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Abstract. Highly nonlinear Boolean functions occupy an important po-
sition in the design of secure block as well as stream ciphers. This paper
proves two new lower bounds on the nonlinearity of Boolean functions.
one of which is an improvement on a known result. Based on the study of
these new lower bounds, we introduce a class of highly nonlinear Boolean
functions with two differences to bent function: (i) the dimension of these
function is odd, (ii) they can be balanced by a linear translate.

1 Introduction

It is well-known that highly nonlinear (Boolean) functions play an important
role in designing secure stream ciphers (see [6, 13]). The dramatic success of
linear cryptanalysis recently discovered by Matsui in [8] has further extended
the significance of the functions to the design and analysis of block ciphers.

A challenging research topic in cryptography is to design (Boolean) functions
that satisfy some or all of the critical criteria each of which forecasts the nonlinear
characteristics of a function from a different perspective. These criteria include
nonlinearity, propagation characteristic, correlation immunity, algebraic degree,
strict avalanche characteristic, global avalanche characteristic, and so on.

This paper represents a continuation of our earlier work [16] in which two
lower and two upper bounds on nonlinearity have been developed. The main
difference between our present work and the work in [16] is that the bounds
in [16] are expressed in terms of partial information on auto-correlations of a
function, while the bounds in this paper are represented using information on
the structure of & which is the set of vectors where a function does not satisfy
the propagation criterion.

The two new lower bounds motivate us to introduce a class of highly nonlinear
functions which exist only on odd dimensional spaces. This should be contrasted
with bent functions which exist only on even dimensional spaces. Properties of
this class of functions are potentially very useful in practice. These properties
include that the functions are highly nonlinear, can be very easily made balanced,
and have a very simple spectrum of Walsh-Hadamard transform.

The rest of this paper is organized as follows: Section 2 introduces basic no-
tations and relevant results. Section 3 studies functions whose & is covered by



a coset and shows that their nonlinearity is 27~ ! — 23(n=1), By extending this
result, two new lower bounds on nonlinearity are derived in Section 4, where a
comparison with a previously known lower bound is also carried out. Section b
introduces a class of highly nonlinear functions. In Section 6 three types of func-
tions are shown to fall into the class of highly nonlinear functions. Section 7
concludes the paper.

2 Preliminaries

We consider Boolean functions from V,, to GF(2) (or simply functions on V},),
where V, is the vector space of n tuples of elements from GF(2). The truth
table of a function f on Vj, is a (0,1)-sequence defined by (f(ao), f(a1), ...,
f(aan_1)), and the sequence of f is a (1, —1)-sequence defined by ((—1)7(*0)
(=1)f e (=1)f(@2n=1)) “where ag = (0,...,0,0), a1 = (0,...,0,1), ...,
agn-1_1 = (1,...,1,1). The matriz of f is a (1,—1)-matrix of order 2" defined
by M = ((=1)7(®®2)) f is said to be balanced if its truth table contains an
equal number of ones and zeros.

An affine function f on V,, is a function that takes the form of f(zy1,...,2,) =
a1x1 @ - P apy, B ¢, where qj,¢c € GF(2), j = 1,2,...,n. Furthermore f is
called a linear function if ¢ = 0.

Next we introduce the definition of propagation criterion [9].

Definition1. Let f be a function on V,,. We say that f satisfies

1. the propagation criterion with respect to o if f(x) & f(x ® «) is a balanced
function, where & = (21,...,2,) and « is a vector in V,,,

2. the propagation criterion of degree k if it satisfies the propagation criterion
with respect to all @ € V,, with 1 < Wy («) < k, where Wi («) is the Hamming
weight of «, 1.e., the number of ones in «.

f(x) ® f(z ® «) is also called the directional derivative of f in the direction
«. Further work on the topic can be found in [15]. To simplify our discussions,
a notation indicated by R is introduced:

Notation 1 Let f be a function on V,,. The set of vectors in V,, with respect to
which f does not satisfy the propagation criterion is denoted by R.

