
The Nonhomomorphicity of S-boxesYuliang Zheng1 and Xian-Mo Zhang21 School of Comp & Info Tech, Monash University, McMahons Road, Frankston,Melbourne, VIC 3199, Australia. E-mail: yuliang@pscit.monash.edu.auURL: http://www.pscit.monash.edu.au/links/2 School of Info Tech & Comp Sci, the University of Wollongong, WollongongNSW 2522, Australia. E-mail: xianmo@cs.uow.edu.auAbstract. In this paper, we introduce the concept of kth-order nonho-momorphicity of mappings or S-boxes as an alternative indicator thatforecasts nonlinearity characteristics of an S-box, where k � 4 is even.Main results of this paper include: (1) we show that nonhomomorphicity,especially the 4th order nonhomomorphicity, can be precisely expressedby using other important nonlinear indicators of an S-box. (2) we estab-lish tight lower and upper bounds on the nonhomomorphicity of S-boxes,(3) we identify the mean of nonhomomorphicity over all the S-boxes withthe same size and the relative nonhomomorphicity of an S-box, both ofwhich are useful in estimating, statistically, the nonhomomorphicity ofan S-box.Key WordsSequences, Boolean Functions, S-boxes, Cryptanalysis, Cryptography, Nonho-momorphicity.1 Motivation of this ResearchThe so-called S-boxes, which are functionally identical to mappings or tuples ofBoolean functions, are of critical importance to the strength of a block cipher. Inthe past decade, the analysis and design of S-boxes has attracted a tremendousamount of attention. This paper focuses on new methods or perspectives for theanalysis of S-boxes. More speci�cally, it deals with a new nonlinearity indicatorcalled nonhomomorphicity.To understand the motivation behind the new concept, let us �rst note thata mapping F from Vn to Vm is a�ne, i.e., F (x) = xB � � where x 2 Vn, B isa �xed n�m matrix, if and only if F satis�es such property that for any evennumber k with k � 4, F (u1) � � � � � F (uk) = 0 whenever u1 � � � � � uk = 0.Now consider a non-a�ne function F on Vn. If F (u1)� � � ��F (uk) = 0 thenF satis�es the a�ne property at the particular vector (u1; : : : ; uk). On the otherhand, if F (u1) � � � � � F (uk) 6= 0 then F behaves in a way that is against thea�ne property at (u1; : : : ; uk).



The above discussions indicate that F (u1) � � � � � F (uk) 6= 0 is a usefulcharacteristic that di�erentiates a non-a�ne function from an a�ne one. Thisleads us to considering the number of vectors in Vn, (u1; : : : ; uk) with u1� � � ��uk = 0 satisfying F (u1) � � � � � F (uk) 6= 0 as a new nonlinearity criterion. Wecall this new criterion the kth-order nonhomomorphicity of F .Nonhomomorphicity has several interesting properties including (1) it ex-plores a new non-a�ne property; (2) it can be precisely calculated by otherindicators; (3) the mean of nonhomomorphicity over all the S-boxes with thesame size can be precisely identi�ed; (4) there exists a fast statistical method toestimate the nonhomomorphicity of an S-box.In this paper we restrict our attention to the 4th-order nonhomomorphicityof S-boxes, due to the fact that 4 is the smallest order and hence it is easyto handle. Furthermore, the 4th-order nonhomomorphicity of S-boxes is closelyrelated to many other criteria, a property apparently not shared by a higherorder nonhomomorphicity.[9] has studied a special case when the mapping F degenerates to a Booleanfunction, i.e., a mapping from Vn to V1. It turns out that the analysis of the non-homomorphicity of a general mapping from Vn to Vm is far more complex thanwhat we thought as �rst. As the analysis employs a number of new techniques,the results in this paper represent non-trivial generalization of those in [9].The rest of this paper is organized as follows: In Section 2, we introducethe basic de�nitions and notations used in this paper. In Section 3, we explainreasons why we study the nonhomomorphicity of S-boxes. In Section 4, we givethree precise characterizations of the nonhomomorphicity of S-boxes by the useof other indicators. These characterizations indicate close relationships betweennonhomomorphicity and other important criteria. This is followed by Section 5where we establish tight upper and lower bounds on the nonhomomorphicity ofS-boxes. In Section 6, we establish the mean of nonhomomorphicity of all theS-boxes with the same size. In Section 7, we show that the mean of nonhomomor-phicity and the relative nonhomomorphicity are relevant to a statistical methodfor estimating the nonhomomorphicity of S-boxes. An example application ofnonhomomorphicity is given in Section 8.2 Basic De�nitionsDe�nition 1. Denote by Vn the vector space of n tuples of elements from GF (2).The truth table of a function f from Vn to GF (2) (or simply functions on Vn) isa (0; 1)-sequence de�ned by (f(�0); f(�1); : : : ; f(�2n�1)), and the sequence of fis a (1;�1)-sequence de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)), where�0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). f is said to bebalanced if its truth table contains an equal number of ones and zeros.De�nition 2. A function f on Vn is called an a�ne function if f(x) = c �a1x1 � � � � � anxn where each aj and c are constant in GF (2). In particular, fis called a linear function if c = 0. A mapping from Vn to Vm, F , is an a�ne(linear) if all the component functions of F are a�ne (linear).



