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MöBIUS-α COMMUTATIVE FUNCTIONS AND

PARTIALLY COINCIDENT FUNCTIONS

Josef Pieprzyk1, Huaxiong Wang21 and Xian-Mo Zhang1

Abstract. The Möbius transform of Boolean functions is of-
ten involved in cryptographic design and analysis. As stud-
ied previously, a Boolean function f is said to be coincident
if it is identical with its Möbius transform fµ, i.e., f = fµ.
In this paper we study more general problems. We denote
the function f(x ⊕ α) by fα. We prove that for each vector
α with HW (α) 6= 1, there exist a large number of functions
such that (fα)µ = (fµ)α and a large number of functions
such that fµ = fα. We derive a series of results related to
the conversion between f and fµ.
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1. Introduction

Throughout this paper we use the following notations. The
vector space of n-tuples from GF (2) is denoted by (GF (2))n. We
write all vectors in (GF (2))n as (0, . . . , 0, 0) = α0, (0, . . . , 0, 1) =
α1, . . ., (1, . . . , 1, 1) = α2n−1, and call αi the binary representation
of integer i, i = 0, 1, . . . , 2n−1. A Boolean function f is a mapping
from (GF (2))n to GF (2) or simply, a function f on (GF (2))n.
We write f more precisely as f(x) or f(x1, . . . , xn) where x =
(x1, . . . , xn). The truth table of a function f on (GF (2))n is a
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binary vector defined by (f(α0), f(α1), . . . , f(α2n−1)). The Ham-
ming weight of a binary vector ξ, denoted by HW (ξ), is defined as
the number of nonzero coordinates of ξ. In particular, if ξ is the
truth table of a function f , then HW (ξ) is called the Hamming
weight of f , denoted by HW (f).

The following statement is well known (see, for example, [1]):

Theorem 1.1. [1] A function f on (GF (2))n can be uniquely
represented as:

f(x1, . . . , xn) =
⊕

α∈(GF (2))n

g(a1, . . . , an)xa1

1 · · · , xan
n (1)

where α = (a1, . . . , an) and g is also a function on (GF (2))n satis-
fying g(α) =

⊕

β�α f(β) for all α ∈ (GF (2))n where (b1, . . . , bn) �

(a1, . . . , an) means that if bj = 1 then aj = 1.

(1) is called the Algebraic Normal Form (ANF) of f . The func-
tion g is called the Möbius transform of f . Each xa1

1 · · · xan
n

is called a monomial (term) of f . The algebraic degree, or de-
gree, of f , denoted by deg(f), is defined as deg(f) = max(a1,...,an)

{HW (a1, . . . , an) | g(a1, . . . , an) = 1}.

Notation 1. Let Rn denote the set of all functions on (GF (2))n.
If g ∈ Rn is the Möbius transform of f ∈ Rn we write µ(f) = g

[2]. However in this work, we rewrite g = µ(f) as g = fµ for
convenience.

The classical Möbius function, used in combinatorics and num-
ber theory, was first introduced in 1831 by A. F. Möbius. By the
principle of the classical Möbius function, the Möbius transform
of Boolean functions was proposed (see, for example, [3]).

Lemma 1.2. [2] Define 2n ×2n binary matrix Tn by the following

recurrence. Let T0 = 1 and Ts =

[

Ts−1 Ts−1

O2s−1 Ts−1

]

, where 02s−1

is the 2s−1 × 2s−1 zero matrix, s = 1, 2, . . .. Then (i) T 2
s = I2s

where I2s is the 2s ×2s identity matrix, (ii) (Ts ⊕ I2s)2 = 02s , (iii)
Ts(Ts ⊕ I2s)= (Ts ⊕ I2s)Ts =I2s ⊕ Ts, where s = 1, 2, . . ..

Theorem 1.3. [2] Let f, g ∈ Rn. Denote the truth tables of f

and g by ξ and η, respectively. Then the following statements are
equivalent: (i) g = fµ, (ii) f = gµ, (iii) ηTn = ξ, (iv) ξTn = η.
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We illustrate Theorem 1.3 by an example. From the ANF of
f(x1, x2, x3) = x3 ⊕ x2x3 ⊕ x1 ⊕ x1x2x3, we immediately have
the truth table of fµ: (0, 1, 0, 1, 1, 0, 0, 1). By using Theorem
1.3, we know that the truth table of f is (0, 1, 0, 1, 1, 0, 0, 1)T3 =
(0, 1, 0, 0, 1, 0, 1, 0). From the truth table of f , we can directly
write the ANF of fµ(x1, x2, x3) = x3 ⊕ x1 ⊕ x1x2.

The concept of coincident functions was introduced in [2].

Definition 1.4. Let f ∈ Rn. If f and fµ are identical, or in other
words, f(α) = 1 if and only if xa1

1 · · · xan
n is a monomial in the

ANF of f , for any α = (a1, . . . , an) ∈ (GF (2))n, then f is called a
coincident function.

For example, f(x1, x2, x3, x4) = x2x4 ⊕x2x3 ⊕x2x3x4 ⊕x1x2 ⊕
x1x2x4 ⊕ x1x2x3 ⊕ x1x2x3x4 is a coincident function on (GF (2))4

because f and fµ have the same truth table that is (0000 0111
0000 1111).

Theorem 1.5. [2] Let f ∈ Rn. Then f is coincident if and only
if there exists some h ∈ Rn such that f = h ⊕ hµ.

Theorem 1.6. [2] There precisely exist 22n−1

coincident functions
on (GF (2))n that form 2n−1-dimensional linear subspace of Rn.

In this work we develop the theory initiated in [2] by viewing
two large classes of functions satisfying (fα)µ = (fµ)α and fµ = fα

respectively. The definitions will be given later.

