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then f satis�es the a�ne property at the particular vector (u1; : : : ; uk). On theother hand, if f(u1)� � � � � f(uk) = 1then f behaves in a way that is against the a�ne property at (u1; : : : ; uk).The above observations motivate us to de�ne the number of k-tuples of vec-tors in Vn, (u1; : : : ; uk) with u1�� � ��uk = 0 such that the a�ne property (1) issatis�ed, as the homomorphicity of f , and furthermore, the number of k-tuplesof vectors in Vn, (u1; : : : ; uk) with u1�� � ��uk = 0 such that the a�ne property(1) is not satis�ed, as the nonhomomorphicity of f .While nonhomomorphicity and nonlinearity are similar to each other in thatthey both reect a \distance" between a Boolean function and all the a�ne func-tions, the former di�erentiates itself from the latter in the way the \distance"is measured. Nonhomomorphicity has several interesting properties suggestingthat it can serve as a useful nonlinearity indicator: (1) unlike other criteria, wehave not only established the tight lower and upper bounds on nonhomomor-phicity, but also precisely identi�ed the mean of nonhomomorphicity over allthe Boolean functions with the same size, (2) the nonhomomorphicity of a func-tion can be estimated e�ciently. In fact, we show a fast statistical method forestimating the nonhomomorphicity of a function. The computing time of thestatistical method is not relevant to the dimension (number of variables) of thefunction. This guarantees that we can use a computer programme to analyzeBoolean functions of higher dimensions e�ciently.2 Introduction to Boolean FunctionsDenote by Vn the vector space of n tuples of elements from GF (2). The truthtable of a function f from Vn to GF (2) (or simply functions on Vn) is a(0; 1)-sequence de�ned by (f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of fis a (1;�1)-sequence de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)), where�0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). f is said to bebalanced if its truth table contains an equal number of ones and zeros.Given two sequences ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their component-wise product is de�ned by ~a �~b = (a1b1; � � � ; ambm). In particular, if m = 2n and~a, ~b are the sequences of functions on Vn respectively, then ~a � ~b is the sequenceof f � g.Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two vectors (or sequences),the scalar product of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of thecomponent-wisemultiplications. In particular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multiplication are over GF (2), andwhen ~a and ~b are (1;�1)-sequences, h~a;~bi =Pmi=1 aibi, where the addition andmultiplication are over the reals.A (1;�1)-matrixH of order m is called a Hadamard matrix if HHt = mIm,where Ht is the transpose of H and Im is the identity matrix of order m. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by the



following recursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : : (2)Let `i, 0 � i � 2n� 1, be the i row of Hn. Then `i is the sequence of a linearfunction 'i(x) de�ned by the scalar product 'i(x) = h�i; xi, where �i is the ithvector in Vn according to the ascending lexicographic order. (See for instanceLemma 2 of [7].)De�nition 1. A function f on Vn is called an a�ne function if f(x) = c �a1x1�� � ��anxn where and each aj and c are constant in GF (2). In particular,f is called a linear function if c = 0.De�nition 2. The Hammingweight of a (0; 1)-sequence � is the number of onesin the sequence. Given two functions f and g on Vn, the Hamming distanced(f; g) between them is de�ned as the Hamming weight of the truth table off(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of f , denoted by Nf , isthe minimal Hamming distance between f and all the a�ne functions on Vn,i.e., Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�nefunctions on Vn.It is known that the nonlinearity of a function f on Vn can be expressed asNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1g (3)where � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely,the sequences of the linear functions on Vn. (For a proof of (3) see for instanceLemma 6 of [7].) In addition, the maximumnonlinearity of a function is 2n�1�2 12n�1, namely, Nf � 2n�1 � 2 12n�1.Given a function f on Vn, a (1;�1) matrix de�ned by M = ((�1)f(�i��j)),where �i; �j 2 Vn and 0 � i; j � 2n � 1, is called the (1;�1) incidence matrix,or simply, the matrix of f . The following is attributed to R. L. McFarland [2]:M = 2�nHn diag(h�; `0i; h�; `1i; : : : ; h�; `2n�1i)Hn (4)where � be the sequence of function f on Vn, `i be the ith row of Hn, anddiag(a; b; � � � ; c) denotes the diagonal matrix whose entries on the diagonal area; b; : : : ; c.A function f on Vn is called a bent function [6] if h�; `ii2 = 2n for everyi = 0; 1; : : :; 2n � 1, where � is the sequence of f and `i is a row in Hn. A bentfunction on Vn exists only when n is a positive even number, and it achieves thehighest possible nonlinearity 2n�1 � 2 12n�1.3 Homomorphicity and NonhomomorphicityThe following lemma is important in this paper, as it explores a characteristicproperty of a�ne functions which will be useful in studying nonhomomorphicity.



