
New Lower Bounds on Nonlinearity andA Class of Highly Nonlinear FunctionsXian-Mo Zhang1 and Yuliang Zheng21 The University of Wollongong, Wollongong, NSW 2522, Australiaxianmo@cs.uow.edu.au2 Monash University, Frankston, Melbourne, VIC 3199, Australiayuliang@mars.fcit.monash.edu.auAbstract. Highly nonlinear Boolean functions occupy an important po-sition in the design of secure block as well as stream ciphers. This paperproves two new lower bounds on the nonlinearity of Boolean functions.one of which is an improvement on a known result. Based on the study ofthese new lower bounds, we introduce a class of highly nonlinear Booleanfunctions with two di�erences to bent function: (i) the dimension of thesefunction is odd, (ii) they can be balanced by a linear translate.1 IntroductionIt is well-known that highly nonlinear (Boolean) functions play an importantrole in designing secure stream ciphers (see [6, 13]). The dramatic success oflinear cryptanalysis recently discovered by Matsui in [8] has further extendedthe signi�cance of the functions to the design and analysis of block ciphers.A challenging research topic in cryptography is to design (Boolean) functionsthat satisfy some or all of the critical criteria each of which forecasts the nonlinearcharacteristics of a function from a di�erent perspective. These criteria includenonlinearity, propagation characteristic, correlation immunity, algebraic degree,strict avalanche characteristic, global avalanche characteristic, and so on.This paper represents a continuation of our earlier work [16] in which twolower and two upper bounds on nonlinearity have been developed. The maindi�erence between our present work and the work in [16] is that the boundsin [16] are expressed in terms of partial information on auto-correlations of afunction, while the bounds in this paper are represented using information onthe structure of < which is the set of vectors where a function does not satisfythe propagation criterion.The two new lower bounds motivate us to introduce a class of highly nonlinearfunctions which exist only on odd dimensional spaces. This should be contrastedwith bent functions which exist only on even dimensional spaces. Properties ofthis class of functions are potentially very useful in practice. These propertiesinclude that the functions are highly nonlinear, can be very easily made balanced,and have a very simple spectrum of Walsh-Hadamard transform.The rest of this paper is organized as follows: Section 2 introduces basic no-tations and relevant results. Section 3 studies functions whose < is covered by



a coset and shows that their nonlinearity is 2n�1 � 212 (n�1). By extending thisresult, two new lower bounds on nonlinearity are derived in Section 4, where acomparison with a previously known lower bound is also carried out. Section 5introduces a class of highly nonlinear functions. In Section 6 three types of func-tions are shown to fall into the class of highly nonlinear functions. Section 7concludes the paper.2 PreliminariesWe consider Boolean functions from Vn to GF (2) (or simply functions on Vn),where Vn is the vector space of n tuples of elements from GF (2). The truthtable of a function f on Vn is a (0;1)-sequence de�ned by (f(�0), f (�1), : : :,f (�2n�1)), and the sequence of f is a (1;�1)-sequence de�ned by ((�1)f (�0),(�1)f (�1), : : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0;0), �1 = (0; : : : ;0;1), : : :,�2n�1�1 = (1; : : : ; 1;1). The matrix of f is a (1;�1)-matrix of order 2n de�nedby M = ((�1)f (�i��j )). f is said to be balanced if its truth table contains anequal number of ones and zeros.An a�ne function f on Vn is a function that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � c, where aj; c 2 GF (2), j = 1;2; : : : ; n. Furthermore f iscalled a linear function if c = 0.Next we introduce the de�nition of propagation criterion [9].De�nition1. Let f be a function on Vn. We say that f satis�es1. the propagation criterion with respect to � if f (x) � f(x � �) is a balancedfunction, where x = (x1; : : : ; xn) and � is a vector in Vn,2. the propagation criterion of degree k if it satis�es the propagation criterionwith respect to all� 2 Vn with 1 � Wh(�) � k, whereWh(�) is the Hammingweight of �, i.e., the number of ones in �.f(x) � f(x � �) is also called the directional derivative of f in the direction�. Further work on the topic can be found in [15]. To simplify