Highly Nonlinear 0-1 Balanced Boolean Functions Satisfying Strict Avalanche Criterion (Extended Abstract)

Jennifer Seberry *
Xian-Mo Zhang ${ }^{\dagger}$
Department of Computer Science
The University of Wollongong
Wollongong, NSW 2522, AUSTRALIA

Abstract

Nonlinearity, 0-1 balancedness and strict avalanche criterion (SAC) are important criteria for cryptographic functions. Bent functions have maximum nonlinearity and satisfy SAC however they are not 0-1 balanced and hence cannot be directly used in many cryptosystems where $0-1$ balancedness is needed. In this paper we construct

(i) 0-1 balanced boolean functions on $V_{2 k+1}(k \geqq 1)$ having nonlinearity $2^{2 k}-2^{k}$ and satisfying SAC,
(ii) 0-1 balanced boolean functions on $V_{2 k}(k \geqq 2)$ having nonlinearity $2^{2 k-1}-2^{k}$ and satisfying SAC.

We demonstrate that the above nonlinearities are very high not only for the $0-1$ balanced functions satisfying SAC but also for all 0-1 balanced functions.

1 Basic Definitions

Let V_{n} be the vector space of n tuples of elements from $G F(2)$. Let $\alpha, \beta \in V_{n}$. Write $\alpha=\left(a_{1} \cdots a_{n}\right), \beta=\left(b_{1} \cdots b_{n}\right)$, where $a_{i}, b_{i} \in G F(2)$. Write $\langle\alpha, \beta\rangle=\sum_{j=1}^{n} a_{j} b_{j}$ for the scalar product of α and β. We write $\alpha=\left(a_{1} \cdots a_{n}\right)<$ $\beta=\left(b_{1} \cdots b_{n}\right)$ if there exists $k, 1 \leqq k \leqq n$, such that $a_{1}=b_{1}, \ldots, a_{k-1}=b_{k-1}$ and $a_{k}=0, b_{k}=1$. Hence we can order all vectors in V_{n} by the relation $<$

$$
\alpha_{0}<\alpha_{1}<\cdots<\alpha_{2^{n}-1},
$$

where

$$
\begin{aligned}
& \alpha_{0}=(0 \cdots 00), \ldots, \alpha_{2^{n-1}-1}=(01 \cdots 1) \\
& \alpha_{2^{n-1}}=(10 \cdots 0), \ldots, \alpha_{2^{n}-1}=(11 \cdots 1) .
\end{aligned}
$$

Definition 1 Let $f(x)$ be a function from V_{n} to $G F(2)$ (simply, a function on V_{n}). We call the ($1-1$)-sequence $\eta_{f}=\left((-1)^{f\left(\alpha_{0}\right)}(-1)^{f\left(\alpha_{1}\right)} \ldots(-1)^{f\left(\alpha_{\left.2^{n}-1\right)}\right)}\right.$ the sequence of $f(x) . \quad f(x)$ is called the function of η_{f}. The (0 , 1)-sequence $\left(f\left(\alpha_{0}\right) f\left(\alpha_{1}\right) \ldots f\left(\alpha_{2^{n}-1}\right)\right)$ is called the truth table of $f(x)$. In particular, if the truth table of $f(x)$ has 2^{n-1} zeros (ones) $f(x)$ is called $0-1$ balanced.

Let $\xi=\left(a_{1} \cdots a_{2^{n}}\right)$ and $\eta=\left(b_{1} \cdots b_{2^{n}}\right)$ be (1,-1)-sequences of length 2^{n}. The operation $*$ between ξ and η, denoted by $\xi * \eta$, is the sequence ($a_{1} b_{1} \cdots a_{2^{n}} b_{2^{n}}$). Obviously if ξ and η are the sequences of functions $f(x)$ and $g(x)$ on V_{n} respectively then $\xi * \eta$ is the sequence of $f(x)+g(x)$.

Definition 2 We call the function $h(x)=a_{1} x_{1}+\cdots+a_{n} x_{n}+c, a_{j}, c \in G F(2)$, an affine function, in particular, $h(x)$ will be called a linear function if the constant $c=0$. The sequence of an affine function (a linear function) will be called an affine sequence (a linear sequence).

[^0]Definition 3 Let f and g be functions on $V_{n} . d(f, g)=\sum_{f(x) \neq g(x)} 1$ is called the Hamming distance between f and g. Let $\varphi_{1}, \ldots, \varphi_{2^{n}}, \varphi_{2^{n}+1}, \ldots, \varphi_{2^{n+1}}$ be all affine functions on $V_{n} . N_{f}=\min _{i=1, \ldots, 2^{n+1}} d\left(f, \varphi_{i}\right)$ is called the nonlinearity of $f(x)$.

The nonlinearity is a crucial criterion for a good cryptographic design. It prevents the cryptosystems from being attacked by a set of linear equations. The concept of nonlinearity was introduced by Pieprzyk and Finkelstein [16].

Definition 4 Let $f(x)$ be a function on V_{n}. If $f(x)+f(x+\alpha)$ is $0-1$ balanced for every $\alpha \in V_{n}, W(\alpha)=1$, where $W(\alpha)$ denotes the number of nonzero coordinates of α (Hamming weight) of α, we say that $f(x)$ satisfies the strict avalanche criterion ($S A C$).

