The Nonhomomorphicity of S-boxes

Yuliang Zheng ${ }^{1}$ and Xian-Mo Zhang ${ }^{2}$
${ }^{1}$ School of Comp \& Info Tech, Monash University, McMahons Road, Frankston, Melbourne, VIC 3199, Australia. E-mail: yuliang@pscit.monash.edu.au
URL: http://www.pscit.monash.edu.au/links/
${ }^{2}$ School of Info Tech \& Comp Sci, the University of Wollongong, Wollongong NSW 2522, Australia. E-mail: xianmo@cs.uov.edu.au

Abstract

In this paper, we introduce the concept of k th-order nonhomomorphicity of mappings or S-boxes as an alternative indicator that forecasts nonlinearity characteristics of an S-box, where $k \geq 4$ is even. Main results of this paper include: (1) we show that nonhomomorphicity, especially the 4th order nonhomomorphicity, can be precisely expressed by using other important nonlinear indicators of an S-box. (2) we establish tight lower and upper bounds on the nonhomomorphicity of S-boxes, (3) we identify the mean of nonhomomorphicity over all the S-boxes with the same size and the relative nonhomomorphicity of an S-box, both of which are useful in estimating, statistically, the nonhomomorphicity of an S-box.

Key Words

Sequences, Boolean Functions, S-boxes, Cryptanalysis, Cryptography, Nonhomomorphicity.

1 Motivation of this Research

The so-called S-boxes, which are functionally identical to mappings or tuples of Boolean functions, are of critical importance to the strength of a block cipher. In the past decade, the analysis and design of S-boxes has attracted a tremendous amount of attention. This paper focuses on new methods or perspectives for the analysis of S-boxes. More specifically, it deals with a new nonlinearity indicator called nonhomomorphicity.

To understand the motivation behind the new concept, let us first note that a mapping F from V_{n} to V_{m} is affine, i.e., $F(x)=x B \oplus \beta$ where $x \in V_{n}, B$ is a fixed $n \times m$ matrix, if and only if F satisfies such property that for any even number k with $k \geq 4, F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ whenever $u_{1} \oplus \cdots \oplus u_{k}=0$.

Now consider a non-affine function F on V_{n}. If $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ then F satisfies the affine property at the particular vector $\left(u_{1}, \ldots, u_{k}\right)$. On the other hand, if $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0$ then F behaves in a way that is against the affine property at $\left(u_{1}, \ldots, u_{k}\right)$.

The above discussions indicate that $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0$ is a useful characteristic that differentiates a non-affine function from an affine one. This leads us to considering the number of vectors in $V_{n},\left(u_{1}, \ldots, u_{k}\right)$ with $u_{1} \oplus \cdots \oplus$ $u_{k}=0$ satisfying $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0$ as a new nonlinearity criterion. We call this new criterion the k th-order nonhomomorphicity of F.

Nonhomomorphicity has several interesting properties including (1) it explores a new non-affine property; (2) it can be precisely calculated by other indicators; (3) the mean of nonhomomorphicity over all the S-boxes with the same size can be precisely identified; (4) there exists a fast statistical method to estimate the nonhomomorphicity of an S-box.

In this paper we restrict our attention to the 4th-order nonhomomorphicity of S-boxes, due to the fact that 4 is the smallest order and hence it is easy to handle. Furthermore, the 4th-order nonhomomorphicity of S-boxes is closely related to many other criteria, a property apparently not shared by a higher order nonhomomorphicity.
[9] has studied a special case when the mapping F degenerates to a Boolean function, i.e., a mapping from V_{n} to V_{1}. It turns out that the analysis of the nonhomomorphicity of a general mapping from V_{n} to V_{m} is far more complex than what we thought as first. As the analysis employs a number of new techniques, the results in this paper represent non-trivial generalization of those in [9].

The rest of this paper is organized as follows: In Section 2, we introduce the basic definitions and notations used in this paper. In Section 3, we explain reasons why we study the nonhomomorphicity of S-boxes. In Section 4, we give three precise characterizations of the nonhomomorphicity of S-boxes by the use of other indicators. These characterizations indicate close relationships between nonhomomorphicity and other important criteria. This is followed by Section 5 where we establish tight upper and lower bounds on the nonhomomorphicity of S-boxes. In Section 6, we establish the mean of nonhomomorphicity of all the S-boxes with the same size. In Section 7, we show that the mean of nonhomomorphicity and the relative nonhomomorphicity are relevant to a statistical method for estimating the nonhomomorphicity of S-boxes. An example application of nonhomomorphicity is given in Section 8.

2 Basic Definitions

Definition 1. Denote by V_{n} the vector space of n tuples of elements from $G F(2)$. The truth table of a function f from V_{n} to $G F(2)$ (or simply functions on V_{n}) is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)$, and the sequence of f is a $(1,-1)$-sequence defined by $\left((-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}, \ldots,(-1)^{f\left(\alpha_{2} n-1\right)}\right)$, where $\alpha_{0}=(0, \ldots, 0,0), \alpha_{1}=(0, \ldots, 0,1), \ldots, \alpha_{2^{n-1}-1}=(1, \ldots, 1,1) . f$ is said to be balanced if its truth table contains an equal number of ones and zeros.

Definition 2. A function f on V_{n} is called an affine function if $f(x)=c \oplus$ $a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}$ where each a_{j} and c are constant in $G F(2)$. In particular, f is called a linear function if $c=0$. A mapping from V_{n} to V_{m}, F, is an affine (linear) if all the component functions of F are affine (linear).

Definition 3. The Hamming weight of a $(0,1)$-sequence ξ is the number of ones in the sequence. Given two functions f and g on V_{n}, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. The nonlinearity of f, denoted by N_{f}, is the minimal Hamming distance between f and all affine functions on V_{n}, i.e., $N_{f}=\min _{i=1,2, \ldots, 2^{n+1}} d\left(f, \varphi_{i}\right)$ where $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{2^{n+1}}$ are all the affine functions on V_{n}.

Given two sequences $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)$, their componentwise product is denoted by $a * b$, while the scalar product (sum of component-wise products) is denoted by $\langle a, b\rangle$.

The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2^{n}, denoted by H_{n}, is generated by the recursive relation $H_{n}=\left[\begin{array}{rr}H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1}\end{array}\right]$, $n=1,2, \ldots, H_{0}=1$. Each row (column) of H_{n} is a linear sequence of length 2^{n}.

