The Nonhomomorphicity of S-boxes

Yuliang Zheng¹ and Xian-Mo Zhang²

¹ School of Comp & Info Tech, Monash University, McMahons Road, Frankston, Melbourne, VIC 3199, Australia. E-mail: yuliang@pscit.monash.edu.au URL: http://www.pscit.monash.edu.au/links/

² School of Info Tech & Comp Sci, the University of Wollongong, Wollongong NSW 2522, Australia. E-mail: xianmo@cs.uow.edu.au

Abstract. In this paper, we introduce the concept of kth-order nonhomomorphicity of mappings or S-boxes as an alternative indicator that forecasts nonlinearity characteristics of an S-box, where $k \ge 4$ is even. Main results of this paper include: (1) we show that nonhomomorphicity, especially the 4th order nonhomomorphicity, can be precisely expressed by using other important nonlinear indicators of an S-box. (2) we establish tight lower and upper bounds on the nonhomomorphicity of S-boxes, (3) we identify the mean of nonhomomorphicity over all the S-boxes with the same size and the relative nonhomomorphicity of an S-box, both of which are useful in estimating, statistically, the nonhomomorphicity of an S-box.

Key Words

Sequences, Boolean Functions, S-boxes, Cryptanalysis, Cryptography, Nonhomomorphicity.

1 Motivation of this Research

The so-called S-boxes, which are functionally identical to mappings or tuples of Boolean functions, are of critical importance to the strength of a block cipher. In the past decade, the analysis and design of S-boxes has attracted a tremendous amount of attention. This paper focuses on new methods or perspectives for the analysis of S-boxes. More specifically, it deals with a new nonlinearity indicator called *nonhomomorphicity*.

To understand the motivation behind the new concept, let us first note that a mapping F from V_n to V_m is affine, i.e., $F(x) = xB \oplus \beta$ where $x \in V_n$, B is a fixed $n \times m$ matrix, if and only if F satisfies such property that for any even number k with $k \ge 4$, $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ whenever $u_1 \oplus \cdots \oplus u_k = 0$.

Now consider a non-affine function F on V_n . If $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ then F satisfies the affine property at the particular vector (u_1, \ldots, u_k) . On the other hand, if $F(u_1) \oplus \cdots \oplus F(u_k) \neq 0$ then F behaves in a way that is against the affine property at (u_1, \ldots, u_k) .

The above discussions indicate that $F(u_1) \oplus \cdots \oplus F(u_k) \neq 0$ is a useful characteristic that differentiates a non-affine function from an affine one. This leads us to considering the number of vectors in V_n , (u_1, \ldots, u_k) with $u_1 \oplus \cdots \oplus u_k = 0$ satisfying $F(u_1) \oplus \cdots \oplus F(u_k) \neq 0$ as a new nonlinearity criterion. We call this new criterion the *k*th-order nonhomomorphicity of *F*.

Nonhomomorphicity has several interesting properties including (1) it explores a new non-affine property; (2) it can be precisely calculated by other indicators; (3) the mean of nonhomomorphicity over all the S-boxes with the same size can be precisely identified; (4) there exists a fast statistical method to estimate the nonhomomorphicity of an S-box.

In this paper we restrict our attention to the 4th-order nonhomomorphicity of S-boxes, due to the fact that 4 is the smallest order and hence it is easy to handle. Furthermore, the 4th-order nonhomomorphicity of S-boxes is closely related to many other criteria, a property apparently not shared by a higher order nonhomomorphicity.

[9] has studied a special case when the mapping F degenerates to a Boolean function, i.e., a mapping from V_n to V_1 . It turns out that the analysis of the non-homomorphicity of a general mapping from V_n to V_m is far more complex than what we thought as first. As the analysis employs a number of new techniques, the results in this paper represent non-trivial generalization of those in [9].

The rest of this paper is organized as follows: In Section 2, we introduce the basic definitions and notations used in this paper. In Section 3, we explain reasons why we study the nonhomomorphicity of S-boxes. In Section 4, we give three precise characterizations of the nonhomomorphicity of S-boxes by the use of other indicators. These characterizations indicate close relationships between nonhomomorphicity and other important criteria. This is followed by Section 5 where we establish tight upper and lower bounds on the nonhomomorphicity of S-boxes. In Section 6, we establish the mean of nonhomomorphicity of all the S-boxes with the same size. In Section 7, we show that the mean of nonhomomorphicity and the relative nonhomomorphicity are relevant to a statistical method for estimating the nonhomomorphicity of S-boxes. An example application of nonhomomorphicity is given in Section 8.

2 Basic Definitions

Definition 1. Denote by V_n the vector space of n tuples of elements from GF(2). The truth table of a function f from V_n to GF(2) (or simply functions on V_n) is a (0, 1)-sequence defined by $(f(\alpha_0), f(\alpha_1), \ldots, f(\alpha_{2^n-1}))$, and the sequence of f is a (1, -1)-sequence defined by $((-1)^{f(\alpha_0)}, (-1)^{f(\alpha_1)}, \ldots, (-1)^{f(\alpha_{2^n-1})})$, where $\alpha_0 = (0, \ldots, 0, 0), \alpha_1 = (0, \ldots, 0, 1), \ldots, \alpha_{2^{n-1}-1} = (1, \ldots, 1, 1)$. f is said to be balanced if its truth table contains an equal number of ones and zeros.

Definition 2. A function f on V_n is called an affine function if $f(x) = c \oplus a_1x_1 \oplus \cdots \oplus a_nx_n$ where each a_j and c are constant in GF(2). In particular, f is called a linear function if c = 0. A mapping from V_n to V_m , F, is an affine (linear) if all the component functions of F are affine (linear).

Definition 3. The Hamming weight of a (0, 1)-sequence ξ is the number of ones in the sequence. Given two functions f and g on V_n , the Hamming distance d(f,g) between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x = (x_1, \ldots, x_n)$. The nonlinearity of f, denoted by N_f , is the minimal Hamming distance between f and all affine functions on V_n , i.e., $N_f = \min_{i=1,2,\ldots,2^{n+1}} d(f,\varphi_i)$ where $\varphi_1, \varphi_2, \ldots, \varphi_{2^{n+1}}$ are all the affine functions on V_n .