We can give an equivalent description of $S A C$: let f be a function on V_{n}. If if we change any single input the probability that the output changes is $\frac{1}{2}$ (see [2]). The strict avalanche criterion was originally defined in [20], [21], later it has been generalized in many ways [2], [3], [6], [10], [13], [18]. The SAC is relevant to the completeness and the avalanche effect. The 0-1 balancedness, the nonlinearity and the avalanche criterion are important criteria for cryptographic functions [1], [3], [4], [13].

Definition $5 A(1,-1)$-matrix H of order h will be called an Hadamard matrix if $H H^{T}=h I_{h}$.
If h is the order of an Hadamard matrix then h is 1,2 or divisible by 4 [19]. A special kind of Hadamard matrix, defined as follows will be relevant:

Definition 6 The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2^{n}, denoted by H_{n}, is generated by the recursive relation

$$
H_{n}=\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right], n=1,2, \ldots, \quad H_{0}=1
$$

Definition 7 Let $f(x)$ be a function from V_{n} to $G F(2)$. If

$$
2^{-\frac{n}{2}} \sum_{x \in V_{n}}(-1)^{f(x)+\langle\beta, x\rangle}= \pm 1
$$

for every $\beta \in V_{n}$. We call $f(x)$ a bent function on V_{n}.
¿From Definition 7, bent functions on V_{n} only exist for even n. Bent functions were first introduced and studied by Rothaus [17]. Further properties, constructions and equivalence bounds for bent functions can be found in [1], [7], [9], [15], [22]. Kumar, Scholtz and Welch [8] defined and studied the bent functions from Z_{q}^{n} to Z_{q}. Bent functions are useful for digital communications, coding theory and cryptography [2], [4], [9], [11], [12], [13], [14], [15]. Bent functions on V_{n} (n is even) not only attain the upper bound of nonlinearity, $2^{n-1}-2^{\frac{1}{2} n-1}$, but also satisfy $S A C$. However 0-1 balancedness is often required in cryptosystems and bent functions are not 0-1 balanced since the Hamming weight of bent functions on V_{n} is $2^{n-1} \pm 2^{\frac{1}{2} n-1} \quad$ [17]. In this paper we construct $0-1$ balanced functions with high nonlinearity satisfying high-order SAC from bent functions.

Notation 1 Let X be an indeterminant. We give X a binary subscript that is $X_{i_{1} \cdots i_{n}}$ where $i_{1}, \ldots, i_{n} \in G F(2)$. For any sequence of constants i_{1}, \ldots, i_{p} from $G F(2)$ define a function $D_{i_{1} \cdots i_{p}}$ from V_{p} to $G F(2)$ by

$$
D_{i_{1} \cdots i_{p}}\left(y_{1}, \ldots, y_{p}\right)=\left(y_{1}+\overline{i_{1}}\right) \cdots\left(y_{p}+\overline{i_{p}}\right)
$$

where $\bar{i}=1+i$ is the complement of i modulo 2 .

2 The Properties of Balancedness and Nonlinearity

Lemma 1 Let $\xi_{i_{1} \cdots i_{p}}$ be the sequence of a function $f_{i_{1} \cdots i_{p}}\left(x_{1}, \cdots, x_{q}\right)$ from V_{q} to $G F(2)$. Write $\xi=\left(\xi_{0 \cdots 00} \xi_{0 \cdots 01} \cdots \xi_{1 \cdots 11}\right)$ for the concatenation of $\xi_{0 \cdots 00}, \xi_{0 \cdots 01}, \cdots, \xi_{1 \cdots 11}$. Then ξ is the sequence of the function from V_{q+p} to $G F(2)$ given by

$$
f\left(y_{1}, \ldots, y_{p}, x_{1}, \ldots, x_{q}\right)=\sum_{\left(i_{1} \cdots i_{p}\right) \in V_{p}} D_{i_{1} \cdots i_{p}}\left(y_{1}, \ldots, y_{p}\right) f_{i_{1} \ldots i_{p}}\left(x_{1}, \cdots, x_{q}\right)
$$

Proof. It is obvious that:

$$
D_{i_{1} \cdots i_{p}}\left(y_{1}, \ldots, y_{p}\right)= \begin{cases}1 & \text { if }\left(y_{1} \cdots y_{p}\right)=\left(i_{1} \cdots i_{p}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Hence, by exhaustive choice,

$$
f\left(i_{1}, \ldots, i_{p}, x_{1}, \ldots, x_{q}\right)=D_{i_{1} \cdots i_{p}}\left(i_{1}, \ldots, i_{p}\right) f_{i_{1} \ldots i_{p}}\left(x_{1}, \cdots, x_{q}\right)=f_{i_{1} \ldots i_{p}}\left(x_{1}, \cdots, x_{q}\right)
$$

By the definition of sequence of functions (Definition 1) the lemma is true.

Lemma 2 Write $H_{n}=\left[\begin{array}{c}l_{0} \\ l_{1} \\ \vdots \\ l_{2^{n}-1}\end{array}\right]$ where l_{i} is a row of H_{n}. Then l_{i} is the sequence of $h_{i}(x)=\left\langle\alpha_{i}, x\right\rangle$ where α_{i} is defined before Definition 1.

Proof. By induction on n. Let $n=1$. Since $H_{1}=\left[\begin{array}{cc}+ & + \\ + & -\end{array}\right], l_{0}=(++)$, the sequence of $\langle 0, x\rangle$ and $l_{1}=(+-)$, the sequence of $\langle 1, x\rangle$ where $x \in V_{1},+$ and - stand for 1 and -1 respectively. Suppose the lemma is true for $n=1,2, \ldots, k-1$.

