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Abstract� Recent advances in interpolation and high order di
erential
cryptanalysis have highlighted the cryptographic signi�cance of Boolean
functions with a high algebraic degree� However� compared with other
nonlinearity criteria such propagation� resiliency� di
erential and linear
characteristics� apparently little progress has been made in relation to
algebraic degree in the context of cryptography� The aim of this work is
to research into relationships between algebraic degree and other nonlin�
earity criteria� Making use of duality properties of Boolean functions� we
have obtained several results that are related to lower bounds on nonlin�
earity� as well as on the number of terms� of Boolean functions� We hope
that these results would stimulate the research communitys interest in
further exploring this important area�

� Introduction

The algebraic degree has long been believed by many designers of block ciphers
and one�way hash functions to be an important nonlinearity indicator for the
cryptographic strength of Boolean functions� Recent progress in interpolation
cryptanalysis ��� and high order di�erential cryptanalysis ��� can be viewed as a
proof for the correctness of the belief� Of particular interest is the work of ���
in which the authors showed how to break in less than �� milli�seconds a block
cipher that employs low algebraic degree 	quadratic
 Boolean functions as its
S�boxes and is provably secure against linear and 	the �rst order
 di�erential
attacks�

Investigation into the algebraic degree of Boolean functions has been a dif�
�cult topic� This is supported by the fact that� while the past few years have
seen much progress in relation to other nonlinearity criteria such as propaga�
tion� di�erential pro�le� nonlinear pro�le� resiliency� correlation�immunity� local
and global avalanche characteristics� little progress has been made in design�
ing Boolean functions that have a high algebraic degree and also satisfy other
important nonlinearity criteria�

In this paper we tackle algebraic degree� together with nonlinearity� propaga�
tion characteristics� correlation immunity and the number of terms in a Boolean



function by exploring the duality property of a Boolean function� Main contribu�
tions of this work are to show 	�
 two lower bounds� one on the nonlinearity and
the other on the number of terms of a Boolean functions� and 	�
 a connection
between the algebraic degree of a Boolean function and its Walsh�Hadamard
transform�

� Basic De�nitions

We consider functions from Vn to GF 	�
 	or simply functions on Vn
� Vn is the
vector space of n tuples of elements from GF 	�
� The truth table of a function f
on Vn is a 	���
�sequence de�ned by 	f 	��
� f 	��
� � � � � f 	��n��

� and the se�
quence of f is a 	����
�sequence de�ned by 		��
f ����� 	��
f ����� � � � � 	��
f���n���
�
where ��  	�� � � � � ���
� ��  	�� � � � � ���
� � � �� ��n����  	�� � � � � ���
� The ma�
trix of f is a 	����
�matrix of order �n de�ned by M  		��
f ��i��j�
 where �
denotes the addition in GF 	�
� f is said to be balanced if its truth table contains
an equal number of ones and zeros�

Given two sequences �a  	a�� � � � � am
 and �b  	b�� � � � � bm
� their component�
wise product is de�ned by �a ��b  	a�b�� � � � � ambm
� In particular� if m  �n and
�a� �b are the sequences of functions on Vn respectively� then �a � �b is the sequence
of f � g�

Let �a  	a�� � � � � am
 and �b  	b�� � � � � bm
 be two vectors 	or sequences
�
the scalar product of �a and �b� denoted by h�a��bi� is de�ned as the sum of the
component�wise multiplications� In particular� when �a and �b are fromVm� h�a��bi 
a�b� � � � � � ambm� where the addition and multiplication are over GF 	�
� and
when �a and �b are 	����
�sequences� h�a��bi 

Pm

i�� aibi� where the addition and
multiplication are over the reals�

An a�ne function f on Vn is a function that takes the form of f	x�� � � � � xn
 
a�x� � � � � � anxn � c� where aj� c � GF 	�
� j  ���� � � � � n� Furthermore f is
called a linear function if c  ��

De�nition�� The Hamming weight of a 	�� �
�sequence � is the number of ones
in the sequence� Given two functions f and g on Vn� the Hamming distance
d	f� g
 between them is de�ned as the Hamming weight of the truth table of
f 	x
 � g	x
� where x  	x�� � � � � xn
� The nonlinearity of f � denoted by Nf � is
the minimal Hamming distance between f and all a�ne functions on Vn� i�e��
Nf  mini����������n�� d	f��i
 where ��� ��� � � �� ��n�� are all the a�ne functions
on Vn�

