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Abstract

using elementary permutations, also called modules. These modules have a simple structure and
are based on internal smaller permutations. Two cases are considered. In the first, the modules apply
internal permutations only. It has been proved that the composition of modules generates the alternating
group for the number of binary inputs bigger than 2. In the second, DES-like modules are considered
and 1t 1s shown that for a large enough number of binary inputs, they produce the alternating group, as
well.

1 Introduction

Coppersmith and Grossman in [?] studied generators for certain alternating groups. They defined &
functions which create corresponding permutations. Each kfunction along with its connection topology
produces a single permutation which can be used as a generator. The authors proved that these generators
produce at least alternating groups using a finite number of their compositions. It means that with
generators of relatively simple structure, it is possible to produce at least half of all the permutations using
composition.

There is one problem with such generators - they do not have a fixed connection topology. The well-
known DES encryption algorithm applies the fixed connection topology. The 64-bit input is divided into
halves. The right hand half is used as the input (after the expansion operation) for the eight different
S-boxes each of which transforms the 6-bit input into the 4-bit output. The resulting 32-bit string is added
modulo 2 to the corresponding bits of the second half. Next the halves are swopped. Even and Goldreich [?]
proved that the DES-like connection topology along with k-functions can also generate alternating groups.

This raises the following question: Is it possible to generate the alternating groups when k-permutations
are used instead of k-functions ¥

2 Background and Notations

Symmetric enciphering algorithms operate on fixed size blocks of binary strings. We assume that the
length of the block is N bits, and for a fixed key, algorithms give permutations from the set of 2V possible
elements. The vector space of dimension N over G'F(2) contains all binary strings of length N and is
denoted as V. The following notations will be used throughout this chapter:

Sx - the group of all permutations on a set X,
Sy, - the group of all permutations on Vi (it consists of 2Nt elements),
Ay, - the alternating group of all permutations on Vi (it has 1/2(2V!) elements).



The following definition describes k-permutations and can be seen as a modification of the definition
given by Coppersmith and Grossman [?].

Definition 1 Let 1 < k < (N/2). By a k-permutation on Vy, we mean a permutation o of Vn determined
by a subset of order 2k, {iy,... 5, 41,---, 5} C {1,..., N} and a permutation

p:Vy — Vn (1)

as follows:
(a1, anN)O)m = G form € {iy,... ix}
((at,...,an)0)m A, B P(Qiys. oyt )m  form e {ji,...,Jr}

3 Structure without Topology Restrictions

In this section we refer to the results obtained by Coppersmith and Grossman [?]. The k-permutation for
a fixed k is the basic module which is used to create our encryption system. Clearly, kpermutations on
VN generate a subgroup of Sy, and the subgroup is denoted as Py yC Sy, .

Lemma 1
P12 =Sy, (2)

Proof. There are four possible modules and they produce the following permutations:

a = (0737271) - (0)(2)(173)
g2 = (2717073) - (1)(3)(072)
gs = (1,0,3,2) = (0,1)(2,3)
g4 = (0717372) = (0)(1)(273)

The above permutations are written in two different ways. The first uses the standard notation which for
g1 is as follows:

91(0) = 0;91(1) = 3;91(2) = 2;01(3) = 1.

The second one applies the reduced cyclic form (see Wielandt [?] pages 1 and 2). It is easy to check that
the permutations generate Sy;,. O

Lemma 2 The 2-permutations generate subgroup Py 4 C Sy, whose coordinates are affine.
Proof. Observe that the permutation p: Vo — V5 must always have linear coordinates. O

Lemma 3 For k = 3,
Prar = Avy,. (3)

Proof.  First we prove that P3¢ = Gy (note that Gy g is defined as in [?] and means the subgroup of
Sv, generated by the 2-functions). It is always possible to generate any Gy module by composition of a
finite number of 3-permutation modules. For example, assume that we would like to obtain a 2-function
module over 6 binary variables (z1,22, 23, 24,25, 26) wWhich transforms input

($1,$2,$3,$4,$5,$6) — ($17$27$37$4 @ $1$27$57$6) (4)



Applying the composition of two $-permutation modules whose coordinates are given in the table below,
we obtain the required 2-function module.