Lemma 1. Let f be a function on Vn. Then(i) f is an a�ne function if and only if f satis�es such property that for anyeven k with k � 4, f(u1) � � � � � f(uk) = 0 whenever u1 � � � � � uk = 0,(ii) f is an a�ne function if and only if there exists an even k with k � 4 suchthat f(u1) � � � � � f(uk) = 0 whenever u1 � � � � � uk = 0.Proof. Let f be a function on Vn. We �rst prove Part (ii) of the lemma.Assume that f is a�ne. By using De�nition 1, it is easy to verify that for anyeven k with k � 4, f(u1)�� � ��f(uk) = 0 whenever u1�� � ��uk = 0. Conversely,assume that there exists an even k with k � 4 such that f(u1)� � � �� f(uk) = 0whenever u1 � � � � � uk = 0. We now prove that f is a�ne.Let u1 and u2 be any two vectors in Vn. Obviously, the k vectors u1, u2,u1�u2, 0; : : : ; 0 satisfy u1�u2�(u1�u2)�0�� � ��0 = 0. From the assumption,f(u1)� f(u2) � f(u1 � u2)� f(0) � � � � � f(0) = 0 (5)Consider two cases: f(0) = 0 and f(0) = 1.Case 1: f(0) = 0. In this case f(c�) = cf(�) holds for any vector � 2 Vn andany value c 2 GF (2). Hence (5) can be rewritten asf(u1 � u2) = f(u1)� f(u2) (6)where u1 and u2 are arbitrary.Let ej denote the vector in Vn, whose the jth component is one and othersare zero. For any �xed value xj in GF (2), j = 1; : : : ; n, from (6), f(x1e1 �� � � � xnen) = f(x1e1)� f(x2e2 � � � � � xnen) Applying (6) repeatedly, we havef(x1e1 � � � � � xnen) = f(x1e1) � f(x2e2) � � � � � f(xnen) Note that f(0) = 0implies f(c�) = cf(�) where c is any value in GF (2) and � is any vector in Vn.Hence f(x1e1 � � � � � xnen) = x1f(e1)� � � � � xnf(en) (7)From the de�nition of ej , x1e1 � � � � � xnen = (x1; : : : ; xn). On the other hand,if we write f(ej) = aj, j = 1; : : : ; n then (7) can be rewritten as f(x1; : : : ; xn) =a1x1 � � � � � anxn This proves that f is linear.Case 2: f(0) = 1. Set g(x) = 1� f(x). Then g is linear. By using the resultin Case 1, g(x1; : : : ; xn) = b1x1 � � � � � bnxn where each bj 2 GF (2). Hencef(x1; : : : ; xn) = 1� b1x1 � � � � � bnxn This proves that f is a�ne.We now prove Part (i) of the lemma. Assume that f is a�ne. From De�nition1, it is easy to check that for any even k with k � 4, f(u1) � � � � � f(uk) = 0whenever u1 � � � � � uk = 0. Conversely, assume f satis�es such property thatfor any even k with k � 4, f(u1)� � � � � f(uk) = 0 whenever u1 � � � � � uk = 0.Then from Part (ii) of the lemma, f must be a�ne. utFrom the characteristic property shown in Lemma 1, if a function f on Vnsatis�es f(u1) � � � � � f(uk) = 0 for a large number of k-tuples (u1; : : : ; uk) ofvectors in Vn with u1 � � � � � uk = 0, then the function behaves more like ana�ne function. This leads us to introduce a new nonlinearity criterion.