Given two sequences $a = (a_1, \ldots, a_m)$ and $b = (b_1, \ldots, b_m)$, their componentwise product is denoted by a * b, while the scalar product (sum of component-wise products) is denoted by $\langle a, b \rangle$.

The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2^n , denoted by H_n , is generated by the recursive relation $H_n = \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$, $n = 1, 2, \ldots, H_0 = 1$. Each row (column) of H_n is a linear sequence of length 2^n .

A function f on V_n is called a *bent function* [7] if $\langle \xi, \ell_i \rangle^2 = 2^n$ for every $i = 0, 1, \ldots, 2^n - 1$, where ξ is the sequence of f and ℓ_i is a row in H_n . A bent function on V_n exists only when n is a positive even number, and it achieves the highest possible nonlinearity $2^{n-1} - 2^{\frac{1}{2}n-1}$.

The nonlinearity of f on V_n can be expressed by

$$N_f = 2^{n-1} - \frac{1}{2} \max\{|\langle \xi, \ell_i \rangle|, 0 \le i \le 2^n - 1\}$$
(1)

where ξ is the sequence of f and $\ell_0, \ldots, \ell_{2^n-1}$ are the rows of H_n , namely, the sequences of linear functions on V_n . The proof can be found in, for instance, [4].

Definition 4. Let f be a function on V_n . For a vector $\alpha \in V_n$, denote by $\xi(\alpha)$ the sequence of $f(x \oplus \alpha)$. Thus $\xi(0)$ is the sequence of f itself and $\xi(0) * \xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$. Let $\Delta(\alpha)$ be the scalar product of $\xi(0)$ and $\xi(\alpha)$. Namely $\Delta(\alpha) = \langle \xi(0), \xi(\alpha) \rangle \ \Delta(\alpha)$ is called the auto-correlation of f with a shift α .

The following formula is well known to the researchers. A simple proof together with applications can be found, for instance, in [8]

 $(\Delta(\alpha_0), \Delta(\alpha_1), \ldots, \Delta(\alpha_{2^n-1}))H_n = (\langle \xi, \ell_0 \rangle^2, \langle \xi, \ell_1 \rangle^2, \ldots, \langle \xi, \ell_{2^n-1} \rangle^2)$ where α_i is the binary representation of an integer i and ℓ_i is the *i*th row of H_n , $i = 0, 1, \ldots, 2^n - 1$. Hence it is easy to verify

$$2^{n} \sum_{i=0}^{2^{n}-1} \Delta^{2}(\alpha_{i}) = \sum_{i=0}^{2^{n}-1} \langle \xi, \ell_{i} \rangle^{4}$$
(2)

Definition 5. An $n \times m$ S-box or substitution box is a mapping from V_n to V_m , *i.e.*, $F = (f_1, \ldots, f_m)$, where n and m are integers with $n \ge m \ge 1$ and each component function f_j is a function on V_n . In this paper, we use the terms of mapping and S-box interchangeably. F is an affine mapping if it can be written as $F(x) = xB \oplus \beta$, where $x = (x_1, \ldots, x_n)$, B is an $n \times m$ matrix on GF(2), and β a vector in V_m . When β is the zero vector, F is said to be linear.

The concept of nonlinearity can be extended to the case of an S-box [6].

Definition 6. The nonlinearity of $F = (f_1, \ldots, f_m)$ is defined as

$$N_F = \min_g \{ N_g | g = \bigoplus_{j=1}^m c_j f_j, \ c_j \in GF(2), (c_1, \dots, c_m) \neq (0, \dots, 0) \}$$

3 Nonhomomorphicity of S-boxes

The following lemma is important in this paper, as it explores a characteristic property of affine mappings which will be useful in studying nonhomomorphicity.

Lemma 1. Let F be an $n \times m$ mapping.

- (i) If F is an affine mapping then F satisfies such property that for any even number k with $k \ge 4$, $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ whenever $u_1 \oplus \cdots \oplus u_k = 0$,
- (ii) if there exists an even number k with $k \ge 4$ such that $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ whenever $u_1 \oplus \cdots \oplus u_k = 0$, then F is an affine mapping.

Proof. We first prove Part (ii) of the lemma. Assume that there exists an even number k with $k \ge 4$ such that $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ whenever $u_1 \oplus \cdots \oplus u_k = 0$. We now prove that F is affine. Let u_1 and u_2 be any two vectors in V_n . Obviously, the k vectors $u_1, u_2, u_1 \oplus u_2, 0, \ldots, 0$ satisfy $u_1 \oplus u_2 \oplus (u_1 \oplus u_2) \oplus 0 \oplus \cdots \oplus 0 = 0$. From the assumption,

$$F(u_1) \oplus F(u_2) \oplus F(u_1 \oplus u_2) \oplus F(0) \oplus \dots \oplus F(0) = 0$$
(3)

There are two cases to be examined: F(0) = 0 and $F(0) \neq 0$.

Case 1: F(0) = 0. In this case $F(c\alpha) = cF(\alpha)$ holds for any vector $\alpha \in V_n$ and any value $c \in GF(2)$. Hence (3) can be rewritten as

$$F(u_1 \oplus u_2) = F(u_1) \oplus F(u_2) \tag{4}$$

where u_1 and u_2 are arbitrary.

Let e_j denote the vector in V_n , whose the *j*th component is one and others are zero. For any fixed value x_j in GF(2), j = 1, ..., n, from (4), $F(x_1e_1 \oplus \cdots \oplus x_ne_n) = F(x_1e_1) \oplus F(x_2e_2 \oplus \cdots \oplus x_ne_n)$. Applying (4) repeatedly, we have $F(x_1e_1 \oplus \cdots \oplus x_ne_n) = F(x_1e_1) \oplus F(x_2e_2) \oplus \cdots \oplus F(x_ne_n)$. Note that F(0) = 0implies $F(c\alpha) = cF(\alpha)$ where *c* is any value in GF(2) and α is any vector in V_n . Hence

$$F(x_1e_1 \oplus \dots \oplus x_ne_n) = x_1F(e_1) \oplus \dots \oplus x_nF(e_n)$$
(5)

From the definition of e_j , $x_1e_1 \oplus \cdots \oplus x_ne_n = (x_1, \ldots, x_n)$. On the other hand, if we write $F(e_j) = \beta_j$ where $\beta_j \in V_m$, $j = 1, \ldots, n$. Then (5) can be rewritten as $F(x_1, \ldots, x_n) = x_1\beta_1 \oplus \cdots \oplus x_n\beta_n$ or $F(x_1, \ldots, x_n) = (x_1, \ldots, x_n)B$ where $B = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} \text{ where } B \text{ is an } n \times m \text{ matrix over } GF(2) \text{ and each } \beta_i \text{ regarded as a}$

row vector of B.