2. Relations between Pα and Tn

Some proofs in this section are easy and some can be found in
the Appendix.

Notation 2. For any given α ∈ (GF (2))n, we define a 2n × 2n

matrix Pα, whose rows (columns) from top (left) to bottom (right)
indexed by 0, 1, . . . , 2n−1, such that the entry on the position (i, j)

is

{

1 if αi ⊕ αj = α

0 otherwise
where αi is the binary representation of

integer i.

Clearly each row (column) of Pα has exactly one nonzero entry.

Notation 3. Let f ∈ Rn and α ∈ (GF (2))n. Define fα ∈ Rn

such that fα(x) = f(x ⊕ α) for any x ∈ (GF (2))n.
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Lemma 2.1. Let ξ denote the truth table of f ∈ Rn. Then for
any α ∈ (GF (2))n, ξPα is the truth table of fα.

Proof. It is noted that the ith coordinate of ξPα is f(αi⊕α), where
αi is the binary representation of integer i, and then ξPα is the
truth table of f(x ⊕ α) = fα(x). �

Lemma 2.2. (i) P0 = I2n , (ii) P 2
α = I2n , for any α ∈ (GF (2))n.

Lemma 2.3. Let α ∈ (GF (2))n. Then

(i) PαTn⊕TnPα = Tn(PαTn⊕TnPα)Tn = Pα(PαTn⊕TnPα)Pα,
(ii) Tn ⊕ Pα = Tn(Tn ⊕ Pα)Pα = Pα(Tn ⊕ Pα)Tn,
(iii) (Tn ⊕ Pα)2 = PαTn ⊕ TnPα.

Lemma 2.4. Let α = (a1, a2, . . . , an) ∈ (GF (2))n and β = (a2, . . . , an) ∈

(GF (2))n−1. Then Pα =

[

Pβ O2n−1

O2n−1 Pβ

]

when a1 = 0, and

Pα =

[

O2n−1 Pβ

Pβ O2n−1

]

when a1 = 1.

Notation 4. Let A be a p × p matrix over GF (2). Then {α|α ∈
(GF (2))p, αA = 0} is a linear subspace of (GF (2))p whose di-
mension is called the nullity of A, denoted by nu(A).

By linear algebra, rank(A) + nu(A) = p.

Lemma 2.5. Let α = (0, a2, . . . , an) ∈ (GF (2))n and β = (a2, . . . , an) ∈
(GF (2))n−1. Then nu(TnPα ⊕PαTn) = 2 · nu(Tn−1Pβ ⊕PβTn−1).

Lemma 2.6. Let α = (0, a2, . . . , an) ∈ (GF (2))n and β = (a2, . . . , an) ∈
(GF (2))n−1. Then nu(Tn ⊕ Pα) = nu(Tn−1Pβ ⊕ PβTn−1).

Notation 5. Write Pα2n
−1

= Ln where α2n−1 = (1, . . . , 1) ∈
(GF (2))n.

Lemma 2.7. (i) (TnLn)2 = LnTn, (ii) (LnTn)2 = TnLn.

Lemma 2.8. nu(TnLn⊕LnTn) = nu(I2n−1⊕Tn−1Ln−1⊕Ln−1Tn−1).

Lemma 2.9. nu(I2n ⊕TnLn ⊕LnTn) = 2n−1 + nu(Tn−1 ⊕Ln−1).

Lemma 2.10. nu(Tn⊕Ln) = nu(I2n−1 ⊕Tn−1Ln−1⊕Ln−1Tn−1).

3. Relations between fµ, fπ and fα

Notation 6. Let f ∈ Rn. Let π be a permutation on {1, . . . , n}.
Define the function fπ as fπ(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’08
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Theorem 3.1. [2] For any f ∈ Rn and any permutation π on
{1, . . . , n}, (fπ)µ = (fµ)π.

Theorem 3.2. Let f ∈ Rn, α ∈ (GF (2))n and π be a permutation
π on {1, . . . , n}. Then (fα)π = (fπ)π−1(α).

Proof. By definition, we have (f(x⊕α))π = f(π(x)⊕α). It is noted
that any permutation on the indices of variables is a linear trans-
formation on (GF (2))n. Then π(x)⊕α = π(x⊕π−1(α)) and then
f(π(x)⊕α)= f(π(x⊕π−1(α)). Summarily (f(x⊕α))π =f(π(x⊕
π−1(α)). By definition, (fα)π = (fπ)π−1(α). �

Lemma 3.3. Let f ∈ Rn, α,α′ ∈ (GF (2))n. Then (i) (fα)α′ =
fα⊕α′ , (ii) (fα) = fα′ if and only if fα⊕α′ = f .

Proof. By definition, (i) is true. Due to (i) of the lemma, we can
easily prove (ii). �

Lemma 3.4. Let f ∈ Rn and α ∈ (GF (2))n. Then (fµ)µ = f

and (fα)α = f .

Proof. (fµ)µ = f due to Theorem 1.3. (fα)α = f due to (i) of
Lemma 3.3. �

Lemma 3.5. Let f, f ′ ∈ Rn. Then fπ = f ′
π if and only if f = f ′.

Proof. The sufficiency is obviously true. Conversely assume that
fπ = f ′

π. Then (fπ)π−1 = (f ′
π)π−1 . We have f = f ′. �

4. Möbius-α Commutative Functions

Definition 4.1. Let α ∈ (GF (2))n. Then f ∈ Rn is called a
Möbius-α commutative function if (fα)µ = (fµ)α.