A function f on V_{n} is called a bent function [7] if $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n}$ for every $i=0,1, \ldots, 2^{n}-1$, where ξ is the sequence of f and ℓ_{i} is a row in H_{n}. A bent function on V_{n} exists only when n is a positive even number, and it achieves the highest possible nonlinearity $2^{n-1}-2^{\frac{1}{2} n-1}$.

The nonlinearity of f on V_{n} can be expressed by

$$
\begin{equation*}
N_{f}=2^{n-1}-\frac{1}{2} \max \left\{\left|\left\langle\xi, \ell_{i}\right\rangle\right|, 0 \leq i \leq 2^{n}-1\right\} \tag{1}
\end{equation*}
$$

where ξ is the sequence of f and $\ell_{0}, \ldots, \ell_{2^{n}-1}$ are the rows of H_{n}, namely, the sequences of linear functions on V_{n}. The proof can be found in, for instance, [4].
Definition 4. Let f be a function on V_{n}. For a vector $\alpha \in V_{n}$, denote by $\xi(\alpha)$ the sequence of $f(x \oplus \alpha)$. Thus $\xi(0)$ is the sequence of f itself and $\xi(0) * \xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$. Let $\Delta(\alpha)$ be the scalar product of $\xi(0)$ and $\xi(\alpha)$. Namely $\Delta(\alpha)=\langle\xi(0), \xi(\alpha)\rangle \Delta(\alpha)$ is called the auto-correlation of f with a shift α.

The following formula is well known to the researchers. A simple proof together with applications can be found, for instance, in [8]
$\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right) H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2},\left\langle\xi, \ell_{1}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right)$ where α_{i} is the binary representation of an integer i and ℓ_{i} is the i th row of H_{n}, $i=0,1, \ldots, 2^{n}-1$. Hence it is easy to verify

$$
\begin{equation*}
2^{n} \sum_{i=0}^{2^{n}-1} \Delta^{2}\left(\alpha_{i}\right)=\sum_{i=0}^{2^{n}-1}\left\langle\xi, \ell_{i}\right\rangle^{4} \tag{2}
\end{equation*}
$$

Definition 5. An $n \times m$ S-box or substitution box is a mapping from V_{n} to V_{m}, i.e., $F=\left(f_{1}, \ldots, f_{m}\right)$, where n and m are integers with $n \geq m \geq 1$ and each component function f_{j} is a function on V_{n}. In this paper, we use the terms of mapping and S-box interchangeably. F is an affine mapping if it can be written as $F(x)=x B \oplus \beta$, where $x=\left(x_{1}, \ldots, x_{n}\right), B$ is an $n \times m$ matrix on $G F(2)$, and β a vector in V_{m}. When β is the zero vector, F is said to be linear.

The concept of nonlinearity can be extended to the case of an S-box [6].
Definition 6. The nonlinearity of $F=\left(f_{1}, \ldots, f_{m}\right)$ is defined as

$$
N_{F}=\min _{g}\left\{N_{g} \mid g=\bigoplus_{j=1}^{m} c_{j} f_{j}, c_{j} \in G F(2),\left(c_{1}, \ldots, c_{m}\right) \neq(0, \ldots, 0)\right\}
$$

3 Nonhomomorphicity of S-boxes

The following lemma is important in this paper, as it explores a characteristic property of affine mappings which will be useful in studying nonhomomorphicity.

Lemma 1. Let F be an $n \times m$ mapping.
(i) If F is an affine mapping then F satisfies such property that for any even number k with $k \geq 4, F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ whenever $u_{1} \oplus \cdots \oplus u_{k}=0$,
(ii) if there exists an even number k with $k \geq 4$ such that $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ whenever $u_{1} \oplus \cdots \oplus u_{k}=0$, then F is an affine mapping.

Proof. We first prove Part (ii) of the lemma. Assume that there exists an even number k with $k \geq 4$ such that $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ whenever $u_{1} \oplus \cdots \oplus u_{k}=0$. We now prove that F is affine. Let u_{1} and u_{2} be any two vectors in V_{n}. Obviously, the k vectors $u_{1}, u_{2}, u_{1} \oplus u_{2}, 0, \ldots, 0$ satisfy $u_{1} \oplus u_{2} \oplus\left(u_{1} \oplus u_{2}\right) \oplus 0 \oplus \cdots \oplus 0=0$. From the assumption,

$$
\begin{equation*}
F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus F\left(u_{1} \oplus u_{2}\right) \oplus F(0) \oplus \cdots \oplus F(0)=0 \tag{3}
\end{equation*}
$$

There are two cases to be examined: $F(0)=0$ and $F(0) \neq 0$.
Case 1: $F(0)=0$. In this case $F(c \alpha)=c F(\alpha)$ holds for any vector $\alpha \in V_{n}$ and any value $c \in G F(2)$. Hence (3) can be rewritten as

$$
\begin{equation*}
F\left(u_{1} \oplus u_{2}\right)=F\left(u_{1}\right) \oplus F\left(u_{2}\right) \tag{4}
\end{equation*}
$$

where u_{1} and u_{2} are arbitrary.
Let e_{j} denote the vector in V_{n}, whose the j th component is one and others are zero. For any fixed value x_{j} in $G F(2), j=1, \ldots, n$, from (4), $F\left(x_{1} e_{1} \oplus\right.$ $\left.\cdots \oplus x_{n} e_{n}\right)=F\left(x_{1} e_{1}\right) \oplus F\left(x_{2} e_{2} \oplus \cdots \oplus x_{n} e_{n}\right)$. Applying (4) repeatedly, we have $F\left(x_{1} e_{1} \oplus \cdots \oplus x_{n} e_{n}\right)=F\left(x_{1} e_{1}\right) \oplus F\left(x_{2} e_{2}\right) \oplus \cdots \oplus F\left(x_{n} e_{n}\right)$. Note that $F(0)=0$ implies $F(c \alpha)=c F(\alpha)$ where c is any value in $G F(2)$ and α is any vector in V_{n}. Hence

$$
\begin{equation*}
F\left(x_{1} e_{1} \oplus \cdots \oplus x_{n} e_{n}\right)=x_{1} F\left(e_{1}\right) \oplus \cdots \oplus x_{n} F\left(e_{n}\right) \tag{5}
\end{equation*}
$$

From the definition of $e_{j}, x_{1} e_{1} \oplus \cdots \oplus x_{n} e_{n}=\left(x_{1}, \ldots, x_{n}\right)$. On the other hand, if we write $F\left(e_{j}\right)=\beta_{j}$ where $\beta_{j} \in V_{m}, j=1, \ldots, n$. Then (5) can be rewritten as $F\left(x_{1}, \ldots, x_{n}\right)=x_{1} \beta_{1} \oplus \cdots \oplus x_{n} \beta_{n}$ or $F\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) B$ where
$B=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right]$ where B is an $n \times m$ matrix over $G F(2)$ and each β_{i} regarded as a row vector of B.

