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Abstract. In this paper, we introduce the concept of kth-order nonho-
momorphicity of mappings or S-boxes as an alternative indicator that
forecasts nonlinearity characteristics of an S-box, where k& > 4 is even.
Main results of this paper include: (1) we show that nonhomomorphicity,
especially the 4th order nonhomomorphicity, can be precisely expressed
by using other important nonlinear indicators of an S-box. (2) we estab-
lish tight lower and upper bounds on the nonhomomorphicity of S-boxes,
(3) we identify the mean of nonhomomorphicity over all the S-boxes with
the same size and the relative nonhomomorphicity of an S-box, both of
which are useful in estimating, statistically, the nonhomomorphicity of
an S-box.
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1 Motivation of this Research

The so-called S-boxes, which are functionally identical to mappings or tuples of
Boolean functions, are of critical importance to the strength of a block cipher. In
the past decade, the analysis and design of S-boxes has attracted a tremendous
amount of attention. This paper focuses on new methods or perspectives for the
analysis of S-boxes. More specifically, it deals with a new nonlinearity indicator
called nonhomomorphicity.

To understand the motivation behind the new concept, let us first note that
a mapping F' from V, to V,,, is affine, i.e., F'(z) = B @ 3 where z € V,,, B is
a fixed n x m matrix, if and only if F' satisfies such property that for any even
number k with k >4, F(u1) ® -+ & F(up) = 0 whenever u; & --- @ up = 0.

Now consider a non-affine function F' on V,,. If F(uy)@® - @ F(ur) = 0 then
F satisfies the affine property at the particular vector (uq,...,uz). On the other
hand, if F'(u1) @ ---@® F(ug) # 0 then F' behaves in a way that is against the
affine property at (uy, ..., ug).



The above discussions indicate that F(ui) @ --- @ F(ur) # 0 is a useful
characteristic that differentiates a non-affine function from an affine one. This
leads us to considering the number of vectors in V,,, (uy, ..., ug) with ug & - P
up = 0 satisfying F'(uy) @ - & F(u) # 0 as a new nonlinearity criterion. We
call this new criterion the kth-order nonhomomorphicity of F.

Nonhomomorphicity has several interesting properties including (1) it ex-
plores a new non-affine property; (2) it can be precisely calculated by other
indicators; (3) the mean of nonhomomorphicity over all the S-boxes with the
same size can be precisely identified; (4) there exists a fast statistical method to
estimate the nonhomomorphicity of an S-box.

In this paper we restrict our attention to the 4th-order nonhomomorphicity
of S-boxes, due to the fact that 4 is the smallest order and hence it is easy
to handle. Furthermore, the 4th-order nonhomomorphicity of S-boxes is closely
related to many other criteria, a property apparently not shared by a higher
order nonhomomorphicity.

[9] has studied a special case when the mapping F' degenerates to a Boolean
function, i.e., a mapping from V,, to V1. It turns out that the analysis of the non-
homomorphicity of a general mapping from V,, to V,,, is far more complex than
what we thought as first. As the analysis employs a number of new techniques,
the results in this paper represent non-trivial generalization of those in [9].

The rest of this paper is organized as follows: In Section 2, we introduce
the basic definitions and notations used in this paper. In Section 3, we explain
reasons why we study the nonhomomorphicity of S-boxes. In Section 4, we give
three precise characterizations of the nonhomomorphicity of S-boxes by the use
of other indicators. These characterizations indicate close relationships between
nonhomomorphicity and other important criteria. This is followed by Section 5
where we establish tight upper and lower bounds on the nonhomomorphicity of
S-boxes. In Section 6, we establish the mean of nonhomomorphicity of all the
S-boxes with the same size. In Section 7, we show that the mean of nonhomomor-
phicity and the relative nonhomomorphicity are relevant to a statistical method
for estimating the nonhomomorphicity of S-boxes. An example application of
nonhomomorphicity is given in Section 8.