Given two sequences a = (a1, ...,amy) and b = (b1, ..., by), their component-
wise sum is defined by a4+ b6 = (a1 + b1, ..., am + by ), and their component-wise
product by a* b = (a1by,...,ambm). The scalar product {a,b) of a and b is
defined as the sum of the components in a % b. Note that depending on where
the components of a and b are drawn from, the meaning of an “addition” or
“multiplication” operation may vary.

Definition2. Let f be a function on V,. For a vector o € V},, denote by £(«)
the sequence of f(x @ «). Thus £(0) is the sequence of f itself and £(0) * £(«)



is the sequence of f(x) ® f(x ® «). The auto-correlation of f with a shift « is
defined as

A (1,—1)-matrix H of order m is called a Hadamard matrix if HH' = ml,,,
where H' is the transpose of H and I,, is the identity matrix of order m. A
Sylvester-Hadamard matrix of order 2", denoted by H,, is generated by the
following recursive relation

_ _ Hn—l Hn—l _
Ho=1, H”_[Hn_l—Hn_l]’n_l’Q""' (1)

Let ¢;, 0 < i< 2" — 1, be the ¢ row (column) of H,. By Lemma 1 of [11], ¢
is the sequence of a linear function ¢;(x) defined by the scalar product ¢;(z) =
(ai, 2), where o is the é-th vector in V}, according to the ascending lexicographic
order.

Definition 3. Let f be a function on V,,. The Walsh-Hadamard transform of f

1s defined as
fla)=2"% Z (=1)7 (@B lew)
reV,

where o = (a1,...,an) € Vi, © = (21,...,2y,), (o, x) is the scalar product of «
and z, namely, (o, z) = @, a;z;, and f(x)® (o, ) is regarded as a real-valued
function.

Definition4. Given two functions f and g on V,,, the Hamming distance d(f, g)
between them is defined as the Hamming weight of the truth table of f(z) @
g(x), where # = (x1,...,2,). The nonlinearity of f, denoted by Ny, is the
minimum Hamming distance between f and all affine functions on V,,,1.e., Ny =
min;—g 1  on+1_1 d(f, ;) Where oo, 01, ..., @an41_y are all the affine functions
on Vj.

Note that the maximum nonlinearity of functions on V;, coincides with the
covering radius of the first order binary Reed-Muller code RM(1,n) of length
2" which is bounded from above by 271 — 237~ (see for instance [4]). Hence
Ny < 2=l — 237=1 for any function on V.

Definition5. A function f on V,, is called a bent function if its Walsh-Hadamard
transform satisfies

fla) = =1
for all w € V,.

Bent functions can be characterized in various ways [1, 5, 10, 11, 14]. A
characterization of particular interest can be found in [5, 10]:

Lemma6. The following statements are equivalent:



(i) f is bent,
(ii) [ satisfies the propagation criterion with respect to all non-zero vectors in
Vn7
(iii) M = ((=1)f(«®%)) the matriz of f, is a Hadamard matriz.

Bent functions on V,, exist only when n is even. Another important property
of bent functions is that they achieve the highest possible nonlinearity 27! —
2571,

The following lemma will be used in this paper (for a proof see for instance
Lemma 6 of [11].)

Lemma 7. The nonlinearity of a function f on V, can be calculated by
n—1 1 . n
Ny =27 — Cmax{J{E 6)],0 < i < 27— 1)

where £ is the sequence of f and Ly, ..., lon_1 are the rows of H,, namely, the
sequences of the linear functions on V,.

We note that as the number of linear functions on V,, is exponential in n,
it is impractical to calculate N; for a large n by examining all linear functions
against the formula in Lemma 7.

As there is a natural correspondence between an integer in [0,...,2" — 1] and
a vector in V,,, in the following discussions we will use them interchangeably. The
proof of the next lemma is lengthy and will be provided in the full version of
this paper.