Since $H_{k}=H_{1} \times H_{k-1}$, where \times is the Kronecker product, each row of H_{n} can be expressed as $\delta \times l$ where $\delta=(++)$ or $(+-)$, and l is a row of H_{n-1}. By the assumption l is the sequence of a function, say $h(x)=\langle\alpha, x\rangle$, where $\alpha, x \in V_{k-1}$. Thus $\delta \times l$ is the sequence of $\langle\beta, y\rangle$ where $y \in V_{k}, \beta=(0 \alpha)$ or (1α) according as $\delta=(++)$ or $(+-)$. Thus the lemma is true for $n=k$.
¿From Lemma 10 all the rows of H_{n} comprise all the sequences of linear functions on V_{n} and hence all the rows of $\pm H_{n}$ comprise all the sequences of affine functions on V_{n}.
Lemma 3 Let f and g be functions on V_{n} whose sequences are η_{f} and η_{g} respectively. Then $d(f, g)=2^{n-1}-$ $\frac{1}{2}\left\langle\eta_{f}, \eta_{g}\right\rangle$.

Proof. $\left\langle\eta_{f}, \eta_{g}\right\rangle=\sum_{f(x)=g(x)} 1-\sum_{f(x) \neq g(x)} 1=2^{n}-2 \sum_{f(x) \neq g(x)} 1=2^{n}-2 d(f, g)$. This proves the lemma.

Let $H_{n}=\left(h_{i j}\right)$ and $L_{i}=\left(h_{i 1} \cdots h_{i 2^{n}}\right)$ i.e. the i-th row of H_{n}. Write $L_{i+2^{n}}=-L_{i}, i=1, \ldots, 2^{n}$. Since L_{i}, $i=1, \ldots, 2^{n}$, is a linear sequence $L_{1}, \ldots, L_{2^{n}}, L_{2^{n}+1}, \ldots, L_{2^{n+1}}$ comprise all affine sequences. Let f be a function on V_{n} whose sequence is η_{f} and φ_{i} be the function of L_{i}.

Write $\eta_{f}=\left(a_{1} \cdots a_{2^{n}}\right)$. Since $\left\langle\eta_{f}, L_{i}\right\rangle=\sum_{j=1}^{2^{n}} a_{j} h_{i j}$

$$
\begin{equation*}
\left\langle\eta_{f}, L_{i}\right\rangle^{2}=2^{n}+2 \sum_{j<t} a_{j} a_{t} h_{i j} h_{i t} \tag{1}
\end{equation*}
$$

and

$$
\sum_{i=1}^{2^{n}}\left\langle\eta_{f}, L_{i}\right\rangle^{2}=2^{2 n}+2 \sum_{i=1}^{2^{n}} \sum_{j<t} a_{j} a_{t} h_{i j} h_{i t}=2^{2 n}+2 \sum_{j<t} a_{j} a_{t} \sum_{i=1}^{2^{n}} h_{i j} h_{i t}
$$

Since H_{n} is an Hadamard matrix $\sum_{i=1}^{2^{n}} h_{i j} h_{i t}=0$ for $j \neq t$ and hence

$$
\begin{equation*}
\sum_{i=1}^{2^{n}}\left\langle\eta_{f}, L_{i}\right\rangle^{2}=2^{2 n} \tag{2}
\end{equation*}
$$

Thus there exists an integer, say i_{0}, such that $\left\langle\eta_{f}, L_{i_{0}}\right\rangle^{2}=\left\langle\eta_{f}, L_{i_{0}+2^{n}}\right\rangle^{2} \geqq 2^{n}$ and hence $\left\langle\eta_{f}, L_{i_{0}}\right\rangle \geqq 2^{\frac{1}{2} n}$ or $\left\langle\eta_{f}, L_{i_{0}+2^{n}}\right\rangle \geqq 2^{\frac{1}{2} n}$. Without any loss of generality suppose $\left\langle\eta_{f}, L_{i_{0}}\right\rangle \geqq 2^{\frac{1}{2} n}$. By Lemma $11 d\left(f, \varphi_{i_{0}}\right) \leqq 2^{n-1}-2^{\frac{1}{2} n-1}$. This proves

Lemma $4 N_{f} \leqq 2^{n-1}-2^{\frac{1}{2} n-1}$ for any function on V_{n}.
Lemma 5 If both (0, 1)-sequences ξ and η of length $2 t$ consist of an even number of ones and an even number of minus ones then $d(\xi, \eta)$ is even.

Proof. Write $\xi=\left(a_{1} \cdots a_{2 t}\right)$ and $\eta=\left(b_{1} \cdots b_{2 t}\right)$. Let n_{1} denote the number of pairs $\left(a_{i}, b_{i}\right)$ such that $a_{i}=1, b_{i}=1$; let n_{2} denote the number of pairs $\left(a_{i}, b_{i}\right)$ such that $a_{i}=1, b_{i}=0$; let n_{3} denote the number of pairs (a_{i}, b_{i}) such that $a_{i}=0, b_{i}=1$; and let n_{4} denote the number of pairs (a_{i}, b_{i}) such that $a_{i}=0, b_{i}=0$. Hence $n_{1}+n_{2}, n_{3}+n_{4}$, $n_{1}+n_{3}$ and $n_{2}+n_{4}$ are all even and hence $2 n_{1}+n_{2}+n_{3}$ is even. Thus $n_{2}+n_{3}=d(\xi, \eta)$ is even.