A 	����
�matrix H of order m is called a Hadamard matrix if HHt  mIm�
where Ht is the transpose of H and Im is the identity matrix of order m� A
Sylvester�Hadamard matrix of order �n� denoted by Hn� is generated by the
following recursive relation

H�  �� Hn 

�
Hn�� Hn��

Hn�� �Hn��

�
� n  �� �� � � � �



Let �i� � � i � �n��� be the i row ofHn� By Lemma � of ���� �i is the sequence
of a linear function �i	x
 de�ned by the scalar product �i	x
  h�i� xi� where
�i is the ith vector in Vn according to the ascending alphabetical order�

De�nition�� Let f be a function on Vn� For a vector � � Vn� denote by �	�

the sequence of f 	x��
� Thus �	�
 is the sequence of f itself and �	�
 � �	�
 is
the sequence of f 	x
� f	x� �
� Set

�	�
  h�	�
� �	�
i�

the scalar product of �	�
 and �	�
� �	�
 is also called the auto�correlation of f
with a shift ��

Obviously� �	�
  � if and only if f 	x
�f 	x��
 is balanced� i�e�� f satis�es
the propagation criterion with respect to �� On the other hand� if j�	�
j  �n�
then f 	x
� f 	x� �
 is a constant and hence � is a linear structure of f �

A function f on GF 	�
 can be uniquely represented by a polynomial on
GF 	�
 whose degree is at most n� Namely�

f 	x�� � � � � xn
 
M
��Vn

g	a�� � � � � an
x
a�
� � � �xann 	�


where �  	a�� � � � � an
� and g is also a function on Vn� Each x
a�
� � � �xann is called

a term 	in the polynomial representation
 of f �
The algebraic degree� or simply degree� of f � denoted by deg	f 
� is de�ned

as the number of variables in the longest term of f � i�e��

deg	f 
  maxfW 	a�� � � � � an
 j g	a�� � � � � an
  �g�

De�nition�� Let f be a function on Vn and U be s�dimensional subspace of
Vn� The restriction of f to U � denoted by fU � is a function on U � de�ned by the
following rule

fU 	�
  f 	�
 for every � � U�

Notation � LetW be a subspace of Vn� Denote the dimension ofW by dim	W 
�

Notation � 	b�� � � � � bn
 � 	a�� � � � � an
 means that 	b�� � � � � bn
 is covered by
	a�� � � � � an
� namely if bj  � then aj  �� In addition� 	b�� � � � � bn
 � 	a�� � � � � an

means that 	b�� � � � � bn
 is properly covered by 	a�� � � � � an
� namely 	b�� � � � � bn
 �
	a�� � � � � an
 and 	b�� � � � � bn
 � 	a�� � � � � an
�

� Duality of Boolean Functions

The dual of a Boolean function f is a function g that is uniquely determined
by the coe�cients of the terms of f � The main purpose of this section is to
provide the minimum amount of knowledge on duality that is required in the
rest part of this paper� A proof for the following result is provided� as we feel
that understanding the proof would be helpful in studying other issues that are
more directly related to cryptography�



Theorem�� Let f be a function on Vn� Let �� � � Vn �  	�� � � � ����� � � � ��

where only the �rst s components are one� and �  	�� � � � ����� � � � ����� � � � ��

where only the 	s��
th� � � �� the 	s�t
th components are one� Then the number of
the terms among x� � � �xs� x� � � �xsxs��� � � � � x� � � �xsxs�� � � �xs�t that appear
in the polynomial representation of f � is even if

L
��� f 	� � �
  �� and this

number is odd if
L

��� f 	� � �
  ��

Proof� Consider a term

		x
  xj� � � �xjs�xi� � � �xit� 	�


in f � where x  	x�� � � � � xn
� � � j� � � � � � js� � s and s � � � i� � � � � �
is��t� � s� t� For s� 
 s� there are an even number of vectors � in Vn such that
� � � and 		� � �
  �� Hence