2 Basic Definitions

Definition 1. Denote by V,, the vector space of n tuples of elements from GF(2).
The truth table of a function f from V,, to GF(2) (or simply functions on Vy, ) is
a (0,1)-sequence defined by (f(ao), f(ar), ..., f(aan_1)), and the sequence of f
is a (1,—1)-sequence defined by ((—1)7(@0) (=1)f(er)  (=1)T(@2n=1)) qohere
ag=(0,...,0,0), ay = (0,...,0,1), ..., agn-1_y = (1,...,1,1). f is said to be

balanced ¢f its truth table contains an equal number of ones and zeros.

Definition 2. A function f on V, is called an affine function if f(z) = ¢ ®
a1z1 B - B apx, where each a; and ¢ are constant in GF(2). In particular, f
15 called a linear function if c = 0. A mapping from V,, to V,, F, is an affine
(linear) if all the component functions of F' are affine (linear).



Definition 3. The Hamming weight of a (0, 1)-sequence £ is the number of ones
m the sequence. Given two functions f and g on V,, the Hamming distance
d(f,g) between them is defined as the Hamming weight of the truth table of
f(z) @ g(x), where ¢ = (x1,...,2,). The nonlinearity of f, denoted by Ny, is
the minimal Hamming distance between f and all affine functions on V,, v.e.,
Ny =min;—y o ontr d(f, ;) where o1, 2, ..., @ansr are all the affine functions
on V.

Given two sequences a = (a1, ..., ay) and b = (b1, ..., by), their component-
wise product is denoted by a*b, while the scalar product (sum of component-wise
products) is denoted by (a,b).

The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order 27,

denoted by H,, is generated by the recursive relation H,, = [gn_l gn_l],

n—1 "4In-1
n=12,..., Hy = 1. Each row (column) of H, is a linear sequence of length
2m.

A function f on V,, is called a bent function [7]if (€,¢;)> = 2" for every
t=20,1,...,2" — 1, where £ 1s the sequence of f and ¢; is a row in H,,. A bent
function on V,, exists only when n is a positive even number, and it achieves the
highest possible nonlinearity 27! — 9371,

The nonlinearity of f on V,, can be expressed by

Ny =2 Cmas{l{E )], 0< i <20~ 1) (1)

where & is the sequence of f and £y, ..., £o»_1 are the rows of H,, namely, the
sequences of linear functions on V},. The proof can be found in, for instance, [4].

Definition 4. Let f be a function on V,,. For a vector o € V,,, denote by &(«)
the sequence of f(x @ o). Thus £(0) is the sequence of f itself and £(0) * &(«)
is the sequence of f(x) @ f(x ® «). Let A(w) be the scalar product of £(0) and
E(a). Namely A(e) = (£(0),&(v)) A(wv) is called the auto-correlation of f with
a shift «.

The following formula is well known to the researchers. A simple proof to-
gether with applications can be found, for instance, in [8]

(A(Ozo), A(al), ceey A(Ozzn_l))Hn = (<€’£0>2’ <€,£1>2, ceey <€,£2n_1>2) where
a; 18 the binary representation of an integer ¢ and ¢; is the ith row of H,,
t=0,1,...,2% — 1. Hence it is easy to verify

o Z A2(ag) = Z (€, 6) 2)

Definition 5. An n xm S-box or substitution box is a mapping from V,, to Vp,,
ie., F'=(f1,...,fm), where n and m are integers with n > m > 1 and each
component function f; is a function on V,. In this paper, we use the terms of
mapping and S-box interchangeably. F is an affine mapping if it can be written
as F(z) = B ® B3, where x = (21, ...,2,), B is an n x m matriz on GF(2),
and 3 a vector in V,,. When [ is the zero vector, F' is said to be linear.



The concept of nonlinearity can be extended to the case of an S-box [6].

Definition 6. The nonlinearity of F' = (f1,..., fm) is defined as

m

Np =ming{Nylg = @ e; fj, ¢j € GF(2),(cr,. . em) #(0,...,0)}.

ji=1

3 Nonhomomorphicity of S-boxes

The following lemma is important in this paper, as it explores a characteristic
property of affine mappings which will be useful in studying nonhomomorphicity.

Lemma 1. Let F' be an n X m mapping.