The following result can be found in [5]
Lemma 6 Let $f(x)$ be a function from V_{n} to $G F(2) . f(x)$ and ξ be the sequence of $f(x)$. Then the following four statements are equivalent
(i) $f(x)$ is bent,
(ii) for any affine sequence of length 2^{n}, denoted by $l,\langle\xi, l\rangle= \pm 2^{\frac{1}{2} n}$,
(iii) $f(x)+f(x+\alpha)$ is 0-1 balanced for every nonzero $\alpha \in V_{n}$,
(iv) $f(x)+\langle\alpha, x\rangle$ contains $2^{n-1} \pm 2^{\frac{1}{2} n-1}$ zeros for every $\alpha \in V_{n}$.

Let L_{j} and $\varphi, j=1, \ldots, 2^{n+1}$, be the same as in the proof of Lemma 12. If f is a bent function then $\left\langle\eta_{f}, L_{i}\right\rangle^{2}=2^{n}$ and hence $\left\langle\eta_{f}, L_{i}\right\rangle=2^{\frac{1}{2} n}$ or $\left\langle\eta_{f}, L_{i+2^{n}}\right\rangle=2^{\frac{1}{2} n}$ for each fixed $i, 1 \leqq i \leqq 2^{n}$. By Lemma $11 d\left(f, \varphi_{i}\right)=2^{n-1}-2^{\frac{1}{2} n-1}$ or $d\left(f, \varphi_{i+2^{n}}\right)=2^{n-1}-2^{\frac{1}{2} n-1}$ for each fixed $i, 1 \leqq i \leqq 2^{n}$. Thus $N_{f}=2^{n-1}-2^{\frac{1}{2} n-1}$. In other words, bent functions attain the upper bound for nonlinearities given in Lemma 12. Conversely, if a function f on V_{n} attains the upper bound for nonlinearities, $2^{n-1}-2^{\frac{1}{2} n-1}$, then $\left\langle\eta_{f}, L_{i}\right\rangle^{2}=2^{n}$ for $i=1, \ldots, 2^{n+1}$ i.e. f is bent, otherwise $\left\langle\eta_{f}, L_{i}\right\rangle^{2}=2^{n}$ does not hold for some $i, 1 \leqq i \leqq 2^{n+1}$. Note that $L_{i+2^{n}}=-L_{i}$. ¿From (2) there exist i_{1} and $i_{2}, 1 \leqq i_{1}, i_{2}, \leqq 2^{n}$, such that $\left\langle\eta_{f}, L_{i_{1}}\right\rangle^{2}>2^{n}$ and $\left\langle\eta_{f}, L_{i_{2}}\right\rangle^{2}<2^{n}$. Thus $\left\langle\eta_{f}, L_{i_{1}}\right\rangle>2^{\frac{1}{2} n}$ or $\left\langle\eta_{f}, L_{i_{1}+2^{n}}\right\rangle>2^{\frac{1}{2} n}$. Without any loss generality, suppose $\left\langle\eta_{f}, L_{i_{1}}\right\rangle>2^{\frac{1}{2} n}$. By using Lemma $11 d\left(f, \varphi_{i_{1}}\right)<2^{n-1}-2^{\frac{1}{2} n-1}$ and hence $N_{f}<2^{n-1}-2^{\frac{1}{2} n-1}$. This is a contradiction to the assumption that f attains the maximum nonlinearity $2^{n-1}-2^{\frac{1}{2} n-1}$. Hence we have proved

Corollary 1 A function on V_{n} attains the upper bound for nonlinearities, $2^{n-1}-2^{\frac{1}{2} n-1}$, if and only if it is bent.
¿From (1) we have
Corollary 2 Let f be a function on V_{n} whose sequence is $\eta_{f}=\left(a_{1} \cdots a_{2^{n}}\right)$. Then f is bent if and only if $\sum_{j<t} a_{j} a_{t} h_{i j} h_{i t}=0$ for $i=1, \ldots, 2^{n}$ where $\left(h_{i j}\right)=H_{n}$.
¿From Corollary $150-1$ balanced functions cannot attain the upper bound for nonlinearities $2^{n-1}-2^{\frac{1}{2} n-1}$. However we can construct a class of 0-1 balanced functions with high nonlinearity by using bent functions.

Corollary 3 Let f be a $0-1$ balanced function on $V_{n}(n \geqq 3)$. Then $N_{f} \leqq 2^{n-1}-2^{\frac{1}{2} n-1}-2$ if n is even number and $N_{f} \leqq\left\lfloor\left\lfloor 2^{n-1}-2^{\frac{1}{2} n-1}\right\rfloor\right\rfloor$ if n is odd where $\lfloor\lfloor x\rfloor\rfloor$ denotes the maximum even number less than or equal to x.

Proof. Note that f and each φ_{i}, where φ_{i} is the same as in Definition 3, have an even number of ones and an even of number of zeros. By Lemma $13 d\left(f, \varphi_{i}\right)$ is even. By corollary $15 d\left(f, \varphi_{i}\right)<2^{n-1}-2^{\frac{1}{2} n-1}$. This proves the corollary.

Lemma 7 Let $f_{j}\left(x_{1}, \ldots, x_{2 k}\right)$ be a bent function on $V_{2 k}, j=1,2$. Set

$$
g\left(u, x_{1}, \ldots, x_{2 k}\right)=(1+u) f_{1}(x)+u f_{2}(x)
$$

Then $N_{g} \geqq 2^{2 k}-2^{k}$.