De�nition 3. The Hammingweight of a (0; 1)-sequence � is the number of onesin the sequence. Given two functions f and g on Vn, the Hamming distanced(f; g) between them is de�ned as the Hamming weight of the truth table off(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of f , denoted by Nf , isthe minimal Hamming distance between f and all a�ne functions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the a�ne functionson Vn.Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise product is denoted by a�b, while the scalar product (sum of component-wiseproducts) is denoted by ha; bi.The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n,denoted by Hn, is generated by the recursive relation Hn = �Hn�1 Hn�1Hn�1 �Hn�1 �,n = 1; 2; : : :; H0 = 1. Each row (column) of Hn is a linear sequence of length2n. A function f on Vn is called a bent function [7] if h�; `ii2 = 2n for everyi = 0; 1; : : :; 2n � 1, where � is the sequence of f and `i is a row in Hn. A bentfunction on Vn exists only when n is a positive even number, and it achieves thehighest possible nonlinearity 2n�1 � 2 12n�1.The nonlinearity of f on Vn can be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1g (1)where � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequences of linear functions on Vn. The proof can be found in, for instance, [4].De�nition 4. Let f be a function on Vn. For a vector � 2 Vn, denote by �(�)the sequence of f(x � �). Thus �(0) is the sequence of f itself and �(0) � �(�)is the sequence of f(x) � f(x � �). Let �(�) be the scalar product of �(0) and�(�). Namely �(�) = h�(0); �(�)i �(�) is called the auto-correlation of f witha shift �.The following formula is well known to the researchers. A simple proof to-gether with applications can be found, for instance, in [8](�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2) where�i is the binary representation of an integer i and `i is the ith row of Hn,i = 0; 1; : : : ; 2n � 1. Hence it is easy to verify2n 2n�1Xi=0 �2(�i) = 2n�1Xi=0 h�; `ii4 (2)De�nition 5. An n�m S-box or substitution box is a mapping from Vn to Vm,i.e., F = (f1; : : : ; fm), where n and m are integers with n � m � 1 and eachcomponent function fj is a function on Vn. In this paper, we use the terms ofmapping and S-box interchangeably. F is an a�ne mapping if it can be writtenas F (x) = xB � �, where x = (x1; : : : ; xn), B is an n � m matrix on GF (2),and � a vector in Vm. When � is the zero vector, F is said to be linear.