our discussions,a notation indicated by < is introduced:Notation 1 Let f be a function on Vn. The set of vectors in Vn with respect towhich f does not satisfy the propagation criterion is denoted by <.Given two sequences a = (a1; : : : ; am) and b = (b1; : : : ; bm), their component-wise sum is de�ned by a+ b = (a1+ b1; : : : ; am+ bm), and their component-wiseproduct by a � b = (a1b1; : : : ; ambm). The scalar product ha; bi of a and b isde�ned as the sum of the components in a � b. Note that depending on wherethe components of a and b are drawn from, the meaning of an \addition" or\multiplication" operation may vary.De�nition2. Let f be a function on Vn. For a vector � 2 Vn, denote by �(�)the sequence of f (x � �). Thus �(0) is the sequence of f itself and �(0) � �(�)



is the sequence of f (x) � f (x � �). The auto-correlation of f with a shift � isde�ned as �(�) = h�(0); �(�)i:A (1;�1)-matrix H of order m is called a Hadamard matrix if HHt = mIm,where Ht is the transpose of H and Im is the identity matrix of order m. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing recursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : : (1)Let `i, 0 � i � 2n � 1, be the i row (column) of Hn. By Lemma 1 of [11], `iis the sequence of a linear function 'i(x) de�ned by the scalar product 'i(x) =h�i; xi, where �i is the i-th vector in Vn according to the ascending lexicographicorder.De�nition3. Let f be a function on Vn. The Walsh-Hadamard transform of fis de�ned as f̂(�) = 2�n2 Xx2Vn(�1)f (x)�h�;xiwhere � = (a1; : : : ; an) 2 Vn, x = (x1; : : : ; xn), h�; xi is the scalar product of �and x, namely, h�;xi =Lni=1 aixi, and f(x)�h�;xi is regarded as a real-valuedfunction.De�nition4. Given two functions f and g on Vn, the Hamming distance d(f; g)between them is de�ned as the Hamming weight of the truth table of f (x) �g(x), where x = (x1; : : : ; xn). The nonlinearity of f , denoted by Nf , is theminimum Hamming distance between f and all a�ne functions on Vn, i.e., Nf =mini=0;1;:::;2n+1�1 d(f; 'i) where '0, '1, : : :, '2n+1�1 are all the a�ne functionson Vn.Note that the maximum nonlinearity of functions on Vn coincides with thecovering radius of the �rst order binary Reed-Muller code RM (1; n) of length2n, which is bounded from above by 2n�1 � 2 12n�1 (see for instance [4]). HenceNf � 2n�1 � 2 12n�1 for any function on Vn.De�nition5. A function f on Vn is called a bent function if its Walsh-Hadamardtransform satis�es f̂ (�) = �1for all � 2 Vn.Bent functions can be characterized in various ways [1, 5, 10, 11, 14]. Acharacterization of particular interest can be found in [5, 10]:Lemma6. The following statements are equivalent:



(i) f is bent,(ii) f satis�es the propagation criterion with respect to all non-zero vectors inVn,(iii) M = ((�1)f (�i��j)), the matrix of f , is a Hadamard matrix.Bent functions on Vn exist only when n is even. Another important propertyof bent functions is that they achieve the highest possible nonlinearity 2n�1 �2 12n�1.The following lemma will be used in this paper (for a proof see for instanceLemma 6 of [11].)Lemma7. The nonlinearity of a function f on Vn can be calculated byNf = 2n�1 � 12 maxfjh�; `iij;0 � i � 2n � 1gwhere � is the sequence of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequences of the linear functions on Vn.We note that as the number of linear functions on Vn is exponential in n,it is impractical to calculate Nf for a large n by examining all linear functionsagainst the formula in Lemma 7.As there is a natural correspondence between an integer in [0; : : : ;2n�1] anda vector in Vn, in the following discussions we will use them interchangeably. Theproof of the next lemma is lengthy and will be provided in the full version ofthis paper.Lemma8. Consider the rows (columns) `j of Hn, j = 0;1; : : : ;2n � 1. Then(i) `� = `� � `���, for any vectors � and � in Vn,(ii) the i-th entry of `� + `��� is zero (nonzero) if and only if the i-th entry of`0 + `� is zero (nonzero) where i = 0; 1; : : : ; 2n � 1,(iii) if the i-th entry of `� + `��� is nonzero, then it is twice as large as the i-thentry of `�.Note that here � and + indicate component-wise product and component-wisesum respectively.The following result can be found in [17]:Lemma9. Let n � 2 be a positive integer and 2n = p2+q2 where both p � 0 andq � 0 are integers. Then p = 212n and q = 0 when n is even, and p = q = 2 12 (n�1)when n is odd.