Proof. Write ξ_{j} for the sequence of $f_{j}, j=1,2$. By Lemma $9 \gamma=\left(\xi_{1} \xi_{2}\right)$ is the sequence of g, of length $2^{2 k+1}$. Let L be the sequence of an affine function, say φ. By Lemma $10 L$ is a row of $\pm H_{2 k+1}$. Since $H_{2 k+1}=H_{1} \times H_{2 k}$ and $H_{1}=\left[\begin{array}{ll}+ & + \\ + & -\end{array}\right]$, where \times is the Kronecker product, L can be expressed as $L=\left(l^{\prime} l^{\prime}\right)$ or $L=\left(l^{\prime}-l^{\prime}\right)$, by
Lemma 10, where l^{\prime} is a row of $\pm H_{2 k}$. Since both f_{j} and $f_{j}+h$ are bent, by (ii) of Lemma $14,\left\langle\xi_{j}, l^{\prime}\right\rangle= \pm 2^{k}$. $\langle\gamma, L\rangle=\left\langle\xi_{1}, l^{\prime}\right\rangle \pm\left\langle\xi_{2}, l^{\prime}\right\rangle$. Thus $|\langle\gamma, L\rangle| \leqq 2^{k+1}$. By Lemma $11 d(g, \varphi) \geqq 2^{2 k}-2^{k}$. Since φ is arbitrary $N_{g} \geqq 2^{2 k}-2^{k}$.

Lemma 8 Let $f_{j}\left(x_{1}, \ldots, x_{2 k-2}\right)$ be a bent function on $V_{2 k-2}, j=1,2,3,4$. Set

$$
g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)=(1+u)(1+v) f_{1}(x)+(1+u) v f_{2}(x)+u(1+v) f_{3}(x)+u v f_{4}(x)
$$

Then $N_{g} \geqq 2^{2 k-1}-2^{k}$.

Proof. Let ξ_{j} be the sequence of $f_{j}(x), j=1,2,3,4$ and $\eta=\left(\xi_{1} \xi_{2} \xi_{3} \xi_{4}\right)$ be the sequence of g. Let L be an affine sequence of length $2^{2 k}$ whose function is $h(z)$, an affine function. By Lemma $10 L$ is a row of $\pm H_{2 k}$. Since $H_{2 k}=H_{2} \times H_{2 k-2}$ and L can be expressed as $L=l_{2} \times l_{k-2}$ where l_{2} is a row of $\pm H_{2}$ and $l_{2 k-2}$ is a row of $\pm H_{2 k-2}$. Since each ξ_{i} is bent, by (ii) of Lemma $14,\left\langle\xi_{i}, l\right\rangle= \pm 2^{k-1}$. Note that $|\langle\eta, L\rangle| \leqq \sum_{i=1}^{4}\left|\left\langle\xi_{i}, l\right\rangle\right|$ and hence $|\langle\eta, L\rangle| \leqq 4 \cdot 2^{k-1}$. By Lemma $11 d(g, h) \geqq 2^{2 k-1}-2^{k}$. Since h is an arbitrary affine function $N_{g} \geqq 2^{2 k-1}-2^{k}$.

Lemma $9 f_{1}\left(x_{1}, \ldots, x_{n}\right)+f_{2}\left(u_{1}, \ldots, u_{t}\right)$ is a 0-1 balanced function on V_{n+t} if f_{1} is a $0-1$ balanced function on V_{n} or f_{2} is a $0-1$ balanced function on V_{t}.

Proof. Set $g\left(x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{t}\right)=f_{1}\left(x_{1}, \ldots, x_{n}\right)+f_{2}\left(u_{1}, \ldots, u_{t}\right)$. Without any loss of generality, suppose f_{1} is a 0-1 balanced function on V_{n}. Note that for every fixed $\left(u_{1}^{0} \cdots u_{t}^{0}\right) \in V_{t}, g\left(x_{1}, \ldots, x_{n}, u_{1}^{0}, \ldots, u_{t}^{0}\right)=f_{1}\left(x_{1}, \ldots, x_{n}\right)+$ $f_{2}\left(u_{1}^{0}, \ldots, u_{t}^{0}\right)$ is a $0-1$ balanced function on V_{n} thus $g\left(x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{t}\right)$ is a $0-1$ balanced function on V_{n+t}. \square

3 Construction

3.1 On $V_{2 k+1}$

Let $k \geqq 1$ and $f\left(x_{1}, \ldots, x_{2 k}\right)$ be a bent function on $V_{2 k}$. Write $x=\left(x_{1} \cdots x_{2 k}\right)$. Let $h(x)$ be a non-constant affine function on $V_{2 k}$. Note that $f(x)+h(x)$ is also bent (see Property 2, p95, [8]) and hence $f+h$ assumes the value zero $2^{2 k-1} \pm 2^{k-1}$ times and assumes the value one $2^{2 k-1} \mp 2^{k-1}$ times.

Without any loss of generality we suppose $f(x)$ assumes the value zero $2^{2 k-1}+2^{k-1}$ times (if $f(x)$ assumes the value zero $2^{2 k-1}-2^{k-1}$ times, the bent function $f(x)+1$ assumes the value zero $2^{2 k-1}+2^{k-1}$ times and hence we can replace $f(x)$ by $f(x)+1$). Also we suppose $f(x)+h(x)$ assumes the value zero $2^{2 k-1}-2^{k-1}$ times (if $f(x)+h(x)$ assumes the value zero $2^{2 k-1}+2^{k-1}$ times, the bent function $f(x)+h(x)+1$ assumes the value zero $2^{2 k-1}-2^{k-1}$ times so we can replace $f(x)+h(x)$ by $f(x)+h(x)+1)$. Set

$$
\begin{equation*}
g\left(u, x_{1}, \ldots, x_{2 k}\right)=f\left(x_{1}, \ldots, x_{2 k}\right)+u h\left(x_{1}, \ldots, x_{2 k}\right) \tag{3}
\end{equation*}
$$

Lemma $10 g\left(u, x_{1}, \ldots, x_{2 k}\right)$ defined by (3) is a 0-1 balanced function on $V_{2 k+1}$.