Lemma 8. Consider the rows (columns) {; of H,, j=0,1,...,2" — 1. Then

(i) €z = Lo * Lagp, for any vectors o and § in 'V,
(ii) the i-th entry of oy + Lagp is zero (nonzero) if and only if the i-th entry of
by + Lg is zero (nonzero) where i =0,1,...,2" — 1,
(iii) if the i-th entry of o + Lagps is nonzero, then it is twice as large as the i-th
entry of £y.

Note that here * and + indicate component-wise product and component-wise
sum respectively.

The following result can be found in [17]:

Lemma9. Letn > 2 be a positive integer and 27 = p?+q¢? where both p > 0 and
q > 0 are integers. Then p = 23" and g =0 when n is even, and p=q = 23(n—1)
when n s odd.



3 Functions Whose R is Covered by a Coset

Recall that ® denotes the set of vectors in V,, where f, a function on V,,, does not
satisfies the propagation criterion (see Notation 1). In this section we show that
when vectors in R satisfy a special property, namely & is covered by a coset, the
nonlinearity of f is N; = 2771 — 2%(”_1), a very high value. This result forms
the basis of our two new lower bounds to be developed in Section 4.

Let W be a p-dimensional subspace of V,,. Then V,, can be expressed as the
union of 2”77 digjoint 2°-sets:

Vo =WU(BHL W)U U(fgr-s_1 W)

where 3; € V,, and each §; @ W, as well as W, is called a coset.
Let & be the sequence of f. The following is a special form of the Wiener-
Khintchine Theorem [2]:

(A(QO)a A(al)a ) A(QZ"—l))Hn = (<€a£0>2a ) <€a£2"—1>2)~ (2)
Now we prove a theorem on which all the other results in this paper is based.

Theorem 10. Let f be a function on Vi, with |R| > 1. Let W be a p-dimensional
subspace of V,, such that R — {0} C B & W for a vector 3 € Vi, — W (R is said
to be covered by the coset Fd W ). Then

(i) n must be odd, and
(it) the nonlinearity Ny of f satisfies Ny = 2"~ — 23(n—1),

Proof. First we note that 3 ¢ W implies p < n. As W is a subspace of V,,, there
is another (n — p)-dimensional subspace 2 of V,, such that {«,y) = 0 for each
a € {2 and each v € W.

As 5 @ W, there is a nonzero vector « € §2 such that (o, 5) = 1. Now write

W= {70a71a72a~ .. a72p—1}

where 79 = 0. Hence

(B, a)=1 (3)
forall j =0,1,2,...,27 — 1. On the other hand, since ® — {0} C & W, (2) can

be specialized as

(A(Ozo),ﬂ(ﬁ),ﬂ(ﬁ@ 71)a cee ’A(ﬁ@PVZ”—l))D = (<€a£0>2’ ) <€’£2"—1>2) (4)

where D is a (14 2°) x 2”7 sub-matrix of H,, consisting of the 0-th, #-th, 3@ ;-
th, ..., and 8 & y2s_1-th rows of H,. Note that (4) holds regardless of the order
of v1, 2, ..., Y20—1, since we have defined the order of the rows of D to be
identical to that of A(3), A(B&® 71),..., A(B® yae_1).

It follows from Lemma 1 of [17] that the entry on the cross of the a;-th and
a;-th columns of H,, is (—1)<““%). Let n, denote the y-th column of D. Note
that ng 1s of all-one.



Now we turn our attention to the vector o mentioned earlier in the proof.
Recall that the a-th column of H,, denoted by ¢,, is the sequence of a linear
function defined by ¢(z) = {a, x). Thus, the §-th entry of ¢, is -1 if and only if
¥(8) = 1, where § € V,,. What (3) means is that ¢(8 & v;) = 1. Hence the g-th,
8 @ y1-th, ..., B @ v2o—1-th entries of £, are all —1. Since 5, 1s a subsequence
of Z,, the entries of 7, are all —1 except for the top entry whose value is one.
Hence we have

Mo+ e = (2,0,...,0)T. (5)
By Lemma 8,

77’}/—1—77’}/@05:770+77a:(2,0,...,0)T. (6)

where v is an arbitrary vector in V.

