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Abstract
Nonlinearity, 0-1 balancedness and strict avalanche criterion (SAC) are important criteria for cryptographic
functions. Bent functions have maximum nonlinearity and satisfy SAC however they are not 0-1 balanced and
hence cannot be directly used in many cryptosystems where 0-1 balancedness is needed. In this paper we construct
(i) 0-1 balanced boolean functions on Vart:1 (k = 1) having nonlinearity 22¥ — 2% and satisfying SAC,
(ii) 0-1 balanced boolean functions on Vaox (k = 2) having nonlinearity 22*~' — 2* and satisfying SAC.

We demonstrate that the above nonlinearities are very high not only for the 0-1 balanced functions satisfying
SAC but also for all 0-1 balanced functions.

1 Basic Definitions

Let V,, be the vector space of n tuples of elements from GF(2). Let a, 5 € V,,. Write o« = (ay -+~ an), 5= (b1 -+ by),
where a;,b; € GF(2). Write (o, ) = Z?Il a;b; for the scalar product of o and 3. We write @ = (a1---ap) <
B = (by--by) if there exists k, 1 £ k < n, such that a; = by, ..., ag—y = bg—1 and ay = 0, by = 1. Hence we can
order all vectors in V,, by the relation <

g <y < ---< Qgn_1q,

where
040:(0"'00),...,O[zn—1_1:(01~..1)’
azn—1:(10~~~0), ey Oézn_1:(11~~~1).

Definition 1 Let f(x) be a function from V, to GF(2) (simply, a function on V, ). We call the (1 -1)-sequence
ny = (=1)f o) (—1)f(e) - (—1)f(@2m=1)y the sequence of f(x).  f(x) is called the function of ns. The (0,
1)-sequence (f(ag) flar) ... faan_1)) is called the truth table of f(x). In particular, if the truth table of f(x)
has 2"~ zeros (ones) f(x) is called 0-1 balanced.

Let & = (ay---agn) and 5 = (by---ban) be (1, -1)-sequences of length 2”. The operation * between £ and 7,
denoted by & * 7, is the sequence (aiby - - - asnban). Obviously if £ and 5 are the sequences of functions f(x) and g(#)
on Vj, respectively then £ 7 is the sequence of f(z) + g(z).

Definition 2 We call the function h(z) = a121 + -+ + an2n + ¢, aj,¢c € GF(2), an affine function, in particular,
h(z) will be called a linear function if the constant ¢ = 0. The sequence of an affine function (a linear function) will
be called an affine sequence (a linear sequence).

*Supported in part by the Australian Research Council under the reference numbers A49130102, A9030136, A49131885 and A49232172.
tSupported in part by the Australian Research Council under the reference number A49130102.



Definition 3 Let f and g be functions on V,,. d(f,¢) = Zf(x#g(x)l 15 called the Hamming distance between f
and g. Let p1,...,pon, pang1, ..., pansr be all affine functions on V,. Ny = ming—1__ onrd(f, ;) is called the
nonlinearity of f(z).

The nonlinearity is a crucial criterion for a good cryptographic design. It prevents the cryptosystems from being
attacked by a set of linear equations. The concept of nonlinearity was introduced by Pieprzyk and Finkelstein [16].

Definition 4 Let f(z) be a function on Vi,. If f(x) + f(x + «) is 0-1 balanced for every o € Vi, W(w) = 1, where
W(«) denotes the number of nonzero coordinates of o (Hamming weight) of o, we say that f(x) satisfies the strict

avalanche criterion (SAC).

We can give an equivalent description of SAC": let f be a function on V. If if we change any single input the
probability that the output changes is 5 (see [2]). The strict avalanche criterion was originally defined in [20], [21],
later it has been generalized in many ways [2], [3], [6], [10], [13], [18]. The SAC is relevant to the completeness
and the avalanche effect. The 0-1 balancedness, the nonlinearity and the avalanche criterion are important criteria
for cryptographic functions [1], [3], [4], [13].

Definition 5 A (1, -1)-matriz H of order h will be called an Hadamard matrix if HHT = hlj,.

If h is the order of an Hadamard matrix then A is 1, 2 or divisible by 4 [19]. A special kind of Hadamard matrix,
defined as follows will be relevant:

Definition 6 The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2", denoted by Hy, is gener-
ated by the recursive relation

Hn—l Hn—l

1‘:In:|:[_ln_1 _H,_, :|, n=1,2,..., Hy=1.