3 Functions Whose < is Covered by a CosetRecall that < denotes the set of vectors in Vn where f , a function on Vn, does notsatis�es the propagation criterion (see Notation 1). In this section we show thatwhen vectors in < satisfy a special property, namely < is covered by a coset, thenonlinearity of f is Nf = 2n�1 � 212 (n�1), a very high value. This result formsthe basis of our two new lower bounds to be developed in Section 4.Let W be a �-dimensional subspace of Vn. Then Vn can be expressed as theunion of 2n�� disjoint 2�-sets:Vn = W [ (�1 �W ) [ � � � [ (�2n���1 �W )where �j 2 Vn and each �j �W , as well as W , is called a coset.Let � be the sequence of f . The following is a special form of the Wiener-Khintchine Theorem [2]:(�(�0);�(�1); : : : ;�(�2n�1))Hn = (h�; `0i2; : : : ; h�; `2n�1i2): (2)Now we prove a theorem on which all the other results in this paper is based.Theorem10. Let f be a function on Vn with j<j > 1. LetW be a �-dimensionalsubspace of Vn such that <� f0g � � �W for a vector � 2 Vn �W (< is saidto be covered by the coset � �W ). Then(i) n must be odd, and(ii) the nonlinearity Nf of f satis�es Nf = 2n�1 � 2 12 (n�1):Proof. First we note that � 62W implies � < n. As W is a subspace of Vn, thereis another (n � �)-dimensional subspace 
 of Vn such that h�;i = 0 for each� 2 
 and each  2W .As � 62 W , there is a nonzero vector � 2 
 such that h�;�i = 1. Now writeW = f0; 1; 2; : : : ; 2��1gwhere 0 = 0. Hence h� � j ; �i = 1 (3)for all j = 0; 1;2; : : : ; 2�� 1. On the other hand, since <� f0g � � �W , (2) canbe specialized as(�(�0);�(�);�(� � 1); : : : ;�(� � 2��1))D = (h�; `0i2; : : : ; h�; `2n�1i2) (4)where D is a (1+ 2�)�2n sub-matrix of Hn, consisting of the 0-th, �-th, �� 1-th, : : :, and � � 2��1-th rows of Hn. Note that (4) holds regardless of the orderof 1, 2, : : :, 2��1, since we have de�ned the order of the rows of D to beidentical to that of �(�);�(� � 1); : : : ;�(� � 2��1).It follows from Lemma 1 of [17] that the entry on the cross of the �i-th and�j-th columns of Hn is (�1)h�i;�ji. Let � denote the -th column of D. Notethat �0 is of all-one.