Now we restrict e, to be a sequence of length 27, whose the y-th and a@®y-th
entries are both one, while all the other entries are zero. Then by the definition
of D, we have Dez =0y + Pyaa = (2,0,...,0)T. Multiplying both sides of (4)
by ez gives rise to

2A(0) = (€, 65)" + (€, Lagry)” (7)

Note that ag = 0. Hence (§,6,)? + (¢, Lag)? = 27F1. To complete the proof,
we consider two cases: n even and n odd.

Case 1: n is even. By Lemma9, (¢,0,)? = (£, lagy)? = 2". Note that v
is arbitrary. This implies that f is a bent function satisfying ® = {0}, which
contradicts the assumption that || > 1. Hence n cannot be even.

Case 2: n is odd. By Lemma 9, one of (¢,¢,)? and (£, £y~ )? takes the value
27+1 and the other zero. As 7 is arbitrary, by Lemma 7, the nonlinearity N; of
f satisfies Ny = on—1_ 93(n-1),

The following corollary of Theorem 10 is more useful in situations where the
outcomes of summing vectors in } are easy to verify.

Corollary 11. Let f be a funclion on V,, and |R| > 1. Assume thatl for any
t with 0 < t < |R| and any t nonzero veclors v1,72,...,7v in R, whenever

TPy PPy =0 is satisfied, t is even. Then the following two statements
hold:

(i) n is odd,
(it) the nonlinearity Ny of f satisfies Ny = 2"~ — 23(n=1)

Proof. First we note that the rank of « ® R is a constant for all &« € R. To prove
this claim, one can verify that for any vectors «, 5 € R, each vector in a @ R is
a linear combination of vectors in §@ R. Linear algebra tells us that the rank of
a @ R must be less than or equal to that of # ® R. Symmetrically, the rank of
£ @ R must be less than or equal to that of & @ R. Hence the claim is true.



Now fix a nonzero vector v € V,. Let W be the subspace consisting of all
the linear combinations of vectors in y & R. We show that v ¢ W. Assume for
contradiction that 7 € W. Then 7 can be expressed as v = @ (y ® 7;), where
7i € R and 5 < [R|. Thus we have v & [B](y © 7})] = 0. When s is odd, the
equation becomes @i 'y]’» = 0. This contradicts the assumption on f, namely
when @i 'y]’» = 0, s must be even. Consequently, we must have v ¢ V.

Finally the corollary follows from Theorem 10 by noting the fact that ® —
{0}Cyd(vy®&R) Cyd W, ie., Ris covered by the coset v & W with y ¢ W.

Functions satisfying the conditions in Corollary 11 do exist. See Examples 1
and 2 in Section 6.

4 Two New Lower Bounds on Nonlinearity

This section extends Theorem 10 in two different directions to obtain two sepa-
rate lower bounds on the nonlinearity of Boolean functions. A comparison with
a lower bound implied by a result in [3] is also carried out.

First we consider a function f on V,, whose R is covered by a coset together
with ¢ other vectors. We show that the nonlinearity of f is bounded from below

by 2n—1 — 93(n=1) /T ¢,

Theorem 12. Let f be a function on V, and |R| > 1 and W be a p-dimensional
subspace of V,,. Assume that there exist t + 1 vectors in V, — W, say 1, ..., By
and 3, such that

R—-{0} C{f,....0 U (BB W).
Then the nonlinearity Ny of f satisfies

Ny > 207t —930=D /Ty

Proof. The main ideas behind the proof of this theorem are similar to those
of Theorem 10. Here we only highlight the major differences with the proof of
Theorem 10.