Notation 1. Let f be a function on Vn and k an even with 4 � k � 2n. Forc 2 GF (2), denote by H(k)f;c the collection of ordered k-tuples (u1; : : : ; uk) ofvectors in Vn with u1 � � � � � uk = 0 satisfying f(u1) � � � � � f(uk) = c wherec 2 GF (2) is constant.De�nition 3. Let f be a function on Vn and k an even with 4 � k � 2n. Forc 2 GF (2), we call ~h(k)f;0 = #H(k)f;0, the kth-order homomorphicity of f , andfurthermore, ~h(k)f;1 = #H(k)f;1, the kth-order nonhomomorphicity of f , where #Sdenotes the number of elements in a set S.Note that there exist 2(k�1)n k-tuples of vectors in Vn, (u1; : : : ; uk), satisfyingLkj=1 uj = 0. Hence an interesting fact on ~h(k)f;c follows:Lemma 2. Let f be a function on Vn. Then ~h(k)f;0 + ~h(k)f;1 = 2(k�1)n.We note that Lemma 1 cannot be extended to the case of odd k. This explainswhy we have not de�ned homomorphicity or nonhomomorphicity for an oddorder.4 Calculations of Nonhomomorphicity4.1 High Order Auto-CorrelationRecall that the auto-correlation of a function is de�ned as follows:De�nition 4. Let f be a function on Vn. For a vector � 2 Vn, denote by �(�)the sequence of f(x � �). Thus �(0) is the sequence of f itself and �(0) � �(�)is the sequence of f(x) � f(x � �). Let �(�) be the scalar product of �(0) and�(�). Namely �(�) = h�(0); �(�)i�(�) is called the auto-correlation of f with a shift �.Obviously,�(�) = 0 if and only if f(x)�f(x��) is balanced, i.e., f satis�esthe propagation criterion with respect to �. On the other hand, if j�(�)j = 2n,then f(x) � f(x� �) is a constant and hence � is a linear structure of f .Next we consider a generalization of the de�nition for auto-correlation. Thegeneralization will turn out to be a useful tool in studying nonhomomorphiccharacteristics of functions.De�nition 5. Let f be a function on Vn and � = (a0; a1; : : : ; a2n�1) be thesequence of f . For a vector � 2 Vn and an integer k = 2; 3; : : :, the kth-orderauto-correlation of f with a shift �, denoted by �(k)(�), is de�ned as�(2)(�) = �(�); �(k)(�) = 2n�1Xj=0 [aj�(k�1)(�j � �)]; k = 3; 4; : : :where �(�) is the auto-correlation of f as de�ned in De�nition 4, and �j is thevector corresponding to the integer j.



It is important to point out that nonhomomorphicity, high order auto-correlationand high order derivation introduced in [4] are three completely di�erent con-cepts. Let f be a function on Vn. In [4], the derivation of f at vector �, denotedby ��f(x), is de�ned as follows��f(x) = f(x) � f(x � �):and the kth-order derivation of f at vectors �1; : : : ; �k, denoted by�(k)�1;:::;�kf(x),is de�ned recursively as�(k)�1;:::;�kf(x) = �(�(k�1)�1;:::;�k�1f(x)):We can see the kth-order derivation of f at vectors �1; : : : ; �k, �(k)�1;:::;�kf(x),is itself a function on Vn. In contrast, both the kth-order nonhomomorphicityand the kth-order auto-correlation of f with a shift � are �xed integer values.To examine further how the three concepts di�er, consider a bent function fof degree s. For k even with k > s, the kth-order derivation of f at vectors�1; : : : ; �k, �(k)�1;:::;�kf(x), is obviously the zero function. In contrast, for the kth-order auto-correlation of f , we have �(k)(0) = 2�nP2n�1i=0 h�; `iik = 2 12nk (whichfollows from Corollary 1 and Lemma 3 to be introduced later on), and for thekth-order nonhomomorphicity of f , we have ~h(k)f;1 = 2(k�1)n�1 � 2 12nk�1, whichfollows from Theorem 3 in Section 5.To examine the properties