Case 2: $F(0)=\beta$ with $\beta \neq 0$. Set $G(x)=\beta \oplus F(x)$. Then G is linear. By using the result in Case $1, G\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) B$ where B is an $n \times m$ matrix over $G F(2)$. Hence $F\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) B \oplus \beta$. This proves that F is affine.

We now prove Part (i) of the lemma. Assume that F is affine. From Definition 5 , it is easy to check that for any even number k with $k \geq 4, F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=$ 0 whenever $u_{1} \oplus \cdots \oplus u_{k}=0$.

From the characteristic property shown in Lemma 1, if a mapping F on V_{n} satisfies $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ for a large number of k-tuples $\left(u_{1}, \ldots, u_{k}\right)$ of vectors in V_{n} with $u_{1} \oplus \cdots \oplus u_{k}=0$, then the mapping behaves more like an affine function. This leads us to introduce a new nonlinearity criterion.

Notation 1. Let F be a mapping from V_{n} to V_{m} and k an even number with $4 \leq k \leq 2^{n}$. Denote by $\mathcal{H}_{F, \beta}^{(k)}$ the collection of ordered k-tuples $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ of vectors in V_{n} such that

$$
\begin{aligned}
\mathcal{H}_{F, \beta}^{(k)}= & \left\{\left(u_{1}, u_{2}, \ldots, u_{k}\right) \mid u_{j} \in V_{n}, u_{1} \oplus u_{2} \oplus \cdots \oplus u_{k}=0,\right. \\
& \left.F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus \cdots \oplus F\left(u_{k}\right)=\beta\right\}
\end{aligned}
$$

where $\beta \in V_{m}$. Let $\tilde{q}_{F, \beta}^{(k)}$ denote the number of elements in $\mathcal{H}_{F, \beta}^{(k)}$, i.e., $\tilde{q}_{F, \beta}^{(k)}=$ $\# \mathcal{H}_{F, \beta}^{(k)}$.

Definition 7. Let F be a mapping from V_{n} to V_{m} and k an even number with $4 \leq k \leq 2^{n}$. Write

$$
\begin{align*}
Q_{F}^{(k)}= & \left\{\left(u_{1}, \ldots, u_{k}\right) \mid u_{j} \in V_{n}, u_{1} \oplus u_{2} \oplus \cdots \oplus u_{k}=0,\right. \\
& \left.F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0\right\} \tag{6}
\end{align*}
$$

Let $\tilde{q}_{F}^{(k)}$ be the number of elements in $Q_{F}^{(k)}$, i.e., $\tilde{q}_{F}^{(k)}=\# Q_{F}^{(k)}$. We call $\tilde{q}_{F}^{(k)}$ the k th-order nonhomomorphicity of F.

Note that there exist $2^{(k-1) n} k$-tuples of vectors in $V_{n},\left(u_{1}, \ldots, u_{k}\right)$, satisfying $u_{1} \oplus \cdots \oplus u_{k}=0$. Hence

Lemma 2. Let F be an $n \times m$ mapping. Then $\sum_{\beta \in V_{n}} \tilde{q}_{F, \beta}^{(k)}=2^{(k-1) n}$ or $\tilde{q}_{F}^{(k)}+$ $\tilde{q}_{F, 0}^{(k)}=2^{(k-1) n}$.

Lemma 1 indicates that when discussing the nonhomomorphic characteristics of a mapping, we may focus on a single even number k, rather than on all even number k. Therefore we will focus on $\tilde{q}_{F}^{(4)}$. An obvious advantage of restricting
to a small $k=4$ is that it would make the task of computing or estimating $\tilde{q}_{F}^{(4)}$ easier. Another reason why we prefer $\tilde{q}_{F}^{(4)}$ to a general $\tilde{q}_{F}^{(k)}$ is that we have found interesting relationships between $\tilde{q}_{F}^{(4)}$ and many other criteria. Furthermore, this case has the following interesting property.

Notation 2. Let $O_{n}^{(4)}$ denote the collection of ordered 4-tuples
$\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ of vectors in V_{n}, satisfying $u_{j_{1}}=u_{j_{2}}$ and $u_{j_{3}}=u_{j_{4}}$, where the 4-tuple $\left(u_{j_{1}}, u_{j_{2}}, u_{j_{3}}, u_{j_{4}}\right)$ is a rearrangement of $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. Denote by $D_{n}^{(3)}$ the collection of 3 -tuples $\left(u_{1}, u_{2}, u_{3}\right)$ of vectors in V_{n} with distinct u_{1}, u_{2} and u_{3}.

Obviously if $u_{1} \oplus u_{2} \oplus u_{3} \oplus u_{4}=0$ then either $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in O_{n}^{(4)}$ or $\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}$ with $u_{1} \oplus u_{2} \oplus u_{3}=u_{4}$. It is easy to verify

$$
\# O_{n}^{(4)}=3 \cdot 2^{2 n}-2^{n+1}, \# D_{n}^{(3)}=2^{n}\left(2^{n}-1\right)\left(2^{n}-2\right)=2^{3 n}-3 \cdot 2^{2 n}+2^{n+1}(7)
$$

In addition, if $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in O_{n}^{(4)}$, then $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(4)}$. In other words, $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, \beta}^{(4)}$ with $\beta \neq 0$ implies $\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}$ and $u_{1} \oplus$ $u_{2} \oplus u_{3}=u_{4}$. These properties will be useful later when we count $\tilde{q}_{F}^{(4)}$.

We note that Lemma 1 cannot be extended to the case of odd k. This is the reason why we have not defined nonhomomorphicity for an odd order.

4 Calculating 4th-order Nonhomomorphicity of S-boxes using Other Indicators

To calculate or express a criterion, we must need other information or conditions. This section has two aims: (1) to give three precise expressions of nonhomomorphicity by using other indicators, (2) to explore the relationships between nonhomomorphicity and other criteria.