(i) If F' is an affine mapping then F satisfies such property that for any even
number k with k >4, F(u1) @ - @ F(ur) =0 whenever uy & -+ @ up = 0,

(ii) if there exists an even number k with k > 4 such that F(u1)®-- - & F(ur) =0
whenever uy ® --- D ugx = 0, then F is an affine mapping.

Proof. We first prove Part (ii) of the lemma. Assume that there exists an even
number k with & > 4 such that F'(u1)®- - -®F(ug) = 0 whenever w1 - - -Buy = 0.
We now prove that F is affine. Let u; and us be any two vectors in V,,. Obviously,
the k vectors uy, us, ug @ ua, 0,...,0 satisfy w1 D ua B (u1 Buz) 0D -0 = 0.
From the assumption,

Fuy) @ Fuz) @ Fuy @ uz) ® F(0)D---@ F(0)=0 (3)

There are two cases to be examined: F'(0) = 0 and F(0) # 0.
Case 1: F(0) = 0. In this case F(ca) = ¢F' () holds for any vector o € V,
and any value ¢ € GF(2). Hence (3) can be rewritten as

where u; and uy are arbitrary.

Let e¢; denote the vector in Vj,, whose the jth component is one and others
are zero. For any fixed value z; in GF(2), j = 1,...,n, from (4), F(z1e1 &
D apen) = Frie1)® F(zaea® - D xpey). Applying (4) repeatedly, we have
F(rie1® - D anen) = Fare1) D Fazen) BB Fapen). Note that F(0) =0
implies F(ca) = ¢F(«) where ¢ is any value in GF(2) and « is any vector in Vj,.
Hence

Flrie1® D epen) =21 F(e)) D D anF(en) (5)

From the definition of e;, 11 & -+ - B 2pen = (£1,...,&5). On the other hand,
if we write F(e;) = 3; where 8; € Vi, j = 1,...,n. Then (5) can be rewritten
as Fl(x1,...,20) = 2101 ® - D 2By or F(1,...,25) = (#1,...,2,)B where



p
Pa

B= . | where B is an n x m matrix over GF(2) and each §; regarded as a
B
row vector of B.

Case 2: F(0) = 3 with § # 0. Set G(z) = # @ F(x). Then G is linear. By
using the result in Case 1, G(z1,...,2,) = (#1,...,2,)B where Bis an n x m
matrix over GF(2). Hence F(xq,...,2,) = (#1,...,2,)B @ (. This proves that
F is affine.

We now prove Part (i) of the lemma. Assume that F is affine. From Definition
5, it is easy to check that for any even number &k with k > 4, F/(u1)®- - -®F(ug) =
0 whenever u1 @ ---P up = 0. ad

From the characteristic property shown in Lemma 1, if a mapping F on V,
satisfies F'(uy) @ - @ F(up) = 0 for a large number of k-tuples (uy, ..., uy) of
vectors in V,, with u; & --- @ up = 0, then the mapping behaves more like an
affine function. This leads us to introduce a new nonlinearity criterion.

Notation 1. Let F' be a mapping from V,, to V,, and k an even number with
4 < k < 2" Denote by chg the collection of ordered k-tuples (uy,us, ..., ug) of
vectors tn 'V, such that

H(F]fi)ﬁ:{(ulau%"'auk”uj EVn, ul@“Z@"'@uk:Oa
Fui) & Fluz) & - & Fu) = 5}

where 3 € V. Let (jﬁf% denote the number of elements in chg, 1€, (jﬁf% =
k
#H .

Definition 7. Let F' be a mapping from V,, to Vi, and k an even number with
4 <k <2%. Write

®) = f(u, . up)|uj € Vi, ug @ g @ - uy, = 0,
F(uy) & F(u2) & -+ & F(ug) # 0} (6)

Let (jgc) be the number of elements in Q%C), 1€, (jgc) = #Qgc) We call (jgc)
the kth-order nonhomomorphicity of F.