Definition 7 Let f(x) be a function from V, to GF(2). If
9-% Z (=1)f @)HFe) = 1

reV,
for every 8 € V,,. We call f(x) a bent function on V,,.

., From Definition 7, bent functions on V,, only exist for even n. Bent functions were first introduced and studied
by Rothaus [17]. Further properties, constructions and equivalence bounds for bent functions can be found in [1],
(7, [9], [15], [22]. Kumar, Scholtz and Welch [8] defined and studied the bent functions from 7 to Z,. Bent
functions are useful for digital communications, coding theory and cryptography [2], [4], [9], [11], [12], [13],
[14], [15]. Bent functions on V;, (n is even) not only attain the upper bound of nonlinearity, 27~! — 237=1 but also
satisfy SAC. However 0-1 balancedness is often required in cryptosystems and bent functions are not 0-1 balanced
since the Hamming weight of bent functions on V,, is 27! 4 2371 [17]. In this paper we construct 0-1 balanced
functions with high nonlinearity satisfying high-order SAC from bent functions.

Notation 1 Let X be an indeterminant. We give X a binary subscript that is X;,..;, where i1,... i, € GF(2).
For any sequence of constants iy,. .., i, from GF(2) define a function Dy, .;, from V, to GF(2) by

Di1~~~ip(y1, - ,yp) = (yl + [1) - (yp + Z;,)

where i = 1+ 1 is the complement of i modulo 2.

2 The Properties of Balancedness and Nonlinearity

Lemma 1 Let&;, .;, be the sequence of a function f; . (x1,---,2q) from Vg to GF(2). Write& = (€o0..00 €001 -+ €1.-11)
for the concatenation of &o...00, &o...01, -+, &1..11. Then & is the sequence of the function from V4, to GF(2) given
by

f(yla"'aypaxla"'a$q): Z Dilmip(yla'"ayp)fil...ip(xla"'axq)~
(il"'ip)evp



Proof. 1t is obvious that:

B (=),
D“...Zp(yl,~~~ayp) —{ 0 otherwise.

Hence, by exhaustive choice,

Jl,oodp,my, o xg) = Dy (i, ip) fiy (1, xg) = fi g, (1, 2g).

By the definition of sequence of functions (Definition 1) the lemma is true. a
O
lo
I
Lemma 2 Write H, = . where l; is a row of Hy. Then l; is the sequence of hi(x) = {a;, ) where o is
lan_y

defined before Definition 1.

Proof. By induction on n. Let n = 1. Since H; = [ i i— ], lo = (+ +), the sequence of (0,#) and [, = (+ —)

, the sequence of {1,z) where x € Vi, + and — stand for 1 and —1 respectively. Suppose the lemma is true for
n=12...,k—1.

Since Hy = Hi X Hp_1, where x is the Kronecker product, each row of H, can be expressed as é x [ where
§=(+4) or (+ —), and [ is a row of H,_;. By the assumption [ is the sequence of a function, say h(z) = {(«, ),
where a, 2 € Vi—1. Thus 8 x [ is the sequence of {5,y) where y € Vi, 5 = (0 &) or (1 «) according as § = (+ +) or
(+ —). Thus the lemma is true for n = k. O

O

., From Lemma 10 all the rows of H,, comprise all the sequences of linear functions on V,, and hence all the rows
of £H,, comprise all the sequences of affine functions on V,,.

Lemma 3 Let f and g be functions on V,, whose sequences are 1y and 1, respectively. Then d(f,g) = 2"~ ! —
1
5{(ng,1g)-

Proof. {(ns,ng) = Zf(x):g(x)l - Zf(x#g(x) 1=2" — QZf(x#g(x)l = 2" —2d(f,g). This proves the lemma. g

Let H, = (hi;) and L; = (hs1 - - hion) Le. the i-th row of H,. Write Lijon = —L;, 1 = 1,...,27. Since L,

t=1,...,2" is a linear sequence Ly, ..., Lan, Lanyq1, ..., Lant1 comprise all afline sequences. Let f be a function
on V, whose sequence is 1y and ¢; be the function of L;.