4.1 Expressing Nonhomomorphicity by Difference Distribution

Definition 8. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m$ mapping, $\alpha \in V_{n}$, and β_{j} be the vector in V_{m} that corresponds to the binary representation of an integer j. Define $k_{\beta}(\alpha)$ as the number of times $F(x) \oplus F(x \oplus \alpha)$ runs through $\beta \in V_{m}$ while x runs through all the vectors in V_{n} once, The difference distribution table of F is a matrix specified as follows:

$$
K=\left[\begin{array}{cccc}
k_{\beta_{0}}\left(\alpha_{0}\right) & k_{\beta_{1}}\left(\alpha_{0}\right) & \ldots & k_{\beta_{2^{m}-1}}\left(\alpha_{0}\right) \\
k_{\beta_{0}}\left(\alpha_{1}\right) & k_{\beta_{1}}\left(\alpha_{1}\right) & \ldots & k_{\beta_{2} m_{-1}}\left(\alpha_{1}\right) \\
& \vdots \\
k_{\beta_{0}}\left(\alpha_{2^{n}-1}\right) & k_{\beta_{1}}\left(\alpha_{2^{n}-1}\right) & \ldots & k_{\beta_{2^{m}-1}}\left(\alpha_{2^{n}-1}\right)
\end{array}\right]
$$

where α_{j} is the vector in V_{n} that corresponds to the binary representation of j.

Two properties of the difference distribution table K are (i) $\sum_{j=0}^{2^{m}-1} k_{\beta_{j}}\left(\alpha_{i}\right)=$ $2^{n}, i=0,1, \ldots, 2^{n}-1$, (ii) $k_{\beta_{0}}\left(\alpha_{0}\right)=2^{n}$ and $k_{\beta_{j}}\left(\alpha_{0}\right)=0, j=1, \ldots, 2^{m}-1$.

Consider an even number s with $s \geq 4$ and an ordered s-tuple ($u_{1}, u_{2}, \ldots, u_{s}$) of vectors in V_{n} satisfying $\bigoplus_{j=1}^{s} u_{j}=0$. Note that

$$
\begin{align*}
\bigoplus_{j=1}^{s} F\left(u_{j}\right) & =\bigoplus_{j=1}^{s-1} F\left(u_{j}\right) \oplus F\left(\bigoplus_{j=1}^{s-1} u_{j}\right) \\
& =\bigoplus_{j=1}^{s-2} F\left(u_{j}\right) \oplus F\left(u_{s-1}\right) \oplus F\left(u_{s-1} \oplus \bigoplus_{j=1}^{s-2} u_{j}\right) \tag{8}
\end{align*}
$$

Fix $u_{1}, \ldots, u_{s-2} \in V_{n}$ while letting u_{s-1} run through vectors in V_{n}. Then $\bigoplus_{j=1}^{s} F\left(u_{j}\right)$ runs through a vector $\beta \in V_{m}$ if and only if $F\left(u_{s-1}\right) \oplus F\left(u_{s-1} \oplus\right.$ $\bigoplus_{j=1}^{s-2} u_{j}$) runs through $\beta \bigoplus_{j=1}^{s-2} F\left(u_{j}\right)$ while u_{s-1} runs through all the vectors in V_{n} once. Hence, for fixed $u_{1}, \ldots, u_{s-2} \in V_{n}$, the number of times for $\bigoplus_{j=1}^{s} F\left(u_{j}\right)$ to run through $\beta \in V_{m}$ is determined by the quantity of $k_{\beta \oplus F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{s-2}\right)}\left(u_{1} \oplus\right.$ $\left.\cdots \oplus u_{s-2}\right)$.

Now we remove the restriction that $u_{1}, \ldots, u_{s-2} \in V_{n}$ are fixed. Then the number of times for $\bigoplus_{j=1}^{s} F\left(u_{j}\right)$ to run through $\beta \in V_{m}$ while (u_{1}, \ldots, u_{s}) satisfying $\bigoplus_{j=1}^{s} u_{j}=0$ runs through all the vectors in V_{n} once, is determined by $\sum_{u_{1}, \ldots, u_{s-2} \in V_{n}} k_{\beta \oplus F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{s-2}\right)}\left(u_{1} \oplus \cdots \oplus u_{s-2}\right)$. Hence we have

Lemma 3. Let F be an $n \times m$ mapping and k be an even number with $k \geq 4$. Then

$$
\tilde{q}_{F, \beta}^{(s)}=\sum_{u_{1}, \ldots, u_{s-2} \in V_{n}} k_{\beta \oplus F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{s-2}\right)}\left(u_{1} \oplus \cdots \oplus u_{s-2}\right)
$$

where $\tilde{q}_{F, \beta}^{(k)}$ is defined in Notation 1 and $k_{\beta}(\alpha)$ is defined in Definition 8.
In particular, when $s=4$ and $\beta=0$, Lemma 3 is specialized as
Corollary 1. Let F be an $n \times m$ mapping. Then

$$
\tilde{q}_{F, 0}^{(4)}=\sum_{u_{1}, u_{2} \in V_{n}} k_{F\left(u_{1}\right) \oplus F\left(u_{2}\right)}\left(u_{1} \oplus u_{2}\right)
$$

where $\tilde{q}_{F, 0}^{(k)}$ is defined in Notation 1 and $k_{\beta}(\alpha)$ is defined in Definition 8.
Corollary 2. Let F be an $n \times m$ mapping. Then

$$
\tilde{q}_{F, 0}^{(4)}=\sum_{\alpha \in V_{n}} \sum_{\beta \in V_{m}} k_{\beta}^{2}(\alpha)
$$

where $\tilde{q}_{F, 0}^{(k)}$ is defined in Notation 1 and $k_{\beta}(\alpha)$ is defined in Definition 8.