Now we turn our attention to the vector � mentioned earlier in the proof.Recall that the �-th column of Hn, denoted by `�, is the sequence of a linearfunction de�ned by  (x) = h�;xi. Thus, the �-th entry of `� is -1 if and only if (�) = 1, where � 2 Vn. What (3) means is that  (� � j) = 1. Hence the �-th,� � 1-th, : : :, � � 2��1-th entries of `� are all �1. Since �� is a subsequenceof `�, the entries of �� are all �1 except for the top entry whose value is one.Hence we have �0 + �� = (2;0; : : : ; 0)T : (5)By Lemma 8, � + ��� = �0 + �� = (2; 0; : : : ; 0)T : (6)where  is an arbitrary vector in Vn.Now we restrict e to be a sequence of length 2n, whose the -th and ��-thentries are both one, while all the other entries are zero. Then by the de�nitionof D, we have DeT = � + ��� = (2; 0; : : : ; 0)T . Multiplying both sides of (4)by eT gives rise to 2�(�0) = h�; ` i2 + h�; `��i2: (7)Note that �0 = 0. Hence h�; ` i2+ h�; `��i2 = 2n+1: To complete the proof,we consider two cases: n even and n odd.Case 1: n is even. By Lemma 9, h�; `i2 = h�; `��i2 = 2n. Note that is arbitrary. This implies that f is a bent function satisfying < = f0g, whichcontradicts the assumption that j<j > 1. Hence n cannot be even.Case 2: n is odd. By Lemma 9, one of h�; `i2 and h�; `��i2 takes the value2n+1 and the other zero. As  is arbitrary, by Lemma 7, the nonlinearity Nf off satis�es Nf = 2n�1 � 212 (n�1):The following corollary of Theorem 10 is more useful in situations where theoutcomes of summing vectors in < are easy to verify.Corollary 11. Let f be a function on Vn and j<j > 1. Assume that for anyt with 0 � t � j<j and any t nonzero vectors 1; 2; : : : ; t in <, whenever1 � 2 � � � � � t = 0 is satis�ed, t is even. Then the following two statementshold:(i) n is odd,(ii) the nonlinearity Nf of f satis�es Nf = 2n�1 � 212 (n�1):Proof. First we note that the rank of ��< is a constant for all � 2 <. To provethis claim, one can verify that for any vectors �, � 2 <, each vector in ��< isa linear combination of vectors in ��<. Linear algebra tells us that the rank of� � < must be less than or equal to that of � � <. Symmetrically, the rank of� � < must be less than or equal to that of ��<. Hence the claim is true.



Now �x a nonzero vector  2 Vn. Let W be the subspace consisting of allthe linear combinations of vectors in  � <. We show that  62 W . Assume forcontradiction that  2 W . Then  can be expressed as  =Ls1( � 0j), where0j 2 < and s � j<j. Thus we have  � [Ls1( �  0j)] = 0. When s is odd, theequation becomes Ls1  0j = 0. This contradicts the assumption on f , namelywhen Ls1  0j = 0, s must be even. Consequently, we must have  62 W .Finally the corollary follows from Theorem 10 by noting the fact that < �f0g �  � ( �<) �  �W , i.e., < is covered by the coset  �W with  62W .Functions satisfying the conditions in Corollary 11 do exist. See Examples 1and 2 in Section 6.4 Two New Lower Bounds on NonlinearityThis section extends Theorem 10 in two di�erent directions to obtain two sepa-rate lower bounds on the nonlinearity of Boolean functions. A comparison witha lower bound implied by a result in [3] is also carried out.First we consider a function f on Vn whose < is covered by a coset togetherwith t other vectors. We