Case 2: $F(0) = \beta$ with $\beta \neq 0$. Set $G(x) = \beta \oplus F(x)$. Then G is linear. By using the result in Case 1, $G(x_1, \ldots, x_n) = (x_1, \ldots, x_n)B$ where B is an $n \times m$ matrix over GF(2). Hence $F(x_1, \ldots, x_n) = (x_1, \ldots, x_n)B \oplus \beta$. This proves that F is affine.

We now prove Part (i) of the lemma. Assume that F is affine. From Definition 5, it is easy to check that for any even number k with $k \ge 4$, $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ whenever $u_1 \oplus \cdots \oplus u_k = 0$.

From the characteristic property shown in Lemma 1, if a mapping F on V_n satisfies $F(u_1) \oplus \cdots \oplus F(u_k) = 0$ for a large number of k-tuples (u_1, \ldots, u_k) of vectors in V_n with $u_1 \oplus \cdots \oplus u_k = 0$, then the mapping behaves more like an affine function. This leads us to introduce a new nonlinearity criterion.

Notation 1. Let F be a mapping from V_n to V_m and k an even number with $4 \leq k \leq 2^n$. Denote by $\mathcal{H}_{F,\beta}^{(k)}$ the collection of ordered k-tuples (u_1, u_2, \ldots, u_k) of vectors in V_n such that

$$\mathcal{H}_{F,\beta}^{(k)} = \{ (u_1, u_2, \dots, u_k) | u_j \in V_n, \ u_1 \oplus u_2 \oplus \dots \oplus u_k = 0, F(u_1) \oplus F(u_2) \oplus \dots \oplus F(u_k) = \beta \}$$

where $\beta \in V_m$. Let $\tilde{q}_{F,\beta}^{(k)}$ denote the number of elements in $\mathcal{H}_{F,\beta}^{(k)}$, i.e., $\tilde{q}_{F,\beta}^{(k)} = \#\mathcal{H}_{F,\beta}^{(k)}$.

Definition 7. Let F be a mapping from V_n to V_m and k an even number with $4 \le k \le 2^n$. Write

$$Q_F^{(k)} = \{ (u_1, \dots, u_k) | u_j \in V_n, \ u_1 \oplus u_2 \oplus \dots \oplus u_k = 0, F(u_1) \oplus F(u_2) \oplus \dots \oplus F(u_k) \neq 0 \}$$
(6)

Let $\tilde{q}_F^{(k)}$ be the number of elements in $Q_F^{(k)}$, i.e., $\tilde{q}_F^{(k)} = \#Q_F^{(k)}$. We call $\tilde{q}_F^{(k)}$ the kth-order nonhomomorphicity of F.

Note that there exist $2^{(k-1)n}$ k-tuples of vectors in V_n , (u_1, \ldots, u_k) , satisfying $u_1 \oplus \cdots \oplus u_k = 0$. Hence

Lemma 2. Let F be an $n \times m$ mapping. Then $\sum_{\beta \in V_n} \tilde{q}_{F,\beta}^{(k)} = 2^{(k-1)n}$ or $\tilde{q}_F^{(k)} + \tilde{q}_{F,0}^{(k)} = 2^{(k-1)n}$.

Lemma 1 indicates that when discussing the nonhomomorphic characteristics of a mapping, we may focus on a single even number k, rather than on all even number k. Therefore we will focus on $\tilde{q}_F^{(4)}$. An obvious advantage of restricting

to a small k = 4 is that it would make the task of computing or estimating $\tilde{q}_F^{(4)}$ easier. Another reason why we prefer $\tilde{q}_F^{(4)}$ to a general $\tilde{q}_F^{(k)}$ is that we have found interesting relationships between $\tilde{q}_F^{(4)}$ and many other criteria. Furthermore, this case has the following interesting property.

Notation 2. Let $O_n^{(4)}$ denote the collection of ordered 4-tuples

 (u_1, u_2, u_3, u_4) of vectors in V_n , satisfying $u_{j_1} = u_{j_2}$ and $u_{j_3} = u_{j_4}$, where the 4-tuple $(u_{j_1}, u_{j_2}, u_{j_3}, u_{j_4})$ is a rearrangement of (u_1, u_2, u_3, u_4) . Denote by $D_n^{(3)}$ the collection of 3-tuples (u_1, u_2, u_3) of vectors in V_n with distinct u_1, u_2 and u_3 .

Obviously if $u_1 \oplus u_2 \oplus u_3 \oplus u_4 = 0$ then either $(u_1, u_2, u_3, u_4) \in O_n^{(4)}$ or $(u_1, u_2, u_3) \in D_n^{(3)}$ with $u_1 \oplus u_2 \oplus u_3 = u_4$. It is easy to verify

$$\#O_n^{(4)} = 3 \cdot 2^{2n} - 2^{n+1}, \ \#D_n^{(3)} = 2^n(2^n - 1)(2^n - 2) = 2^{3n} - 3 \cdot 2^{2n} + 2^{n+1}(7)$$

In addition, if $(u_1, u_2, u_3, u_4) \in O_n^{(4)}$, then $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(4)}$. In other words, $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,\beta}^{(4)}$ with $\beta \neq 0$ implies $(u_1, u_2, u_3) \in D_n^{(3)}$ and $u_1 \oplus$ $u_2 \oplus u_3 = u_4$. These properties will be useful later when we count $\tilde{q}_F^{(4)}$.

We note that Lemma 1 cannot be extended to the case of odd k. This is the reason why we have not defined nonhomomorphicity for an odd order.