Example 4.2. Let f(x1, x2, x3) = 1 ⊕ x3 ⊕ x2x3 ⊕ x1 ⊕x1x3 ⊕
x1x2x3 and α = (0, 1, 1). It is noted that fα = 1 ⊕ x2 ⊕ x2x3

⊕x1 ⊕ x1x2 ⊕ x1x2x3. Due to Theorem 1.3, we have (fα)µ =
1 ⊕ x3 ⊕ x2x3. Again, due to Theorem 1.3, fµ = 1 ⊕ x2 ⊕ x2x3

and then (fµ)α = 1 ⊕ x3 ⊕ x2x3. Then (fα)µ = (fµ)α, i.e., f is a
Möbius-α commutative function. �

Notation 7. For a given α ∈ (GF (2))n, denote the set of all
Möbius-α commutative functions by Uα.

Lemma 4.3. For any given α ∈ (GF (2))n, Uα is a linear subspace
of Rn.
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Theorem 4.4. Let f ∈ Rn and α = (a1, . . . , an) ∈ (GF (2))n and
π be a permutation on {1, . . . , n}. Then f ∈ Uα if and only if
fπ ∈ Uπ−1(α), where π−1(α) = (aπ−1(1), . . . , aπ−1(n)).

Proof. Assume that f ∈ Uα, i.e., (fα)µ = (fµ)α and then ((fα)µ)π =
((fµ)α)π. Due to Theorems 3.1 and 3.2, we have ((fα)π)µ =
((fµ)π)π−1(α). Again, due to Theorems 3.1 and 3.2, we have
((fπ)π−1(α))µ = ((fπ)µ)π−1(α). For clarity, set g = fπ. Then
(gπ−1(α))µ = (gµ)π−1(α). This means that g ∈ Uπ−1(α), i.e., fπ ∈
Uπ−1(α). �

Example 4.5. We now illustrate Theorem 4.4. Reconsider
f(x1, x2, x3) = 1⊕x3⊕x2x3⊕x1 ⊕x1x3⊕x1x2x3 and α = (0, 1, 1)
in Example 4.2. Let π be a permutation on {1, 2, 3} such that
π(1) = 2, π(2) = 3, π(3) = 1. By definition, fπ(x1, x2, x3) =
1⊕x1⊕x3x1⊕x2 ⊕x2x1⊕x2x3x1. Clearly π−1(1) = 3, π−1(2) = 1,
π−1(3) = 2. Then π−1(α) = π−1(0, 1, 1) = (1, 0, 1). By definition,
(fπ)π−1(α) = 1⊕x3 ⊕x2 ⊕x2x3⊕ x1x3 ⊕x1x2x3. Due to Theorem
1.3, ((fπ)π−1(α))µ = 1 ⊕ x1 ⊕ x1x3. Again, due to Theorem 1.3,
(fπ)µ = 1⊕x3⊕x1x3. It follows that ((fπ)µ))π−1(α) = 1⊕x1⊕x1x3.
Therefore ((fπ)π−1(α))µ = ((fπ)µ))π−1(α). Then fπ ∈ Uπ−1(α). �

Theorem 4.6. Let α ∈ (GF (2))n, f ∈ Rn and ξ be the truth table
of f . Then f ∈ Uα if and only if ξ(PαTn ⊕ TnPα) = 0.

Theorem 4.7. Let α ∈ (GF (2))n. Then dim(Uα) = nu(PαTn ⊕
TnPα).

Theorem 4.8. For any fixed integer t with 0 ≤ t ≤ n, both
nu(PαTn⊕TnPα) and dim(Uα) are invariant over all α ∈ (GF (2))n

with HW (α) = t.

Proof. Due to Theorem 4.7, we only need to prove the theorem
on dim(Uα). Let α,α′ ∈ (GF (2))n with HW (α) = HW (α′) = t.
Then there exists a permutation π on {1, . . . , n} such that π(α′) =
α, i.e., α′ = π−1(α). Due to Lemma 3.5 and Theorem 4.4, there
exists a one-to-one correspondence between Uα and Uα′ such that
f ∈ Uα ↔ fπ ∈ Uα′ . Then #Uα = #Uα′ . Since both Uα and Uα′

are linear subspaces of Rn, dim(Uα) = dim(Uα′). We have proved
the theorem. �

Theorem 4.9. (i) f ∈ Uα if and only if fµ ∈ Uα,
(ii) f ∈ Uα if and only if fα ∈ Uα.
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Proof. It is noted that f ∈ Uα, i.e, (fµ)α = (fα)µ ⇐⇒ ((fµ)α)µ
= ((fα)µ)µ ⇐⇒ ((fµ)α)µ = fα (Lemma 3.4) ⇐⇒ ((fµ)α)µ =
((fµ)µ))α (Lemma 3.4), i.e., fµ ∈ Uα. Then (i) holds. It is also
noted that f ∈ Uα, i.e., (fµ)α = (fα)µ ⇐⇒ ((fµ)α)α = ((fα)µ)α
⇐⇒ fµ = ((fα)µ)α (Lemma 3.4) ⇐⇒ ((fα)α)µ = ((fα)µ)α (Lemma
3.4), i.e., fα ∈ Uα. Then (ii) holds. �

5. Partially Coincident Functions

Definition 5.1. f ∈ Rn is said to be partially coincident with
respect to a vector α ∈ (GF (2))n if fµ = fα.

Example 5.2. Let f(x1, x2, x3) = x1 ⊕ x1x3 ⊕ x1x2x3 and α =
(0, 1, 1). Due to Theorem 1.3, we have fµ(x1, x2, x3) = x1⊕x1x2⊕
x1x2x3. On the other hand, fα = x1 ⊕ x1x2 ⊕ x1x2x3. Then
fµ = fα and then f is a partially coincident function with respect
to α = (0, 1, 1). �

Notation 8. Denote the set of all partially coincident functions
on (GF (2))n with respect to α by Vα.