show that the nonlinearity of f is bounded from belowby 2n�1 � 2 12 (n�1)p1 + t:Theorem12. Let f be a function on Vn and j<j > 1 and W be a �-dimensionalsubspace of Vn. Assume that there exist t+ 1 vectors in Vn �W , say �1, : : :, �tand �, such that < � f0g � f�1; : : : ; �tg [ (� �W ):Then the nonlinearity Nf of f satis�esNf � 2n�1 � 2 12 (n�1)p1 + t:Proof. The main ideas behind the proof of this theorem are similar to thoseof Theorem 10. Here we only highlight the major di�erences with the proof ofTheorem 10.As in the proof of Theorem 10, let W = f0; 1; 2; : : : ; 2��1g: Then since<� f0g � f�1; : : : ; �tg [ � �W , (2) will be specialized as(�(�0);�(�1); : : : ;�(�t);�(�); �(� � 1); : : : ;�(� � 2��1))D= (h�; `0i2; : : : ; h�; `2n�1i2) (8)where D is a (1 + t + 2�) � 2n sub-matrix of Hn, consisting of the 0-th, �1-th,: : :, �t-th, �-th, � � 1-th, : : :, � � 2��1-th rows of Hn.Now instead of (5), we have�0 + �� = (� � � � � �) (9)where the components of (�� � � � �) are all from f0;2;�2g and (�� � � � �) containsat least 2� zeros. Thus DeT = � + ��� = �0 + �� = (� � � � � �) contains at



most (1 + t) 2s or �2s, where e is a sequence of length 2n whose -th and� � -th entries are one and all the other entries are zero. Multiplying bothsides of (8) by eT and noting the fact that j�()j � 2n for all  2 Vn, wehave h�; ` i2 + h�; `��i2 � 2(1 + t)2n: Hence jh�; ` ij � 2 12 (n+1)p1 + t: As  isarbitrary, by Lemma 7, Nf � 2n�1 � 212 (n�1)p1 + t:While Theorem 12 extends Theorem 10 by adding a parameter t, the nexttheorem does it by taking into account two parameters s and w, where s is thenumber of nonzero vectors in <, and w is the maximum Hamming weight ofvectors determined by <.Theorem13. Let f be a function on Vn with j<j > 1. Set < = f�0; �1; : : : ; �sgwhere �0 = 0. Let w = maxfWh('�1 (x); : : : ; '�s(x))jx 2 Vng, where '�i (x) =h�i; xi is a linear function on Vn de�ned by �i. Then the nonlinearity Nf of fsatis�es Nf � 2n�1 � 2 12 (n�1)p1 + s �w:Proof. Again the proof is similar to that of Theorem 10. Under the conditionstated in the theorem, (2) can be specialized as(�(�0);�(�1); : : : ;�(�s))D = (h�; `0i2; : : : ; h�; `2n�1i2) (10)where D is a (1 + s) � 2n sub-matrix of Hn, consisting of the �0-th, �1-th, : : :,�s-th rows of Hn. Since w = maxfWh('�1(x); : : : ; '�s(x))jx 2 Vng, there is avector � 2 Vn such that Wh('�1 (�); : : : ; '�s(�)) = w. Correspondingly, the �-thcolumn of D contains exactly w minus components.The crux of the proof is that DeT = � + ��� = �0 + �� = (� � � � � �),where (� � � � � �) contains exactly 1 + s � w non-zeros, and each component of(� � � � � �) comes from f0;2;�2g. Multiplying both sides of (10) by eT leads toh�; ` i2 + h�; `��i2 � 2(1 + s � w)2n, and jh�; ` ij � 2 12 (n+1)p1 + s� w: As is arbitrary in Vn, we have Nf � 2n�1 � 2 12 (n�1)p1 + s �w:As was pointed out in [16], the work by Carlet [3] implies a lower bound onnonlinearity: Nf � 2n�1 � 2 12n�1pj<jfor any function f on Vn. With Theorem 13, we have w � 0 andw � 12 j<j: (11)Hence 2n�1 � 2 12 (n�1)p1 + s �w � 2n�1 � 2 12n�1pj<j: (12)The equality in (12) holds if and only if the equality in (11) holds if and only if< = Vn. Namely, Theorem 13 gives a better lower bound on nonlinearity thanthat implied in [3].