As in the proof of Theorem 10, let W = {~v0,%1,7v2,...,720-1}. Then since
R®—{0} C{A,..., /UL BW, (2) will be specialized as

(A(ao), A(B1), -, ABe), A(B), ABS71),..., ABDy20-1))D
= ((€,40)%, . (€, ban_1)?) (8)

where D is a (1 4+ ¢+ 2°) x 2" sub-matrix of H,, consisting of the 0-th, 3;-th,
ooy By-th, G-th, 8@ y1-th, ..., & y20—1-th rows of H,.

Now instead of (5), we have
Mo+ Na = (k% %) (9)

where the components of (#*- - %) are all from {0,2,—2} and (%*---*) contains
at least 27 zeros. Thus Dez = 7y + Nagy = Mo + o = (* % ---%) contains at



most (1 +t) 2s or —2s, where e, is a sequence of length 2”7 whose y-th and
a @ y-th entries are one and all the other entries are zero. Multiplying both
sides of (8) by ez and noting the fact that |A(y)] < 27 for all ¥ € V,,, we

have (£, 0,)% + (€, laay)? < 2(1 +1)27. Hence |(¢,£,)] < 23D T As 7 is
arbitrary, by Lemma 7, Ny > 2"~ — 25(n=1/T+ 1.

While Theorem 12 extends Theorem 10 by adding a parameter ¢, the next
theorem does it by taking into account two parameters s and w, where s is the
number of nonzero vectors in R, and w is the maximum Hamming weight of
vectors determined by .

Theorem 13. Letl [ be a funclion on V,, with |R] > 1. Set & = {Bo,51,...,05s}
where fy = 0. Let w = max{Wy(@gs, (¢),...,0s,(2))|x € Vo, }, where @g,(2) =
(Bi,z) is a linear function on V, defined by B;. Then the nonlinearity Ny of f

satisfies Ny > 27=1 — 230-U/T+ s — w.

Proof. Again the proof is similar to that of Theorem 10. Under the condition
stated in the theorem, (2) can be specialized as

(A(BO)’ A(Bl)’ s ’A(ﬁs))D = (<€’£0>2’ sy <€’£2"—1>2) (10)

where D is a (1 4 s) x 2" sub-matrix of Hy, consisting of the By-th, f1-th, ...
Bs-th rows of H,. Since w = max{Wp(ps,(2),..., ¢z, (2))|z € V,}, there is a
vector « € Vi, such that Wy (s, (@), ..., ¢s,(a)) = w. Correspondingly, the a-th
column of D contains exactly w minus components.

The crux of the proof is that Dez =y + yga = Mo+ e = (k% - %),
where (** ---%) contains exactly 1 + s — w non-zeros, and each component of
( # - - - %) comes from {0,2,—2}. Multiplying both sides of (10) by ez leads to
(€67 + (€ lasy)® <201+ s —w)2”, and [(¢,0y)] < 2%(n+1)\/ I+s—w Asy
is arbitrary in Vj,, we have N; > 27~1 — 2:0-1/T¥ s — w.

As was pointed out in [16], the work by Carlet [3] implies a lower bound on
nonlinearity:

Ny > gn=1 _ 93n-1 EY
for any function f on V,,. With Theorem 13, we have w > 0 and
w > %|§R| (11)
Hence
9=l 930D T 15 —w > 271 — 237 LR (12)

The equality in (12) holds if and only if the equality in (11) holds if and only if
R = V,,. Namely, Theorem 13 gives a better lower bound on nonlinearity than
that implied in [3].



5 A Class of Highly Nonlinear Functions

Bent functions have the maximum nonlinearity and satisfy the propagation prop-
erty with respect to every nonzero vectors hence bent function are widely useful.
But bent functions exist only on even dimensional vector space furthermore bent
functions are unbalanced and cannot be balanced by any linear translate (see the
bottom of this section) hence we propose a new class of highly nonlinear func-
tions. In an earlier work [11], we constructed, in a recursive manner, balanced
Boolean functions that have a nonlinearity far higher than that achievable by
all previously known methods. The functions obtained in [11], however, have a
small shortcoming in that their algebraic representation are complicated and
their spectra of Walsh-Hadamard transform are hard to analyze.

