculus. Oliver And Boyd Ltd, Edin-burgh And London, 1967.4. Xiao Guo-Zhen and J. L. Massey. A spectral characterization of correlation-immune combining functions. IEEE Transactions on Information Theory,34(3):569{571, 1988.



5. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.North-Holland, Amsterdam, New York, Oxford, 1978.6. W. Meier and O. Sta�elbach. Nonlinearity criteria for cryptographic functions. InAdvances in Cryptology - EUROCRYPT'89, volume 434, Lecture Notes in Com-puter Science, pages 549{562. Springer-Verlag, Berlin, Heidelberg, New York, 1990.7. B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle. Prop-agation characteristics of boolean functions. In Advances in Cryptology - EU-ROCRYPT'90, volume 437, Lecture Notes in Computer Science, pages 155{165.Springer-Verlag, Berlin, Heidelberg, New York, 1991.8. O. S. Rothaus. On \bent" functions. Journal of Combinatorial Theory, Ser. A,20:300{305, 1976.9. J. Seberry, X. M. Zhang, and Y. Zheng. Improving the strict avalanche char-acteristics of cryptographic functions. Information Processing Letters, 50:37{41,1994.10. J. Wang. The linear kernel of boolean functions and partially-bent functions.System Science and Mathematical Science, 10:6{11, 1997.11. A. F. Webster and S. E. Tavares. On the design of S-boxes. In Advances inCryptology - CRYPTO'85, volume 219, Lecture Notes in Computer Science, pages523{534. Springer-Verlag, Berlin, Heidelberg, New York, 1986.12. Y. Zheng X. M. Zhang and Hideki Imai. Duality of boolean functions and itscryptographic signi�cance. In Advances in Cryptology - ICICS'97, volume 1334,Lecture Notes in Computer Science, pages 159{169. Springer-Verlag, Berlin, Hei-delberg, New York, 1997.13. R. Yarlagadda and J. E. Hershey. Analysis and synthesis of bent sequences. IEEProceedings (Part E), 136:112{123, 1989.