Write 0y = (ay -+ - agn). Since (s, L;) = Zzn ajhg;

j=1
<77f,Li>2 :2"+22ajathijh“. (1)
J<t
and
2n 2n 2n
Z(Uf, Li>2 — 9 + 22 Z a]'athi]'h” — 9 + 22 a;ay Z hi]'h“.
=1 i=1 j<1t i<t =1
Since H, 1s an Hadamard matrix le; hijhyy = 0 for j # ¢ and hence
gn
>y L)t =2, (2)
i=1
Thus there exists an integer, say io, such that (ns, Li)? = (5, Lig42=)? 2 2" and hence (s, L;,) 2 23" or
L qpon) 2 23" Without any loss of generality suppose VL) 2 237 By Lemma 11 d(f, ;) < 271 — 2371
nr ot g nr 0 Pio

This proves



Lemma 4 N; < gn=t _ gan-t for any function on V,.

Lemma 5 If both (0, 1)-sequences & and 1 of length 2t consist of an even number of ones and an even number of
minus ones then d(&,n) is even.

Proof. Write € = (ay - -az¢) and = (by - - bat). Let ny denote the number of pairs (a;, b;) such that ¢; = 1, b; = 1;
let ny denote the number of pairs (a;, b;) such that a; = 1, b; = 0; let n3 denote the number of pairs (a;, b;) such
that a; = 0, b; = 1; and let ny denote the number of pairs (a;, b;) such that a; =0, b; = 0. Hence ny + na, nz + na,
n1 + ng and na + ng are all even and hence 2ny + ny + ng is even. Thus ny + ng = d(€,n) is even. ad

O

The following result can be found in [5]

Lemma 6 Let f(x) be a function from V,, to GF(2). f(x) and £ be the sequence of f(x). Then the following four
statements are equivalent

(i) f(x) is bent,

(ii) for any affine sequence of length 27, denoted by I, (£,1) = +9237,
(iii) f(x)+ f(e+ «) is 0-1 balanced for every nonzero o € Vy,

(w) f(x)+ (a,z) contains 2771 & 2571 zeros for every o € V.

Let L; and ¢, j = 1,...,2"T! be the same as in the proof of Lemma 12. If f is a bent function then (n;, L;)? = 2"
and hence (n¢, L;) = 237 or (g, Ligan) = 23" for each fixed i, 1 £ i < 2", By Lemma 11 d(f,¢;) = 27! — 2371
or d(f, piqan) =271 — 237=1 for each fixed i, 1 <¢< 2" Thus Ny = 2771 — 237=1 In other words, bent functions
attain the upper bound for nonlinearities given in Lemma 12. Conversely, if a function f on V|, attains the upper
bound for nonlinearities, 27 =1 —237=1 then (g, Li)? =2"fori=1,...,2"" e fisbent, otherwise (n;, L;)? = 2"
does not hold for some ¢, 1 £ 7 < 2"+L. Note that Ly 2= = —L;. ;From (2) there exist i1 and iz, 1 < 1,45, < 27 such
that (n;, Li,)? > 2" and (ng, L;,)? < 2". Thus (5, Li,) > 23" or (g, Liyqon) > 23" Without any loss generality,
suppose (n¢, Li,) > 23" By using Lemma 11 d(f, ¢;,) < 2"~ — 22"~! and hence Np <2771 — 237=1 This is a
contradiction to the assumption that f attains the maximum nonlinearity 271 — 237=1 Hence we have proved
Corollary 1 A function on V, attains the upper bound for nonlinearities, 21 — 2%”_1, of and only if it is bent.

iFrom (1) we have

Corollary 2 Let f be a function on V, whose sequence is ny = (ay---asn). Then f is bent if and only if
Z]»Q ajazhijhyy =0 fori=1,...,2" where (hi;) = Hp.

;From Corollary 15 0-1 balanced functions cannot attain the upper bound for nonlinearities 277! — 237-1,

However we can construct a class of 0-1 balanced functions with high nonlinearity by using bent functions.

Corollary 3 Let f be a 0-1 balanced function on V,, (n 2 3). Then Ny < 21 —23n=1_9 if n 1s even number and
Ny < 20! - 2%”_1“ if n is odd where ||z]|] denotes the mazimum even number less than or equal to x.