The concept of nonlinearity can be extended to the case of an S-box [6].De�nition 6. The nonlinearity of F = (f1; : : : ; fm) is de�ned asNF = mingfNgjg = mMj=1 cjfj; cj 2 GF (2); (c1; : : : ; cm) 6= (0; : : : ; 0)g:3 Nonhomomorphicity of S-boxesThe following lemma is important in this paper, as it explores a characteristicproperty of a�ne mappings which will be useful in studying nonhomomorphicity.Lemma 1. Let F be an n�m mapping.(i) If F is an a�ne mapping then F satis�es such property that for any evennumber k with k � 4, F (u1)� � � � � F (uk) = 0 whenever u1 � � � � � uk = 0,(ii) if there exists an even number k with k � 4 such that F (u1)�� � ��F (uk) = 0whenever u1 � � � � � uk = 0, then F is an a�ne mapping.Proof. We �rst prove Part (ii) of the lemma. Assume that there exists an evennumber k with k � 4 such that F (u1)�� � ��F (uk) = 0 whenever u1�� � ��uk = 0.We now prove that F is a�ne. Let u1 and u2 be any two vectors in Vn. Obviously,the k vectors u1, u2, u1�u2, 0; : : : ; 0 satisfy u1�u2� (u1�u2)�0�� � ��0 = 0.From the assumption,F (u1) � F (u2) � F (u1 � u2) � F (0)� � � � � F (0) = 0 (3)There are two cases to be examined: F (0) = 0 and F (0) 6= 0.Case 1: F (0) = 0. In this case F (c�) = cF (�) holds for any vector � 2 Vnand any value c 2 GF (2). Hence (3) can be rewritten asF (u1 � u2) = F (u1)� F (u2) (4)where u1 and u2 are arbitrary.Let ej denote the vector in Vn, whose the jth component is one and othersare zero. For any �xed value xj in GF (2), j = 1; : : : ; n, from (4), F (x1e1 �� � ��xnen) = F (x1e1)�F (x2e2� � � ��xnen). Applying (4) repeatedly, we haveF (x1e1 � � � �� xnen) = F (x1e1)�F (x2e2)� � � ��F (xnen). Note that F (0) = 0implies F (c�) = cF (�) where c is any value in GF (2) and � is any vector in Vn.Hence F (x1e1 � � � � � xnen) = x1F (e1)� � � � � xnF (en) (5)From the de�nition of ej , x1e1 � � � � � xnen = (x1; : : : ; xn). On the other hand,if we write F (ej) = �j where �j 2 Vm, j = 1; : : : ; n. Then (5) can be rewrittenas F (x1; : : : ; xn) = x1�1 � � � � � xn�n or F (x1; : : : ; xn) = (x1; : : : ; xn)B where



B = 26664 �1�2...�n37775 where B is an n�m matrix over GF (2) and each �i regarded as arow vector of B.Case 2: F (0) = � with � 6= 0. Set G(x) = � � F (x). Then G is linear. Byusing the result in Case 1, G(x1; : : : ; xn) = (x1; : : : ; xn)B where B is an n �mmatrix over GF (2). Hence F (x1; : : : ; xn) = (x1; : : : ; xn)B � �. This proves thatF is a�ne.We now prove Part (i) of the lemma.Assume that F is a�ne. FromDe�nition5, it is easy to check that for any even number k with k � 4, F (u1)�� � ��F (uk) =0 whenever u1 � � � � � uk = 0. utFrom the characteristic property shown in Lemma 1, if a mapping F on Vnsatis�es F (u1) � � � � � F (uk) = 0 for a large number of k-tuples (u1; : : : ; uk) ofvectors in Vn with u1 � � � � � uk = 0, then the mapping behaves more like ana�ne function. This leads us to introduce a new nonlinearity criterion.Notation 1. Let F be a mapping from Vn to Vm and k an even number with4 � k � 2n. Denote by H(k)F;� the collection of ordered k-tuples (u1; u2; : : : ; uk) ofvectors in Vn such thatH(k)F;� = f(u1; u2; : : : ; uk)juj 2 Vn; u1 � u2 � � � � � uk = 0;F (u1)� F (u2)� � � � � F (uk) = �gwhere � 2 Vm. Let ~q(k)F;� denote the number of elements in H(k)F;�, i.e., ~q(k)F;� =#H(k)F;�.De�nition 7. Let F be a mapping from Vn to Vm and k an even number with4 � k � 2n. WriteQ(k)F = f(u1; : : : ; uk)juj 2 Vn; u1 � u2 � � � � � uk = 0;F (u1) � F (u2)� � � � � F (uk) 6= 0g (6)Let ~q(k)F be the number of elements in Q(k)F , i.e., ~q(k)F = #Q(k)F . We call ~q(k)Fthe kth-order nonhomomorphicity of F .Note that there exist 2(k�1)n k-tuples of vectors in Vn, (u1; : : : ; uk), satisfyingu1 � � � � � uk = 0. HenceLemma 2. Let F be an n�m mapping. Then P�2Vn ~q(k)F;� = 2(k�1)n or ~q(k)F +~q(k)F;0 = 2(k�1)n.Lemma 1 indicates that when discussing the nonhomomorphic characteristicsof a mapping, we may focus on a single even number k, rather than on all evennumber k. Therefore we will focus on ~q(4)F . An obvious advantage of restricting