of the kth-order auto-correlation �(k)(�), we con-sider a matrix de�ned by (�(k)(�i � �j)) where i; j = 0; 1; : : : ; 2n � 1. Notethat the diagonal of the matrix (�(k)(�i ��j)) is composed of 2n repetitions of�(k)(0). By simple induction on k, we have the following result:Theorem 1. Let f be a function on Vn, M be the matrix of f and � be thesequence of f . Then(�(k)(�i � �j)) = Mk = 2�nHn diag(h�; `0ik; h�; `1ik; : : : ; h�; `2n�1ik)Hnwhere `0, `1, : : :, `2n�1 are the rows of Hn.This result shows that the two matrices, (�(k)(�i � �j)) anddiag(h�; `0ik; h�; `1ik; : : : ; h�; `2n�1ik)are similar in the sense that from the former one can easily �nd out the latterthrough the use of Hn, and vice versa. Furthermore, it is not hard to see thatthe sum of the entries on the diagonal of (�(k)(�i � �j)) is identical to that ofdiag(h�; `0ik; h�; `1ik; : : : ; h�; `2n�1ik). In other words,2n�1Xi=0 �(k)(�i � �i) = 2n�(k)(0) = 2n�1Xi=0 h�; `iik:Hence we have proved



Corollary 1. Let f be a function on Vn, M be the matrix of f and � be thesequence of f . Then �(k)(0) = 2�nP2n�1i=0 h�; `iik.For k = 2, we have �(2)(0) = 2n. This indicates that Corollary 1 embodiesParseval's equation (Page 416 of [5]) P2n�1i=0 h�; `ii2 = 22n as a special case inwhich k = 2.4.2 Expression of Nonhomomorphicity by Other IndicatorsRecall (3), the nonlinearity of a function f on Vn is related to the maximumjh�; `iij, where � is the sequence of f and `i is the ith row of Hn. We give aprecise expression of nonhomomorphicity by using the same indicator.Theorem 2. For a function f on Vn and k an even with 4 � k � 2n. ~h(k)f;0 and~h(k)f;1 can be expressed as follows:(i) ~h(k)f;0 = 2(k�1)n�1+ 12�(k)(0) = 2(k�1)n�1+ 2�n�1P2n�1i=0 h�; `iik(ii) ~h(k)f;1 = 2(k�1)n�1� 12�(k)(0) = 2(k�1)n�1� 2�n�1P2n�1i=0 h�; `iikwhere � is the sequence of f and `i denotes the ith row of Hn.Proof. We need only to prove that ~h(k)f;1 = 2(k�1)n�1� 12�(k)(0), as the rest partof the theorem follows from Corollary 1 and the fact that ~h(k)f;0 + ~h(k)f;1 = 2(k�1)n.Write � = (a0; a1; : : : ; a2n�1) where each aj = �1. Consider uj 2 Vn, j =1; : : : ; k, andLkj=1 uj = 0. Clearly,Lkj=1 f(uj) = 1 if and only if �kj=1auj = �1where the subscript uj in auj is viewed as the integer representation of vectoruj. It is easy to verify12(1��kj=1auj ) = 8><>:1 ifLkj=1 f(uj) = 10 ifLkj=1 f(uj) = 0Hence~h(k)f;1 = 12 XLkj=1 uj=0(1� aujau2 � � �auk)= 12 Xu1;:::;uk�12Vn(1� au1au2 � � �auk�1au1�u2�����uk�1)= 2(k�1)n�1� 12 Xu1;:::;uk�12Vn au1au2 � � �auk�1au1�u2�����uk�1= 2(k�1)n�1� 12 Xu1;:::;uk�22Vn au1au2 � � �auk�2 Xuk�12Vn auk�1au1�u2�����uuk�2�uk�1



= 2(k�1)n�1� 12 Xu1;:::;uk�22Vn au1au2 � � �auk�2�(2)(u1 � u2 � � � � � uk�2)= 2(k�1)n�1� 12 Xu1;:::;uk�32Vn au1au2 � � �auk�3 Xuk�22Vn auk�2�(2)(u1 � u2 � � � � � uk�2)= 2(k�1)n�1� 12 Xu1;:::;uk�32Vn au1au2 � � �auk�3�(3)(u1 � u2 � � � � � uk�3)...= 2(k�1)n�1� 12 Xu1;u22Vn au1au2�(k�2)(u1 � u2)= 2(k�1)n�1� 12 Xu12Vn au12Vn Xu22Vn au2�(k�2)(u1 � u2)= 2(k�1)n�1� 12 Xu12Vn au12Vn�(k�1)(u1) = 2(k�1)n�1� 12�(k)(0):This completes the proof. ut5 Bounds on NonhomomorphicityFirst we introduce H�older's Inequality [3] that will be used in our discussionson lower and upper bounds. It states that for real numbers cj � 0, dj � 0,j = 1; : : : ; k, p and q with p > 1 and 1p + 1q = 1, the following is true:( kXj=1 cpj )1=p( kXj=1 dqj)1=q � kXj=1 cjdj (8)where the quality holds if and only if there exists a constant � � 0 such thatcj = �dj for each j = 1; : : : ; k.By using H�older's Inequality, we can proveLemma 3. Let f be a function on Vn and k an even integer with k � 4. Then2n�1Xi=0 h�; `iik � 2n+ 12nkwhere the equality holds if and only if n is even and f is bent.Armed with the above result, next we show a bound on nonhomomorphicity.Theorem 3. Let f be a function on Vn and k an even integer with k � 4. Thenthe following statements hold:



(i) ~h(k)f;1 satis�es2(k�1)n�1� 12(2n � 2Nf )k � ~h(k)f;1 � 2(k�1)n�1� 2 12nk�1 (9)where Nf denotes the nonlinearity of f ,(ii) An equality in (9) holds if and only if f is bent. In other words, f is bent ifand only if ~h(k)f;1 = 2(k�1)n�1� 2 12nk�1:Recall that the nonlinearity of a function reaches the minimum nonlinearityif and only if the function is a�ne while the nonlinearity of a function reachesthe maximumnonlinearity if and only if the function is bent. The above theoremshows there exists a consistent relationship between nonlinearity and nonhomo-morphicity, especially when the order of nonhomomorphicity is large. Thus, if~h(k)f;1 is large, we expect that f is closer to a bent function than to an a�ne one,and conversely if ~h(k)f;1 is small, then the function is closer to a�ne than to bent.As ~h(k)f;0 + ~h(k)f;1 = 2(k�1)n, we have the following complementary result:Corollary 2. Let f be a function on Vn and k an even integer with k � 4. Thenthe following statements hold:(i) ~h(k)f;0 satis�es2(k�1)n�1+ 2 12nk�1 � ~h(k)f;0 � 2(k�1)n�1+ 12(2n � 2Nf )k2(k�1)n�1 (10)where Nf denotes the nonlinearity of f ,(ii) An equality in (10) holds if and only if f is bent. In other words, f is bentif and only if ~h(k)f;0 = 2(k�1)n�1+ 2 12nk�1:A consequence of Theorem 3 and Corollary 2 isCorollary 3. Let f be a function on Vn and k an even integer with k � 4. Then~h(k)f;0 � ~h(k)f;1 � 2 12nk, and the equality holds if and only if f is bent.An implication of the above corollary is that there exists no function on Vnsuch that ~h(k)f;0 = ~h(k)f;1.6 Comparing Nonhomomorphicity and NonlinearityA natural question on nonhomomorphicity is how it is related to other nonlin-ear characteristics, such as nonlinearity which indicates the minimum distancebetween a particular function and all the a�ne functions. It turns out thatnonhomomorphicity and nonlinearity are two indicators that are not directlycomparable. We demonstrate this by inspecting three speci�c functions f , g andh on V2s with s � 5.Recall that the rows in Hs, the Sylvester-Hadamard matrix of order 2s, aredenoted by `i, i = 0; 1; : : : ; 2s � 1. The three functions are de�ned as follows:



1. f | the sequence of f is the concatenation of `1, `2, : : :, `2s�1 with `1 beingrepeated twice, i.e., `1; `1; `2; : : : ; `2s�1.2. g | the sequence of g is composed of four repetitions of a bent sequence �of length 22s�2, i.e., �; �; �; �.3. h | the sequence of f is the concatenation of `1, `4, : : :, `2s�1 with `1 beingrepeated four times, i.e., `1; `1; `1; `1; `4; : : : ; `2s�1.By using (3), we know that the nonlinearities of the three functions areNf = Ng = 22s�1 � 2s, and Nh = 22s�1 � 2s+1.Consider k even with k � 4. By Theorem 2, we have the following nonhomo-morphic characteristics for the three functions:~h(k)f;1 = 22(k�1)s�1� 2�2s�1(2sk+2s � 2sk+s+1 + 2sk+k+s�1)~h(k)g;1 = 22(k�1)s�1� 2�2s�1 � 2sk+k+2s�2~h(k)h;1 = 22(k�1)s�1� 2�2s�1(2sk+2s � 2sk+s+2 + 2sk+2k+s�2)Thus for these three functions f , g and h, their nonlinearities and nonhomo-morphic characteristics are related as follows:(i) f v.s. g: Nf = Ng, but ~h(k)f;1 > ~h(k)g;1.