First Module | Second Module Composition
T1,%2,3 S, 02, /3 91, 92,93 J1 D g1, f2B g2, /3D g3
000 110 110 000
001 111 111 000
011 100 100 000
010 101 101 000
110 011 010 001
111 010 011 001
101 000 000 000
100 001 001 000

The example can easily be extended for arbitrary case. It means that:
P3¢ D Gag = Ay,

Using Coppersmith and Grossman theorem [?] (referred to as the C-G theorem), it is obvious that:
P3¢ C Gog = Ay,

Combining the two inclusions, we get the final result :

P3e = Ay, (5)
In general, the C-G theorem and properties of k-permutations allow us to write the following sequence of
inclusions:
Ay, € Goop C Psop
C Proa C Gra C Ay,
where k& = 3 and it proves the lemma. O

The proved lemma and the C-G theorem allow us to formulate the following theorem.
Theorem 1 The group generated by Py, oy, is:

o the group Sy, for k =1,

o the subgroup of affine transformations for k = 2,

o the group Avy,, fork = 3.

The theorem can be easily generalized (the proof is omitted).
Theorem 2 Let N 2 2k. The group generated by Py n is:

o the subgroup of affine transformations for k = 2,

e the group Ay, for k = 3.



4 DES Structure

An interesting question is how the structure of the well-known DES algorithm [?] limits the permutation
group generated by DES-like functions on V5. Even and Goldreich [?] proved that the DES-like functions
generate the alternating group for k£ > 1 and the whole permutation group for £ = 1. In this section we
are going to examine a case when the DES is based on permutations that is, the S-boxes realize one-to-one
transformations (the existing S-boxes provide the inverible mapping of 6-bit input into 4-bit output).

Definition 2 The DES-like permutation o on Vs is defined by a composition of two modules:

e the first module is determined by permutation p : Vi, — Vj. and transforms the input (z1,...,22;) €
Vaor into:
(21 D Pp1(Thats e T2k) s ey Tk D PE(Thg1s v oy T2k )y Tht 1y - - - 5 T2k)
where (p1,...,pr) are coordinates of p(Ti41,-..,%T2k),

o the second module swops the vector:

(xlv' s Ly Tkt "7$2k)

with the vector
(Zhagls e s T2y 1y e ey TR )-

The group generated by DES-like permutations is denoted by DESPy, (DESPy, C Sy, ).

Lemma 4

DESP, = Ay, (6)

There are two possible permutations o1 and o generated by pi(z2) = 2 (the identity permutation)
and pa(x2) = T3 (the negation permutation), respectively and

01:()(77)
o (0,1,2)(3)

It is easy to check that the two permutations generate Ay,. <

Lemma 5 The permutation 04 € Ay, that swops (z1,%2,%3,24) into (x3,4,21,%2) can be expressed by
composition of DES-like permutations.

Proof. First note that

0, = (0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15)
= (1,4)(2,8)(3,12)(6,9)(7,13)(11,14)

We shall show that 8, may be obtained using the composition of the following four DES-like permutations:

o = (0,5,10,15,1,4,11,14,2.7,8,13,3,6,9,12)
for p(zs,z4) = I = (0,1,2,3)
(0,6,9,15,1,7,8,14,2,4, 11, 13,3,5,10, 12)
for p(xg,x4) (0,2,1,3)

g5 = (0,6,11,13,1,7,10,12,2,4,9,15,3,5,8, 14)
for p(zs,24) = (0,2,3,1)
(0,7,9,14,1,6,8,15,2,5,11,12,3,4, 10, 13)
for p(xs3,24) = (0,3,1,2)
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where p(x3,24) are permutations of four binary elements 0,1,2,3 (coded 00,01,10,11). We create 3 inter-

mediate permutations as follows:

a = g;loqm
(0,13,14,3,4,9,10,7,8,5,6,11,12, 1,2, 15)
(1,13)(2, 14)(5,9)(6, 10);

f = gioaogs’
= (0,4,2,6,1,5,3,7,8,12,10,14,9, 13,11, 15)
= (1,4)(3,6)(9,12)(11,14);

7 = gioaogy’

(0,1,8,9,4,5,12,13,2,3,10,11,6,7,14,15)
= (2,8)(3,9)(6,12)(7,13);

and the composition of the last two is:

vof = (0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15)
= (1,4)(2,8)(3,12)(6,9)(7,13)(11,14).

Lemma 6 The permutation 0s € Ay, which swops:

(xlv T2, $37$47$57$6) - ($47$57$67$17 T2, $3)

can be expressed by composition of DES-like permutations.