Proof. Write $u_{1} \oplus u_{2}=\alpha$. Hence Corollary 1 can be rewritten as

$$
\begin{equation*}
\tilde{q}_{F, 0}^{(4)}=\sum_{\alpha \in V_{n}} \sum_{u_{1} \in V_{n}} k_{F\left(u_{1}\right) \oplus F\left(u_{1} \oplus \alpha\right)}(\alpha) \tag{9}
\end{equation*}
$$

By the definition of $k_{\beta}(\alpha)$, if $F\left(u_{1}\right) \oplus F\left(u_{1} \oplus \alpha\right)=\beta$, then we have

$$
k_{F\left(u_{1}\right) \oplus F\left(u_{1} \oplus \alpha\right)}(\alpha)=k_{\beta}(\alpha)
$$

Again, recall that $k_{\beta}(\alpha)$ denotes the number of times $F\left(u_{1}\right) \oplus F\left(u_{1} \oplus \alpha\right)$ runs through $\beta \in V_{m}$ while u_{1} runs through all the vectors in V_{n} once. From (9), we have

$$
\tilde{q}_{F, 0}^{(4)}=\sum_{\alpha \in V_{n}} \sum_{u_{1} \in V_{n}} k_{F\left(u_{1}\right) \oplus F\left(u_{1} \oplus \alpha\right)}(\alpha)=\sum_{\alpha \in V_{n}} \sum_{\beta \in V_{m}} k_{\beta}^{2}(\alpha)
$$

This concludes the proof.
The above corollary, together with Lemma 2, gives rise to the following result:
Theorem 1. Let F be an $n \times m$ mapping. Then the 4 th-order nonhomomorphicity, $\tilde{q}_{F}^{(4)}$, satisfies

$$
\hat{q}_{F}^{(4)}=2^{3 n}-\sum_{\alpha \in V_{n}} \sum_{\beta \in V_{m}} k_{\beta}^{2}(\alpha)
$$

where $k_{\beta}(\alpha)$ is defined in Definition 8.

4.2 Expressing Nonhomomorphicity by Fourier Spectrum

Definition 9. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m$ mapping, $\alpha \in V_{n}, j=$ $0,1, \ldots, 2^{m}-1$ and $\beta_{j}=\left(b_{1}, \ldots, b_{m}\right)$ be the vector in V_{m} that corresponds to the binary representation of an integer j. In addition, set $g_{j}=\bigoplus_{u=1}^{m} b_{u} f_{u}$ be the j th linear combination of the component functions of F. Denote the sequence of g_{j} by η_{j}. Set

$$
P=\left[\begin{array}{cccc}
\left\langle\eta_{0}, \ell_{0}\right\rangle^{2} & \left\langle\eta_{1}, \ell_{0}\right\rangle^{2} & \cdots & \left\langle\eta_{2^{m}-1}, \ell_{0}\right\rangle^{2} \\
\left\langle\eta_{0}, \ell_{1}\right\rangle^{2} & \left\langle\eta_{1}, \ell_{1}\right\rangle^{2} & \cdots & \left\langle\eta_{2^{m}-1}, \ell_{1}\right\rangle^{2} \\
& \vdots & & \\
\left\langle\eta_{0}, \ell_{2^{n}-1}\right\rangle^{2} & \left\langle\eta_{1}, \ell_{2^{n}-1}\right\rangle^{2} & \cdots & \left\langle\eta_{2^{m}-1}, \ell_{2}-1\right\rangle^{2}
\end{array}\right]
$$

where ℓ_{i} is the ith row of $H_{n}, i=0,1, \ldots, 2^{n}-1$. The matrix P is called the correlation immunity distribution table of the mapping F.

Since both η_{0} and ℓ_{0} are the all-one sequence of length 2^{n} and ℓ_{j} is $(1,-1)$ balanced for $j>0$, we have $\left\langle\eta_{0}, \ell_{0}\right\rangle=2^{n},\left\langle\eta_{0}, \ell_{j}\right\rangle=0, j=1, \ldots, 2^{n}-1$. The following lemma can be found in [10].

Lemma 4. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be a mapping from V_{n} to V_{m}, where n and m are integers with $n \geq m \geq 1$ and each $f_{j}(x)$ is a function on V_{n}. Set $g_{j}=$ $\bigoplus_{u=1}^{m} c_{u} f_{u}$ where $\left(c_{1}, \ldots, c_{m}\right)$ is the binary representation of an integer $j, j=$ $0,1, \ldots, 2^{m}-1$. Then $P=H_{n} K H_{m}$ where K and P are defined in Definitions 8 and 9 respectively.

The following corollary can be deduced from Lemma 4 and Corollary 2.
Corollary 3. Let F be an $n \times m$ mapping. Then

$$
\tilde{q}_{F, 0}^{(4)}=2^{-m-n}\left[2^{4 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}\right]
$$

where $\left\langle\eta_{j}, \ell_{i}\right\rangle$ is defined in Definition 9.
By noting Lemma 2, we can further prove
Theorem 2. Let F be an $n \times m$ mapping. Then the 4 th-order nonhomomorphicity of $F, \tilde{q}_{F}^{(4)}$, satisfies

$$
\tilde{q}_{F}^{(4)}=2^{3 n}-2^{-m-n}\left[2^{4 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}\right]
$$

where $\left\langle\eta_{j}, \ell_{i}\right\rangle$ is defined in Definition 9.

4.3 Expressing Nonhomomorphicity by Auto-Correlation Distribution

Definition 10. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m S$-box, $\alpha \in V_{n}, j=0,1, \ldots, 2^{m}-$ 1 and $\beta_{j}=\left(b_{1}, \ldots, b_{m}\right)$ be the vector in V_{m} that corresponds to the binary representation of j. In addition, set $g_{j}=\bigoplus_{u=1}^{m} b_{u} f_{u}$ be the j th linear combination of the component functions of F. Denote the auto-correlation of g_{j} with shift α by $\Delta_{j}(\alpha)$.