Lemma 5.3. Vα is a linear subspace of Rn for any α ∈ (GF (2))n.

Clearly a partially coincident function with respect to the zero
vector 0 is a coincident function. For clarity, we state as follows.

Lemma 5.4. V0, in Notation 8, is the set of all coincident func-

tions on (GF (2))n and then #V0 = 22n−1

or dim(V0) = 2n−1.

Theorem 5.5. Let f ∈ Rn, α = (a1, . . . , an) ∈ (GF (2))n and
π be a permutation on {1, . . . , n}. Then f ∈ Vα if and only if
fπ ∈ Vπ−1(α) where π−1(α) = (aπ−1(1), . . . , aπ−1(n)).

Proof. Assume that f ∈ Vα, i.e., fµ = fα and then (fµ)π = (fα)π.
Due to Theorems 3.1 and 3.2, it follows that (fπ)µ = (fπ)π−1(α).
For clarity, set g = fπ. It follows that gµ = gπ−1(α). Then g ∈
Vπ−1(α), i.e., fπ ∈ Vπ−1(α). We have proved the necessity. Since
the deduction can be inverted, the sufficiency holds, �

Example 5.6. We now illustrate Theorem 5.5. In Example 5.2
we know that f(x1, x2, x3) = x1 ⊕ x1x3 ⊕ x1x2x3 ∈ Vα with α =
(0, 1, 1). Let π be a permutation on {1, 2, 3} such that π(1) = 3,
π(2) = 1, π(3) = 2. By definition, fπ(x1, x2, x3) = x3 ⊕ x3x2 ⊕
x3x1x2. Due to π−1(1) = 2, π−1(2) = 3, π−1(3) = 1, we know that
π−1(α) = π−1(0, 1, 1) = (1, 1, 0). It is noted that (fπ)π−1(α) =
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x3 ⊕ x1x3⊕ x1x2x3. By using Theorem 1.3, we have (fπ)µ =
x3 ⊕ x1x3 ⊕ x1x2x3. Therefore (fπ)µ= (fπ)π−1(α). This means
that fπ ∈ Vπ−1(α). �

Theorem 5.7. Let α ∈ (GF (2))n. Let f ∈ Rn and ξ be the truth
table of f . Then f ∈ Vα if and only if ξ(Tn ⊕ Pα) = 0.

Theorem 5.8. (i) f ∈ Vα if and only if fµ ∈ Vα,
(ii) f ∈ Vα if and only if fα ∈ Vα.

Proof. It is noted that f ∈ Vα, i.e., fµ = fα ⇐⇒ (fµ)α = (fα)α
⇐⇒ (fµ)α = f (Lemma 3.4) ⇐⇒ (fµ)α = (fµ)µ (Lemma 3.4),
i.e., fµ ∈ Vα. Then (i) holds. It is also noted that f ∈ Vα, i.e.,
fµ = fα ⇐⇒ (fµ)µ = (fα)µ ⇐⇒ f = (fα)µ (Lemma 3.4) ⇐⇒
(fα)α = (fα)µ (Lemma 3.4), i.e., fα ∈ Vα. Then (ii) holds. �

According to Theorem 5.7, we can state as follows.

Theorem 5.9. Let α ∈ (GF (2))n. Then dim(Vα) = nu(Tn⊕Pα).

Theorem 5.10. Let f ∈ Rn and further f ∈ Vα. Then f ∈ Vα′

if and only if fα⊕α′ = f .

Proof. Assume that f ∈ Vα′ , i.e., fµ = fα′ . Since f ∈ Vα, i.e.,
fµ = fα, it follows that fα = fα′ . Due to Lemma 3.3, we know
that fα⊕α′ = f . We have proved the necessity. Conversely, we
assume that fα⊕α′ = f . Due to Lemma 3.3, we have fα = fα′ .
Since f ∈ Vα, i.e., fµ = fα. it follows that fµ = fα′ , i.e., f ∈ Vα′ .
This proves the sufficiency. �

Theorem 5.11. For any given integer t with 0 ≤ t ≤ n, both
nu(Tn ⊕ Pα) and dim(Vα) are invariant over all α ∈ (GF (2))n

with HW (α) = t.

Proof. Due to Theorem 5.9, we only need to prove the theorem
on dim(Vα). Let α,α′ ∈ (GF (2))n with HW (α) = HW (α′) = t.
Then there exists a permutation π on {1, . . . , n} such that π(α′) =
α, i.e., α′ = π−1(α). Due to Lemma 3.5 and Theorem 5.5, there
exists a one-to-one correspondence between Vα and Vα′ such that
f ∈ Vα ↔ fπ ∈ Vα′ . Then #Vα = #Vα′ . Since both Vα and Vα′

are linear subspaces of Rn, dim(Vα) = dim(Vα′). We have proved
the theorem. �

Lemma 5.12. Let f ∈ Vα. Then f ⊕ fα is coincident.

Proof. Since f ∈ Vα, we know that f ⊕ fα = f ⊕ fµ. Due to
Theorem 1.5, f⊕fµ is coincident and then f⊕fα is coincident. �
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Theorem 5.13. [2] Let f be a nonzero coincident function on
(GF (2))n. Then deg(f) ≥ ⌈1

2n⌉. More precisely, (i) deg(f) ≥ 1
2n

where n is even, (ii) deg(f) ≥ 1
2(n + 1) where n is odd.

We have an analogous result for partially coincident functions,

Theorem 5.14. Let f ∈ Rn. If f ∈ Vα (α 6= 0) but f is not
coincident then deg(f) ≥ 1 + ⌈1

2n⌉. More precisely, (i) deg(f) ≥

1+ 1
2n where n is even, (ii) deg(f) ≥ 1+ 1

2(n + 1) where n is odd.

