G-Matrices of order 19

Xian-Mo Zhang
Department of Computer Science
University College
University of New South Wales
Australian Defence Force Academy
Canberra, ACT 2600, AUSTRALIA

Abstract

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be four type $1(1,-1)$ matrices on the same group of order $n($ odd $)$ with the properties: (i) $\left(X_{i}-I\right)^{T}=-\left(X_{i}-I\right), i=1,2$, (ii) $X_{i}^{T}=X_{i}, i=, 3,4$ and the diagonal elements are positive, (iii) $X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}=4 n I_{n}$.

Call such matrices G-matrices. These were first introduced and applied to construct Hadamard matrices by Jennifer Seberry in "On Hadamard matrices", Combinatorial Th. Ser. A, 18 (1975), 149-164. Gmatrices of orders $3,5,7,9$ were known previously. This paper constructs G-matrices of order 19 for the first time by using cyclotomic classes and gives the new orders 13 and 15.

1 Introduction and Basic Definitions

Definition 1 Let G be an additive abelian group of order v with elements $g_{1}, g_{2}, \ldots, g_{v}$ and S a subset of G.
Define the type $1(1,-1)$ incidence matrix $M=\left(m_{i j}\right)$ of order v of S is

$$
m_{i j}= \begin{cases}+1 & \text { if } g_{j}-g_{i} \in X \\ -1 & \text { otherwise }\end{cases}
$$

and the type $2(1,-1)$ incidence matrix $N=\left(n_{i j}\right)$ of order v of S is

$$
n_{i j}= \begin{cases}+1 & \text { if } g_{j}+g_{i} \in X \\ -1 & \text { otherwise }\end{cases}
$$

In particular, if G is cyclic the matrices M and N are called circulant and back circulant respectively. In this case $m_{1, j+1}=m_{i, j+i}$ and $n_{1, j}=n_{1+i, J+i}$.

Seberry and Whiteman [?] give similar definitions for type 1 matrices, type 2 matrices on abelian groups.

Definition 2 Let $X_{1}, X_{2}, X_{3}, X_{4}$ be four type $1(1,-1)$ matrices on the same group of order $n($ odd $)$ with the properties:
(i) $\left(X_{i}-I\right)^{T}=-\left(X_{i}-I\right), i=1,2$,
(ii) $X_{i}^{T}=X_{i}, i=, 3,4$ and the diagonal elements are positive,
(iii) $X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}=4 n I_{n}$.

Call such matrices G-matrices of order n.

G-matrices were introduced and applied to construct Hadamard matrices by Jennifer Seberry [?]. If there exist G-matrices of order n then $4 n-2$ is the sum of two square integers [?]. For this reason, there exist no G-matrices of order $11,17,29,35,39,47$. Previously, G-matrices of order $3,5,7,9$ were known. This paper construct G-matrices of order 19 by using cyclotomic classes and gives the new orders 13 and 15 .

Definition 3 Let x be a primitive element of $G F\left(p^{t}\right)$, where p is a prime and $p^{t}=e f+1$. The cyclotomic classes C_{i} are $C_{i}=\left\{x^{e s+i}: s=0,1, \ldots, f-1\right\}, i=0,1, \ldots, e-1$. For fixed i and j, the cyclotomic number (i, j) is defined to be the number of solutions of the equation $z_{i}+1=z_{j}\left(z_{i} \in C_{i}, z_{j} \in C_{j}\right)$.

Let A be a subset of $G F\left(p^{t}\right)$. Define

$$
\triangle A=\{a-b \mid a \neq b, a, b \in A\} .
$$

From [?],

$$
\Delta C_{i}=(0,0) C_{i}+(1,0) C_{i+1}+(2,0) C_{i+2}+\cdots
$$

Let

$$
\triangle\left(C_{i}-C_{j}\right)=\left\{a-b \mid a \in C_{i}, b \in C_{j}\right\} .
$$

See [?] or [?] for more details.

2 Preliminaries

Lemma $1 \triangle\left(C_{i}-C_{j}\right)=(j, i) C_{0}+(j-1, i-1) C_{1}+(i-2, j-2) C_{2}+\cdots$.