Set

$$
D=\left[\begin{array}{cccc}
\Delta_{0}\left(\alpha_{0}\right) & \Delta_{1}\left(\alpha_{0}\right) & \ldots & \Delta_{2^{m}-1}\left(\alpha_{0}\right) \\
\Delta_{0}\left(\alpha_{1}\right) & \Delta_{1}\left(\alpha_{1}\right) & \ldots & \Delta_{2^{m}-1}\left(\alpha_{1}\right) \\
& \vdots & & \\
\Delta_{0}\left(\alpha_{2^{n}-1}\right) & \Delta_{1}\left(\alpha_{2^{n}-1}\right) & \ldots & \Delta_{2^{m}-1}\left(\alpha_{2^{n}-1}\right)
\end{array}\right]
$$

Matrix D is called auto-correlation distribution table of F.
By using Theorem 2 and (2), we have the following result:
Theorem 3. Let F be an $n \times m$ mapping. Then the 4 th-order nonhomomorphicity of $F, \tilde{q}_{F}^{(4)}$, satisfies

$$
\tilde{q}_{F}^{(4)}=2^{3 n}-2^{-m}\left[2^{3 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1} \Delta_{j}^{2}\left(\alpha_{i}\right)\right]
$$

5 Lower and Upper Bounds on Nonhomomorphicity

We first introduce Hölder's Inequality which can be found in [2].
Lemma 5. Let $c_{j} \geq 0$ and $d_{j} \geq 0$ be real numbers, where $j=1, \ldots, s$, and let p and q satisfy $\frac{1}{p}+\frac{1}{q}=1$ and $p>1$. Then $\left(\sum_{j=1}^{s} c_{j}^{p}\right)^{1 / p}\left(\sum_{j=1}^{s} d_{j}^{q}\right)^{1 / q} \geq \sum_{j=1}^{s} c_{j} d_{j}$ where the equality holds if and only if $c_{j}=\nu d_{j}, j=1, \ldots, s$ for a constant $\nu \geq 0$.

When c_{j}, d_{j}, p and q satisfy the condition that $c_{j} \geq 0, d_{j}=\left\{\begin{array}{l}1 \text { if } c_{j}=1 \\ 0 \text { if } c_{j}=0\end{array}\right.$, and $p=q=\frac{1}{2}$, Hölder's Inequality will be specialized as

$$
\begin{equation*}
\sum_{j=1}^{s} c_{j}^{2} \geq s^{-1}\left(\sum_{j=1}^{s} c_{j}\right)^{2} \tag{10}
\end{equation*}
$$

where the quality holds if and only if c_{1}, \ldots, c_{s} are all identical. By using the specialized Hölder's Inequality, we can prove

Theorem 4. Let F be an $n \times m$ mapping. Then the 4 th-order nonhomomorphicity of $F, \tilde{q}_{F}^{(4)}$, satisfies

$$
0 \leq \tilde{q}_{F}^{(4)} \leq 2^{2 n-m}\left(2^{n}-1\right)\left(2^{m}-1\right)
$$

where the first equality holds if and only if F is affine, and the second equality holds if and only if every nonzero linear combination of the component functions of F is bent.

Proof. By the definition of the 4th-order nonhomomorphicity of F, the first inequality is true, and the equality holds if and only if F is affine.

Now we consider the second inequality. From Theorem 2,

$$
\tilde{q}_{F}^{(4)}=2^{3 n}-2^{-m-n}\left[2^{4 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}\right]
$$

By using (10), we have

$$
\begin{aligned}
\tilde{q}_{F}^{(4)} & =2^{3 n}-2^{-m-n}\left[2^{4 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}\right] \\
& \leq 2^{3 n}-2^{-m-n}\left[2^{4 n}+\frac{1}{\left(2^{m}-1\right) 2^{n}}\left(\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}\right)^{2}\right]
\end{aligned}
$$

According to Parseval's equation (Page 416 of [3]), we have $\sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}=2^{2 n}$ for each $j, 1 \leq j \leq 2^{m}-1$. Hence

$$
\begin{equation*}
\tilde{q}_{F}^{(4)} \leq 2^{3 n}-2^{-m-n}\left[2^{4 n}+\frac{1}{\left(2^{m}-1\right) 2^{n}}\left(\left(2^{m}-1\right) 2^{2 n}\right)^{2}\right] \tag{11}
\end{equation*}
$$

This proves the second inequality. Again by using (10), the equality in (11) holds if and only if $\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}$ are identical for all $j=1, \ldots, 2^{m}-1$ and $i=$ $0,1, \ldots, 2^{n}-1$. Parseval's equation implies that, in this case, $\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}=2^{n}$ for all $j=1, \ldots, 2^{m}-1$ and $i=0,1, \ldots, 2^{n}-1$. Recall the definition of a bent function, we have proved that the equality in (11) holds if and only if each g_{j} (see Definition 9) is bent, where $1 \leq j \leq 2^{m}-1$.

If an $n \times m$ mapping, F, has the property that every nonzero linear combination of the component functions of F is bent, then F is called a perfect nonlinear [5]. From a corollary of [5], perfect nonlinear $n \times m$ mappings exist only when $m \leq \frac{1}{2} n$.

6 Mean of Nonhomomorphicity

To measure the nonhomomorphic characteristics of a mapping, it is reasonable to compare it with the mean of the 4th-order nonhomomorphicity over all the mappings from V_{n} to V_{m}. Hence we want to find out an explicit expression for $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(4)}$.

Recall that if $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in O_{n}^{(4)}$, then $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(4)}$. Hence we have the following:

Proposition 1. Let F be a mapping from V_{n} to V_{m}. Then for every nonzero vector $\beta \in V_{m}$,

$$
\begin{aligned}
\tilde{q}_{F, \beta}^{(4)}= & \#\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)},\right. \\
& \left.F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus F\left(u_{3}\right) \oplus F\left(u_{1} \oplus u_{2} \oplus u_{3}\right)=\beta\right\}
\end{aligned}
$$

There are two cases with $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(4)}$. Case 1: $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in$ $O_{n}^{(4)}$. Case 2: $\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}$ and $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(k)}$, where $u_{4}=u_{1} \oplus$ $u_{2} \oplus u_{3}$. This shows that the following is true.

Proposition 2. Let F be a mapping from V_{n} to V_{m}. Then

$$
\begin{aligned}
\tilde{q}_{F, 0}^{(4)}= & 3 \cdot 2^{2 n}-2^{n+1}+\#\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}\right. \\
& \left.F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus F\left(u_{3}\right) \oplus F\left(u_{1} \oplus u_{2} \oplus u_{3}\right)=0\right\}
\end{aligned}
$$

Theorem 5. Let F be a mapping from V_{n} to V_{m}. For a fixed nonzero $\beta \in V_{m}$, the mean of the $\tilde{q}_{F, \beta}^{(4)}$ over all the mappings from V_{n} to V_{m}, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F, \beta}^{(4)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{F} \hat{q}_{F, \beta}^{(3)}=2^{-m} \# D_{n}^{(3)}=2^{3 n-m}-3 \cdot 2^{2 n-m}+2^{n-m+1}
$$