Proof. Due to Lemma 5.12, f ⊕ fα is coincident. Since f ∈ Vα,
f ⊕ fα = f ⊕ fµ. Since f is not coincident, f ⊕ fµ is nonzero
and then f ⊕ fα is nonzero coincident. Due to Theorem 5.13,
deg(f ⊕ fα) ≥ ⌈1

2n⌉. It is noted that deg(f ⊕ fα) ≤ deg(f) − 1.
We then have proved the theorem. �

Theorem 5.14 gives a larger lower bound than Theorem 5.13.

6. Relations between Möbius-α Commutative Functions

and Partially Coincident Functions

Theorem 6.1. Vα ⊆ Uα for any α ∈ (GF (2))n.

Proof. Let f ∈ Vα, i.e., fµ = fα. Then (fµ)α = (fα)α. Due
to Lemma 3.3, we have (fµ)α = f . On the other hand, from
fµ = fα, we have (fµ)µ = (fα)µ. Again, due to Lemma 3.3, we
have f = (fα)µ. Summarily (fµ)α = (fα)µ. Then f ∈ Uα. Since f

is arbitrarily from Vα, Vα ⊆ Uα. �

However the equality in Theorem 6.1 does not necessarily hold.

Example 6.2. Recall Example 4.2. f(x1, x2, x3) = 1⊕x3⊕x2x3⊕
x1 ⊕x1x3 ⊕x1x2x3∈ Uα for α = (0, 1, 1) and fα = 1⊕x2 ⊕x2x3 ⊕
x1 ⊕ x1x2 ⊕ x1x2x3 and fµ = 1 ⊕ x2 ⊕ x2x3. Then fµ 6= fα, i.e.,
f 6∈ Vα. Summarily f ∈ Uα but f 6∈ Vα. �

Theorem 6.3. Let α ∈ (GF (2))n. Then

(i) dim(U0)= 2 · dim(V0) = 2n,
(ii) dim(Uα)= 2 · dim(Vα) when 1 ≤ HW (α) ≤ n − 1,
(iii) Uα2n

−1
= Vα2n

−1
where α2n−1 = (1, . . . , 1).

Proof. It is noted that P0 = I2n . Then TnP0 ⊕P0Tn = 0 and then
nu(TnP0 ⊕ P0Tn) = 2n. Due to Theorem 4.7, dim(U0) = 2n. Due
to Lemma 5.4, dim(V0) = 2n−1. Then (i) holds. We now prove
(ii). Let α′ = (0, a2, . . . , an) ∈ (GF (2))n with HW (α′) = HW (α).
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Combing Lemmas 2.5 and 2.6, we know that nu(TnPα′ ⊕ Pα′Tn)
= 2 · nu(Tn ⊕ Pα′). Due to Theorems 4.8 and 5.11, nu(TnPα ⊕
PαTn) = 2 ·nu(Tn ⊕Pα). Due to Theorems 4.7 and 5.9, (ii) holds.
Due to Lemmas 2.8 and 2.10, nu(TnLn ⊕ LnTn) = nu(Tn ⊕ Ln)
where Ln = Pα2n

−1
. Therefore, according to Theorems 4.7 and

5.9, dim(Uα2n
−1

)= dim(Vα2n
−1

). Due to Theorem 6.1, Vα ⊆ Uα.
Then dim(Uα2n

−1
) = dim(Vα2n

−1) and Vα ⊆ Uα together imply
that Vα2n

−1
= Uα2n

−1
. Then (iii) holds. �

Corollary 6.4. Vα ⊆ Uα for any α ∈ (GF (2))n, furthermore,
Vα = Uα if and only if α = (1, . . . , 1).

Theorem 6.5. Let f ∈ Rn and f ∈ Uα. If f further satisfies one
of the following two conditions:

(i) there exists some h ∈ Uα such that f = hµ ⊕ hα when
HW (α) < n, or

(ii) HW (α) = n, i.e., α = (1, . . . , 1).

then f ∈ Vα.

Proof. Assume that HW (α) < n, h ∈ Uα and f = hµ ⊕ hα. It is
noted that fµ = (hµ)µ⊕(hα)µ. Due to Lemma 3.4, fµ = h⊕(hα)µ.
It is also noted that fα = (hµ)α ⊕ (hα)α. Again, due to Lemma
3.4, fα = (hµ)α ⊕ h. Since h ∈ Uα, i.e., (hα)µ. = (hµ)α, it follows
that fµ = fα, i.e., f ∈ Vα. We have proved (i). (ii) holds due to
(iii) of Theorem 6.3. �

We next prove the converse of Theorem 6.5.

Theorem 6.6. Let f ∈ Rn and further f ∈ Vα. Then

(i) either there exists some h ∈ Uα such that f = hµ ⊕ hα

when HW (α) < n,
(ii) or HW (α) = n, i.e., α = (1, . . . , 1).

Proof. If HW (α) = n then (ii) takes place. Assume that HW (α) <

n. Set W = {hµ ⊕ hα|h ∈ Uα}. Combing Theorems 6.5 and
6.1, W ⊆ Vα ⊆ Uα. We define a linear mapping Φ from Uα to
Uα: Φ(g) = g′ if and only g′ = gµ ⊕ gα where g ∈ Uα. Clearly
g′ ∈ W ⊆ Vα ⊆ Uα. Due to the definition of Vα, Theorems 6.5 and
6.1, it is easy to verify that Φ−1(0) = Vα where Φ−1(0) denotes
the kernel of Φ. It is noted that W is the range of Φ. By using
linear algebra, dim(Vα) + dim(W ) = dim(Uα). Due to Theorem
6.3, dim(Uα) = 2·dim(Vα). Therefore dim(W ) = dim(Vα). Recall
that W ⊆ Vα. Then dim(W ) = dim(Vα) and W ⊆ Vα together
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imply that W = Vα. Therefore any f ∈ Vα can be expressed as
f = hµ ⊕ hα where h ∈ Uα. �

7. Enumeration of Möbius-α Commutative Functions

Some proofs in this section can be found in the Appendix.
By a straightforward verification, we can conclude as follows.