M
���

		� � �
  �� 	�


For s�  s� there is only one vector in Vn� �  �� such that 		� � �
  �� Hence
M
���

		� � �
  �� 	�


Now consider a term

�	x
  xj� � � �xjk 	�


in f � where x  	x�� � � � � xn
� � � j� � � � � � jk� and jk � s � t� From 	�
 with
jk � s � t� and the structures of � and ��

�	� � �
  � 	�


for each � � �� Denote the set of terms given in 	�
 by � if s� 
 s� and by � if
s�  s� And denote the set of terms given in 	�
 by �� Then we can write f as

f 
M
����

	�
M
����

	�
M
���

��

From 	�
� 	�
 and 	�
�
M
���

f 	� � �
 
M
���

M
����

		� � �
� 	�


L
��� f 	� � �
  � implies that j�j is even� while

L
��� f	� � �
  � implies

that j�j is odd� This completes the proof� ut

Set �  � in Theorem � and reorder the variables� we obtain a result well
known to coding theorists 	see p���� of ���
�

Corollary �� Let f be a function on Vn and �  	a�� � � � � an
� a vector in Vn�
Then the term xa�� � � �xann appears in f if and only if

L
��� f 	�
  ��



With the above two results� it is not hard to verify the correctness of the
following theorem�

Theorem�� Let f and g be function on Vn� Then the following four statements
are equivalent

�i� f 	�
 
L

��� g	�
 for every vector � � Vn�
�ii� g	�
 

L
��� f 	�
 for every vector � � Vn�

�iii� f 	x�� � � � � xn
 
L

��Vn
g	a�� � � � � an
x

a�
� � � �xann where �  	a�� � � � � an
�

�iv� g	x�� � � � � xn
 
L

��Vn
f 	a�� � � � � an
x

a�
� � � �xann where �  	a�� � � � � an
�

� Polynomial Representation and Nonlinearity

��� Restriction to Cosets

Let f be a function on Vn and U be an s�dimensional subspace of Vn� Then Vn
is the union of �n�s disjoint �s�subsets

Vn  �� 	�� 	 � � � 	��n�s�� 	�


where

	i
 ��  U �
	ii
 for any �� � � Vn� ��� belong to the same class� say �j� if and only if

�� � � ��  U � From 	i
 and 	ii
� it follows that
	iii
 �j 
�i  � for j � i� where � denotes the empty set�

As each �j can be expressed as �j  �j � U for a �j � Vn� where �j � U 
f�j � �j� � Ug� the de�nition of restriction 	De�nition �
 can be extended to
each coset �j�

De�nition�� Let f be a function on Vn and U be an s�dimensional subspace of
Vn� The restriction of f to a coset �j  �j�U � j  ���� � � � ��n�s��� denoted by
f	j

� is a function on U � and it is de�ned by f	j
	�
  f 	�j��
 for every � � U�

��� Maximal Odd Weighting Subspaces

De�nition	� Let f be a function on Vn� A subspace U of Vn is called a max�
imal odd weighting subspace of f if the Hamming weight of fU is odd and the
Hamming weight of fU � � where U � is any subspace with U � � U �i�e� U is a
proper subset of U ��� is even�

A maximal odd weighting subspace of a function is not necessarily a subspace
with the maximum dimension� even if the Hamming weight of the restrictions of
f to the subspace is odd� This is best explained with the following example�



Example �� let f 	x�� x�� x�� x�
  x�x�x� � x�x�x� � x�x� � x� be a function
on V�� whose truth table is ���������������� The eight vectors 	����
� 	����
�
	����
� 	����
� 	����
� 	����
� 	����
 and 	����
 form a ��dimensional subspace�
say W � such that the Hamming weight of fW is one 	odd
� By a direct veri��
cation� � is the maximum dimension of the subspaces� the Hamming weight of
the restrictions of f to these subspaces is odd� However� the four vectors 	����
�
	����
� 	����
 and 	����
 form a ��dimensional subspace� say U � such that the
Hamming weight of fW is one 	odd
� There are four ��dimensional subspaces
containing U �

U �  f	����
� 	����
� 	����
� 	����
� 	����
� 	����
� 	����
� 	����
g

U ��  f	����
� 	����
� 	����
� 	����
� 	����
� 	����
� 	����
� 	����
g

U ���  f	����
� 	����
� 	����
� 	����
� 	����
� 	����
� 	����
� 	����
g

We note that the Hamming weights of fU � � fU �� and fU ��� are all two 	even
�
We also note that the ��dimensional subspace containing U is V� itself and the
Hamming weight of f is four 	even
� Hence both W and U are a maximal odd
weighting subspace of f �

As will be shown in the forthcoming sections� the concept of maximal odd
weighting subspace of a function plays an important role� primarily due to the
fact that the dimension of a subspace is relevant to the structure of the function�
In particular� we will show in the next section a connection between the dimen�
sion of a maximal odd weighting subspace of a function and the lower bound on
nonlinearity of a function�

��� A Lower Bound on Nonlinearity

De�nition
� Let f be a function on Vn� xj� � � �xjt and xi� � � �xis be two terms
in the polynomial representation of function f � xj� � � �xjt is said to be covered
by xi� � � �xis if fj�� � � � � jtg is a subset of fi�� � � � isg� and xj� � � �xjt is said to be
properly covered by xi� � � �xis if fj�� � � � � jtg is a proper subset of fi�� � � � isg�

Theorem��� Let f be a function on Vn and U be a maximal odd weighting
subspace of f � If dim	U 
  s then the Hamming weight of f is at least �n�s�

Proof� Let U be a subspace de�ned in 	�
� And let Nj  jf�j� � �j� f	�
  �gj�
where �j is de�ned in 	�
� j  �� �� � � � � �s��� Since ��  U � N� is odd� Note
that �� 	�j is a 	s � �
�dimensional subspace of Vn� j  �� � � � ��n�s � ��

Since ��  U is a maximal odd weighting subspace of f � Hamming weight of
the restriction of f to��	�j is even� In other words� N��Nj is even� This proves
that each Nj is odd� j  �� � � � ��n�s��� Hence N��N�� � � ��N�n�s�� � �n�s�
namely� the Hamming weight of f is at least �n�s� ut

Theorem��� Let f be a function on Vn and U be a maximal odd weighting
subspace of f � Let dim	U 
  s �s � �� then the nonlinearity of f � Nf � satis�es
Nf � �n�s�



Proof� Let � be an a�ne function on Vn� Since s � � the Hamming weight
of �U must be even� Hence the Hamming weight of �U must be even� Hence
the Hamming weight of 	f � �
U must be odd� According to Lemma ��� the
Hamming weight of f � � is at least �n�s� As the Hamming weight of f � �

determines d	f� �
� the theorem is proved� ut

Theorem��� Let t � �� If xj� � � �xjt is a term in a function f on Vn and it is
not properly covered �see De�nition �� by any other terms in the same function�
then the nonlinearity of f � Nf � satis�es Nf � �n�t�

Proof� Write �  	a�� � � � � an
 where aj  � for j � fj�� � � � � jtg and aj  � for
j �� fj�� � � � � jtg� Set

U  f�j � � �g�

Obviously U is a t�dimensional subspace of Vn� Since xj� � � �xjt is a term in f on
Vn� by using Corollary ��

L
��� f 	�
  � or

L
��U f 	�
  � i�e� the Hamming

weight of fU is odd�
We now prove that U is a maximal odd weighting subspace of f � Suppose U

is not a maximal odd weighting subspace of f � Hence there is a s�dimensional
subspace of Vn� say W � such that U is a proper subset of W i�e� s � t and the
Hamming weight of fW is odd i�e�

L
��W f 	�
  �� Since U is a proper subspace

of W � by using linear algebra� W can be expressed as a union of �s�t disjoint
�t�subsets

W  U 	 	�� � U 
 	 � � � 	 	��s�t�� � U 
 	�


where each � � � � where �� �  	�� � � � ��
� Since both the Hamming weights
of fU and fW are odd� there is a coset� say �k � U � � � k � �s�t � �� such that
the Hamming weight of f�k�U is even or