5 A Class of Highly Nonlinear FunctionsBent functions have the maximum nonlinearity and satisfy the propagation prop-erty with respect to every nonzero vectors hence bent function are widely useful.But bent functions exist only on even dimensional vector space furthermore bentfunctions are unbalanced and cannot be balanced by any linear translate (see thebottom of this section) hence we propose a new class of highly nonlinear func-tions. In an earlier work [11], we constructed, in a recursive manner, balancedBoolean functions that have a nonlinearity far higher than that achievable byall previously known methods. The functions obtained in [11], however, have asmall shortcoming in that their algebraic representation are complicated andtheir spectra of Walsh-Hadamard transform are hard to analyze.Observing the two lower bounds in Theorems 12 and 13, we ask a naturalquestion: are there functions that achieve a nonlinearity of 2n�1 � 2 12n�1 witha simple spectrum of Walsh-Hadamard transform. It turns out that the answerto the question is a�rmative. Among the functions that support the a�rmativeanswer, of particular interest are those whose Walsh-Hadamard transforms takethe value of 0 or �2 12 .From Case 2 in the proof of Theorem 10 we conclude thatCorollary14. Functions satisfying the conditions in Corollary 11 or in Theo-rem 10 all satisfy the property that their Walsh-Hadamard transforms take thevalue of 0 or �2 12 .We now compare these functions with bent functions. Recall De�nition 5 andLemma 6. In particular, we know that if g is a bent function on Vn, then n mustbe even, and the function satis�es h�; `ii = �2 12n for all j = 0;1; : : : ;2n � 1,where � is the sequence of g.Corollary15. A function f on Vn whose Walsh-Hadamard transform takes thevalue of 0 or �2 12 has the following properties(i) it exists only for n odd,(ii) h�; `ii = 0 for exactly half of the 2n rows `i in Hn, and h�; `ii = �2 12 (n+1)for the other half of the rows `i in Hn, where � denotes the sequence of f ,(iii) the nonlinearity Nf of f satis�es Nf = 2n�1 � 2 12 (n�1),(iv) let A be an arbitrary nonsingular n � n matrix over GF(2) and � be anyvector in Vn, then the Walsh-Hadamard transform of g(x) = f(Ax � �) tootakes the value of 0 or �2 12 .(v) for any a�ne function on Vn, say ', the Walsh-Hadamard transform of f� takes the value of 0 or �2 12 .Property (i) follows from the spectrum of the Walsh-Hadamard transform off . Property (ii) can be easily proved using Parseval's equation P2n�1i=0 h�; `ii2 =22n (see Page 416, [7]). Property (iii) follows from Property (ii).



To prove Property (iv), we set u = Ax � �. Let � be the sequence of g and` be any row of Hn, i.e., the sequence of a linear function, say ', on Vn. Notethat ' can be expressed as '(x) = h�; xi, � 2 Vn. Considerh�; `i = Xx2Vn(�1)g(x)�h�;xi= Xx2Vn(�1)f (Ax��)�h�;xi= Xu2Vn(�1)f(u)�h�;A�1(u��)i (13)Since h�;A�1(u � �)i is an a�ne function, there are �0 2 Vn and c 2 GF (2)such that h�;A�1(u� �)i = h�0; ui � c. Hence (13) can be rewritten ash�; `i = Xx2Vn(�1)g(x)�h�;xi = Xu2Vn(�1)f (u)�h�0;ui�c (14)where u = Ax � �. Since the Walsh-Hadamard transform of f takes the valueof 0 or �2 12 , Pu2Vn(�1)f (u)�h�0;ui�c = �2 12 (n+1). Thus (14) implies that theWalsh-Hadamard transform of g too takes the value of 0 or �2 12 .Finally we show that Property (v) is satis�ed. Similarly to the proof of (iv),let ' = h�;xi be any linear function on Vn. ConsiderXx2Vn(�1)(f (x)�'(x))�h�;xi = Xx2Vn(�1)f(x)� (x)�'(x) (15)Since  �' is also a linear function, (15) can only take the value of 0 or �2 12 (n+1).Both bent functions and the class of functions discussed above are highlynonlinear. In cryptography we often require highly nonlinear and also balancedfunctions. For this reason, bent functions hardly �nd direct applications in cryp-tography.In contrast, we can always modify a function whose Walsh-Hadamard trans-form takes the value of 0 or �2 12 to a balanced one, by adding a suitable linearfunction.Corollary 16. Let f be a function on Vn whose Walsh-Hadamard transformtakes the value of 0 or �2 12 . Then there exists a linear function  on Vn suchthat f � is balanced and its Walsh-Hadamard transform too takes the value of0 or �2 12 .Proof. Let � be the sequence of f . From Corollary 15, there is a row of Hn, say`, i.e. the sequence of a linear function, say  , on Vn, such that h�; `i = 0. Notethat  can be expressed as  (x) = h�;xi, � 2 Vn. h�; `i = 0 can be rewritten asPx2Vn(�1)f (x)� (x) = 0, which in turn implies that f �  is balanced.Note that the above technique is not applicable to a bent function f , sincef � is also bent for any linear function  . This is an important property of thenew class of highly nonlinear functions we proposed in this section as balance isthe most important criterion.f �  is called a linear translate of f .