Lemma 7.1. (i) nu(T1 ⊕ L1) = 0, (ii) nu(T1L1 ⊕ L1T1) = 0,
(iii) nu(I21 ⊕ T1L1 ⊕ L1T1) = 2, (iv) nu(T2L2 ⊕ L2T2) = 2, (v)
nu(I22 ⊕ T2L2 ⊕ L2T2) = 2.

Lemma 7.2. Let α ∈ (GF (2))n with HW (α) = 1. Then nu(TnPα⊕
PαTn) = 0.

Proof. Due to Theorem 4.8, without loss of generality, we can as-
sume that α = (0, . . . , 0, 1) ∈ (GF (2))n. Repeatedly using Lemma
2.5, we have nu(TnPα ⊕ PαTn) = 2n−1 · nu(T1L1 ⊕ L1T1). Due
to Lemma 7.1, nu(T1L1 ⊕ L1T1) = 0. We then have proved the
lemma. �

Lemma 7.3. (i) nu(I22k+1 ⊕ T2k+1L2k+1 ⊕ L2k+1T2k+1)
= 2

3(22k+1 + 1), k = 0, 1, . . .,

(ii) nu(I22k ⊕ T2kL2k ⊕ L2kT2k) = 2
3(22k − 1), k = 1, 2, . . ..

Lemma 7.4. (i) nu(T2k+1L2k+1⊕L2k+1T2k+1) = 2
3(22k −1),

k = 1, 2, . . .,
(ii) nu(T2kL2k ⊕ L2kT2k) = 2

3(22k−1 + 1), k = 1, 2, . . ..

Lemma 7.5. Let α = (0, . . . , 0, 1, . . . , 1) ∈ (GF (2))n with 1 ≤
HW (α) = t ≤ n. Then

nu(TnPα ⊕ PαTn) =

{

2
3 (2n−1 − 2n−t) t = 1, 3, 5, . . .
2
3 (2n−1 + 2n−t) t = 2, 4, 6, . . .

.

By using Theorems 4.7 and 4.8, we can generalise Lemma 7.5
as follows.

Theorem 7.6. Let α ∈ (GF (2))n with 1 ≤ HW (α) = t ≤ n.

Then dim(Uα) =

{

2
3 (2n−1 − 2n−t) t = 1, 3, 5, . . .
2
3 (2n−1 + 2n−t) t = 2, 4, 6, . . .

.

Due to Theorem 4.7, we know that Lemmas 7.2 and 7.4 are
special cases of Theorem 7.6 when t = 1 and t = n respectively.

Theorem 7.7. Let α ∈ (GF (2))n. Then 0 ≤ dim(Uα) ≤ 2n where
(i) dim(Uα) = 2n if and only if α = 0, (ii) dim(Uα) = 0 if and
only if HW (α) = 1.
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Proof. 0 ≤ dim(Uα) ≤ 2n obviously holds. It is noted that α = 0
=⇒ Pα = I2n . =⇒ TnPα⊕PαTn = 0 =⇒ dim(Uα) = 2n (Theorem
4.7). Conversely, assume that dim(Uα) = 2n. From Theorem 7.6,
we know that α must be zero. We have proved (i). We next prove
(ii). The sufficiency of (ii) holds because of Theorem 7.6. We next
prove the necessity of (ii). Assume that dim(Uα) = 0. Due to (i)
of the theorem, we know that α 6= 0. Due to Theorem 7.6, we
know that HW (α) = 1. �

Corollary 7.8. Let α ∈ (GF (2))n with 1 ≤ HW (α) = t ≤ n.

Then #Uα =

{

2
2

3
(2n−1−2n−t) t = 1, 3, 5, . . .

2
2

3
(2n−1+2n−t) t = 2, 4, 6, . . .

.

According to Theorem 7.7, we can state as follows.

Corollary 7.9. Let α ∈ (GF (2))n. Then 1 ≤ #Uα ≤ 22n
where

#Uα = 22n
if and only if α = 0, #Uα = 1 if and only if HW (α) =

1.

Theorem 7.6 and Corollary 7.8 are restricted by α 6= 0. When
α = 0, we refer Theorem 7.7 and Corollary 7.9.

8. Enumeration of Partially Coincident Functions

Combing (ii) of Theorem 6.3 and Theorem 7.6, we state as
follows.

Theorem 8.1. Let α ∈ (GF (2))n with HW (α) = t (1 ≤ t ≤

n − 1). Then dim(V)α =

{

2
3(2n−2 − 2n−1−t) t = 1, 3, 5, . . .
2
3(2n−2 + 2n−1−t) t = 2, 4, 6, . . .

.

As for t = n, due to Lemma 7.4 and Theorem 5.9, we have the
following conclusion.

Theorem 8.2. dim(V)α2n
−1

=

{

2
3(2n−1 − 1) n = 1, 3, 5, . . .
2
3(2n−1 + 1) n = 2, 4, 6, . . .

where α2n−1 = (1, . . . , 1) ∈ (GF (2))n.

Theorem 8.3. Let α ∈ (GF (2))n. Then 0 ≤ dim(Vα) ≤ 2n−1

where (i) dim(Vα) = 2n−1 if and only if α = 0, (ii) dim(Vα) = 0
if and only if HW (α) = 1.