Note that there exist 2(8=1)" k-tuples of vectors in V,, (t1,...,up), satisfying
U1 @ - P up =0. Hence

Lemma 2. Let ' be an n x m mapping. Then E,@evn (jﬁf% = 2k=n 4 (jgc) +
~(k) _ 2(k—1)n
qro = :

Lemma 1 indicates that when discussing the nonhomomorphic characteristics
of a mapping, we may focus on a single even number k, rather than on all even

~(4)

number k. Therefore we will focus on ¢ ’. An obvious advantage of restricting



(4)

to a small k¥ = 4 is that it would make the task of computing or estimating (j;

(4 (k)

easier. Another reason why we prefer qF) to a general ¢~ is that we have found

~(4)

interesting relationships between ¢’ and many other criteria. Furthermore, this
case has the following interesting property.

Notation 2. Let 024) denote the collection of ordered 4-tuples

(u1,us, us, us) of vectors in Vi, satisfying uj, = u;, and uj, = u;,, where the
4-tuple (uj,, uj,, uj,, u;,) is a rearrangement of (uq, us, us, ua). Denote by D
the collection of 3-tuples (uy, ua, uz) of vectors in Vy, with distinct uy, us and us.

Obviously if w1 & us ® us & uqg = 0 then either (uy,us, us, ug) € 024) or
(u1, u2, ug) € D%S) with uy @ us @ uz = ug. It is easy to verify

#OM = 3.2 —9n+l 2 pd) = gn(9n _1)(27 — 2) = 237 — 3. 920 4 InFY(T)

In addition, if (uy,ug, us, ug) € 024), then (uy,us, us, ug) € H;ﬁ%. In other
words, (u1, ug, us, ug) € Hg})ﬁ with 8 # 0 implies (u1, ug, uz) € D and uy P
s @ uz = uy. These properties will be useful later when we count (jgf).

We note that Lemma 1 cannot be extended to the case of odd k. This is the
reason why we have not defined nonhomomorphicity for an odd order.

4 Calculating 4th-order Nonhomomorphicity of S-boxes
using Other Indicators

To calculate or express a criterion, we must need other information or condi-
tions. This section has two aims: (1) to give three precise expressions of nonho-
momorphicity by using other indicators, (2) to explore the relationships between
nonhomomorphicity and other criteria.

4.1 Expressing Nonhomomorphicity by Difference Distribution

Definition 8. Let F = (fi1,..., fm) be an n x m mapping, « € V,,, and f3; be
the vector in V,, that corresponds to the binary representation of an integer j.
Define kg(a) as the number of times F(x)® F(2® «) runs through § € Vi, while
z runs through all the vectors in V,, once, The difference distribution table of F
1s a matriz specified as follows:

k@o(ao) k@l(ao) N k‘@2m_1 (Ozo)
k@u(al) k@l(al) N k‘@2m_1(a1)

K=
kpo(avzn—1) kp,(azn_1) . kppm_, (a2n_1)

where o 15 the vector in V, that corresponds to the binary representation of j.



Two properties of the difference distribution table K are (i) 2]2:0_1 kg, (i) =
2" i =0,1,...,2" — 1, (ii) kg, (o) = 2" and kg, () =0, j=1,...,2" — L.

Consider an even number s with s > 4 and an ordered s-tuple (uy, ua, ..., us)
of vectors in V;, satisfying @;:1 u; = 0. Note that

@F u] @ u] )@ F( @u]

ji=1
s—2 s—2
=P Fuj) ® Fue—1) @ Flus— & P ). (8)
ji=1 ji=1
Fix wuy,...,us_2 € V, while letting us;_; run through vectors in V,,. Then

@;:1 F(u;) runs through a vector § € V,, if and only if Fu,_1) @ F(us_1 &

@]s;f u;) runs through 3 @;_2 (u;) while u,_; runs through all the vectors in
V., once. Hence, for fixed u1,...,us_o € V,, the number of times for @] L Fuy)
to run through g € V,, 1s determmed by the quantity of k@@p(ul)@...@p(us_2)(u1@
SRS, us—2)~
Now we remove the restriction that uy,...,us_o € V, are fixed. Then the
number of times for @;:1 F(u;) to run through g € V,, while (uq,...,us)
satisfying @;:1 u; = 0 runs through all the vectors in V,, once, is determined

by Zul,...,us_zevn ksar(un)® -@F(u,_s) (U1 & - - S us_z). Hence we have

Lemma 3. Let F' be an n x m mapping and k be an even number with k > 4.
Then

= > ksere o P (1 & )