(ii) f v.s. h: Nf > Nh, and ~h(k)f;1 > ~h(k)h;1.(iii) g v.s. h: Ng > Nh, but ~h(k)g;1 < ~h(k)h;1 if k � s� 1, and ~h(k)g;1 > ~h(k)h;1 if k � s.Properties of these three functions clearly show that nonlinearity and non-homomorphicity are not comparable indicators. They, however, can be used tocomplement each other in studying cryptographic properties of functions.The two functions g and h are of particular interest: while ~h(k)g;1 < ~h(k)h;1 fork � s � 1, their positions are reversed for k � s. This motivates us to examinethe behavior of nonhomomorphicity as k becomes large.Theorem 4. Let f and g be two functions on Vn. If ~hkf;1 6= ~hkg;1, then thereis an even positive k0, such that ~hkf;1 < ~hkg;1 for every even k with k � k0, or~hkf;1 > ~hkg;1 for every even k with k � k0.Assume that Nf > Ng. Then from (3), we havemaxfjh�; `iij; 0 � i � 2n � 1g < maxfjh�; `iij; 0 � i � 2n � 1g:Using a similar proof to that for the above theorem, we can showTheorem 5. Let f and g be two functions on Vn. If Nf > Ng , then there is aneven positive k0, such that �hkf;1 > �hkg;1 for every even k with k � k0.



Theorem 5 shows the consistent relationship between nonhomomorphicityand nonlinearity. However the three example functions f , g and h, togetherwith Theorems 4 and 5, do indicate that nonhomomorphic characteristics of afunction cannot be fully predicted by other cryptographic criteria, such as non-linearity, and that nonhomomorphicity can serve as another important indicatorthat forecasts certain cryptographically useful properties of the function.Comparing (ii) of Theorem 2 and (3), we �nd that although both nonlinearityand nonhomomorphicity reect non-a�ne characteristics, the former focuses onthe maximum jh�; `iij while the latter is more concerned over all jh�; `iij.7 The Mean of Homomorphicity and NonhomomorphicityLet f be a function on Vn, � denote an indicator (a criterion or a value), and �fdenote the indicator of f . Note that there precisely 22n functions on Vn. We areconcerned with the mean of the indicator � over all the functions on Vn, denotedby �, i.e. � = 2�2nPf �f .The upper and lower bounds on �f cannot provide su�cient information onthe distribution of � of a majority of functions. For this reason, we argue thatthe mean of the indicator � over all the functions on Vn, i.e. � = 2�2nPf �f ,should also be investigated. Note that there exist precisely 22n functions with nvariables.Notation 2. Let Ok (k is even) denote the collection of k-tuples (u1; : : : ; uk)of vectors in Vn satisfying uj1 = uj2 ; : : : ; ujk�1 = ujk, where fj1; j2; : : : ; jkg =f1; 2; : : :; kg. Write ok = #Ok.It is easy to verifyLemma 4. Let n and k be positive integers and u1 � � � � � uk = 0, where eachuj is a �xed vector in Vn. Thenf(u1)� � � � � f(uk) = 0holds for every function f on Vn if and only if k is even and (u1; : : : ; uk) 2 Ok.Lemma 5. In Notation 2, let k be an even with 2 � k � 2n. Thenok = k=2Xt=1�2nt � Xp1+���+pt=k=2; pj>0 (k)!(2p1)! � � � (2pt)!Proof. Let (u1; : : : ; uk) 2 Ok. Then the multiple set fu1; : : : ; ukg can be dividedinto t disjoint subsets �1; : : : ;�t where (1) 1 � t � k, (2) each �j is a 2pj(pj > 0) copy of a vector �j i.e. �j = f�j; : : : ; �jg and j�jj = 2pj, (3) �j 6= �i,if j 6= i, (4) fu1; : : : ; ukg = �1 [ � � � [�t.