4 Calculating 4th-order Nonhomomorphicity of S-boxes using Other Indicators

To calculate or express a criterion, we must need other information or conditions. This section has two aims: (1) to give three precise expressions of nonhomomorphicity by using other indicators, (2) to explore the relationships between nonhomomorphicity and other criteria.

4.1 Expressing Nonhomomorphicity by Difference Distribution

Definition 8. Let $F = (f_1, \ldots, f_m)$ be an $n \times m$ mapping, $\alpha \in V_n$, and β_j be the vector in V_m that corresponds to the binary representation of an integer j. Define $k_\beta(\alpha)$ as the number of times $F(x) \oplus F(x \oplus \alpha)$ runs through $\beta \in V_m$ while x runs through all the vectors in V_n once, The difference distribution table of F is a matrix specified as follows:

$$K = \begin{bmatrix} k_{\beta_0}(\alpha_0) & k_{\beta_1}(\alpha_0) & \dots & k_{\beta_{2^m-1}}(\alpha_0) \\ k_{\beta_0}(\alpha_1) & k_{\beta_1}(\alpha_1) & \dots & k_{\beta_{2^m-1}}(\alpha_1) \\ \vdots \\ k_{\beta_0}(\alpha_{2^n-1}) & k_{\beta_1}(\alpha_{2^n-1}) & \dots & k_{\beta_{2^m-1}}(\alpha_{2^n-1}) \end{bmatrix}$$

where α_j is the vector in V_n that corresponds to the binary representation of j.

Two properties of the difference distribution table K are (i) $\sum_{j=0}^{2^m-1} k_{\beta_j}(\alpha_i) = 2^n$, $i = 0, 1, \ldots, 2^n - 1$, (ii) $k_{\beta_0}(\alpha_0) = 2^n$ and $k_{\beta_j}(\alpha_0) = 0$, $j = 1, \ldots, 2^m - 1$.

Consider an even number s with $s \ge 4$ and an ordered s-tuple (u_1, u_2, \ldots, u_s) of vectors in V_n satisfying $\bigoplus_{j=1}^s u_j = 0$. Note that

$$\bigoplus_{j=1}^{s} F(u_j) = \bigoplus_{j=1}^{s-1} F(u_j) \oplus F(\bigoplus_{j=1}^{s-1} u_j)$$

$$= \bigoplus_{j=1}^{s-2} F(u_j) \oplus F(u_{s-1}) \oplus F(u_{s-1} \oplus \bigoplus_{j=1}^{s-2} u_j).$$
(8)

Fix $u_1, \ldots, u_{s-2} \in V_n$ while letting u_{s-1} run through vectors in V_n . Then $\bigoplus_{j=1}^s F(u_j)$ runs through a vector $\beta \in V_m$ if and only if $F(u_{s-1}) \oplus F(u_{s-1} \oplus \bigoplus_{j=1}^{s-2} u_j)$ runs through $\beta \bigoplus_{j=1}^{s-2} F(u_j)$ while u_{s-1} runs through all the vectors in V_n once. Hence, for fixed $u_1, \ldots, u_{s-2} \in V_n$, the number of times for $\bigoplus_{j=1}^s F(u_j)$ to run through $\beta \in V_m$ is determined by the quantity of $k_{\beta \oplus F(u_1) \oplus \cdots \oplus F(u_{s-2})}(u_1 \oplus \cdots \oplus u_{s-2})$.

Now we remove the restriction that $u_1, \ldots, u_{s-2} \in V_n$ are fixed. Then the number of times for $\bigoplus_{j=1}^s F(u_j)$ to run through $\beta \in V_m$ while (u_1, \ldots, u_s) satisfying $\bigoplus_{j=1}^s u_j = 0$ runs through all the vectors in V_n once, is determined by $\sum_{u_1, \ldots, u_{s-2} \in V_n} k_{\beta \oplus F(u_1) \oplus \cdots \oplus F(u_{s-2})}(u_1 \oplus \cdots \oplus u_{s-2})$. Hence we have

Lemma 3. Let F be an $n \times m$ mapping and k be an even number with $k \geq 4$. Then

$$\tilde{J}_{F,\beta}^{(s)} = \sum_{u_1,\ldots,u_{s-2} \in V_n} k_{\beta \oplus F(u_1) \oplus \cdots \oplus F(u_{s-2})} (u_1 \oplus \cdots \oplus u_{s-2})$$

where $\tilde{q}_{F,\beta}^{(k)}$ is defined in Notation 1 and $k_{\beta}(\alpha)$ is defined in Definition 8.

In particular, when s = 4 and $\beta = 0$, Lemma 3 is specialized as

Corollary 1. Let F be an $n \times m$ mapping. Then

(

$$\tilde{q}_{F,0}^{(4)} = \sum_{u_1, u_2 \in V_n} k_{F(u_1) \oplus F(u_2)} (u_1 \oplus u_2)$$

where $\hat{q}_{F,0}^{(k)}$ is defined in Notation 1 and $k_{\beta}(\alpha)$ is defined in Definition 8.

Corollary 2. Let F be an $n \times m$ mapping. Then

$$\tilde{q}_{F,0}^{(4)} = \sum_{\alpha \in V_n} \sum_{\beta \in V_m} k_{\beta}^2(\alpha)$$

where $\tilde{q}_{F,0}^{(k)}$ is defined in Notation 1 and $k_{\beta}(\alpha)$ is defined in Definition 8.

Proof. Write $u_1 \oplus u_2 = \alpha$. Hence Corollary 1 can be rewritten as

$$\tilde{q}_{F,0}^{(4)} = \sum_{\alpha \in V_n} \sum_{u_1 \in V_n} k_{F(u_1) \oplus F(u_1 \oplus \alpha)}(\alpha)$$
(9)

By the definition of $k_{\beta}(\alpha)$, if $F(u_1) \oplus F(u_1 \oplus \alpha) = \beta$, then we have

$$k_{F(u_1)\oplus F(u_1\oplus\alpha)}(\alpha) = k_\beta(\alpha)$$

Again, recall that $k_{\beta}(\alpha)$ denotes the number of times $F(u_1) \oplus F(u_1 \oplus \alpha)$ runs through $\beta \in V_m$ while u_1 runs through all the vectors in V_n once. From (9), we have

$$\hat{q}_{F,0}^{(4)} = \sum_{\alpha \in V_n} \sum_{u_1 \in V_n} k_{F(u_1) \oplus F(u_1 \oplus \alpha)}(\alpha) = \sum_{\alpha \in V_n} \sum_{\beta \in V_m} k_\beta^2(\alpha)$$

This concludes the proof.