6 Examples of Highly Nonlinear FunctionsTo complement our theoretical studies carried out in the previous sections, nowwe show three in�nite sets of functions whose Walsh-Hadamard transforms alltake the value of 0 or �2 12 .Example 1. Letg(x1; : : : ; x5) = (1�x1)(1�x2)x3�(1�x1)x2x4�x1(1�x2)(x3�x4)�x1x2(x4�x5)and f (v;u) = g(v) � h(u), where v 2 V5 and h is a bent function on Vn�5.From [17], the set < associated with f is composed of �ve vectors: (0; : : : ;0),(0;0;0;1; 0; : : : ; 0), (0; 0;1;0;0; : : : ;0), (0;1;0; 1;0; : : : ; 0), and (0;1;1;0; 0; : : : ; 0).Let W be the set of the following four vectors: (0; : : : ; 0), (0; 0;1;1;0; : : : ;0),(0;1;0;0; 0; : : : ; 0) and (0;1; 1;1;0; : : : ; 0). It is easy to verify that W is a 2-dimensional subspace and <�f0g � (0;0;0; 1;0; : : : ; 0)�W: Hence < is coveredby (0;0; 0;1;0; : : : ;0)�W , and by Corollary 14, the Walsh-Hadamard transformof f takes the value of 0 or �2 12 . The reader is directed to [17] where it is sug-gested that the way g on V5 is constructed can be extended to Vt for all oddt > 5.Example 2. Consider f (x) = cx1 � g(x2; : : : ; xn) where x = (x1; : : : ; xn), c 2GF (2) and g is a bent function on Vn�1. From [17],< = f(0; : : : ; 0); (1;0; : : : ;0)g.Obviously f satis�es the conditions mentioned in Corollary 11. By Corollary 14,the Walsh-Hadamard transform of f takes the value of 0 or �2 12 .Example 3. Let ei be the ith row of Hk. Hence e0; e1; : : : ; e2k�1 are the sequencesof all the 2k linear functions on Vk. Note that the length of each linear sequenceei is 2k. Thus one can see that the concatenation of any 2k�1 di�erent linearsequences of length 2k is the sequence of a function on V2k�1 whose Walsh-Hadamard transform of f takes the value of 0 or �2 12 :ej1 ; : : : ; ej2k�1 (16)where fj1; : : : ; j2k�1g � f0;1 : : : ;2k�1g. The explicit polynomial representationof the sequence indicated in (16) can be obtained using a technique shown in [11].The function in Example 1 is balanced. The functions in the other two exam-ples will be also balanced when extra conditions are satis�ed. More speci�cally,the function in Example 2 will be balanced if c = 1, and the function in Exam-ple 3 will be so if fj1; : : : ; j2k�1g � f1 : : : ;2k � 1g.7 ConclusionWe have studied functions whose < is covered by a coset, and proved two lowerbounds on nonlinearity. We have also introduced a new class of highly nonlin-ear functions which have a simple spectrum of Walsh-Hadamard transform and
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