L
��U f	�k � �
  � i�e�

M
���

f 	�k � �
  �� 	��


Applying Theorem � to 	��
� there are even number of terms covering xj� � � �xjt�
Since the term xj� � � �xjt itself appears in f � there is another term properly
covering xj� � � �xjt� This contradicts the condition in the theorems� that the term
xj� � � �xjt is not properly covered by any other terms in f � The contradiction
proves that U is a maximal odd weighting subspace of f � By using Theorem ���
the proof is completed� ut

Example 	� Let

f	x�� � � � � x��
  x�x�x�x�x	x
x� � x�x�x	x
x�x�x � x�x�xx�� �

x�x
x�x�� � x�x	x � x�x� � x


be a function on V��� term x�x	x is not properly covered by any other terms in
f � By using Corollary ��� the nonlinearity of f � Nf � satis�es Nf � �����  ���



Example 
� Let

f 	x�� � � � � x��
  x�x�x�x�x	x
x� � x�x�x	x
x�x�x � x�x�xx�� �

x�x
x�x�� � x�x�x	 � x�x� � x� � x�

be a function on V��� The term x�x� is not properly covered by any other terms
in f � By using Corollary ��� the nonlinearity of f � Nf � satis�es Nf � �����  ���

We note that the lower bound in Theorem �� is tight�

Corollary ��� For any n and any s� � � s � n� there are a function on Vn� say
f � and a s�dimensional subspace� say U � U be a maximal odd weighting subspace
of f and the nonlinearity of f � Nf � satis�es Nf  �n�s�

Proof� We prove the corollary by an example� Let g be a function on Vs� de�ned
as g	�
  � if and only if �  �� Set f 	z� y
  g	y
� a function on Vn� where
z � Vn�s and y � Vs� Since the Hamming weight of f is �n�s 	s � �
� d	f�h
 �
�n�s where h is any a�ne function on Vn and the equality holds if h is the zero
function on Vn� Hence the nonlinearity of f � Nf � satis�es Nf  �n�s� On the
other hand� set

U  f	�� � � � � �� b�� � � � � bs
jbj � GF 	�
g

where the number of zeros is n�s� It is easy to verify that s�dimensional subspace
U is a maximal odd weighting subspace of f � ut

Finally we note that for s  �� the value of �n�s in Theorem �� is very close
to �n�� � �

�
�
n��� the upper bound on the nonlinearity of functions on Vn ����

However Theorem �� cannot be further improved by extending s to s  �� as the
condition of s � � in the proof of the theorem cannot be removed� For example�
let f be a function on Vn� whose truth table is given as follows

�����������������

It is easy to verify that 	����
� 	����
 form a maximal ��dimensional subspace�
denoted by U � Theorem �� is not applicable due to the fact that dim	U 
  ��
In fact� f is a linear function� hence its nonlinearity is ��

Nevertheless� Theorem �� can be applied� which gives us � ����  � as the
Hamming weight of f �

��� A Lower Bound on the Number of Terms

Theorem��� Let f be a function on Vn such that f 	�
  � for a vector � � Vn�
and f 	�
  � for every vector � with � � � where � is de�ned as in Notation
	� Then f has at least �n�t terms where t denotes the Hamming weight of ��



Proof� We �rst give Theorem �� an equivalent statement� that we call Theorem
���� as follows

Theorem ��� Let f be a function on Vn and g be de�ned in 	�
� Let g	�
  �
for a vector � � Vn� and g	�
  � for every vector � with � � � where � is
de�ned as in Notation �� Then the Hamming weight of f is at least �n�t�

The equivalence between 	iii
 and 	iv
 in Theorem � allows us to interchange
f and g in Theorem ���� Thus we have

Theorem �� Let f be a function on Vn and g be de�ned in 	�
� Let f 	�
 
� for a vector � � Vn� and f	�
  � for every vector � with � � � where � is
de�ned as in Notation �� Then the Hamming weight of g is at least �n�t�

This completes the proof� ut

Corollary��� Let f be a function on Vn such that f 	�
  � for a vector � � Vn�
and f 	�
  � for every vector � with � � � where � is de�ned as in Notation
	� then f has at least

