The Product of Four Hadamard Matrices

R. Craigen \dagger
Jennifer Seberry *
and
Xian-Mo Zhang *
Department of Computer Science
University College
University of New South Wales
Australian Defence Force Academy
Canberra, ACT 2600, AUSTRALIA
\dagger Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario, NRL 3G1, CANADA

Abstract

We prove that if there exist Hadamard matrices of order $4 m, 4 n, 4 p, 4 q$ then there exists an Hadamard matrix of order 16 mnpq . This improves and extends the known result of Agayan that there exists an Hadamard matrix of order $8 m n$ if there exist Hadamard matrices of order $4 m$ and $4 n$.

1 Introduction and Basic Definitions

A weighing matrix [1] of order n with weight k, denoted $W=W(n, k)$, is a $(1,-1,0)$ matrix satisfying $W W^{T}=k I_{n} . W(n, n)$ is an Hadamard matrix.

Let M be a matrix of order $t m$. Then M can be expressed as

$$
M=\left[\begin{array}{cccc}
M_{11} & M_{12} & \cdots & M_{1 t} \\
M_{21} & M_{22} & \cdots & M_{2 t} \\
& & \vdots & \\
M_{t 1} & M_{t 2} & \cdots & M_{t t}
\end{array}\right]
$$

where $M_{i j}$ is of order $m(i, j=1,2, \cdots, t)$. Analogously with Seberry and Yamada [2], we call this a t^{2} block M-structure when M is an orthogonal matrix.

To emphasis the block structures, we use the notation $M_{(t)}$, where $M_{(t)}=M$ but in the form of t^{2} blocks, each of which has order m.

Let N be a matrix of order $t n$. Then, write

$$
N_{(t)}=\left[\begin{array}{llll}
N_{11} & N_{12} & \cdots & N_{1 t} \\
N_{21} & N_{22} & \cdots & N_{2 t} \\
& & \cdots & \\
N_{t 1} & N_{t 2} & \cdots & N_{t t}
\end{array}\right]
$$

where $N_{i j}$ is of order $n(i, j=1,2, \cdots, t)$.
We now define the operation \bigcirc as the following:

$$
M_{(t)} \bigcirc N_{(t)}=\left[\begin{array}{llll}
L_{11} & L_{12} & \cdots & L_{1 t} \\
L_{21} & L_{22} & \cdots & L_{2 t} \\
& & \cdots & \\
L_{t 1} & L_{t 2} & \cdots & L_{t t}
\end{array}\right]
$$

where $M_{i j}, N_{i j}$ and $L_{i j}$ are of order of m, n and $m n$, respectively and

$$
L_{i j}=M_{i 1} \times N_{1 j}+M_{i 2} \times N_{2 j}+\cdots+M_{i t} \times N_{t j}
$$

$i, j=1,2, \cdots, t$. We call this the strong Kronecker multiplication of two matrices.

Lemma 1 Let A and B be the matrices of order tm and tn respectively, consist of $1,-1,0$ satisfying $A A^{T}=p I_{m t}$ and $B B^{T}=q I_{n t}$. Then

$$
\left(A_{(t)} \bigcirc B_{(t)}\right)\left(A_{(t)} \bigcirc B_{(t)}\right)^{T}=p q I_{t m n}
$$

Proof. This is Corollary 1, [?].

The following two Lemmas prove the main result. The proof of Lemma 2 in [?] uses Lemma 1.

Lemma 2 If there exist Hadamard matrices of order $4 m$ and $4 n$ then there exist two disjoint $W(4 m n, 2 m n)$, X and Y, satisfying
(i) $X \wedge Y=0$,
(ii) $X \pm Y$ is a $(1,-1)$ matrix,
(iii) $X Y^{T}=X Y^{T}$.

Lemma 3 If there exist Hadamard matrices of order $4 p$ and $4 q$ then there exist two $(1,-1)$ matrices, S and R of order $4 p q$, satisfying
(i) $S S^{T}+R R^{T}=8 p q I_{4 p q}$,
(ii) $S R^{T}=R S^{T}=0$.
[?] proves Lemma 2 by using strong Kronecker multiplication. In [?], which proves Lemma 3 and the equivalent of Lemma 2 and Lemma $3, S$ and R of Lemma 3 are called an orthogonal pair.

We now reprove Lemma 3 from Lemma 2. By Lemma 2, there exist two $W(4 p q, 2 p q)$, X and Y, satisfying $X \wedge Y=0, X \pm Y$ is a $(1,-1)$ matrix, $X Y^{T}=Y X^{T}$. Let $S=X+Y, R=X-Y$. Then both S and R are $(1,-1)$ matrices of order $4 p q$. Note

$$
S S^{T}+R R^{T}=2\left(X X^{T}+Y Y^{T}\right)=8 p q I_{4 p q}
$$

and

$$
S R^{T}=X X^{T}-Y Y^{T}=0
$$

Similarly, $R S^{T}=0$. So S and R are the required matrices for Lemma 3 .

2 Main Result

Theorem 1 If there exist Hadamard matrices of order $4 m, 4 n, 4 p, 4 q$ then there exists an Hadamard matrix of order 16 mnpq.

Proof. By Lemma 2, there exist two $W(4 m n, 2 m n), X$ and Y, satisfying (i), (ii), (iii) in Lemma 2. By Lemma 3, there exist two (1, -1) matrices S and R of order $4 p q$ satisfying (i) and (ii) in Lemma 3.

Let $H=X \times S+Y \times R$. Then H is a $(1,-1)$ matrix and

$$
\begin{gathered}
H H^{T}=X X^{T} \times S S^{T}+Y Y^{T} \times R R^{T}=2 m n I_{4 m n}\left(S S^{T}+R R^{T}\right) \\
=2 m n I_{4 m n} \times 8 p q I_{4 p q}=16 m n p q I_{16 m n p q} .
\end{gathered}
$$

Thus H is the required Hadamard matrix.
Theorem 1 gives an improvement and extension for the result of Agayan and [?] that if there exist Hadamard matrices of order $4 m$ and $4 n$ then there exists an Hadamard matrix of order $8 m n$. Using the result of Agayan repeatedly on four Hadamard matrices of order $4 m, 4 n, 4 p, 4 q$, gives an Hadamard matrix of order $32 m n p q$.

References

[1] Geramita, A. V., and Seberry, J. Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel, 1979.
[2] Seberry, J., and Yamada, M. On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures. JCMCC 7 (1990), 97-137.