Note that there exist �2nt � di�erent choices of t distinguished vectors �1; : : : ; �tfromVn. Arranging each multiple set fu1; : : : ; ukg, we obtain precisely (k)!(2p1)!���(2pt)!distinguished ordered sets. Note that 2p1 + � � �+ 2pt = k and 1 � t � k=2. Theproof is completed. utFrom Lemma 4, if (u1; : : : ; uk) 2 Ok then f(u1) � � � � � f(uk) = 0 holds forevery function f on Vn. Therefore, in this case f(u1) � � � � � f(uk) = 0 withu1 � � � � � uk = 0 does not really reect an a�ne property. Hence we focus onH(k)f;0 �Ok and H(k)f;1.Theorem 6. Let k be an even with 2 � k � 2n. Then(i) the mean of ~h(k)f;0 over all the functions on Vn i.e. 2�2nPf ~h(k)f;0, satis�es2�2nXf ~h(k)f;0 = 12ok + 2(k�1)n�1where ok is given in Lemma 5.(ii) the mean of ~h(k)f;1 over all the functions on Vn i.e. 2�2nPf ~h(k)f;1, satis�es2�2nXf ~h(k)f;1 = �12ok + 2(k�1)n�1Proof.(i) Consider two cases for (u1; : : : ; uk) 2 H(k)f;0.Case 1: (u1; : : : ; uk) 2 Ok. From Lemma 4, f(u1)� � � � � f(uk) = 0 holds forevery function f on Vn.Case 2: (u1; : : : ; uk) 2 H(k)f;0 � Ok. Note that f(u1) � � � � � f(uk) takes thevalue zero and the value one with an equal probability of a half for a randomfunction f on Vn. Therefore2�2nXf ~h(k)f;0 = 2�2nXf #Ok + 2�2nXf #(H(k)f;0(0)� Ok) = ok + 12[2(k�1)n� ok]= 12ok + 2(k�1)n�1This proves (i) of the theorem.Part (ii) can be proven in a similar way, once again by noting that f(u1) �� � � � f(uk) takes the value zero and the value one with an equal probability ofa half, for a a random function f on Vn. utA function whose nonhomomorphicity is larger than the mean, namely ~h(k)f;1 >2�2nPf ~h(k)f;1, indicates that the function is more nonlinear. The converse alsoholds.



8 Relative NonhomomorphicityThe concept of relative nonhomomorphicity introduced in this section is usefulfor a statistical tool to be introduced later.Notation 3. Let k be an even with k � 4 and Rk denote the collection of orderedk-tuples (u1; : : : ; uk) of vectors in Vn satisfying u1 � � � � � uk = 0.We have noticed#Rk = 2(k�1)n and #(Rk �Ok) = 2(k�1)n� ok: (11)From the proof of Theorem 6, if (u1; : : : ; uk) 2 Rs�Ok then f(u1)�� � ��f(uk)takes the value zero and the value one with equal probability.De�nition 6. Let f be a function on Vn and k be an even with k � 4. De�ne thekth-order relative nonhomomorphicity of f , denoted by �(k)f;1, as �(k)f;1 = ~h(k)f;1#(Rk�Ok) ,i.e. �(k)f;1 = ~h(k)f;12(k�1)n�ok .From Theorem 6, we obtainCorollary 4. Let k be an even with 2 � k � 2n. Then the mean of �(k)f;1 over allthe functions on Vn i.e. 2�2nPf �(k)f;1, satis�es 2�2nPf �(k)f;1 = 12 .From Corollary 4,�(k)f;1 �� 12 then the nonhomomorphicity of f is not smaller than the mean< 12 then the nonhomomorphicity of f is smaller than the mean (12)if �(k)f;1 is much smaller than 12 then f should be considered as cryptographicallyweak.9 Estimating NonhomomorphicityAs shown in Theorem 2, the nonhomomorphicity of a function can be determinedprecisely. In this section, however, we introduce a statistical method to estimatenonhomomorphicity. Such a method is useful in fast analysis of functions.Denote a real-valued (0; 1) function on Rk � Ok, t(u1; : : : ; uk), as followst(u1; : : : ; uk) = �1 if f(u1)� � � � � f(uk) = 10 otherwiseHence from the de�nition of nonhomomorphicity we have~h(k)f;1 = X(u1;:::;uk)2Rk�Ok t(u1; : : : ; uk)



Let 
 be a random subset of Rk � Ok. Write ! = #
 andt = 1! X(u1;:::;uk)2
 t(u1; : : : ; uk) (13)Note that this is the \sample mean" [1]. In particular, 