Observing the two lower bounds in Theorems 12 and 13, we ask a natural
question: are there functions that achieve a nonlinearity of 271 — 237=1 with
a simple spectrum of Walsh-Hadamard transform. It turns out that the answer
to the question is affirmative. Among the functions that support the affirmative
answer, of particular interest are those whose Walsh-Hadamard transforms take
the value of 0 or £23.

From Case 2 in the proof of Theorem 10 we conclude that

Corollary 14. Functions satisfying the conditions in Corollary 11 or in Theo-
rem 10 all satisfy the property that their Walsh-Hadamard transforms take the
value of 0 or +93.

We now compare these functions with bent functions. Recall Definition 5 and
Lemma 6. In particular, we know that if ¢ is a bent function on V,,, then n must
be even, and the function satisfies (n,4;) = 423" for all j = 0,1,...,2" — 1,
where 7 1s the sequence of g.

Corollary 15. A function f on V,, whose Walsh-Hadamard transform takes the
value of 0 or 1923 has the following properties

(i) it exists only for n odd,

(ii) (&, £;) = 0 for exactly half of the 2™ rows &; in Hy, and {£,4;) = +93(n+1)
for the other half of the rows £; in H,, where & denotes the sequence of f,

(iti) the nonlinearity Ny of f satisfies Ny = 2"~1 — 23(n-1),

(iv) let A be an arbitrary nonsingular n x n matriz over GF(2) and £ be any
vector in Vi, then the Walsh-Hadamard transform of g(x) = f(Ax & B) too
takes the value of 0 or +93.

(v) for any affine function on Vy,, say ¢, the Walsh-Hadamard transform of f &
takes the value of 0 or +93.

Property (i) follows from the spectrum of the Walsh-Hadamard transform of
f. Property (ii) can be easily proved using Parseval’s equation Z?:(;l(f,ﬁi)z =
227 (see Page 416, [7]). Property (iii) follows from Property (ii).



To prove Property (iv), we set u = Ax & F. Let n be the sequence of ¢ and
£ be any row of H,, i.e., the sequence of a linear function, say ¢, on V,,. Note
that ¢ can be expressed as p(z) = (o, z), « € V,,. Consider

(n,6) = Z (—1)0(@)@ ()

reV,

- Z (=1)f (A& {aw)
reV,

- Z (—1)F ({0 AT (uBh)) (13)
ueV,

Since (o, A=Y(u @ B)) is an affine function, there are o/ € V,, and ¢ € GF(2)
such that (o, A7 (u & 3)) = (o, u) & c. Hence (13) can be rewritten as

(.0 = 30 (1Rl = 37 (prstel e (1)
€V, UEV,
where u = Az @ 3. Since the Walsh-Hadamard transform of f takes the value
of 0 or £27, Z:uevn(—l)f(“)@(CY wde — 49350+ Thysg (14) implies that the
Walsh-Hadamard transform of ¢ too takes the value of 0 or +93.
Finally we show that Property (v) is satisfied. Similarly to the proof of (iv),
let ¢ = {a, ) be any linear function on V,,. Consider

3 (-1 @Eeslant o $ (L)evEse) (15)

TEV, TEV,

Since @y is also a linear function, (15) can only take the value of 0 or +93(n+1)

Both bent functions and the class of functions discussed above are highly
nonlinear. In cryptography we often require highly nonlinear and also balanced
functions. For this reason, bent functions hardly find direct applications in cryp-
tography.

In contrast, we can always modify a function whose Walsh-Hadamard trans-
form takes the value of 0 or £2% to a balanced one, by adding a suitable linear
function.