Proof. We first note that there exist exactly $2^{m \cdot 2^{n}}$ mappings from V_{n} to V_{m}. For each fixed $\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}$, a random mapping F, from V_{n} to $V_{m}, F\left(u_{1}\right)$,
$F\left(u_{2}\right), F\left(u_{3}\right)$, and $F\left(u_{1} \oplus u_{2} \oplus u_{3}\right)$ are independent. Hence $F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus$ $F\left(u_{3}\right) \oplus F\left(u_{1} \oplus u_{2} \oplus u_{3}\right)$ takes every vector in V_{m} with an equal probability of 2^{-m}. Therefore we have

$$
\begin{aligned}
2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F, \beta}^{(4)}= & \sum_{F} 2^{-m \cdot 2^{n}} \#\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}\right. \\
& \left.F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus F\left(u_{3}\right) \oplus F\left(u_{1} \oplus u_{2} \oplus u_{3}\right)=\beta\right\} \\
= & \sum_{\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}} 2^{-m}=2^{-m} \# D_{n}^{(3)}
\end{aligned}
$$

Theorem 6. Let F be a mapping from V_{n} to V_{m}. Then the mean of $\tilde{q}_{F, 0}^{(4)}$ over all the mappings from V_{n} to V_{m}, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F, 0}^{(4)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F, 0}^{(4)}=3 \cdot 2^{2 n}-2^{n+1}+2^{3 n-m}-3 \cdot 2^{2 n-m}+2^{n-m+1}
$$

Proof. Consider two cases for $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(4)}$:
Case $1-\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in O_{n}^{(4)}$. Recall (7), \#O $O_{n}^{(4)}=3 \cdot 2^{2 n}-2^{n+1}$.
Case $2-\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}$ and $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(k)}$, where $u_{4}=u_{1} \oplus$ $u_{2} \oplus u_{3}$.

From the proof of Theorem 5, for each fixed $\left(u_{1}, u_{2}, u_{3}\right) \in D_{n}^{(3)}$, a random mapping $F F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus F\left(u_{3}\right) \oplus F\left(u_{1} \oplus u_{2} \oplus u_{3}\right)$ takes every vector, in particular the zero vector, in V_{m} with an equal possibility of 2^{-m}. Now the theorem follows immediately from Proposition 2 and the proof of Theorem 5.

Taking (6) into account, from Theorem 6 we obtain the following result which is of major interest:

Theorem 7. Let F be a mapping from V_{n} to V_{m}. Then the mean of $\tilde{q}_{F}^{(4)}$ over all the mappings from V_{n} to V_{m}, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(4)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(4)}=\left(2^{m}-1\right)\left(2^{3 n-m}-3 \cdot 2^{2 n-m}+2^{n-m+1}\right)
$$

7 Relative Nonhomomorphicity

We now introduce the concept of "relative nonhomomorphicity". It will be useful for a statistical tool.

Recall that if $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in O_{n}^{(4)}$, then $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathcal{H}_{F, 0}^{(4)}$. Hence to count $Q_{F}^{(k)}$, we do not need to consider any 4-tuples ($u_{1}, u_{2}, u_{3}, u_{4}$) in $O_{n}^{(4)}$.
Definition 11. Let F be a mapping from V_{n} to V_{m}. Then $\frac{\tilde{q}_{F}^{(4)}}{\# D_{n}^{(3)}}$, denoted by $\rho_{F}^{(4)}$, is called the (4th-order) relative nonhomomorphicity of F, where $\tilde{q}_{F}^{(4)}$ is the 4 th-order nonhomomorphicity of F, while $D_{n}^{(3)}$ is the collection of 3-tuples $\left(u_{1}, u_{2}, u_{3}\right)$ of vectors in V_{n} with distinct u_{1}, u_{2} and u_{3}.

Corollary 4. The mean of $\rho_{F}^{(4)}$ over all the $n \times m$ S-boxes, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \rho_{F}^{(4)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{F} \rho_{F}^{(4)}=1-2^{-m}
$$

Proof. Note that $2^{-m \cdot 2^{n}} \sum_{F} \rho_{F}^{(4)}=2^{-m \cdot 2^{n}} \sum_{F} \frac{\tilde{q}_{F}^{(4)}}{\# D_{n}^{(3)}}=\frac{2^{-m \cdot 2^{n}}}{\# D_{n}^{(3)}} \sum_{F} \tilde{q}_{F}^{(4)}$. Hence from Theorem 7, we have $2^{-m \cdot 2^{n}} \sum_{F} \rho_{F}^{(4)}=\frac{\left(2^{m}-1\right)\left(2^{3 n-m}-3 \cdot 2^{2 n-m}+2^{n-m+1}\right)}{2^{3 n}-3 \cdot 2^{2 n}+2^{n+1}}=$ $1-2^{-m}$

From Corollary 4, the following observation can be made:

$$
\rho_{F}^{(4)}\left\{\begin{array}{l}
>1-2^{-m} \text { then } F \text { is more nonhomomorphic than the average } \tag{12}\\
<1-2^{-m} \text { then } F \text { is less nonhomomorphic than the average }
\end{array}\right.
$$

Here the average nonhomomorphicity indicates one that has a relative nonhomomorphicity of $1-2^{-m}$. Clearly, if $\rho_{F}^{(4)}$ is much smaller than $1-2^{-m}$ then F should be considered to be cryptographically weak.

8 An Application of Nonhomomorphicity

We have noticed that the relative nonhomomorphicity, $\rho_{F}^{(4)}$ is precisely identified with "population mean" or "true mean", a terminology in statistics. This fact enables us to design a statistical method with a high reliability for estimating the nonhomomorphicity of an S-box, thank to the law of large numbers [1].

From the nonhomomorphicity, by using Theorems 1, 2 and 3, we obtain information about other criteria, for example, the nonlinearity, the maximum $k_{\beta}(\alpha)$ with $\alpha \in V_{n}, \alpha \neq 0$ and $\beta \in V_{n}$, and the maximum $\Delta_{j}\left(\alpha_{i}\right), 1 \leq j \leq 2^{m}-1$ and $1 \leq i \leq 2^{n}-1$.

Example 1. The Data Encryption Algorithm or DES employs eight 6×4 mappings or S-boxes. Consider the first mapping F. From Definition 7, we directly calculate $\tilde{q}_{F}^{(4)}=231264$. (Also we can use a statistical method to find an approximate value of $\tilde{q}_{F}^{(4)}$).