Proof. Note that f and each ¢;, where ¢; 1s the same as in Definition 3, have an even number of ones and an
even of number of zeros. By Lemma 13 d(f, ;) is even. By corollary 15 d(f,¢;) < 2"~ — 237=1 This proves the
corollary. a

a

Lemma 7 Let fj(x1,...,22;) be a bent function on Vor, j = 1,2. Set

gu,z1, .. zon) = (1 4+ w) fi(2) + ufa(z).
Then N, = 228 — 2k,



Proof.  Write &; for the sequence of f;, j = 1,2. By Lemma 9 v = (£1 &2) is the sequence of g, of length 2241
Let L be the sequence of an affine function, say ¢. By Lemma 10 L is a row of +Hy41. Since Hopp1 = Hi X Hop
and Hy = [ Tt
_|_ —

Lemma 10, where I’ is a row of +Hay. Since both f; and f; + h are bent, by (ii) of Lemma 14, (¢;,I') = £2*.
(v, L) = (&1,') £ (&, 1"). Thus |(y, L)] £ 281, By Lemma 11 d(g, ) = 22F — 2%, Since ¢ is arbitrary N, = 22 — 2%,
O

O

], where X is the Kronecker product, L can be expressed as L = (I' ') or L = (I' = U'), by

Lemma 8 Let f;(x1,...,2o5-2) be a bent function on Vop_o, j=1,2,3,4. Set
gu,v 21, .. 2op-2) = (L + @) (1 + o) fi(z) + (1 + wofa(z) + u(l + v)fs(x) + uv fa(z).

Then N, = 22k=1 _ 2k,

Proof.  Let & be the sequence of f;(z), j = 1,2,3,4 and n = (&1 &2 &3 £4) be the sequence of g. Let L be an
affine sequence of length 2% whose function is h(z), an affine function. By Lemma 10 L is a row of £H. Since
Hop = Ho X Hop_o and L can be expressed as L = [y X l_5 where [5 is a row of £Hy and ly;_5 is a row of
+Hop_5. Since each & is bent, by (ii) of Lemma 14, (§;,1) = £2%~1. Note that |(n, L)| < 2?21 [{&,1}| and hence
|(n,L)] £ 421 By Lemma 11 d(g,h) = 22¥=1 — 2% Since h is an arbitrary affine function N, = 2%=1 — 2~ @

O

Lemma 9 fi(x1,...,25) + fo(uy, ... uz) is a 0-1 balanced function on Vi if f1 is a 0-1 balanced function on V,
or fo 15 a 0-1 balanced function on V.

Proof.  Set g(w1,..., %0, U1, ... u) = fr(®1,...,2n) + fo(ug, ..., u). Without any loss of generality, suppose fi is
a 0-1 balanced function on Vj,. Note that for every fixed (u - u?) € Vi, g(21, ..., zn,uf, ... ud) = fi(zr, ..., 20) +
f2(ud, ... ud) is a 0-1 balanced function on Vj, thus g(z1,..., s, u1,...,u) is a 0-1 balanced function on V,,1¢. O

O

3 Construction

3.1 On ‘/2k+1

Let k 2 1 and f(x1,...,22;) be a bent function on Vop. Write & = (z1 -~ xax). Let h(z) be a non-constant affine
function on Vap. Note that f(x)+ h(z) is also bent (see Property 2, p95, [8]) and hence f + h assumes the value
zero 221 4+ 251 times and assumes the value one 22*= 25 =1 times.

Without any loss of generality we suppose f(z) assumes the value zero 22%~1 + 28=1 times (if f(z) assumes the
value zero 22%=1 — 28— times, the bent function f(z)+ 1 assumes the value zero 22¥=1 4 251 times and hence we
can replace f(z) by f(z)+1). Also we suppose f(z)+ h(zx) assumes the value zero 22¥~1 — 251 times (if f(z)+ h(z)
assumes the value zero 22%=1 4 26=1 times, the bent function f(x)+ h(z) + 1 assumes the value zero 22¢=1 — 2k—1

times so we can replace f(z)+ h(z) by f(x) + h(z) +1). Set
g(u, 21, .. wa) = f(o1, ... xon) + uh(zy, ... 2ag). (3)

Lemma 10 g(u,z1,...,201) defined by (3) is a 0-1 balanced function on Vapyq.

Proof. Note that ¢(0,2y,...,2a) = f(z1,...,T2) assumes the value zero 22¥~1 +-25=! times and ¢(1,zy,...,29;) =
f(zy, ..., xog) + h(zy, ..., x2) assumes the value zero 22¥~1 — 281 times. Thus g(u, 2y, ..., za;) assumes the value
zero 2% times (one 2% times). O

O



Lemma 11 N, = 22¥ — 2% where g is defined by (3).