Proof. Note that $g\left(0, x_{1}, \ldots, x_{2 k}\right)=f\left(x_{1}, \ldots, x_{2 k}\right)$ assumes the value zero $2^{2 k-1}+2^{k-1}$ times and $g\left(1, x_{1}, \ldots, x_{2 k}\right)=$ $f\left(x_{1}, \ldots, x_{2 k}\right)+h\left(x_{1}, \ldots, x_{2 k}\right)$ assumes the value zero $2^{2 k-1}-2^{k-1}$ times. Thus $g\left(u, x_{1}, \ldots, x_{2 k}\right)$ assumes the value zero 2^{k} times (one 2^{k} times).

Lemma $11 N_{g} \geqq 2^{2 k}-2^{k}$ where g is defined by (3).

Proof. $g=f+u h=(1+u) f+u(f+h)$. Note that both f and $f+h$ are bent functions on $V_{2 k}$. By Lemma 18 $N_{g} \geqq 2^{2 k}-2^{k}$.

Lemma $12 g\left(u, x_{1}, \ldots, x_{2 k}\right)$ defined by (3) satisfies the strict avalanche criterion.

Proof. Let $\gamma=\left(b a_{1} \cdots a_{2 k}\right)$ with $W(\gamma)=1$. Write $\alpha=\left(a_{1} \cdots a_{2 k}\right), z=\binom{u}{x_{1} \ldots x_{2 k}}$ and $x=\left(x_{1} \ldots x_{2 k}\right)$. $g(z+\gamma)=f(x+\alpha)+(u+b) h(x+\alpha)$ and hence $g(z)+g(z+\gamma)=f(x)+f(x+\alpha)+u(h(x)+h(x+\alpha))+b h(x+\alpha)$.

Case 1: $b=0$ and hence $W(\alpha)=1 . g(z)+g(z+\gamma)=f(x)+f(x+\alpha)+u(h(x)+h(x+\alpha))$. Since h is a non-constant affine function $h(x)+h(x+\alpha)=c$ where c is a constant. Thus $g(z)+g(z+\gamma)=f(x)+f(x+\alpha)+c u$. By (iii) of Lemma $14 f(x)+f(x+\alpha)$ is a $0-1$ balanced function on $V_{2 k}$ and hence by Lemma $20 g(z)+g(z+\gamma)$ is a $0-1$ balanced function on $V_{2 k+1}$.

Case 2: $b=1$ and hence $W(\alpha)=0$ i.e. $\alpha=0 . g(z)+g(z+\gamma)=h(x)$. Since $h(x)$ is a non-constant affine function on $V_{2 k} h(x)$ is a 0-1 balanced and hence by Lemma $20 g(z)+g(z+\alpha)$ is a 0-1 balanced function on $V_{2 k+1}$.

Summarizing Lemmas 21, 22, 23 we have
Theorem 1 For $k \geqq 1, g\left(u, x_{1}, \ldots, x_{2 k}\right)$ defined by (3) is a 0-1 balanced function on $V_{2 k+1}$ having $N_{g} \geqq 2^{2 k}-2^{k}$ and satisfying the strict avalanche criterion.

3.2 On $V_{2 k}$

Let $k \geqq 2$ and $f\left(x_{1}, \ldots, x_{2 k-2}\right)$ be bent function on $V_{2 k-2}$. Write $x=\left(x_{1} \cdots x_{2 k-2}\right)$. Let $h_{j}(x), j=1,2,3$, be three non-constant affine functions on $V_{2 k-2}$ such that $h_{i}(x)+h_{j}(x)$ is non-constant for any $i \neq j$. Such $h_{1}(x), h_{2}(x)$, $h_{3}(x)$ exist for $k \geqq 2$. Note that each $f(x)+h_{j}(x)$ is also bent (see Property 2, p95, [8]) and hence $f+h_{j}$ assumes the value zero $2^{2 k-3} \pm 2^{k-2}$ times and assumes the value one $2^{2 k-3} \mp 2^{k-2}$ times.

Without any loss of generality we suppose both $f(x)$ and $f(x)+h_{1}(x)$ assume the value zero $2^{2 k-3}+2^{k-2}$ times and both $f(x)+h_{2}(x)$ and $f(x)+h_{3}(x)$ assume the value zero $2^{2 k-3}-2^{k-2}$ times. This assumption is reasonable because $f(x)+h_{j}(x)$ assumes the value zero $2^{2 k-3}-2^{k-2}$ times if and only if $f(x)+h_{j}(x)+1$ assumes the value zero $2^{2 k-3}+2^{k-2}$ times and $h_{j}(x)+1$ is also a non-constant affine function thus we can choose one of $f(x)+h_{j}(x)$ and $f(x)+h_{j}(x)+1$ so that the assumption is satisfied. Set

$$
\begin{align*}
& g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)= \\
& \quad f(x)+v h_{1}(x)+u h_{2}(x)+u v\left(h_{1}(x)+h_{2}(x)+h_{3}(x)\right) . \tag{4}
\end{align*}
$$

Lemma $13 g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)$ defined by (4) is a $0-1$ balanced function on $V_{2 k}$.