Ug,...,Us—2EV,
where (jﬁf% is defined in Notation 1 and ks(«) is defined in Definition 8.
In particular, when s = 4 and § = 0, Lemma 3 is specialized as

Corollary 1. Let F' be an n x m mapping. Then

fﬁfé = Z kpuy)@r(us) (w1 @ uz)

uy,U2EV,
where (jﬁf% is defined in Notation 1 and kg(«) ts defined in Definition 8.

Corollary 2. Let F' be an n x m mapping. Then

=2 > ki)

a€V, BEV,

where (jgf% is defined in Notation 1 and kg(«) ts defined in Definition 8.



Proof. Write u; @ us = a. Hence Corollary 1 can be rewritten as

fﬁf%: DY krnerwes(@) (9)

a€V, u1€V,

By the definition of kg(«), if F(u1) @ F(u1 @ o) = 3, then we have

kruerusan () = ks(a)

Again, recall that ks(e) denotes the number of times F(u1) & F(u1 ¢ «) runs
through § € V,,, while u; runs through all the vectors in V, once. From (9), we

have
(4
Bb=> > kraermen(@) = 2. 3 k@)
a€V, u1 €V, a€Vy, BEV,,
This concludes the proof. a

The above corollary, together with Lemma 2, gives rise to the following result:

Theorem 1. Let F' be an n x m mapping. Then the 4th-order nonhomomor-
phicity, (j;fl), satisfies

=2 =3 Y k)

agVy fEVm

where kg(a) is defined in Definition 8.

4.2 Expressing Nonhomomorphicity by Fourier Spectrum

Definition 9. Let F' = (f1,...,fm) be an n x m mapping, « € V,, j =
0,1,...,2"—1 and B; = (b1, ..., by) be the vector in V, that corresponds to the
binary representation of an integer j. In addition, set g; = ., bufu be the
jth linear combination of the component functions of F'. Denote the sequence of
g; by m;. Set

(770,%)2 (771,%)2 (772"1—1,%)2
(Uo,fﬂz (Ul,fﬂz (Uzm—l,fﬂz
P = .
(Uo,ﬁzn—ﬂz (Ul,fzn—ﬂz (Uzm—l,fzn—ﬂz

where £; 1s the ith row of Hy, i = 0,1,...,2” — 1. The matriz P 1s called the
correlation immunity distribution table of the mapping F'.

Since both 7y and £, are the all-one sequence of length 2" and ¢; is (1,—1)
balanced for j > 0, we have (o, %) = 2", (no,4;) =0, j=1,...,2" — 1. The
following lemma can be found in [10].



Lemma 4. Let F' = (f1,..., fm) be a mapping from V, to V,,, where n and
m are integers with n > m > 1 and each f;(x) is a function on V,. Set g; =
@, cufu where (c1,. .., cm) ts the binary representation of an integer j, j =
0,1,...,2" —1. Then P = H,KH,, where K and P are defined in Definitions
8 and 9 respectively.

The following corollary can be deduced from Lemma 4 and Corollary 2.
Corollary 3. Let F' be an n x m mapping. Then

2m—12"-1

q}“% — 2—m—n[24n + Z Z <77j,£i>4]
j=1 <=0

where (n;,4;) is defined in Definition 9.
By noting Lemma 2, we can further prove

Theorem 2. Let F' be an n x m mapping. Then the 4th-order nonhomomor-
phicity of F, (j;fl), satisfies

2Mm—12"-1

@) =22 o7t ST ST (6]
j=1 =0
where (n;,4;) is defined in Definition 9.