Proof. g = f+uh=(1+u)f+u(f+h). Note that both f and f + h are bent functions on Va;. By Lemma 18
N, 2 92 _ 9k, O
O

Lemma 12 g(u,z1,...,201) defined by (3) satisfies the strict avalanche criterion.

Proof.  Let v = (b ay---az) with W(y) = 1. Write o« = (a1---asg), 2 = (v @1 ...295) and & = (2x1...225).
g(z+7)=fle+a)+ (u+bh(x+a) and hence g(2)+g(z+v) = f(x)+ f(e + o) + (h(x) +h(z+a))+bh(x + ).
Case 1: b = 0 and hence W(a) = 1. g(2) + g(z+7) = f(z) + f(# + &) + u(h(x) + h(z + «)). Since h is a
non-constant affine function A(x) + h(x + «) = ¢ where ¢ is a constant. Thus g(z)+¢(z+7v) = f(x)+ f(z + a) + cu.
By (iii) of Lemma 14 f(2)+ f(# + «) is a 0-1 balanced function on Va5 and hence by Lemma 20 g(z) + g(z +7) is a
0-1 balanced function on Vag41.
Case 2: b = 1 and hence W(a) = 0i.e. « = 0. g(2)+g(z+7) = h(x). Since h(z) is a non-constant affine function
on Va h(z) is a 0-1 balanced and hence by Lemma 20 g(z) + g(z + «) is a 0-1 balanced function on Vapi1. O
O

Summarizing Lemmas 21, 22, 23 we have

Theorem 1 For k 2 1, g(u,x1,...,225) defined by (3) is a 0-1 balanced function on Vogy1 having N, = 22 — 2%
and satisfying the strict avalanche criterion.

3.2 On ‘/Qk

Let k 2 2 and f(21,...,22p—2) be bent function on Vap_s. Write & = (21 -+ - 29p_2). Let hj(x), j = 1,2,3, be three
non-constant affine functions on Va,_s such that h;(z) 4+ hj(2) is non-constant for any i # j. Such hqi(z), ho(z),
hs(x) exist for k = 2. Note that each f(x)+ hj(z) is also bent (see Property 2, p95, [8]) and hence f + h; assumes
the value zero 223 4+ 2F=2 times and assumes the value one 22*=3 £ 25=2 times.

Without any loss of generality we suppose both f(z) and f(z)+ hi(x) assume the value zero 2273 + 252 times
and both f(x) + ha(z) and f(z) + hs(z) assume the value zero 22%=3 — 25=2 times. This assumption is reasonable
because f(z)+ hj(z) assumes the value zero 22¢=3 — 28=2 times if and only if f(z) + hj(z) 4+ 1 assumes the value
zero 22573 4+ 25=2 times and h;j(z) + 1 is also a non-constant affine function thus we can choose one of f(z) + hj(x)
and f(z) + h;j(x) + 1 so that the assumption is satisfied. Set

g(u,v,21,. .., 2ap_2) =
F(x) +vhi(2) + uha(z) + uv(hy(2) + ha(x) + hs(z)). )

Lemma 13 g(u,v,21,...,225-2) defined by (4) is a 0-1 balanced function on Vay.
Proof. Note that ¢(0,0,21,...,225-2) = f(x), ¢(0,1,21,... ,225-2) = f(x) + h1(x), ¢(1,0,21,...,22p-2) =
Flx) + ha(x), g(1, 1,21, 2ap—2) = f(&) + hi(x) + ha(x) + (h1(x) + ha(z) + hs(x)) = f(x) + hs(z). By the

assumption the first two functions assume the value zero 222 4+ 25— times in total and the second two functions

assume the value zero 22¥=2 — 28~1 times in total. Hence g(u,v,z1,...,T25_2) assumes the value zero 22¥=1 times
in total and thus it 1s a 0-1 balanced function on V5. ad
O

Lemma 14 N, = 2%~ — 2% where g is defined by (4).

Proof. Note that ¢ = f(z) 4+ vhi(z) + uha(x uv(h () 4+ ho(z) + ha(x)) = (L +u)(1 4+ v)f(2) + (1 + wo(f(z) +
hi(z)) + u(l + v)(f(x) + ho(x)) + uv(f(z) + ha(z)). By Lemma 19 N, = 22k-1 — 2k, O
O



Lemma 15 g(u,v,21,...,2a5-2) defined by (4) satisfies the strict avalanche criterion.