to a small k = 4 is that it would make the task of computing or estimating ~q(4)Feasier. Another reason why we prefer ~q(4)F to a general ~q(k)F is that we have foundinteresting relationships between ~q(4)F and many other criteria. Furthermore, thiscase has the following interesting property.Notation 2. Let O(4)n denote the collection of ordered 4-tuples(u1; u2; u3; u4) of vectors in Vn, satisfying uj1 = uj2 and uj3 = uj4 , where the4-tuple (uj1 ; uj2 ; uj3; uj4) is a rearrangement of (u1; u2; u3; u4). Denote by D(3)nthe collection of 3-tuples (u1; u2; u3) of vectors in Vn with distinct u1, u2 and u3.Obviously if u1 � u2 � u3 � u4 = 0 then either (u1; u2; u3; u4) 2 O(4)n or(u1; u2; u3) 2 D(3)n with u1 � u2 � u3 = u4. It is easy to verify#O(4)n = 3 � 22n � 2n+1; #D(3)n = 2n(2n � 1)(2n � 2) = 23n � 3 � 22n + 2n+1(7)In addition, if (u1; u2; u3; u4) 2 O(4)n , then (u1; u2; u3; u4) 2 H(4)F;0. In otherwords, (u1; u2; u3; u4) 2 H(4)F;� with � 6= 0 implies (u1; u2; u3) 2 D(3)n and u1 �u2 � u3 = u4. These properties will be useful later when we count ~q(4)F .We note that Lemma 1 cannot be extended to the case of odd k. This is thereason why we have not de�ned nonhomomorphicity for an odd order.4 Calculating 4th-order Nonhomomorphicity of S-boxesusing Other IndicatorsTo calculate or express a criterion, we must need other information or condi-tions. This section has two aims: (1) to give three precise expressions of nonho-momorphicity by using other indicators, (2) to explore the relationships betweennonhomomorphicity and other criteria.4.1 Expressing Nonhomomorphicity by Di�erence DistributionDe�nition 8. Let F = (f1; : : : ; fm) be an n � m mapping, � 2 Vn, and �j bethe vector in Vm that corresponds to the binary representation of an integer j.De�ne k�(�) as the number of times F (x)�F (x��) runs through � 2 Vm whilex runs through all the vectors in Vn once, The di�erence distribution table of Fis a matrix speci�ed as follows:K = 26664 k�0(�0) k�1(�0) : : : k�2m�1 (�0)k�0(�1) k�1(�1) : : : k�2m�1 (�1)...k�0(�2n�1) k�1(�2n�1) : : : k�2m�1 (�2n�1)37775where �j is the vector in Vn that corresponds to the binary representation of j.



Two properties of the di�erence distribution tableK are (i)P2m�1j=0 k�j (�i) =2n, i = 0; 1; : : : ; 2n � 1, (ii) k�0(�0) = 2n and k�j (�0) = 0, j = 1; : : : ; 2m � 1.Consider an even number s with s � 4 and an ordered s-tuple (u1; u2; : : : ; us)of vectors in Vn satisfyingLsj=1 uj = 0. Note thatsMj=1 F (uj) = s�1Mj=1 F (uj) � F (s�1Mj=1 uj)= s�2Mj=1 F (uj) � F (us�1)� F (us�1� s�2Mj=1 uj): (8)Fix u1; : : : ; us�2 2 Vn while letting us�1 run through vectors in Vn. ThenLsj=1F (uj) runs through a vector � 2 Vm if and only if F (us�1) � F (us�1 �Ls�2j=1 uj) runs through �Ls�2j=1 F (uj) while us�1 runs through all the vectors inVn once. Hence, for �xed u1; : : : ; us�2 2 Vn, the number of times forLsj=1F (uj)to run through � 2 Vm is determined by the quantity of k��F (u1)�����F (us�2)(u1�� � � � us�2):Now we remove the restriction that u1; : : : ; us�2 2 Vn are �xed. Then thenumber of times for Lsj=1 F (uj) to run through � 2 Vm while (u1; : : : ; us)satisfying Lsj=1 uj = 0 runs through all the vectors in Vn once, is determinedbyPu1;:::;us�22Vn k��F (u1)�����F (us�2)(u1 � � � � � us�2): Hence we haveLemma 3. Let F be an n �m mapping and k be an even number with k � 4.Then ~q(s)F;� = Xu1;:::;us�22Vn k��F (u1)�����F (us�2)(u1 � � � � � us�2)where ~q(k)F;� is de�ned in Notation 1 and k�(�) is de�ned in De�nition 8.In particular, when s = 4 and � = 0, Lemma 3 is specialized asCorollary 1. Let F be an n�m mapping. Then~q(4)F;0 = Xu1;u22Vn kF (u1)�F (u2)(u1 � u2)where ~q(k)F;0 is de�ned in Notation 1 and k�(�) is de�ned in De�nition 8.Corollary 2. Let F be an n�m mapping. Then~q(4)F;0 = X�2Vn X�2Vm k2�(�)where ~q(k)F;0 is de�ned in Notation 1 and k�(�) is de�ned in De�nition 8.