4.3 Expressing Nonhomomorphicity by Auto-Correlation
Distribution

Definition 10. Let F' = (f1,..., fim) be annxm S-boz, « € V,,, 5 =0,1,...,2m—
1 and B; = (b1,...,by) be the vector in Vi, that corresponds to the binary rep-
resentation of j. In addition, set g; = ., by fu be the jth linear combination
of the component functions of F'. Denote the auto-correlation of g; with shift o
by Aj(a).
Set
Al(ao) N Azm_l(ao)
Ao(Ozl) Al(al) N Azm_l(al)

Ao(azn—1) Al(azn—1) e Azm—1(042n—1)

Matriz D s called auto-correlation distribution table of F'.
By using Theorem 2 and (2), we have the following result:

Theorem 3. Let F' be an n x m mapping. Then the 4th-order nonhomomor-
phicity of F, (j;fl), satisfies

2m—12"—1

i) =2 2R 4 Y YT AY()]
j=1 1i=0



5 Lower and Upper Bounds on Nonhomomorphicity

We first introduce Hélder’s Inequality which can be found in [2].

Lemma 5. Letc; > 0 and d;j > 0 be real numbers, where j =1,...,5, and let p
and q satisfy Zl)—i—% =1landp>1. Then (Z;Il c?)l/p(zjsi:l d}l)l/q > Z;Il ¢;d;
where the equality holds of and only ifc; = vd;, j =1,...,5 for a constant v > 0.
. . 11f Cj = 1
When ¢;, d;, p and ¢ satisfy the condition that ¢; > 0, d; = Oifci =0
;=
and p=¢q = %, Holder’s Inequality will be specialized as

5

ZCJZ» > 5_1(ch)2 (10)

ji=1
where the quality holds if and only if ¢y, ..., ¢; are all identical. By using the

specialized Holder’s Inequality, we can prove

Theorem 4. Let F' be an n x m mapping. Then the 4th-order nonhomomor-
phicity of F, (j;fl), satisfies

0< g <22=m2r —1)(2" — 1)

where the first equality holds if and only if F' is affine, and the second equality
holds if and only if every nonzero linear combination of the component functions
of ' is bent.

Proof. By the definition of the 4th-order nonhomomorphicity of F', the first
inequality is true, and the equality holds if and only if F is affine.
Now we consider the second inequality. From Theorem 2,

2m—_12"-1

q}‘}) — 23n _ 2—m—n[24n + Z Z <77j,£i>4]
j=1 =0

By using (10), we have

2m—_12"-1

q}‘}) — 23n _ 2—m—n[24n + Z Z <77j,£i>4]
j=1 <=0

2m—_127-1

<93 _gmmen[gin 4 W( ; Z_; (., €1)*)"]

According to Parseval’s equation (Page 416 of [3]), we have Zzal (n;, ;)% = 22"
for each j, 1 < j < 2™ — 1. Hence

1

~(4) < 931 _ 9—m—nr9in s
ir = 27+ (2m —1)2"

(2™ =127 (11)



This proves the second inequality. Again by using (10), the equality in (11)
holds if and only if (n;,¢;)? are identical for all j = 1,...,2™ — 1 and i =
0,1,...,2" — 1. Parseval’s equation implies that, in this case, (n;,¢;)? = 2" for
all j = 1,...,27% —1and ¢ = 0,1,...,2" — 1. Recall the definition of a bent
function, we have proved that the equality in (11) holds if and only if each g;
(see Definition 9) is bent, where 1 < j < 2™ — 1. a

If an n x m mapping, F', has the property that every nonzero linear combina-
tion of the component functions of F' is bent, then F' is called a perfect nonlinear
[5]. From a corollary of [5], perfect nonlinear n x m mappings exist only when
m< in.

>3

6 Mean of Nonhomomorphicity

To measure the nonhomomorphic characteristics of a mapping, it is reasonable
to compare it with the mean of the 4th-order nonhomomorphicity over all the
mappings from V,, to V;,. Hence we want to find out an explicit expression for

2y fﬁ:})'
Recall that if (uy, uq, us, ug) € 024), then (w1, uq,us, ug) € H;ﬁ%. Hence we
have the following:

Proposition 1. Let F' be a mapping from V, to V,,. Then for every nonzero
vector 0 € Vi,

qﬁ?j = #{(u1, uz, us)|(ur, ua, us) € DY,
F(uy) @ F(us) ® F(us) @ F(uy ®us @ ug) = 3}

(4

There are two cases with (w1, us, us, us) € Hpy. Case 1: (u1, us, us, us) €
024). Case 2: (uy,uq,us) € D%S) and (uq, ug, uz, ug) € Hgé, where uy = uy @
gy @ ug. This shows that the following is true.