Proof. Note that $g\left(0,0, x_{1}, \ldots, x_{2 k-2}\right)=f(x), g\left(0,1, x_{1}, \ldots, x_{2 k-2}\right)=f(x)+h_{1}(x), g\left(1,0, x_{1}, \ldots, x_{2 k-2}\right)=$ $f(x)+h_{2}(x), g\left(1,1, x_{1}, \ldots, x_{2 k-2}\right)=f(x)+h_{1}(x)+h_{2}(x)+\left(h_{1}(x)+h_{2}(x)+h_{3}(x)\right)=f(x)+h_{3}(x)$. By the assumption the first two functions assume the value zero $2^{2 k-2}+2^{k-1}$ times in total and the second two functions assume the value zero $2^{2 k-2}-2^{k-1}$ times in total. Hence $g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)$ assumes the value zero $2^{2 k-1}$ times in total and thus it is a 0-1 balanced function on $V_{2 k}$.

Lemma $14 N_{g} \geqq 2^{2 k-1}-2^{k}$ where g is defined by (4).

Proof. Note that $g=f(x)+v h_{1}(x)+u h_{2}(x)+u v\left(h_{1}(x)+h_{2}(x)+h_{3}(x)\right)=(1+u)(1+v) f(x)+(1+u) v(f(x)+$ $\left.h_{1}(x)\right)+u(1+v)\left(f(x)+h_{2}(x)\right)+u v\left(f(x)+h_{3}(x)\right)$. By Lemma $19 N_{g} \geqq 2^{2 k-1}-2^{k}$.

Lemma $15 g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)$ defined by (4) satisfies the strict avalanche criterion.

Proof. Let $\gamma=\left(\begin{array}{lll}b & c & a_{1} \cdots a_{2 k-2}\end{array}\right)$ with $W(\gamma)=1$. Write $\alpha=\left(a_{1} \cdots a_{2 k-2}\right), z=\left(\begin{array}{lll}u & v & x_{1} \ldots x_{2 k-2}\end{array}\right)$ and $x=$ $\left(x_{1} \ldots x_{2 k-2}\right)$.

Note that $g(z+\gamma)=f(x+\alpha)+(v+c) h_{1}(x+\alpha)+(u+b) h_{2}(x+\alpha)+(u+b)(v+c)\left(h_{1}(x+\alpha)+h_{2}(x+\alpha)+h_{3}(x+\alpha)\right)$.
Case 1: $b=1$ and hence $c=0, W(\alpha)=0$ i.e. $\alpha=0$. $g(z)+g(z+\gamma)=h_{2}(x)+v\left(h_{1}(x)+h_{2}(x)+h_{3}(x)\right)$ will be $h_{2}(x)$ when $v=0$ and $h_{1}(x)+h_{3}(x)$ when $v=1$. Both $h_{2}(x)$ and $h_{1}(x)+h_{3}(x)$ are non-constant affine functions on $V_{2 k-2}$ and hence $g(z)+g(z+\gamma)$ is $0-1$ balanced on $V_{2 k}$.

Case 2: $c=1$ and hence $b=0, W(\alpha)=0$ i.e. $\alpha=0$. The proof is similar to Case 1 .
Case 3: $W(\alpha) \neq 0$ and hence $b=c=0$. Since h_{j} is an affine function we can write $h_{j}(x)+h_{j}(x+\alpha)=a_{j}$ where a_{j} is a constant. Hence $g(z)+g(z+\gamma)=f(x)+f(x+\alpha)+v a_{1}+u a_{2}+u v\left(a_{1}+a_{2}+a_{3}\right)$. By (iii) of Lemma $14 f(x)+f(x+\alpha)$ is a $0-1$ balanced function on $V_{2 k-2}$ and hence by Lemma $20 g(z)+g(z+\gamma)$ is a 0-1 balanced function on $V_{2 k}$. This proves that $g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)$ satisfies the strict avalanche criterion.

Summarizing Lemmas 25, 26, 27 we have
Theorem 2 For $k \geqq 2, g\left(u, v, x_{1}, \ldots, x_{2 k-2}\right)$ defined by (4) is a 0-1 balanced function on $V_{2 k}$ having $N_{g} \geqq 2^{2 k-2}-2^{k}$ and satisfying the strict avalanche criterion.

4 Remarks

We note that the nonlinearities of $0-1$ balanced functions satisfying SAC in Theorems 24 and 28 are the same as those for ordinary 0-1 balanced functions (see [13]). Next we give two examples of the theorems.

Example 1 In Theorem 24 let $k=2$. Consider V_{5}. As we know, $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}$ is a bent function in V_{4}. Choose the non-constant affine function $h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1+x_{1}+x_{2}+x_{3}+x_{4}$. Note f assumes the value zero $2^{4-1}+2^{2-1}=10$ times and $f+h$ assumes the value zero $2^{4-1}-2^{2-1}=6$ times. Hence we set $g\left(u, x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+u h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}+u\left(1+x_{1}+x_{2}+x_{3}+x_{4}\right)$. By Theorem $24 g\left(u, x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a $0-1$ balanced function with $N_{g} \geqq 2^{4}-2^{2}=12$, satisfying the strict avalanche criterion. On the other hand, by Corollary 17 the bound for nonlinearly $0-1$ balanced functions on V_{5} is $\left.\left.\left\lfloor 2^{4}-2^{2-\frac{1}{2}}\right\rfloor\right\rfloor=\lfloor 13.1818 \cdots\rfloor\right\rfloor=12$ where $\lfloor\lfloor x\rfloor\rfloor$ denotes the maximum even number no larger than x. This means that $N_{g}=12$ attains the upper bound for nonlinearly 0-1 balanced functions on V_{5}.