Proof. Combing Theorems 8.1, 8.2 and Lemma 5.4, we know that
0 ≤ dim(Vα) ≤ 2n−1 and (i) holds. We next prove (ii). The
sufficiency of (ii) holds because of Theorem 8.1. We next prove
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the necessity of (ii). Assume that dim(Vα) = 0. Due to (i) of the
theorem, we know that α 6= 0. Due to Theorems 8.1 and 8.2, we
know that HW (α) = 1. �

Corollary 8.4. Let α ∈ (GF (2))n with 1 ≤ HW (α) = t ≤ n − 1.

Then #Vα =

{

2
2

3
(2n−2−2n−1−t) t = 1, 3, 5, . . .

2
2

3
(2n−2+2n−1−t) t = 2, 4, 6, . . .

.

Corollary 8.5. #Vα2n
−1

=

{

2
2

3
(2n−1−1) k = 1, 3, 5, . . .

2
2

3
(2n−1+1) k = 2, 4, 6, . . .

where

α2n−1 = (1, . . . , 1) ∈ (GF (2))n.

Corollary 8.6. Let α ∈ (GF (2))n. Then 1 ≤ #Vα ≤ 22n−1

where #Vα = 22n−1

if and only if α = 0, #Vα = 1 if and only if
HW (α) = 1.

Theorems 8.1, 8.2, Corollaries 8.4 and 8.5 are restricted by
α 6= 0. As for α = 0, we refer Lemma 5.4.

9. Conclusions

We have proposed and studied Möbius-α commutative func-
tions and partially coincident functions. We have proved that for
each vector α with HW (α) 6= 1, there exist a large number of
Möbius-α commutative functions and a large number of partially
coincident functions with respect to α. The new results are re-
lated to conversion between Boolean functions and their Möbius
transforms.
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Appendix

Proof of Lemma 2.5 Due to the structure of Tn and Lemma 2.4,

TnPα ⊕ PαTn =

[

Tn−1Pβ ⊕ PβTn−1 Tn−1Pβ ⊕ PβTn−1

O2n−1 Tn−1Pβ ⊕ PβTn−1

]

. Set

B =

[

I2n−1 I2n−1

02n−1 I2n−1

]

. It is noted that (TnPα ⊕ PαTn)B

=

[

Tn−1Pβ ⊕ PβTn−1 O2n−1

O2n−1 Tn−1Pβ ⊕ PβTn−1

]

. By linear algebra,

multiplying a matrix by a nonsingular square matrix does not
change its nullity. Therefore nu(TnPα ⊕PαTn) = 2 · nu(Tn−1Pβ ⊕
PβTn−1). �

Proof of Lemma 2.6

It is noted that Tn ⊕ Pα =

[

Tn−1 ⊕ Pβ Tn−1

O2n−1 Tn−1 ⊕ Pβ

]

. Set B =
[

Tn−1 O2n−1

O2n−1 Tn−1

]

and C =

[

I2n−1 02n−1

I2n−1 ⊕ Tn−1Pβ I2n−1

]

. Then, it

is easy to verify that

CB(Tn ⊕ Pα) =

[

I2n−1 ⊕ Tn−1Pβ I2n−1

(I2n−1 ⊕ Tn−1Pβ)2 02n−1

]

. By linear alge-

bra, multiplying a matrix by a nonsingular square matrix does
not change its nullity. Summarily nu(Tn ⊕ Pα) = nu(I2n−1 ⊕
Tn−1Pβ)2. We note that nu((I2n−1⊕Tn−1Pβ)2) = nu(Tn−1(I2n−1⊕
Tn−1Pβ)2Pβ) where Tn−1(I2n−1 ⊕ Tn−1Pβ)2Pβ is identical with
Tn−1Pβ ⊕ PβTn−1. We have proved the lemma. �

Proof of Lemma 2.7 We now prove (i) by induction on n. T1L1 =
[

1 1
0 1

] [

0 1
1 0

]

=

[

1 1
1 0

]

and then (T1L1)
2 =

[

0 1
1 1

]

=

L1T1. Then (i) is true when n = 1. Assume that (i) is true for
n with 1 ≤ n ≤ k. Consider n = k + 1. It is noted that Lk+1 =
[

02k Lk

Lk 02k

]

. Then Tk+1Lk+1 =

[

Tk Tk

0 Tk

] [

02k Lk

Lk 02k

]

=
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[

TkLk TkLk

TkLk 02k

]

. Then (Tk+1Lk+1)
2 =

[

02k (TkLk)
2

(TkLk)
2 (TkLk)

2

]

.

By the induction assumption, (TkLk)
2 = LkLk. Therefore

Tk+1Lk+1 =

[

02k LkTk

LkTk LkTk

]

where the right side is identical with

Lk+1Tk+1. Thus (i) is true for n = k + 1. We then have proved
(i). Due to the part (i), (TnLn)2 = LnTn. Then (TnLn)2 ·LnTn =
LnTn · LnTn and then TnLn = (LnTn)2. This proves (ii). �

Proof of Lemma 2.8 Due to the structure of Tn and Lemma 2.4,

TnLn⊕LnTn =

[

Tn−1Ln−1 Tn−1Ln−1 ⊕ Ln−1Tn−1

Tn−1Ln−1 ⊕ Ln−1Tn−1 Ln−1Tn−1

]

.