Proposition 2. Let F' be a mapping from V,, to V,,. Then

ffgé =327 — 9" L Ly, us, uz)|(ur, us, ug) € D,
F(Ul)@F(Uz)@F(Ug)@F(Ul@Uz@Ug)IO}

Theorem 5. Let F' be a mapping from V,, to Vi,. For a fized nonzero 3 € Vi,

the mean of the (j;f% over all the mappings from Vi, to Vy,, i.e., 272" op (j;f%,

satisfies
—m-2" ~(3 —-m n—m n—m n—m+
9 2 E q( 7) =9 #D£l3) — 23 — 3. 22 + 2 1

F

Proof. We first note that there exist exactly 2”2" mappings from V, to V,,.
For each fixed (uy, us, us) € D%S), a random mapping F', from V,, to Vi, F(uq),



F(uz), F(uz), and F(u; @ ug ® uz) are independent. Hence F(uy) & F(uz) &
F(us) ® F(u1 @ uz ® ug) takes every vector in V,,, with an equal probability of
27 . Therefore we have

27 S G = S 27 (i, )| (ur, us, uz) € DY
Fuy) @ F(uz) @ F(uz) @ F(uy @ us @ uz) = 3}

= 3 s wmueyep® 27 = 9-my pi3)

ad

Theorem 6. Let F' be a mapping from V, to V. Then the mean of ¢ qFO over
all the mappings from V,, to Vi, i.e., 272" Yorq qFO, satisfies

2—m.2n Z ~¥‘% —3. 22n _ 2n+1 + 23n—m —3. 22n—m 4 2n—m+1
F

Proof. Consider two cases for (uy, uz, us, ug) € H(4)'

Case 1 — (uy1,uz2, uz, uq) € O, Recall (7), #0(4) 3.2%2n —ontl

Case 2 — (uy,uq,us) € D%S) and (uq, ug, uz, uq) € H%yé, where uy = u; @
Uz O Us.

From the proof of Theorem b5, for each fixed (uy,us,us) € D%S), a random
mapping F F(uy) ® F(uz) ® Fus) ® F(uy ® us & uz) takes every vector, in
particular the zero vector, in V,,, with an equal possibility of 27™. Now the
theorem follows immediately from Proposition 2 and the proof of Theorem 5.

O

Taking (6) into account, from Theorem 6 we obtain the following result which
is of major interest:

Theorem 7. Let F' be a mapping from V, to V. Then the mean of (j;fl) over
all the mappings from Vi, to Vy,, i.e., 272" >or q , satisfies

2—m.2" Z q(Ffl) — (2m _ 1)(23n—m —3. 22n—m 4 2n—m+1)
F

7 Relative Nonhomomorphicity

We now introduce the concept of “relative nonhomomorphicity”. It will be useful
for a statistical tool.
Recall that if (uq,us, us, uq) € Ogl ), then (uy, us2, us, ug) € H( ) Hence to

count QF , we do not need to consider any 4-tuples (uy, us, ug, U4) n 024).

(4)
Definition 11. Let F' be a mapping from V,, to V. Then (3), denoted by

p%), is called the (4th-order) relative nonhomomorphicity of P, where q( )

the jth-order nonhomomorphicity of F', while Dﬁﬂ 1s the collection of 3-tuples
(u1, u2, ug) of vectors in Vy, with distinct uy, us and us.