�i� �n�s � � terms if f 	�
  ��
�ii� �n�s � � terms if f 	�
  ��

where s denotes the Hamming weight of ��

Proof� Set f �  ��f � Hence f �	�
  � and f �	�
  � for every � � Vn� By using
Theorem ��� f � has at least �n�s terms and hence f has at least �n�s�� terms�
This proves 	i
 of the corollary�

In the above the proof� we have already proved that f � has at least �n�s

terms� Suppose f 	�
  �� Note that f �	�
  �� Hence f has at least �n�s � �
terms� ut

Example �� Let f be a function on V
� whose truth table is given as follows

����������������������������������������������������������������

Note that the value of f 	������
 is one� while the values of f 	������
� f 	������
�
f	������
� f 	������
� f 	������
� f 	������
 and f 	������
 are all zero� Apply�
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The lower bounds on the number of terms given by Theorem �� and Corollary
�� are tight� due to Corollary �� and Theorem ��



� Relating Algebraic Degree to Other Criteria

Note that the algebraic degree of any function� say f � on Vn is invariant under a
non�singular linear transformation on the variables� and for any vector � � Vn�
the subset W  f�j� � �g is a s�dimensional subspace� where s denotes the
Hamming weight of �� Using Theorem � it is not di�cult to prove

Theorem��� Let f be a function on Vn �n � ��� Then

deg	f 
  maxfdim	U 
 j U is a subspaces and Hamming weight of fU is oddg�

The following lemma is called �Poisson Summation� whose proof can be
found in ����

Lemma��� Let real valued sequences a�� � � � � a�n�� and b�� � � � � b�n�� satisfy

	a�� � � � � a�n��
Hn  	b�� � � � � b�n��
�

Then for any p�dimensional subspace � � p � n� �� say W �
X
��W

a�  �p�n
X

��W�

b�

where W�  f�j� � Vn� h���i  �� for each � �Wg�

The next theorem shows a relationship between algebraic degree and Wlash�
Hadamard transforms of a function�

Theorem�	� Let f be a function on Vn �n � ��� � be the sequence of f � and p

is an integer� � � p � n� If h�� �ji  � 	mod �n�p��
� where �j is the jth row
�column� of Hn� j  ���� � � � ��n � �� then deg	f 
 � p � ��

Proof� Let �  	a�� a�� � � � � a�n��
� Note that

	a�� a�� � � � � a�n��
Hn  	h�� ��i� h�� ��i� � � � � h�� ��n��i
�

Then from Lemma �� X
��W

a�  �p�n
X

��W�

h�� ��i 	��


holds for each p�dimensional subspaceW of Vn� whereW�  f�j� � Vn� h���i 
�� for each � �Wg and a�  aj if � is the binary representation of integer j�
From 	��
 and the condition that h�� �ji  � 	mod �n�p��
� j  ���� � � � ��n���
we have

P
��W a�  � 	mod �
� Note that �  	a�� a�� � � � � a�n��
 is the se�

quence of f � It is easy to verify that
P

��W a�  � 	mod �
 if and only if the
Hamming weight of fW is even�

Since W is an arbitrary p�dimensional subspace� using Theorem ��� the
Hamming weight of the restriction of f to any q�dimensional subspace is even�
q  p� p� �� � � � � n� So from Theorem ��� we have deg	f 
 � p� �� ut



Corollary�
� Let f be a function on Vn �n � �� and � be the sequence of f �
and p is an integer� � � p � n� If �	�
  � 	mod �p
� for each � � Vn� then
deg	f 
 � n� �� �

�p for p even� and deg	f 
 � n� �� �
� 	p� �
 for p odd�

Proof� From ���

	�	��
��	��
� � � � ��	��n��

Hn  	h�� ��i
�� h�� ��i

�� � � � � h�� ��n��i
�


where �j is the jth row 	column
 of Hn� Since �	�
  � 	mod �p
 for each
� � Vn� we have h�� �ji�  � 	mod �p
 for j  �� �� � � � � �n��� Hence h�� �ji  �

	mod �
�
�
p
 if p is even� and h�� �ji  � 	mod �

�
�
�p���
 if p is odd� Now the

corollary follows from Theorem ��� ut

We note that in Theorem ��� h�� �ji is closely related to nonlinearity ���� and
in Corollary ��� �	�
 is related to propagation characteristics ����
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