By using Theorem 1

$$
231264=2^{18}-\sum_{\alpha \in V_{6}} \sum_{\beta \in V_{4}} k_{\beta}^{2}(\alpha)
$$

Recall the property of the difference distribution table $K, k_{0}(0)=2^{n}$ and $k_{\beta}(0)=0, \beta \neq 0$.

$$
\sum_{\alpha \in V_{6}, \alpha \neq 0} \sum_{\beta \in V_{4}} k_{\beta}^{2}(\alpha)=2^{18}-2^{12}-231264
$$

Write $\max \left\{k_{\beta}(\alpha) \mid \alpha \in V_{6} . \alpha \neq 0, \beta \in V_{4}\right\}=k_{M}$ Hence we have

$$
k_{M} \sum_{\alpha \in V_{6}, \alpha \neq 0} \sum_{\beta \in V_{4}} k_{\beta}(\alpha) \geq \sum_{\alpha \in V_{6}} \sum_{\beta \in V_{4}} k_{\beta}^{2}(\alpha)=2^{18}-2^{12}-231264
$$

Again, recall the property of $K, \sum_{\beta \in V_{m}} k_{\beta}(\alpha)=2^{n}$, for any $\alpha \in V_{n}$. Hence

$$
k_{M}\left(2^{6}-1\right) 2^{6} \geq 2^{18}-2^{12}-231264
$$

This implies $k_{M} \geq 6.6$. Since k_{M} is even, $k_{M} \geq 8$. This is larger than the trivial lower bound $k_{M} \geq 2^{n-m}=4$.

Write $\max \left\{\mid\left\langle\eta_{j}, \ell_{i}\right\rangle \| 1 \leq j \leq 2^{4}-1,0 \leq i \leq 2^{6}-1\right\}=p_{M}$. By using Theorem 2,

$$
\left(2^{18}-\tilde{q}_{F}^{(4)}\right) 2^{6+4}-2^{24}=\sum_{j=1}^{2^{4}-1} \sum_{i=0}^{2^{6}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4} \leq p_{M}^{2} \sum_{j=1}^{2^{4}-1} \sum_{i=0}^{2^{6}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}
$$

By using Parseval's equation, Page 416, [3], $\sum_{i=0}^{2^{6}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}=2^{2 \cdot 6}$ for each fixed $j, j=1, \ldots, 2^{4}-1$. Hence $p_{M}^{2} \geq 2^{12}-\frac{231264}{60}>241$. Since p_{M}^{2} is square and multiple by 4 , we have $p_{M}^{2} \geq 256$. By using (1), we conclude that $N_{F} \leq$ $2^{6-1}-\frac{1}{2} p_{M} \leq 24$. Recall the maximum nonlinearity of functions on V_{6} is $2^{6-1}-$ $2^{3-1}=28$ that only bent functions achieve.

Write $\max \left\{\left|\Delta_{j}\left(\alpha_{i}\right)\right| 1 \leq j \leq 2^{4}-1,1 \leq i \leq 2^{6}-1\right\}=\Delta_{M}$. By using Theorem 3 ,

$$
\left(2^{3 \cdot 6}-\tilde{q}_{F}^{(4)}\right) 2^{4}-2^{3 \cdot 6}=\sum_{j=1}^{2^{4}-1} \sum_{i=0}^{2^{6}-1} \Delta_{j}^{2}\left(\alpha_{i}\right)
$$

Noticing $\Delta_{j}\left(\alpha_{0}\right)=2^{6}, j=0,1, \ldots, 2^{4}-1$, hence

$$
2^{3 \cdot 6+4}-2^{4} \tilde{q}_{F}^{(4)}-2^{3 \cdot 6}=2^{2 \cdot 6+4}+\sum_{j=1}^{2^{4}-1} \sum_{i=1}^{2^{6}-1} \Delta_{j}^{2}\left(\alpha_{i}\right) \leq\left(2^{4}-1\right)\left(2^{6}-1\right) \Delta_{M}^{2}
$$

This proves

$$
\Delta_{M}^{2} \geq \frac{2^{22}-2^{18}-2^{16}-2^{4} \tilde{q}_{F}^{(4)}}{\left(2^{6}-1\right)\left(2^{4}-1\right)}>176
$$

Since Δ_{M}^{2} is square and multiple by 4 , Hence $\Delta_{M}^{2} \geq 196$ and hence $\Delta_{M} \geq 14$.
We note that in Example 1, the value of $\tilde{q}_{F}^{(4)}$ also can be estimated by a fast statistical method with a high reliability. Such a statistical method is more useful in a situation where fast analysis of S-boxes is required.

9 Concluding Remarks

The advantages of nonhomomorphicity, as a new linearity criterion, include: (1) it can be estimated by a statistical method with a high reliability due to the law of large numbers; (2) it is closely related to other criteria. More details about the statistical method, together with further applications of nonhomomorphicity, will be shown in a separate paper.

Acknowledgement

The second author was supported by a Queen Elizabeth II Fellowship (227 23 1002).

References

1. Stephen A. Book. Statistics. McGraw-Hill Book Company, 1977.
2. Friedhelm Erwe. Differential And Integral Calculus. Oliver And Boyd Ltd, Edinburgh And London, 1967.
3. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, New York, Oxford, 1978.
4. W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology - EUROCRYPT'89, volume 434, Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, Berlin, Heidelberg, New York, 1990.
5. K. Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology - EUROCRYPT'91, volume 547, Lecture Notes in Computer Science, pages 378-386. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
6. K. Nyberg. On the construction of highly nonlinear permutations. In Advances in Cryptology - EUROCRYPT'92, volume 658, Lecture Notes in Computer Science, pages 92-98. Springer-Verlag, Berlin, Heidelberg, New York, 1993.
7. O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory, Ser. A, 20:300-305, 1976.
8. X. M. Zhang and Y. Zheng. Characterizing the structures of cryptographic functions satisfying the propagation criterion for almost all vectors. Design, Codes and Cryptography, $7(1 / 2): 111-134,1996$. special issue dedicated to Gus Simmons.
9. X. M. Zhang and Y. Zheng. The k th-order nonhomomorphicity of boolean functions. In $S A C^{\prime} 98$, volume Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1998. to appear.
10. X. M. Zhang, Y. Zheng, and Hideki Imai. Relating differential distribution tables to other properties of substitution boxes. Designs, Codes and Cryptography (to appear), 1998.