Set B =

[

Ln−1Tn−1 02n−1

02n−1 Tn−1Ln−1

]

and

C =

[

I2n−1 02n−1

I2n−1 ⊕ Ln−1Tn−1 I2n−1

]

. Due to Lemma 2.7, (Ln−1Tn−1)
2

= Tn−1Ln−1 and (Tn−1Ln−1)
2 = Ln−1Tn−1. Then CB(TnLn ⊕

LnTn) =

[

I2n−1 I2n−1 ⊕ Tn−1Ln−1

02n−1 I2n−1 ⊕ Tn−1Ln−1 ⊕ Ln−1Tn−1

]

. Summarily

nu(TnLn ⊕ LnTn) = nu(I2n−1 ⊕ Tn−1Ln−1 ⊕ Ln−1Tn−1). �

Proof of Lemma 2.9 Due to the structure of Tn and Lemma 2.4,
I2n ⊕ TnLn ⊕ LnTn

=

[

I2n−1 ⊕ Tn−1Ln−1 Tn−1Ln−1 ⊕ Ln−1Tn−1

Tn−1Ln−1 ⊕ Ln−1Tn−1 I2n−1 ⊕ Ln−1Tn−1

]

.

Set B =

[

Ln−1Tn−1 02n−1

02n−1 Tn−1Ln−1

]

, C =

[

I2n−1 02n−1

I2n−1 I2n−1

]

and

D =

[

Tn−1 Tn−1

02n−1 Ln−1

]

. Due to Lemma 2.7, (Ln−1Tn−1)
2 = Tn−1Ln−1

and (Tn−1Ln−1)
2 = Ln−1Tn−1. We then have

CB(I2n ⊕ TnLn ⊕ LnTn)D =

[

Tn−1 ⊕ Ln−1 02n−1

02n−1 02n−1

]

. Sum-

marily nu(I2n ⊕ TnLn ⊕ LnTn) = 2n−1 + nu(Tn−1 ⊕ Ln−1). �

Proof of Lemma 2.10 Due to the structure of Tn and Lemma 2.4,

Tn ⊕ Ln =

[

Tn−1 Tn−1 ⊕ Ln−1

Ln−1 Tn−1

]

. Set B =

[

Tn−1 02n−1

T2n−1 Ln−1

]

.

It is noted that

B(Tn⊕Ln−1) =

[

I2n−1 I2n−1 ⊕ Tn−1Ln−1

02n−1 I2n−1 ⊕ Tn−1Ln−1 ⊕ Ln−1Tn−1

]

. Sum-

marily nu(Tn ⊕ Ln) = nu(I2n−1 ⊕ Tn−1Ln−1 ⊕ Ln−1Tn−1). �

Proof of Lemma 7.3 We first prove (i) by induction on k. Due
to Lemma 7.1, (i) is true for k = 0. We assume that (i) is true
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for k with 0 ≤ k ≤ s − 1. We next prove that (i) is true for
k = s. Due to Lemma 2.9, nu(I22s+1 ⊕ T2s+1L2s+1 ⊕ L2s+1T2s+1)
= 22s + nu(T2s ⊕ L2s). By using Lemma 2.10, nu(T2s ⊕ L2s)
= nu(I22s−1 ⊕ T2s−1L2s−1 ⊕ L2s−1T2s−1). Due to the induction
assumption, nu(I22s−1 ⊕T2s−1L2s−1⊕L2s−1T2s−1) = 2

3 (22s−1 +1).

Summarily nu(T2s+1L2s+1 ⊕ L2s+1T2s+1) = 22s + 2
3 (22s−1 + 1)=

2
3(22s+1 + 1). Then (i) is true for k = s. We have proved (i).

We now prove (ii) by induction on k. Due to Lemma 7.1,
(ii) is true for k = 1. We assume that (ii) is true for k with
0 ≤ k ≤ s − 1. We next prove that (ii) is true for k = s. Due
to Lemma 2.9, nu(I22s ⊕ T2sL2s ⊕ L2sT2s) is equal to 22s−1 +
nu(T2s−1 ⊕ L2s−1). By using Lemma 2.10, nu(T2s−1 ⊕ L2s−1)
= nu(I22s−2 + T2s−2L2s−2 ⊕ L2s−2T2s−2). Due to the induction
assumption, nu(I22s−2 + T2s−2L2s−2 ⊕ L2s−2T2s−2)

2
3(22s−2 − 1).

Summarily nu(I22s ⊕ T2sL2s ⊕ L2sT2s) = 22s−1 + 2
3(22s−2 − 1)

= 2
3(22s − 1). Then (ii) is true for k = s. We have proved (ii). �

Proof of Lemma 7.4 We first prove (i). Due to Lemma 2.8,
nu(T2k+1L2k+1⊕L2k+1T2k+1) = nu(I22k ⊕T2kL2k⊕L2kT2k). From
Lemma 7.3, nu(I22k ⊕ T2kL2k ⊕ L2kT2k) = 2

3(22k − 1). Then (i)
is true. We next prove (ii). Due to Lemma 2.8, nu(T2kL2k ⊕
L2kT2k) = nu(I22k−1 ⊕ T2k−1L2k−1 ⊕ L2k−1T2k−1). From Lemma
7.3, nu(I22k−1 ⊕ T2k−1L2k−1 ⊕ L2k−1T2k−1) = 2

3 (22k−1 + 1). Then
we have proved (ii). �

Proof of Lemma 7.5 Repeatedly using Lemma 2.5, we know that
nu(TnPα ⊕PαTn) = 2n−t · nu(TtLt ⊕LtTt). There exist two cases
to be considered: t = 2k + 1 (Case 1) and t = 2k (Case 2). We
first prove the lemma for t = 2k + 1. When t = 2k + 1, by using
Lemma 7.4, we know that 2n−t ·nu(TtLt⊕LtTt) = 2n−t · 2

3(22k −1)

= 2
3(2n−1 − 2n−t). This proves the lemma for Case 1. We next

prove the lemma for Case 2, i.e., t = 2k. By using Lemma 7.4,
we know that 2n−t ·nu(TtLt ⊕LtTt) is equal to 2n−t · 2

3(22k−1 + 1)

= 2
3(2n−1 + 2n−t). We have proved the lemma for Case 2. �
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