The above corollary, together with Lemma 2, gives rise to the following result:

Theorem 1. Let F be an $n \times m$ mapping. Then the 4th-order nonhomomorphicity, $\tilde{q}_F^{(4)}$, satisfies

$$\tilde{q}_F^{(4)} = 2^{3n} - \sum_{\alpha \in V_n} \sum_{\beta \in V_m} k_\beta^2(\alpha)$$

where $k_{\beta}(\alpha)$ is defined in Definition 8.

4.2 Expressing Nonhomomorphicity by Fourier Spectrum

Definition 9. Let $F = (f_1, \ldots, f_m)$ be an $n \times m$ mapping, $\alpha \in V_n$, $j = 0, 1, \ldots, 2^m - 1$ and $\beta_j = (b_1, \ldots, b_m)$ be the vector in V_m that corresponds to the binary representation of an integer j. In addition, set $g_j = \bigoplus_{u=1}^m b_u f_u$ be the *j*th linear combination of the component functions of F. Denote the sequence of g_j by η_j . Set

$$P = \begin{bmatrix} \langle \eta_0, \ell_0 \rangle^2 & \langle \eta_1, \ell_0 \rangle^2 & \cdots & \langle \eta_{2^m - 1}, \ell_0 \rangle^2 \\ \langle \eta_0, \ell_1 \rangle^2 & \langle \eta_1, \ell_1 \rangle^2 & \cdots & \langle \eta_{2^m - 1}, \ell_1 \rangle^2 \\ \vdots \\ \langle \eta_0, \ell_{2^n - 1} \rangle^2 & \langle \eta_1, \ell_{2^n - 1} \rangle^2 & \cdots & \langle \eta_{2^m - 1}, \ell_{2^n - 1} \rangle^2 \end{bmatrix}$$

where ℓ_i is the *i*th row of H_n , $i = 0, 1, \ldots, 2^n - 1$. The matrix P is called the correlation immunity distribution table of the mapping F.

Since both η_0 and ℓ_0 are the all-one sequence of length 2^n and ℓ_j is (1, -1) balanced for j > 0, we have $\langle \eta_0, \ell_0 \rangle = 2^n$, $\langle \eta_0, \ell_j \rangle = 0$, $j = 1, \ldots, 2^n - 1$. The following lemma can be found in [10].

Lemma 4. Let $F = (f_1, \ldots, f_m)$ be a mapping from V_n to V_m , where n and m are integers with $n \ge m \ge 1$ and each $f_j(x)$ is a function on V_n . Set $g_j = \bigoplus_{u=1}^m c_u f_u$ where (c_1, \ldots, c_m) is the binary representation of an integer j, $j = 0, 1, \ldots, 2^m - 1$. Then $P = H_n K H_m$ where K and P are defined in Definitions 8 and 9 respectively.

The following corollary can be deduced from Lemma 4 and Corollary 2.

Corollary 3. Let F be an $n \times m$ mapping. Then

$$\tilde{q}_{F,0}^{(4)} = 2^{-m-n} [2^{4n} + \sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1} \langle \eta_j, \ell_i \rangle^4]$$

where $\langle \eta_j, \ell_i \rangle$ is defined in Definition 9.

By noting Lemma 2, we can further prove

Theorem 2. Let F be an $n \times m$ mapping. Then the 4th-order nonhomomorphicity of F, $\tilde{q}_F^{(4)}$, satisfies

$$\tilde{q}_F^{(4)} = 2^{3n} - 2^{-m-n} \left[2^{4n} + \sum_{j=1}^{2^m - 1} \sum_{i=0}^{2^n - 1} \langle \eta_j, \ell_i \rangle^4 \right]$$

where $\langle \eta_j, \ell_i \rangle$ is defined in Definition 9.

4.3 Expressing Nonhomomorphicity by Auto-Correlation Distribution

Definition 10. Let $F = (f_1, \ldots, f_m)$ be an $n \times m$ S-box, $\alpha \in V_n$, $j = 0, 1, \ldots, 2^m - 1$ and $\beta_j = (b_1, \ldots, b_m)$ be the vector in V_m that corresponds to the binary representation of j. In addition, set $g_j = \bigoplus_{u=1}^m b_u f_u$ be the jth linear combination of the component functions of F. Denote the auto-correlation of g_j with shift α by $\Delta_j(\alpha)$.

Set

$$D = \begin{bmatrix} \Delta_0(\alpha_0) & \Delta_1(\alpha_0) & \dots & \Delta_{2^m-1}(\alpha_0) \\ \Delta_0(\alpha_1) & \Delta_1(\alpha_1) & \dots & \Delta_{2^m-1}(\alpha_1) \\ \vdots \\ \Delta_0(\alpha_{2^n-1}) & \Delta_1(\alpha_{2^n-1}) & \dots & \Delta_{2^m-1}(\alpha_{2^n-1}) \end{bmatrix}$$

Matrix D is called auto-correlation distribution table of F.

By using Theorem 2 and (2), we have the following result:

Theorem 3. Let F be an $n \times m$ mapping. Then the 4th-order nonhomomorphicity of F, $\tilde{q}_{F}^{(4)}$, satisfies

$$\tilde{q}_F^{(4)} = 2^{3n} - 2^{-m} [2^{3n} + \sum_{j=1}^{2^m - 1} \sum_{i=0}^{2^n - 1} \Delta_j^2(\alpha_i)]$$

5 Lower and Upper Bounds on Nonhomomorphicity

We first introduce Hölder's Inequality which can be found in [2].

Lemma 5. Let $c_j \ge 0$ and $d_j \ge 0$ be real numbers, where $j = 1, \ldots, s$, and let p and q satisfy $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1. Then $(\sum_{j=1}^{s} c_j^p)^{1/p} (\sum_{j=1}^{s} d_j^q)^{1/q} \ge \sum_{j=1}^{s} c_j d_j$ where the equality holds if and only if $c_j = \nu d_j$, $j = 1, \ldots, s$ for a constant $\nu \ge 0$.