Proof. Write u1 � u2 = �. Hence Corollary 1 can be rewritten as~q(4)F;0 = X�2Vn Xu12Vn kF (u1)�F (u1��)(�) (9)By the de�nition of k�(�), if F (u1) � F (u1 � �) = �, then we havekF (u1)�F (u1��)(�) = k�(�)Again, recall that k�(�) denotes the number of times F (u1) � F (u1 � �) runsthrough � 2 Vm while u1 runs through all the vectors in Vn once. From (9), wehave ~q(4)F;0 = X�2Vn Xu12Vn kF (u1)�F (u1��)(�) = X�2Vn X�2Vm k2�(�)This concludes the proof. utThe above corollary, together with Lemma2, gives rise to the following result:Theorem 1. Let F be an n � m mapping. Then the 4th-order nonhomomor-phicity, ~q(4)F , satis�es ~q(4)F = 23n � X�2Vn X�2Vm k2�(�)where k�(�) is de�ned in De�nition 8.4.2 Expressing Nonhomomorphicity by Fourier SpectrumDe�nition 9. Let F = (f1; : : : ; fm) be an n � m mapping, � 2 Vn, j =0; 1; : : :; 2m�1 and �j = (b1; : : : ; bm) be the vector in Vm that corresponds to thebinary representation of an integer j. In addition, set gj = Lmu=1 bufu be thejth linear combination of the component functions of F . Denote the sequence ofgj by �j. Set P = 26664 h�0; `0i2 h�1; `0i2 � � � h�2m�1; `0i2h�0; `1i2 h�1; `1i2 � � � h�2m�1; `1i2...h�0; `2n�1i2 h�1; `2n�1i2 � � � h�2m�1; `2n�1i237775where `i is the ith row of Hn, i = 0; 1; : : :; 2n � 1. The matrix P is called thecorrelation immunity distribution table of the mapping F .Since both �0 and `0 are the all-one sequence of length 2n and `j is (1;�1)balanced for j > 0, we have h�0; `0i = 2n; h�0; `ji = 0, j = 1; : : : ; 2n � 1. Thefollowing lemma can be found in [10].



Lemma 4. Let F = (f1; : : : ; fm) be a mapping from Vn to Vm, where n andm are integers with n � m � 1 and each fj(x) is a function on Vn. Set gj =Lmu=1 cufu where (c1; : : : ; cm) is the binary representation of an integer j, j =0; 1; : : :; 2m � 1. Then P = HnKHm where K and P are de�ned in De�nitions8 and 9 respectively.The following corollary can be deduced from Lemma 4 and Corollary 2.Corollary 3. Let F be an n�m mapping. Then~q(4)F;0 = 2�m�n[24n + 2m�1Xj=1 2n�1Xi=0 h�j; `ii4]where h�j; `ii is de�ned in De�nition 9.By noting Lemma 2, we can further proveTheorem 2. Let F be an n � m mapping. Then the 4th-order nonhomomor-phicity of F , ~q(4)F , satis�es~q(4)F = 23n � 2�m�n[24n + 2m�1Xj=1 2n�1Xi=0 h�j; `ii4]where h�j; `ii is de�ned in De�nition 9.4.3 Expressing Nonhomomorphicity by Auto-CorrelationDistributionDe�nition 10. Let F = (f1; : : : ; fm) be an n�m S-box, � 2 Vn, j = 0; 1; : : : ; 2m�1 and �j = (b1; : : : ; bm) be the vector in Vm that corresponds to the binary rep-resentation of j. In addition, set gj =Lmu=1 bufu be the jth linear combinationof the component functions of F . Denote the auto-correlation of gj with shift �by �j(�).Set D = 26664 �0(�0) �1(�0) : : : �2m�1(�0)�0(�1) �1(�1) : : : �2m�1(�1)...�0(�2n�1) �1(�2n�1) : : : �2m�1(�2n�1)37775Matrix D is called auto-correlation distribution table of F .By using Theorem 2 and (2), we have the following result:Theorem 3. Let F be an n � m mapping. Then the 4th-order nonhomomor-phicity of F , ~q(4)F , satis�es~q(4)F = 23n � 2�m[23n+ 2m�1Xj=1 2n�1Xi=0 �2j(�i)]