Example 2 In Theorem 28 let $k=3$. Consider V_{6}. Choose $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}$, a bent function in V_{4}. Also choose non-constant affine functions $h_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}, h_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1+x_{2}, h_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$ $1+x_{3}$. Note both f and $f+h_{1}$ assume the value zero $2^{4-1}+2^{2-1}=10$ times and both $f+h_{3}$ and $f+h_{4}$ assume the value zero $2^{4-1}-2^{2-1}=6$ times. Hence we set $g\left(u, v, x_{1}, x_{2}, x_{3}, x_{4}\right)=f+v h_{1}+u h_{2}+u v\left(h_{1}+h_{2}+h_{3}\right)$. By Theorem $28 g\left(u, v, x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a $0-1$ balanced function with $N_{g} \geqq 2^{5}-2^{3}=24$, satisfying the strict avalanche criterion. On the other hand, by Corollary 17 the upper bound for nonlinearly 0-1 balanced functions on V_{6} is $2^{5}-2^{2}-2=26$. This means that $N_{g}=24$ is very high.

Recently Zheng, Pieprzyk and Seberry [23] constructed a very efficient one way hashing algorithm using boolean functions constructed by the method given in Theorem 24. These functions have further cryptographically useful properties.

References

[1] C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, IT-36 No. 5:1170-1173, 1990.
[2] C. M. Adams and S. E. Tavares. The use of bent sequences to achieve higher-order strict avalanche criterion. to appear, 1990.
[3] M. H. Dawson and S. E. Tavares. An expanded set of S-box design criteria based on information theory and its relation to differential-like attacks. In Advances in Cryptology-EUROCRYPT'91, volume 547, Lecture Notes in Computer Science, pages 352-367. Springer-Verlag, 1991.
[4] John Detombe and Stafford Tavares. Constructing large cryptographically strong S-boxes. Presented in AUSCRYPT'92, 1992.
[5] J. F. Dillon. A survey of bent functions. NSA Mathematical Meeting, pages 191-215, 1972.
[6] R. Forre. The strict avalanche criterion: Special properties of boolean functions and extended definition. In Advances in Cryptology: Crypto'88 Proceedings, volume 403, Lecture Notes in Computer Science, pages 450-468. Springer-Verlag, New York, 1989.
[7] P. V. Kumar and R. A. Scholtz. Bounds on the linear span of bent sequences. IEEE Transactions on Information Theory, IT-29 No. 6:854-862, 1983.
[8] P. V. Kumar, R. A. Scholtz, and L. R. Welch. Generalized bent functions and their properties. Journal of Combinatorial Theory, Ser. A, 40:90-107, 1985.
[9] A. Lempel and M. Cohn. Maximal families of bent sequences. IEEE Transactions on Information Theory, IT-28 No. 6:865-868, 1982.
[10] S Lloyd. Couting functions satisfying a higher order strict avalanche criterion. In Advances in CryptologyEUROCRYPT'89, volume 434, Lecture Notes in Computer Science, pages 64-74. Springer-Verlag, New York, 1990.
[11] V. V. Losev. Decoding of sequences of bent functions by means of a fast Hadamard transform. Radiotechnika i elektronika, 7:1479-1492, 1987.
[12] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. New York: North-Holland, 1977.
[13] Willi Meier and Othmar Staffelbach. Nonlinearity criteria for cryptographic functions. In Advances in Cryptology-EUROCRYPT'89, volume 434, Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, 1990.
[14] Kaisa Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology-EUROCRYPT'91, volume 547, Lecture Notes in Computer Science, pages 378-386. Springer-Verlag, 1991.
[15] J. D. Olsen, R. A. Scholtz, and L. R. Welch. Bent-function sequences. IEEE Transactions on Information Theory, IT-28 No. 6:858-864, 1982.
[16] J. Pieprzyk and G. Finkelstein. Towards effective nonlinear cryptosystem design. IEE Proceedings (Part E), 135:325-335, 1988.
[17] O. S. Rothaus. On bent functions. Journal of Combinatorial Theory, Ser. A, 20:300-305, 1976.
[18] S. E. Tavares, M. Sivabalan, and L. E. Peppard. On the designs of SP networks from an information theoretic point of view. In Advances in Cryptology: Crypto'92 Proceedings, 1992.
[19] W. D. Wallis, A. Penfold Street, and J. Seberry Wallis. Combinatorics: Room Squares, sum-free sets, Hadamard Matrices, volume 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin- Heidelberg- New York, 1972.
[20] A. F. Webster. Plaintext/Ciphertext Bit Dependencies in Cryptographic System. Master's Thesis, Department of Electrical Engineering, Queen's University, 1985.
[21] A. F. Webster and S. E. Tavares. On the designs of S-boxes. In Advances in Cryptology: Crypto'85 Proceedings, volume 219, Lecture Notes in Computer Science, pages 523-534. Springer-Verlag, New York, 1986.
[22] R. Yarlagadda and J. E. Hershey. Analysis and synthesis of bent sequences. IEE Proceeding (Part E), 136:112123, 1989.
[23] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. Haval - one-way hashing algorithm with variable length of output. Presented in AUSCRYPT'92, 1992.

[^0]: *Supported in part by the Australian Research Council under the reference numbers A49130102, A9030136, A49131885 and A49232172.
 ${ }^{\dagger}$ Supported in part by the Australian Research Council under the reference number A49130102.