Proof. Any DES-like permutation from Sy, transforms the input sequence

($1,$2,$3,$4,$5,$6)
into
(z4,25,26,21 B p1(z4,x5,26), 22 B p2(24, T5,T6), T3 B p3(@4, 25, %6)),

(8)

(9)

where the permutation p(z4, 5, 26) = (p1,p2, p3). We simplify our considerations choosing the permutation
p(a,x5,26) = (24,p2(x5,26),p3(5,25)). So, we can independently consider two DES-like permutations.
First one ¢ transforms the sequence (z1,x4) into (24,21 ® z4) and generates the identity permutation after
three compositions (03 = I). The second permutation o, : V4 — Vj belongs to DESPy. If we select the

same sequence of permutations as in the previous Lemma, we can obtain:

($27x37$57$6) - (x57$67$27$3)

(10)

This can be done using 22 compositions (observe that g;l = g5; gg?’ = g% g4_3 = g%). Therefore after 66

compositions it is possible to obtain
($17x27$37$47$57$6) - ($1,$5,$6,$4,$2,$3)
By repeating the process three times, we get

(xlv Z2, T3, T4, s, x6)

!

($47 Z2, T, L1, T3, x6)
!

($37 Z2, Te, L1, T4, $5)
!

($37 T4, T5, L1, T3, $2)

(11)



To obtain the DES swopping operation, we need to exchange bits x5 and z5. This can be done using the
product of the following permutations:

§ovop=(1,2)(56)9,10)(13,14) (12)
where:
s gioaogi;
7 = gioaogy;
b = gg 09440 9g2;
a 9 © 955
and:
o = (0,5,10,15,1,4,11,14,2.7,8,13,3,6,9,12)
for p(as,z4) = I = (0,1,2,3);
g2 = (0,5,11,14,1,4,10,15,2,7,9,12,3,6,8,13)
for p(zs,z4) = (0,1,3,2);
g5 = (0,6,9,15,1,7,8,14,2,4,11,13,3,5,10,12)
for p(zs,z4) = (0,2,1,3);
g1 = (1,4,10,15,0,5,11,14,3.6,8,13,2,7,9,12)
for p(zs,z4) = (1,0,2,3);
g5 = (3,4,9,14,2,5,8,15,1,6,11,12,0,7,10,13)
for p(zs,z4) = (3,0,1,2);
g6 = (3,5,8,14,2,4,9,15,1,7,10,12,0,6,11,13)

for p($37 $4) = (3717072)‘

To leave other positions unchanged, it is necessary to apply the above sequence of permutations three
times. O

Theorem 3 The group DESPy, generated by DES-like permutations is:
(a) the alternating group Ay, for k =1,
(b) the group of affine transformations for k = 2,

(¢) the alternating group Av,, for k 2 3.

Proof.  The statement (a) has been proved in the lemma 4. According to the lemmas 5 and 6 each
swopping module can be expressed as a composition of DES-like permutations for & = 2. It means that
any permutation from Py o, may be represented by a composition of DES-like permutations, i.e.:

DESPy, D P (13)

Considering the theorem proved by Even and Goldreich [?] (referred to as the E-G theorem), the following
inclusion holds:
DESPy), € DESy, = Ay, for k > 3 (14)

where DFE Sy is a group generated by DES-like functions given in [?]. Taking 13 and 14, we obtain the
statement (c). The statement (b) is obvious. 0



5 Conclusions

When designing new cryptographic algorithms, we face the problem of selecting the algorithm structure
(or the connection topology). Results by Coppersmith and Grossman [?], Even and Goldreich [?] proved
that the DES structure is flexible enough as a composition of DES iterations can generate the suitable
alternating group while the number of iterations is not limited (the DES uses 16 ones) and functions in
S-boxes are not fixed (i.e.they can be freely selected for each iteration).

In this work we have answered the problem of what happens if S-boxes realize one-to-one mapping
(the current S-boxes in the DES are one-to-many). Astonishingly, the structure with one-to-one S-box
transformations does not restict the number of possible permutations obtained using the composition if
only the number of inputs/outputs is equal to or larger than 6 (or k = 3).

Each iteration may be considered as a generator of the alternating group. We have simply proved that
having (2"V/2)! generators we can produce (2V)! different permutations. From a practical point of view we
would like to have a smaller set of generators. Bovey and Williamson reported in [?] that a ordered pair
of generators can produce either Ay, or Sy, with the probability greater than 1 — eacp(—logl/QQN). So
if we select the pair at random, there is a high probability that it generates at least Ay,. However, we
would not like to rely on the probability theory. Instead, we would like to know for certain that the set of
generators is complete, i.e. that it generates either Ay, or Sy, .

There remain the following open problem:

o Are the DES generators complete (considering the current S-box structure) ?