When c_j , d_j , p and q satisfy the condition that $c_j \ge 0$, $d_j = \begin{cases} 1 \text{ if } c_j = 1 \\ 0 \text{ if } c_j = 0 \end{cases}$, and $p = q = \frac{1}{2}$, Hölder's Inequality will be specialized as

$$\sum_{j=1}^{s} c_j^2 \ge s^{-1} (\sum_{j=1}^{s} c_j)^2 \tag{10}$$

where the quality holds if and only if c_1, \ldots, c_s are all identical. By using the specialized Hölder's Inequality, we can prove

Theorem 4. Let F be an $n \times m$ mapping. Then the 4th-order nonhomomorphicity of F, $\tilde{q}_F^{(4)}$, satisfies

$$0 \le \tilde{q}_F^{(4)} \le 2^{2n-m}(2^n-1)(2^m-1)$$

where the first equality holds if and only if F is affine, and the second equality holds if and only if every nonzero linear combination of the component functions of F is bent.

Proof. By the definition of the 4th-order nonhomomorphicity of F, the first inequality is true, and the equality holds if and only if F is affine.

Now we consider the second inequality. From Theorem 2,

$$\tilde{q}_F^{(4)} = 2^{3n} - 2^{-m-n} \left[2^{4n} + \sum_{j=1}^{2^m - 1} \sum_{i=0}^{2^n - 1} \langle \eta_j, \ell_i \rangle^4 \right]$$

By using (10), we have

$$\begin{split} \tilde{q}_{F}^{(4)} &= 2^{3n} - 2^{-m-n} [2^{4n} + \sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1} \langle \eta_{j}, \ell_{i} \rangle^{4}] \\ &\leq 2^{3n} - 2^{-m-n} [2^{4n} + \frac{1}{(2^{m}-1)2^{n}} (\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1} \langle \eta_{j}, \ell_{i} \rangle^{2})^{2}] \end{split}$$

According to Parseval's equation (Page 416 of [3]), we have $\sum_{i=0}^{2^n-1} \langle \eta_j, \ell_i \rangle^2 = 2^{2^n}$ for each $j, 1 \leq j \leq 2^m - 1$. Hence

$$\tilde{q}_F^{(4)} \le 2^{3n} - 2^{-m-n} [2^{4n} + \frac{1}{(2^m - 1)2^n} ((2^m - 1)2^{2n})^2]$$
(11)

This proves the second inequality. Again by using (10), the equality in (11) holds if and only if $\langle \eta_j, \ell_i \rangle^2$ are identical for all $j = 1, \ldots, 2^m - 1$ and $i = 0, 1, \ldots, 2^n - 1$. Parseval's equation implies that, in this case, $\langle \eta_j, \ell_i \rangle^2 = 2^n$ for all $j = 1, \ldots, 2^m - 1$ and $i = 0, 1, \ldots, 2^n - 1$. Recall the definition of a bent function, we have proved that the equality in (11) holds if and only if each g_j (see Definition 9) is bent, where $1 \le j \le 2^m - 1$.

If an $n \times m$ mapping, F, has the property that every nonzero linear combination of the component functions of F is bent, then F is called a *perfect nonlinear* [5]. From a corollary of [5], perfect nonlinear $n \times m$ mappings exist only when $m \leq \frac{1}{2}n$.

6 Mean of Nonhomomorphicity

To measure the nonhomomorphic characteristics of a mapping, it is reasonable to compare it with the mean of the 4th-order nonhomomorphicity over all the mappings from V_n to V_m . Hence we want to find out an explicit expression for $2^{-m \cdot 2^n} \sum_F \tilde{q}_F^{(4)}$.

Recall that if $(u_1, u_2, u_3, u_4) \in O_n^{(4)}$, then $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(4)}$. Hence we have the following:

Proposition 1. Let F be a mapping from V_n to V_m . Then for every nonzero vector $\beta \in V_m$,

$$\hat{q}_{F,\beta}^{(4)} = \#\{(u_1, u_2, u_3) | (u_1, u_2, u_3) \in D_n^{(3)}, F(u_1) \oplus F(u_2) \oplus F(u_3) \oplus F(u_1 \oplus u_2 \oplus u_3) = \beta \}$$

There are two cases with $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(4)}$. Case 1: $(u_1, u_2, u_3, u_4) \in O_n^{(4)}$. Case 2: $(u_1, u_2, u_3) \in D_n^{(3)}$ and $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(k)}$, where $u_4 = u_1 \oplus u_2 \oplus u_3$. This shows that the following is true.

Proposition 2. Let F be a mapping from V_n to V_m . Then

$$\begin{split} \tilde{q}_{F,0}^{(4)} &= 3 \cdot 2^{2n} - 2^{n+1} + \#\{(u_1, u_2, u_3) | (u_1, u_2, u_3) \in D_n^{(3)}, \\ F(u_1) \oplus F(u_2) \oplus F(u_3) \oplus F(u_1 \oplus u_2 \oplus u_3) = 0 \} \end{split}$$

Theorem 5. Let F be a mapping from V_n to V_m . For a fixed nonzero $\beta \in V_m$, the mean of the $\tilde{q}_{F,\beta}^{(4)}$ over all the mappings from V_n to V_m , i.e., $2^{-m \cdot 2^n} \sum_F \tilde{q}_{F,\beta}^{(4)}$, satisfies

$$2^{-m \cdot 2^n} \sum_F \tilde{q}_{F,\beta}^{(3)} = 2^{-m} \# D_n^{(3)} = 2^{3n-m} - 3 \cdot 2^{2n-m} + 2^{n-m+1}$$