Corollary 16. Let f be a function on V,, whose Walsh-Hadamard transform
takes the value of O or +923. Then there exists a linear function ¥ on 'V, such
that f ® v 1s balanced and 1ts Walsh-Hadamard transform too takes the value of
0 or £23.

Proof. Let & be the sequence of f. From Corollary 15, there is a row of H,,, say
£, i.e. the sequence of a linear function, say 1, on V,,, such that (£, £) = 0. Note
that 1 can be expressed as () = (o, x), @ € V,,. (£,€) = 0 can be rewritten as
ervn(_l)f(x)@d}(x) = 0, which in turn implies that f @ 1 is balanced.

Note that the above technique is not applicable to a bent function f, since
f ® ¢ is also bent for any linear function . This is an important property of the
new class of highly nonlinear functions we proposed in this section as balance is
the most important criterion.

f @ is called a linear translate of f.



6 Examples of Highly Nonlinear Functions

To complement our theoretical studies carried out in the previous sections, now
we show three infinite sets of functions whose Walsh-Hadamard transforms all
take the value of 0 or +23.

Erample 1. Let
g(x1, ... x5) = (1dx)(1dzs)es® (1@ )roxa®r (10xs) (23D ) D1 22(4DXs)

and f(v,u) = g(v) ® h(u), where v € V5 and h is a bent function on V,,_s.
From [17], the set R associated with f is composed of five vectors: (0,...,0),
(0,0,0,1,0,...,0),(0,0,1,0,0,...,0),(0,1,0,1,0,...,0),and (0, 1,1,0,0,...,0).
Let W be the set of the following four vectors: (0,...,0), (0,0,1,1,0,...,0),
(0,1,0,0,0,...,0) and (0,1,1,1,0,...,0). It is easy to verify that W is a 2-
dimensional subspace and ## — {0} C (0,0,0,1,0,...,0)&® WW. Hence R is covered
by (0,0,0,1,0,...,0)® W, and by Corollary 14, the Walsh-Hadamard transform
of f takes the value of 0 or £23. The reader is directed to [17] where it is sug-
gested that the way g on V; is constructed can be extended to V; for all odd
t>5.

Frample 2. Consider f(x) = cx1 @ g(wa,...,x,) where & = (21,...,2,), ¢ €
(G F(2) and g is a bent function on V,,_1. From [17], ® = {(0,...,0), (1,0,...,0)}.
Obviously f satisfies the conditions mentioned in Corollary 11. By Corollary 14,
the Walsh-Hadamard transform of f takes the value of 0 or +93.

FEzample 3. Let e; be the tth row of Hy. Hence eg,eq, ..., e9x_1 are the sequences
of all the 2* linear functions on Vj. Note that the length of each linear sequence
e; is 2%. Thus one can see that the concatenation of any 2°~' different linear
sequences of length 2% is the sequence of a function on Vay_; whose Walsh-
Hadamard transform of f takes the value of 0 or +93:

ejla'~~aej2k—1 (16)

where {ji,...,jox=1} C {0,1...,2% —1}. The explicit polynomial representation
of the sequence indicated in (16) can be obtained using a technique shown in [11].

The function in Example 1 is balanced. The functions in the other two exam-
ples will be also balanced when extra conditions are satisfied. More specifically,
the function in Example 2 will be balanced if ¢ = 1, and the function in Exam-
ple 3 will be so if {ji,...,jox—1} C {1...,2F —1}.

7 Conclusion

We have studied functions whose & is covered by a coset, and proved two lower
bounds on nonlinearity. We have also introduced a new class of highly nonlin-
ear functions which have a simple spectrum of Walsh-Hadamard transform and



exist only on odd dimensional spaces, and can be balanced by a linear translte.
Hence the new highly nonlinear functions are more useful in practice. Further
research includes the investigation of other nonlinear characteristics of this class

of

functions, including but not limited to algebraic degree, global avalanche char-

acteristics [15], and correlation immunity [12].
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