5 Lower and Upper Bounds on NonhomomorphicityWe �rst introduce H�older's Inequality which can be found in [2].Lemma 5. Let cj � 0 and dj � 0 be real numbers, where j = 1; : : : ; s, and let pand q satisfy 1p + 1q = 1 and p > 1. Then (Psj=1 cpj )1=p(Psj=1 dqj)1=q �Psj=1 cjdjwhere the equality holds if and only if cj = �dj, j = 1; : : : ; s for a constant � � 0.When cj, dj, p and q satisfy the condition that cj � 0, dj = �1 if cj = 10 if cj = 0 ,and p = q = 12 , H�older's Inequality will be specialized assXj=1 c2j � s�1( sXj=1 cj)2 (10)where the quality holds if and only if c1, : : :, cs are all identical. By using thespecialized H�older's Inequality, we can proveTheorem 4. Let F be an n � m mapping. Then the 4th-order nonhomomor-phicity of F , ~q(4)F , satis�es0 � ~q(4)F � 22n�m(2n � 1)(2m � 1)where the �rst equality holds if and only if F is a�ne, and the second equalityholds if and only if every nonzero linear combination of the component functionsof F is bent.Proof. By the de�nition of the 4th-order nonhomomorphicity of F , the �rstinequality is true, and the equality holds if and only if F is a�ne.Now we consider the second inequality. From Theorem 2,~q(4)F = 23n � 2�m�n[24n + 2m�1Xj=1 2n�1Xi=0 h�j; `ii4]By using (10), we have~q(4)F = 23n � 2�m�n[24n + 2m�1Xj=1 2n�1Xi=0 h�j; `ii4]� 23n � 2�m�n[24n + 1(2m � 1)2n (2m�1Xj=1 2n�1Xi=0 h�j; `ii2)2]According to Parseval's equation (Page 416 of [3]), we haveP2n�1i=0 h�j; `ii2 = 22nfor each j, 1 � j � 2m � 1. Hence~q(4)F � 23n � 2�m�n[24n + 1(2m � 1)2n ((2m � 1)22n)2] (11)



This proves the second inequality. Again by using (10), the equality in (11)holds if and only if h�j; `ii2 are identical for all j = 1; : : : ; 2m � 1 and i =0; 1; : : :; 2n � 1. Parseval's equation implies that, in this case, h�j; `ii2 = 2n forall j = 1; : : : ; 2m � 1 and i = 0; 1; : : : ; 2n � 1. Recall the de�nition of a bentfunction, we have proved that the equality in (11) holds if and only if each gj(see De�nition 9) is bent, where 1 � j � 2m � 1. utIf an n�m mapping, F , has the property that every nonzero linear combina-tion of the component functions of F is bent, then F is called a perfect nonlinear[5]. From a corollary of [5], perfect nonlinear n � m mappings exist only whenm � 12n.6 Mean of NonhomomorphicityTo measure the nonhomomorphic characteristics of a mapping, it is reasonableto compare it with the mean of the 4th-order nonhomomorphicity over all themappings from Vn to Vm. Hence we want to �nd out an explicit expression for2�m�2nPF ~q(4)F .Recall that if (u1; u2; u3; u4) 2 O(4)n , then (u1; u2; u3; u4) 2 H(4)F;0. Hence wehave the