Proof. For any $x^{e s+i} \in C_{i}$ and $x^{e t+j} \in C_{j}$, let $x^{e s+i}-x^{e t+j}=x^{e r+k}$. Then $x^{e r+k} \in C_{k}$ and $x^{e(s-r)+i-k}=$ $x^{e(t-r)+j-k}+1$. Since the number of solutions of the above equation is $(j-k, i-k)$, the $x^{e r+k}$ occurs $(j-k, i-k)$ times in $\triangle\left(C_{i}-C_{j}\right)$. Note for $r \neq q, x^{e r+k}$ and $x^{e q+k}$ occur the same times then C_{k} occurs $(j-k, i-k)$ times in $\triangle\left(C_{i}-C_{j}\right)$. This proves the lemma.

Lemma 2 Suppose P, Q, R, S are $4-\{2 n+1 ; n, n, n-c, n-d ; 2 n-c-d-1\}$ supplementary difference sets on a cyclic group or abelian group of order $2 n+1$, with P, Q skew-type i.e. $x \in P($ or $Q) \Rightarrow-x \notin P($ or $Q)$ and R, S symmetric i.e. $y \in R($ or $S) \Rightarrow-y \in R($ or $S)$. Then there exist circulant or type $1 G$-matrices of order n.

Proof. Let A, B, C, D be the type $1(1,-1)$ incidence matrices of P, Q, R, S respectively. By Lemma 1.20, $[\mathbf{?}], A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$. By the construction of the type 1 incidence matrices, A, B, C, D are circulant if P, Q, R, S are sds on a cyclic group and satisfy

$$
(A-I)^{T}=-(A-I),(B-I)^{T}=-(B-I), C^{T}=C, D^{T}=D .
$$

3 Existence of G-Matrices of Order 19

To obtain G-matrices of order 19 , by Lemma 1 , we need $4-\{19 ; 9,9,12,6 ; 17\}$ supplementary difference sets. Clearly, 2 is a primitive element of $G F(19)$. Let $e=6, f=3$, then $19=e f+1$. By simple calculation,

$$
\begin{gathered}
C_{0}=\{1,7,11\}, C_{1}=\{2,3,14\}, C_{2}=\{4,6,9\}, C_{3}=\{8,12,18\}, \\
C_{4}=\{5,16,17\}, C_{5}=\{10,13,15\} .
\end{gathered}
$$

Clearly $C_{3}=-C_{0}, C_{4}=-C_{1}, C_{5}=-C_{2}$.
Set $P=C_{1} \cup C_{2} \cup C_{3}=\{2,3,4,6,8,9,12,14,18\}, Q=C_{3} \cup C_{4} \cup C_{5}=\{5,8,10,12,13,15,16,17,18\}, R=$ $C_{1} \cup C_{2} \cup C_{4} \cup C_{5}=\{2,3,4,5,6,9,10,13,14,15,16,17\}, S=C_{2} \cup C_{5}=\{4,6,9,10,13,15\}$.

Lemma $3 P, Q, R, S$ are $4-\{19 ; 9,9,12,6 ; 17\}$ supplementary difference sets.

Proof.

$$
\triangle\left(C_{1} \cup C_{2} \cup C_{3}\right)=3 C_{0}+4 C_{1}+5 C_{2}+3 C_{3}+4 C_{4}+5 C_{5} .
$$

Similarly,

$$
\begin{gathered}
\triangle\left(C_{3} \cup C_{4} \cup C_{5}\right)=4 C_{0}+5 C_{1}+3 C_{2}+4 C_{3}+5 C_{4}+3 C_{5}, \\
\triangle\left(C_{1} \cup C_{2} \cup C_{4} \cup C_{5}\right)=9 C_{0}+6 C_{1}+7 C_{2}+9 C_{3}+6 C_{4}+7 C_{5}, \\
\triangle\left(C_{2} \cup C_{5}\right)=C_{0}+2 C_{1}+2 C_{2}+C_{3}+2 C_{4}+2 C_{5} .
\end{gathered}
$$

Thus the totality is

$$
17\left(C_{0}+C_{1}+C_{2}+C_{3}+C_{4}+C_{5}\right) .
$$

This proves the lemma.