 = R(k)n � Ok, t isidenti�ed with the \true mean" or \population mean" [1], namely, �(k)f;1.Now consider P(u1;:::;uk)2
(t(u1; : : : ; uk) � t)2. We haveX(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2 = X(u1;:::;uk)2
 t2(u1; : : : ; uk)� 2t � X(u1;:::;uk)2
 t(u1; : : : ; uk) + !t2Note that t2(u1; : : : ; uk) = t(u1; : : : ; uk). From (13),X(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2 = !t � 2!t2 + !t2 = !t� 2!t2 + !t2= !t(1 � t) (14)Hence the quantity of q 1!�1P(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2, which is calledthe \sample standard deviation" [1] and is usually denoted by �, can be expressedas � =vuut 1! � 1 X(u1;:::;uk)2
(t(u1; : : : ; uk) � t)2 =s!t(1� t)! � 1 (15)By using (4.4) in Section 4.B of [1], the \true mean" or \population mean", �(k)f;1,can be bounded by t� Ze=2 �p! < �(k)f;1 < t+ Ze=2 �p! (16)where Ze=2 denotes the value Z of a \standardized normal distribution" which toits right a fraction e=2 of the data, (16) holds with a probability of (1�e)100% [1].For example,when e = 0:2, Ze=2 = 1:28, and (16) holds with a probability of 80%;when e = 0:1, Ze=2 = 1:64, and (16) holds with a probability of 90%;when e = 0:05, Ze=2 = 1:96, and (16) holds with a probability of 95%;when e = 0:02, Ze=2 = 2:33, and (16) holds with a probability of 98%;when e = 0:01, Ze=2 = 2:57, and (16) holds with a probability of 99%;when e = 0:001, Ze=2 = 3:3, and (16) holds with a probability of 99:9%:



From (13), 0 � t < 1 and it is easy to verify that � in (15) satis�es 0 � � �12q !!�1 , This implies that (16) can be simply replaced byt � Ze=22p! � 1 < �(k)f;1 < t+ Ze=22p! � 1 ; (17)where (17) holds with (1 � e)100% probability. Hence if ! i.e. #
 is large,then the lower bound and the upper bound on �(k)f;1 in (16) are closer to eachother. On the other hand, if we choose ! = #
 large enough then Ze=2 �p! issu�ciently small, and hence (16) and (17) will provide us with useful information.For instance, viewing Corollary 4 and (17), we can choose ! = #
 such thatZe=22p!�1 < 10�p. Hence ! � Ze=2 � 102p is large enough. In this case (17) isspecialized as t� 10�p < �(k)f;1 < t+ 10�p (18)where (18) holds with (1� e)100% probability.In summary , we can analyze the nonhomomorphic characteristics of a func-tion on Vn in the following steps:1. we randomly �x even k with k � 4, for example, k = 4; 6 or 8, and randomly�x a large integer !, for example, ! � Ze=2 � 102p, and randomly choose asubset of Rk �Ok, say 
, with #
 = !,2. by using (13), we determine t, i.e. \the sample mean",3. by using (18), we determine the range of �(k)f;1 with a high reliability,4. viewing �(k)f;1 in (18), from Corollary 4,�(k)f;1 �� 12 then f is not less nonhomomorphic than the mean> 12 then F is less nonhomomorphic than the mean (19)where (19) holds with (1� e)% probability,5. if �(k)f;1 is much smaller than 12 then f should be considered as cryptographi-cally weak.We have noticed that the statistical analysis has following advantages:(1) the relative nonhomomorphicity, �(k)f;1 can be precisely identi�ed by the useof \population mean" or \true mean",(2) by using this method we do not need to search through the entire Vn,(3) the method is highly reliable.10 Extensions to S-boxesObviously, the concept of nonhomomorphicity of a Boolean function can be ex-tended to that of an S-box in a straightforward way. Analysis of the general
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