following:Proposition 1. Let F be a mapping from Vn to Vm. Then for every nonzerovector � 2 Vm,~q(4)F;� = #f(u1; u2; u3)j(u1; u2; u3) 2 D(3)n ;F (u1)� F (u2)� F (u3) � F (u1 � u2 � u3) = �gThere are two cases with (u1; u2; u3; u4) 2 H(4)F;0. Case 1: (u1; u2; u3; u4) 2O(4)n . Case 2: (u1; u2; u3) 2 D(3)n and (u1; u2; u3; u4) 2 H(k)F;0, where u4 = u1 �u2 � u3. This shows that the following is true.Proposition 2. Let F be a mapping from Vn to Vm. Then~q(4)F;0 = 3 � 22n � 2n+1 +#f(u1; u2; u3)j(u1; u2; u3) 2 D(3)n ;F (u1)� F (u2)� F (u3)� F (u1 � u2 � u3) = 0gTheorem 5. Let F be a mapping from Vn to Vm. For a �xed nonzero � 2 Vm,the mean of the ~q(4)F;� over all the mappings from Vn to Vm, i.e., 2�m�2nPF ~q(4)F;�,satis�es 2�m�2nXF ~q(3)F;� = 2�m#D(3)n = 23n�m � 3 � 22n�m + 2n�m+1Proof. We �rst note that there exist exactly 2m�2n mappings from Vn to Vm.For each �xed (u1; u2; u3) 2 D(3)n , a random mapping F , from Vn to Vm, F (u1),



F (u2), F (u3), and F (u1 � u2 � u3) are independent. Hence F (u1) � F (u2) �F (u3)� F (u1 � u2 � u3) takes every vector in Vm with an equal probability of2�m. Therefore we have2�m�2nPF ~q(4)F;� =PF 2�m�2n#f(u1; u2; u3)j(u1; u2; u3) 2 D(3)n ;F (u1)� F (u2)� F (u3)� F (u1 � u2 � u3) = �g=P(u1;u2;u3)2D(3)n 2�m = 2�m#D(3)n utTheorem 6. Let F be a mapping from Vn to Vm. Then the mean of ~q(4)F;0 overall the mappings from Vn to Vm, i.e., 2�m�2nPF ~q(4)F;0, satis�es2�m�2nXF ~q(4)F;0 = 3 � 22n � 2n+1 + 23n�m � 3 � 22n�m + 2n�m+1Proof. Consider two cases for (u1; u2; u3; u4) 2 H(4)F;0:Case 1 | (u1; u2; u3; u4) 2 O(4)n . Recall (7), #O(4)n = 3 � 22n � 2n+1.Case 2 | (u1; u2; u3) 2 D(3)n and (u1; u2; u3; u4) 2 H(k)F;0, where u4 = u1 �u2 � u3.From the proof of Theorem 5, for each �xed (u1; u2; u3) 2 D(3)n , a randommapping F F (u1) � F (u2) � F (u3) � F (u1 � u2 � u3) takes every vector, inparticular the zero vector, in Vm with an equal possibility of 2�m. Now thetheorem follows immediately from Proposition 2 and the proof of Theorem 5.utTaking (6) into account, from Theorem 6 we obtain the following result whichis of major interest:Theorem 7. Let F be a mapping from Vn to Vm. Then the mean of ~q(4)F overall the mappings from Vn to Vm, i.e., 2�m�2nPF ~q(4)F , satis�es2�m�2nXF ~q(4)F = (2m � 1)(23n�m � 3 � 22n�m + 2n�m+1)7 Relative NonhomomorphicityWe now introduce the concept of \relative nonhomomorphicity". It will be usefulfor a statistical tool.Recall that if (u1; u2; u3; u4) 2 O(4)n , then (u1; u2; u3; u4) 2 H(4)F;0. Hence tocount Q(k)F , we do not need to consider any 4-tuples (u1; u2; u3; u4) in O(4)n .De�nition 11. Let F be a mapping from Vn to Vm. Then ~q(4)F#D(3)n , denoted by�(4)F , is called the (4th-order) relative nonhomomorphicity of F , where ~q(4)F isthe 4th-order nonhomomorphicity of F , while D(3)n is the collection of 3-tuples(u1; u2; u3) of vectors in Vn with distinct u1, u2 and u3.