Proof.  TLet v = (b ¢ ay---asp—2) with W(y) = 1. Write o = (a1 -asp-2), 2 = (v v £1...225-2) and z =
(1‘1 N l‘zk_z).

Note that g(z4+7) = f(z+a)+(v+e)hi(z+a)+ (ut+b)ha(z+a)+ (u+b)(v+e)(hi(z+a)+ho(z+a)+ ha(z+a)).

Case 1: b =1 and hence e = 0, W(a) =0ie. «=0. g(2) 4+ g(z +7) = ha(x) + v(h1(x) + ha(x) + ha(x)) will be
ha(2) when v = 0 and hy(z) + hs(z) when v = 1. Both ha(2) and hy(x) + hs(x) are non-constant affine functions on
Vak—2 and hence g(z) + g(z 4+ 7) is 0-1 balanced on Va.

Case 2: ¢ = 1 and hence b =0, W(a) = 0 i.e. &« = 0. The proof is similar to Case 1.

Case 3: W(w) # 0 and hence b = ¢ = 0. Since h; is an affine function we can write h;(z) + hj(z + @) = q;
where a; is a constant. Hence g(2) 4+ g(z+7v) = f(2) + f(z + o) + var + uas + uv(a1 + az + as). By (iii) of Lemma
14 f(z) + f(# + «) is a 0-1 balanced function on Va5 and hence by Lemma 20 g(z) + g(z + 7) is a 0-1 balanced
function on Vap. This proves that g(u,v,z1,..., 22;_2) satisfies the strict avalanche criterion. a

O

Summarizing Lemmas 25, 26, 27 we have

Theorem 2 Fork 22, g(u,v,x1,...,225_2) defined by (4) is a 0-1 balanced function on Vay, having Ny = 22F=2 -2k
and satisfying the strict avalanche criterion.

4 Remarks

We note that the nonlinearities of 0-1 balanced functions satisfying SAC in Theorems 24 and 28 are the same as
those for ordinary 0-1 balanced functions (see [13]). Next we give two examples of the theorems.

Example 1 In Theorem 24 let k = 2. Consider Vs. As we know, f(w1, 22, 23,24) = 2122+ 2324 15 a bent function
in Vy. Choose the non-constant affine function h(x1, 2, x3,24) = 1421 +22+23+24. Note [ assumes the value zero
2471 4 9271 = 10 times and f + h assumes the value zero 2=t — 2271 = 6 times. Hence we set g(u,x1, 22, v3,74) =
frr, w0, 23, 24) + uh(®y, @0, 23, 24) = 122 + 324 + u(l + 21 + 22 + 23 + 24). By Theorem 24 g(u,x1, 22, 3, 24)
is a 0-1 balanced function with Ny 2 2% — 22 = 12, satisfying the strict avalanche criterion. On the other hand, by
Corollary 17 the bound for nonlinearly 0-1 balanced functions on Vs is |[2* — 22_%“ = [[13.1818 - ]| = 12 where
[lz]] denotes the marimum even number no larger than x. This means that Ny = 12 attains the upper bound for
nonlinearly 0-1 balanced functions on Vs.

Example 2 In Theorem 28 let k = 3. Consider V. Choose f(x1, 22,23, 24) = x122 + 234, a bent function in
Vi. Also choose non-constant affine functions hy(wy, 22,23, 24) = 1, ha(®1, 22,23, 24) = L+ 22, ha(wy, 22,23, 24) =
1+x3. Note both f and f + hy assume the value zero 2471 42271 = 10 times and both f+ hz and f + hy assume the
value zero 2471 — 2271 = 6 times. Hence we set g(u, v, x1, 22,23, 24) = f+vhy +uhs+uv(hy +ha+hs). By Theorem
28 g(u,v,x1, T, x3,24) 15 a 0-1 balanced function with Ny 2 25 — 2% = 24, satisfying the strict avalanche criterion.
On the other hand, by Corollary 17 the upper bound for nonlinearly 0-1 balanced functions on Vi is 2° — 22 — 2 = 26,
This means that Ny = 24 s very high.

Recently Zheng, Pieprzyk and Seberry [23] constructed a very efficient one way hashing algorithm using boolean
functions constructed by the method given in Theorem 24. These functions have further cryptographically useful
properties.
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