Corollary 4. The mean ofpgf) over all the nxm S-boxes, i.e., 272" Sor pg),

satisfies
2—m~2" ZP(FA}) =19 ™
F
—me2n (4) _ g-m-2" i pmmt ()
Proof. Note that 2 Soppp =2 ZFW: WZFQF . Hence

o on 4 9m _1)(93n—m _3.92n—m_ gn—m+1
from Theorem 7, we have 272" 5~ p%) = X 23n_3,22n+2n+j— ) =

1—2=m ad

From Corollary 4, the following observation can be made:

(12)

(4) | > 1—27" then F' is more nonhomomorphic than the average
PP\ <1—=2"™ then F is less nonhomomorphic than the average

Here the average nonhomomorphicity indicates one that has a relative nonho-

momorphicity of 1 — 277, Clearly, if p;:l) is much smaller than 1 — 27" then ¥
should be considered to be cryptographically weak.

8 An Application of Nonhomomorphicity
We have noticed that the relative nonhomomorphicity, p;:l) is precisely identified
with “population mean” or “true mean”, a terminology in statistics. This fact
enables us to design a statistical method with a high reliability for estimating
the nonhomomorphicity of an S-box, thank to the law of large numbers [1].
From the nonhomomorphicity, by using Theorems 1, 2 and 3, we obtain
information about other criteria, for example, the nonlinearity, the maximum
ks(a) with o € V,,, @ # 0 and 8 € Vj,, and the maximum A;(q;), 1 < j <27 —1
and 1 <7 <2% — 1.

FEzample 1. The Data Encryption Algorithm or DES employs eight 6 x 4 map-
pings or S-boxes. Consider the first mapping F'. From Definition 7, we directly
calculate (j;fl) = 231264. (Also we can use a statistical method to find an approx-
imate value of (j;fl)).

By using Theorem 1

231264 =25 — >~ >~ ki(a)
a€EVe fEV,
Recall the property of the difference distribution table K, ko(0) = 2" and
ks(0) =0, 3#0.

S D ki) =28 — 217 — 231264

a€Ve,a#0 BEV,



Write max{ks(a)|a € Vs.ao £ 0,5 € Va} = kar Hence we have
kar > Y ksla) > D0 Y kj(a) = 2" - 2'% — 231264
a€Ve,a#0 BEV, a€Ve BEV,
Again, recall the property of K, Zﬁevm kg(a) = 27, for any « € V,,. Hence
kar(2° — 1)2° > 218 — 2'2 231264

This implies k3r > 6.6. Since kps is even, kyy > 8. This is larger than the trivial
lower bound kj; > 27"~ = 4.
Write max{|(n;, £;)[|1 < j <2%—1,0<i < 2°—1} = py. By using Theorem

2,
2%-12%-1 2%-12%-1
(218 — q}‘}))26+4 _ 924 _ Z Z (77]',&)4 < p Z Z <77j’£i>2
j=1 =0 j=1 =0
By using Parseval’s equation, Page 416, [3], 5 (n],ﬁ) = 226 for each
fixed j, j = 1,...,2* — 1. Hence p%, > 212 — 2 63 > 241. Since p3, is square

and multiple by 4, we have p3, > 256. By using (1), we conclude that Np <
26-1 %pM < 24. Recall the maximum nonlinearity of functions on Vj is 2671 —
23-1 = 28 that only bent functions achieve.

Write max{|A;(a;)|1 <j<2'—1,1<i<2°-1} = Ay, By using Theorem
3a

2%-12°-1
(270 =2 =270 = 37 37 Af(a)
j=1 =0
Noticing A;(ag) = 2% j=0,1,...,2% — 1, hence
2%-12°-1
93:6+4 24~(4) 936 _ 92:6+4
— g — + 0> AN ay) < (2P - 1)(2° - 1)AY,
j=1 i=1

This proves
922 _ 918 _ 916 _ 945 ~(4)
Al > 1
M2 ooy o0
Since A%, is square and multiple by 4, Hence A%, > 196 and hence Ay > 14.

We note that in Example 1, the value of q( ) also can be estimated by a
fast statistical method with a hlgh reliability. Such a statistical method is more
useful in a situation where fast analysis of S-boxes is required.

9 Concluding Remarks

The advantages of nonhomomorphicity, as a new linearity criterion, include: (1)
it can be estimated by a statistical method with a high reliability due to the law
of large numbers; (2) it is closely related to other criteria. More details about
the statistical method, together with further applications of nonhomomorphicity,
will be shown in a separate paper.
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