Corollary 4. The mean of �(4)F over all the n�m S-boxes, i.e., 2�m�2nPF �(4)F ,satis�es 2�m�2nXF �(4)F = 1� 2�mProof. Note that 2�m�2nPF �(4)F = 2�m�2nPF ~q(4)F#D(3)n = 2�m�2n#D(3)n PF ~q(4)F . Hencefrom Theorem 7, we have 2�m�2nPF �(4)F = (2m�1)(23n�m�3�22n�m+2n�m+1 )23n�3�22n+2n+1 =1� 2�m utFrom Corollary 4, the following observation can be made:�(4)F �> 1� 2�m then F is more nonhomomorphic than the average< 1� 2�m then F is less nonhomomorphic than the average (12)Here the average nonhomomorphicity indicates one that has a relative nonho-momorphicity of 1� 2�m. Clearly, if �(4)F is much smaller than 1� 2�m then Fshould be considered to be cryptographically weak.8 An Application of NonhomomorphicityWe have noticed that the relative nonhomomorphicity, �(4)F is precisely identi�edwith \population mean" or \true mean", a terminology in statistics. This factenables us to design a statistical method with a high reliability for estimatingthe nonhomomorphicity of an S-box, thank to the law of large numbers [1].From the nonhomomorphicity, by using Theorems 1, 2 and 3, we obtaininformation about other criteria, for example, the nonlinearity, the maximumk�(�) with � 2 Vn, � 6= 0 and � 2 Vn, and the maximum�j(�i), 1 � j � 2m�1and 1 � i � 2n � 1.Example 1. The Data Encryption Algorithm or DES employs eight 6� 4 map-pings or S-boxes. Consider the �rst mapping F . From De�nition 7, we directlycalculate ~q(4)F = 231264. (Also we can use a statistical method to �nd an approx-imate value of ~q(4)F ).By using Theorem 1 231264 = 218 � X�2V6 X�2V4 k2�(�)Recall the property of the di�erence distribution table K, k0(0) = 2n andk�(0) = 0, � 6= 0. X�2V6;� 6=0 X�2V4 k2�(�) = 218 � 212 � 231264



Write maxfk�(�)j� 2 V6:� 6= 0; � 2 V4g = kM Hence we havekM X�2V6;� 6=0 X�2V4 k�(�) � X�2V6 X�2V4 k2�(�) = 218 � 212 � 231264Again, recall the property of K,P�2Vm k�(�) = 2n, for any � 2 Vn. HencekM(26 � 1)26 � 218 � 212 � 231264This implies kM � 6:6. Since kM is even, kM � 8. This is larger than the triviallower bound kM � 2n�m = 4.Write maxfjh�j; `iijj1 � j � 24�1; 0 � i � 26�1g = pM . By using Theorem2, (218 � ~q(4)F )26+4 � 224 = 24�1Xj=1 26�1Xi=0 h�j; `ii4 � p2M 24�1Xj=1 26�1Xi=0 h�j; `ii2By using Parseval's equation, Page 416, [3], P26�1i=0 h�j ; `ii2 = 22�6 for each�xed j, j = 1; : : : ; 24 � 1. Hence p2M � 212 � 23126460 > 241. Since p2M is squareand multiple by 4, we have p2M � 256. By using (1), we conclude that NF �26�1� 12pM � 24. Recall the maximumnonlinearity of functions on V6 is 26�1�23�1 = 28 that only bent functions achieve.Write maxfj�j(�i)j1 � j � 24�1; 1 � i � 26�1g = �M . By using Theorem3, (23�6 � ~q(4)F )24 � 23�6 = 24�1Xj=1 26�1Xi=0 �2j(�i)Noticing �j(�0) = 26, j = 0; 1; : : : ; 24 � 1, hence23�6+4 � 24~q(4)F � 23�6 = 22�6+4 + 24�1Xj=1 26�1Xi=1 �2j(�i) � (24 � 1)(26 � 1)�2MThis proves �2M � 222 � 218 � 216 � 24~q(4)F(26 � 1)(24 � 1) > 176Since �2M is square and multiple by 4, Hence �2M � 196 and hence �M � 14.We note that in Example 1, the value of ~q(4)F also can be estimated by afast statistical method with a high reliability. Such a statistical method is moreuseful in a situation where fast analysis of S-boxes is required.9 Concluding RemarksThe advantages of nonhomomorphicity, as a new linearity criterion, include: (1)it can be estimated by a statistical method with a high reliability due to the lawof large numbers; (2) it is closely related to other criteria. More details aboutthe statistical method, together with further applications of nonhomomorphicity,will be shown in a separate paper.
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