Proof. We first note that there exist exactly $2^{m \cdot 2^n}$ mappings from V_n to V_m . For each fixed $(u_1, u_2, u_3) \in D_n^{(3)}$, a random mapping F, from V_n to V_m , $F(u_1)$, $F(u_2)$, $F(u_3)$, and $F(u_1 \oplus u_2 \oplus u_3)$ are independent. Hence $F(u_1) \oplus F(u_2) \oplus$ $F(u_3) \oplus F(u_1 \oplus u_2 \oplus u_3)$ takes every vector in V_m with an equal probability of 2^{-m} . Therefore we have

$$2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F,\beta}^{(4)} = \sum_{F} 2^{-m \cdot 2^{n}} \#\{(u_{1}, u_{2}, u_{3}) | (u_{1}, u_{2}, u_{3}) \in D_{n}^{(3)}, F(u_{1}) \oplus F(u_{2}) \oplus F(u_{3}) \oplus F(u_{1} \oplus u_{2} \oplus u_{3}) = \beta\}$$
$$= \sum_{(u_{1}, u_{2}, u_{3}) \in D_{n}^{(3)}} 2^{-m} = 2^{-m} \# D_{n}^{(3)}$$

Theorem 6. Let F be a mapping from V_n to V_m . Then the mean of $\tilde{q}_{F,0}^{(4)}$ over all the mappings from V_n to V_m , i.e., $2^{-m \cdot 2^n} \sum_F \tilde{q}_{F,0}^{(4)}$, satisfies

$$2^{-m \cdot 2^n} \sum_{F} \tilde{q}_{F,0}^{(4)} = 3 \cdot 2^{2n} - 2^{n+1} + 2^{3n-m} - 3 \cdot 2^{2n-m} + 2^{n-m+1}$$

Proof. Consider two cases for $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(4)}$:

Case $1 - (u_1, u_2, u_3, u_4) \in O_n^{(4)}$. Recall (7), $\#O_n^{(4)} = 3 \cdot 2^{2n} - 2^{n+1}$. Case $2 - (u_1, u_2, u_3) \in D_n^{(3)}$ and $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(k)}$, where $u_4 = u_1 \oplus$ $u_2 \oplus u_3$.

From the proof of Theorem 5, for each fixed $(u_1, u_2, u_3) \in D_n^{(3)}$, a random mapping $F F(u_1) \oplus F(u_2) \oplus F(u_3) \oplus F(u_1 \oplus u_2 \oplus u_3)$ takes every vector, in particular the zero vector, in V_m with an equal possibility of 2^{-m} . Now the theorem follows immediately from Proposition 2 and the proof of Theorem 5.

Taking (6) into account, from Theorem 6 we obtain the following result which is of major interest:

Theorem 7. Let F be a mapping from V_n to V_m . Then the mean of $\tilde{q}_F^{(4)}$ over all the mappings from V_n to V_m , i.e., $2^{-m \cdot 2^n} \sum_F \tilde{q}_F^{(4)}$, satisfies

$$2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(4)} = (2^{m} - 1)(2^{3n - m} - 3 \cdot 2^{2n - m} + 2^{n - m + 1})$$

7 **Relative Nonhomomorphicity**

We now introduce the concept of "relative nonhomomorphicity". It will be useful for a statistical tool.

Recall that if $(u_1, u_2, u_3, u_4) \in O_n^{(4)}$, then $(u_1, u_2, u_3, u_4) \in \mathcal{H}_{F,0}^{(4)}$. Hence to count $Q_F^{(k)}$, we do not need to consider any 4-tuples (u_1, u_2, u_3, u_4) in $O_n^{(4)}$.

Definition 11. Let F be a mapping from V_n to V_m . Then $\frac{\tilde{q}_F^{(4)}}{\#D_n^{(3)}}$, denoted by $ho_F^{(4)}$, is called the (4th-order) relative nonhomomorphicity of F, where ${\widetilde q}_F^{(4)}$ is the 4th-order nonhomomorphicity of F, while $D_n^{(3)}$ is the collection of 3-tuples (u_1, u_2, u_3) of vectors in V_n with distinct u_1 , u_2 and u_3 .

Corollary 4. The mean of $\rho_F^{(4)}$ over all the $n \times m$ S-boxes, i.e., $2^{-m \cdot 2^n} \sum_F \rho_F^{(4)}$, satisfies

$$2^{-m\cdot 2^n}\sum_F \rho_F^{(4)} = 1-2^{-m}$$

 $\begin{array}{ll} Proof. \text{ Note that } 2^{-m \cdot 2^n} \sum_F \rho_F^{(4)} = 2^{-m \cdot 2^n} \sum_F \frac{\tilde{q}_F^{(4)}}{\# D_n^{(3)}} = \frac{2^{-m \cdot 2^n}}{\# D_n^{(3)}} \sum_F \tilde{q}_F^{(4)}. \text{ Hence from Theorem 7, we have } 2^{-m \cdot 2^n} \sum_F \rho_F^{(4)} = \frac{(2^m - 1)(2^{3n - m} - 3 \cdot 2^{2n - m} + 2^{n - m + 1})}{2^{3n - 3 \cdot 2^{2n} + 2^{n + 1}}} = 1 - 2^{-m} \end{array}$

From Corollary 4, the following observation can be made:

 $\rho_F^{(4)} \begin{cases} > 1 - 2^{-m} \text{ then } F \text{ is more nonhomomorphic than the average} \\ < 1 - 2^{-m} \text{ then } F \text{ is less nonhomomorphic than the average} \end{cases}$ (12)

Here the average nonhomomorphicity indicates one that has a relative nonhomomorphicity of $1-2^{-m}$. Clearly, if $\rho_F^{(4)}$ is much smaller than $1-2^{-m}$ then F should be considered to be cryptographically weak.

8 An Application of Nonhomomorphicity

We have noticed that the relative nonhomomorphicity, $\rho_F^{(4)}$ is precisely identified with "population mean" or "true mean", a terminology in statistics. This fact enables us to design a statistical method with a high reliability for estimating the nonhomomorphicity of an S-box, thank to the law of large numbers [1].

From the nonhomomorphicity, by using Theorems 1, 2 and 3, we obtain information about other criteria, for example, the nonlinearity, the maximum $k_{\beta}(\alpha)$ with $\alpha \in V_n$, $\alpha \neq 0$ and $\beta \in V_n$, and the maximum $\Delta_j(\alpha_i)$, $1 \leq j \leq 2^m - 1$ and $1 \leq i \leq 2^n - 1$.

Example 1. The Data Encryption Algorithm or DES employs eight 6×4 mappings or S-boxes. Consider the first mapping F. From Definition 7, we directly calculate $\tilde{q}_{F}^{(4)} = 231264$. (Also we can use a statistical method to find an approximate value of $\tilde{q}_{F}^{(4)}$).