Theorem 1 There exist G-matrices of order 19.

Proof. Use P, Q, R, S to form the circulant $(1,-1)$-matrices A, B, C, D with first rows are

$$
\begin{array}{lllllllllllllllllll}
+ & + & - & - & - & + & - & + & - & - & + & + & - & + & - & + & + & + & - \\
+ & + & + & + & + & - & + & + & - & + & - & + & - & - & + & - & - & - & - \\
+ & + & - & - & - & - & - & + & + & - & - & + & + & - & - & - & - & - & + \\
+ & + & + & + & - & + & - & + & + & - & - & + & + & - & + & - & + & + & +
\end{array}
$$

respectively. Note A, B are skew and C, D are symmetric. By Lemma 2, A, B, C, D are G-matrices of order 19.

We give a list of all G-matrices known.
G-matrices of order 3: $\quad++-,+-+,+--,+++$,
G-matrices of order 5: $\quad+++--,+-+-+,+----,+---$,
G-matrices of order $7: \quad++++---,++-+-+-,+--++--,+------$,
G-matrices of order 9:

$$
\begin{array}{ll}
+-++-+--+, & +++-+-+-- \\
++-++++-+, & ++------+
\end{array}
$$

G-matrices of order 13:

$$
\begin{array}{ll}
+-+++++-----+, & +--+-++--+-++ \\
++-+++--+++-+, & +++-+-++-+-++
\end{array}
$$

G-matrices of order 15:

$$
\begin{array}{ll}
+++-++++----+--, & +---++-+-+--+++ \\
+--++-++++-++--, & ++-+-++++++-+-+
\end{array}
$$

The following lemma is given by professor Jennifer Seberry.

Lemma 4 Suppose $X_{1}, X_{2}, X_{3}, X_{4}$ are four type $1(1,-1) G$ matrices of odd order n, then there exists an $O D(4 n ; 1,1,2 n-1,2 n-1)$.

Proof. Let $Y=\frac{1}{2}\left(X_{1}+X_{2}-2 I\right), Z=\frac{1}{2}\left(X_{1}-X_{2}\right), W=\frac{1}{2}\left(X_{1}+X_{4}\right), U=\frac{1}{2}\left(X_{1}-X_{4}\right)$. Then $Y^{T}=-Y$, $Z^{T}=-Z, W^{T}=W, U^{T}=U, U W^{T}=W U^{T}, Y Z^{T}=Z Y^{T}$ and

$$
Y Y^{T}+Z Z^{T}+W W^{T}+U U^{T}=(2 n-1) I_{n} .
$$

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be commuting variables then $x_{1} I+x_{3} Y+x_{4} Z, x_{2} I+x_{4} Y-x_{3} Z, x_{3} W+x_{4} U, x_{4} W-x_{3} U$ are four type 1 matrices which can be used in the Goethal- Seidel or Wallis-Whiteman array to obtain the required $O D(4 n ; 1,1,2 n-1,2 n-1)$.

We note these orthogonal designs were previously unknown for $4 n=60,76$.

References

[1] Seberry-Wallis, J. Some remarks on supplementary difference sets. Colloquia Mathematica Societies Janos Bolyai 10 (1973), 1503-1526.
[2] Seberry-Wallis, J. On Hadamard matrices. Journal of Combinatorial Theory Ser. A, 18 (1975), 149-164.
[3] Storer, T. Cyclotomy and Difference Sets. Markham Publishing Company, Chicago, 1967.
[4] Waliis, J., and Whiteman, A. L. Some classes of Hadamard matrices with constant diagonal. Bull. Austral. Math. Soc. 7 (1972), 233-249.
[5] Wallis, W. D., Street, A. P., and Wallis, J. S. Combinatorics: Room Squares, sum-free sets, Hadamard Matrices, vol. 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 1972.