By using Theorem 1

$$231264 = 2^{18} - \sum_{\alpha \in V_6} \sum_{\beta \in V_4} k_{\beta}^2(\alpha)$$

Recall the property of the difference distribution table K, $k_0(0) = 2^n$ and $k_\beta(0) = 0, \beta \neq 0$.

$$\sum_{\alpha \in V_6, \alpha \neq 0} \sum_{\beta \in V_4} k_{\beta}^2(\alpha) = 2^{18} - 2^{12} - 231264$$

Write $\max\{k_{\beta}(\alpha) | \alpha \in V_6 \, \alpha \neq 0, \beta \in V_4\} = k_M$ Hence we have

$$k_M \sum_{\alpha \in V_6, \alpha \neq 0} \sum_{\beta \in V_4} k_{\beta}(\alpha) \ge \sum_{\alpha \in V_6} \sum_{\beta \in V_4} k_{\beta}^2(\alpha) = 2^{18} - 2^{12} - 231264$$

Again, recall the property of K, $\sum_{\beta \in V_m} k_\beta(\alpha) = 2^n$, for any $\alpha \in V_n$. Hence

$$c_M(2^6 - 1)2^6 \ge 2^{18} - 2^{12} - 231264$$

This implies $k_M \ge 6.6$. Since k_M is even, $k_M \ge 8$. This is larger than the trivial lower bound $k_M \ge 2^{n-m} = 4$.

Write $\max(\widetilde{|\langle \eta_j, \ell_i \rangle}) | 1 \le j \le 2^4 - 1, 0 \le i \le 2^6 - 1\} = p_M$. By using Theorem 2,

$$(2^{18} - \tilde{q}_F^{(4)})2^{6+4} - 2^{24} = \sum_{j=1}^{2^4 - 1} \sum_{i=0}^{2^6 - 1} \langle \eta_j, \ell_i \rangle^4 \le p_M^2 \sum_{j=1}^{2^4 - 1} \sum_{i=0}^{2^6 - 1} \langle \eta_j, \ell_i \rangle^2$$

By using Parseval's equation, Page 416, [3], $\sum_{i=0}^{2^6-1} \langle \eta_j, \ell_i \rangle^2 = 2^{2\cdot 6}$ for each fixed $j, j = 1, \ldots, 2^4 - 1$. Hence $p_M^2 \ge 2^{12} - \frac{231264}{60} > 241$. Since p_M^2 is square and multiple by 4, we have $p_M^2 \ge 256$. By using (1), we conclude that $N_F \le 2^{6-1} - \frac{1}{2}p_M \le 24$. Recall the maximum nonlinearity of functions on V_6 is $2^{6-1} - \frac{1}{2}p_M \le 24$. $2^{3-1} = 2^{3}$ that only bent functions achieve. Write $\max\{|\Delta_j(\alpha_i)| 1 \le j \le 2^4 - 1, 1 \le i \le 2^6 - 1\} = \Delta_M$. By using Theorem

3,

$$(2^{3\cdot 6} - \tilde{q}_F^{(4)})2^4 - 2^{3\cdot 6} = \sum_{j=1}^{2^4 - 1} \sum_{i=0}^{2^6 - 1} \Delta_j^2(\alpha_i)$$

Noticing $\Delta_i(\alpha_0) = 2^6$, $j = 0, 1, ..., 2^4 - 1$, hence

$$2^{3 \cdot 6+4} - 2^4 \hat{q}_F^{(4)} - 2^{3 \cdot 6} = 2^{2 \cdot 6+4} + \sum_{j=1}^{2^4 - 1} \sum_{i=1}^{2^6 - 1} \Delta_j^2(\alpha_i) \le (2^4 - 1)(2^6 - 1)\Delta_M^2$$

This proves

$$\Delta_M^2 \ge \frac{2^{22} - 2^{18} - 2^{16} - 2^4 \tilde{q}_F^{(4)}}{(2^6 - 1)(2^4 - 1)} > 176$$

Since Δ_M^2 is square and multiple by 4, Hence $\Delta_M^2 \ge 196$ and hence $\Delta_M \ge 14$.

We note that in Example 1, the value of $\tilde{q}_F^{(4)}$ also can be estimated by a fast statistical method with a high reliability. Such a statistical method is more useful in a situation where fast analysis of S-boxes is required.

Concluding Remarks 9

The advantages of nonhomomorphicity, as a new linearity criterion, include: (1) it can be estimated by a statistical method with a high reliability due to the law of large numbers; (2) it is closely related to other criteria. More details about the statistical method, together with further applications of nonhomomorphicity, will be shown in a separate paper.

Acknowledgement

The second author was supported by a Queen Elizabeth II Fellowship (227–23–1002).

References

- 1. Stephen A. Book. Statistics. McGraw-Hill Book Company, 1977.
- 2. Friedhelm Erwe. *Differential And Integral Calculus*. Oliver And Boyd Ltd, Edinburgh And London, 1967.
- F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, New York, Oxford, 1978.
- W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology - EUROCRYPT'89, volume 434, Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, Berlin, Heidelberg, New York, 1990.
- K. Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology EURO-CRYPT'91, volume 547, Lecture Notes in Computer Science, pages 378-386. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
- K. Nyberg. On the construction of highly nonlinear permutations. In Advances in Cryptology - EUROCRYPT'92, volume 658, Lecture Notes in Computer Science, pages 92-98. Springer-Verlag, Berlin, Heidelberg, New York, 1993.
- 7. O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory, Ser. A, 20:300-305, 1976.
- X. M. Zhang and Y. Zheng. Characterizing the structures of cryptographic functions satisfying the propagation criterion for almost all vectors. *Design, Codes and Cryptography*, 7(1/2):111-134, 1996. special issue dedicated to Gus Simmons.
- X. M. Zhang and Y. Zheng. The kth-order nonhomomorphicity of boolean functions. In SAC'98, volume Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York, 1998. to appear.
- X. M. Zhang, Y. Zheng, and Hideki Imai. Relating differential distribution tables to other properties of substitution boxes. Designs, Codes and Cryptography (to appear), 1998.