The \boldsymbol{k} th-Order Nonhomomorphicity of S-Boxes

Yuliang Zheng
(School of Network Computing
Monash University
McMahons Road, Frankston, VIC 3199, Australia
yuliang.zheng@infotech.monash.edu.au)
Xian-Mo Zhang
(School of Information Technology \& Computer Science
University of Wollongong
Wollongong, NSW 2522, Australia
xianmo@uow.edu.au)

Abstract

Nonhomomorphicity is a new nonlinearity criterion of a mapping or S-box used in a private key encryption algorithm. An important advantage of nonhomomorphicity over other nonlinearity criteria is that the value of nonhomomorphicity is easy to estimate by the use of a fast statistical method. Due to the Law of Large Numbers, such a statistical method is highly reliable. Major contributions of this paper are (1) to explicitly express the nonhomomorphicity by other nonlinear characteristics, (2) to identify tight upper and lower bounds on nonhomomorphicity, and (3) to find the mean of nonhomomorphicity over all the S-boxes with the same size. It is hoped that these results on nonhomomorphicity facilitate the analysis and design of S-boxes.

Key Words: Boolean Functions, Cryptanalysis, Cryptography, Nonhomomorphicity, S-boxes.

Categories: E3

1 Introduction

The so-called S-boxes, which are functionally identical to mappings or tuples of Boolean functions, are of critical importance to the strength of a block encryption algorithm or cipher. In the past decade, the analysis and design of S-boxes has attracted a tremendous amount of attention. This paper focuses on new methods or perspectives for the analysis of S-boxes. More specifically, it deals with a new nonlinearity indicator called nonhomomorphicity.

To understand the motivation behind the new concept, let us first note that a mapping F from V_{n} to V_{m} is affine, i.e., $F(x)=x B \oplus \beta$ where $x \in V_{n}, B$ is a fixed $n \times m$ matrix, if and only if F satisfies such a property that for any even number k with $k \geq 4$, we have $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ whenever $u_{1} \oplus \cdots \oplus u_{k}=0$.

Now consider a non-affine function F on V_{n}. If $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$, then F satisfies the affine property at the particular vector $\left(u_{1}, \ldots, u_{k}\right)$. On the other hand, if $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0$, then F behaves in a way that is against the affine property at $\left(u_{1}, \ldots, u_{k}\right)$.

The above discussions indicate that $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0$ is a useful characteristic that differentiates a non-affine function from an affine one. This leads us to consider the number of vectors $\left(u_{1}, \ldots, u_{k}\right)$ in V_{n}, satisfying $u_{1} \oplus$ $\cdots \oplus u_{k}=0$ and $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq 0$, as a new nonlinearity criterion. We call this new criterion the k th-order nonhomomorphicity of F.

Nonhomomorphicity has several interesting properties including (1) it explores non-affinity from a new perspective; (2) it can be precisely calculated by other indicators; (3) the mean of nonhomomorphicity over all the S-boxes with the same size can be precisely identified; (4) there exists a fast statistical method to estimate the nonhomomorphicity of an S-box.

The rest of this paper is organized as follows. In Section 2, we introduce the basic definitions and notations used in this paper. In Section 3, we survey previously known results on the nonhomomorphicity of S-boxes. In Section 4, give a formula to calculate the nonhomomorphicity of S-boxes by other indicators. This formula shows a close relationship between nonhomomorphicity and other important criteria. In Section 5, we establish tight upper and lower bounds on the nonhomomorphicity of S-boxes. In Section 6, we establish the mean of nonhomomorphicity over all the S-boxes with the same size. In Sections 7 and 8 we show that the mean of nonhomomorphicity and the relative nonhomomorphicity are relevant to a statistical method for estimating the nonhomomorphicity of S-boxes. In Section 9, we compare nonhomomorphicity with nonlinearity, highlighting once again the importance of studying the nonhomomorphicity of Sboxes. In Section 10, we examine nonhomomorphicity in some special cases and show applications of nonhomomorphicity using a concrete example. Section 11 closes the paper.

2 Boolean Functions and S-boxes

Denote by V_{n} the vector space of n tuples of elements from $G F(2)$. The truth table of a function f from V_{n} to $G F(2)$ (or simply functions on V_{n}) is a $(0,1)$-sequence defined by $\left(f\left(\alpha_{0}\right), f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{2^{n}-1}\right)\right)$, and the sequence of f is a $(1,-1)$-sequence defined by $\left((-1)^{f\left(\alpha_{0}\right)},(-1)^{f\left(\alpha_{1}\right)}, \ldots,(-1)^{f\left(\alpha_{2^{n}-1}\right)}\right)$, where $\alpha_{0}=(0, \ldots, 0,0), \alpha_{1}=(0, \ldots, 0,1), \ldots, \alpha_{2^{n-1}-1}=(1, \ldots, 1,1) . f$ is said to be balanced if its truth table contains an equal number of ones and zeros.
Definition 1. A function f on V_{n} is called an affine function if $f(x)=c \oplus$ $a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}$ where and each a_{j} and c are constant in $G F(2)$. In particular, f is called a linear function if $c=0$. A mapping from V_{n} to V_{m}, F, is an affine (linear) if all the component functions of F are affine (linear).
Definition 2. The Hamming weight of a $(0,1)$-sequence ξ is the number of ones in the sequence. Given two functions f and g on V_{n}, the Hamming distance $d(f, g)$ between them is defined as the Hamming weight of the truth table of $f(x) \oplus g(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$. The nonlinearity of f, denoted by N_{f}, is the minimal Hamming distance between f and all affine functions on V_{n}, i.e., $N_{f}=\min _{i=1,2, \ldots, 2^{n+1}} d\left(f, \varphi_{i}\right)$ where $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{2^{n+1}}$ are all the affine functions on V_{n}.

Given two sequences $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{m}\right)$, their componentwise product is denoted by $a * b$, while the scalar product (sum of component-wise products) is denoted by $\langle a, b\rangle$.

The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2^{n}, denoted by H_{n}, is generated by the recursive relation

$$
H_{n}=\left[\begin{array}{rr}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right], n=1,2, \ldots, H_{0}=1
$$

The i th row (column) of $H_{n}, i=0,1, \ldots, 2^{n}-1$, is the sequence of linear function φ_{i} on V_{n}, where $\varphi_{i}=\left\langle\alpha_{i}, x\right\rangle$ and α_{i} is the binary representation of integer i.

Definition 3. Let f be a function on V_{n}. For a vector $\alpha \in V_{n}$, denote by $\xi(\alpha)$ the sequence of $f(x \oplus \alpha)$. Thus $\xi(0)$ is the sequence of f itself and $\xi(0) * \xi(\alpha)$ is the sequence of $f(x) \oplus f(x \oplus \alpha)$. Let $\Delta(\alpha)$ be the scalar product of $\xi(0)$ and $\xi(\alpha)$. Namely

$$
\Delta(\alpha)=\langle\xi(0), \xi(\alpha)\rangle
$$

$\Delta(\alpha)$ is called the auto-correlation of f with a shift α.
The following formula is well known to the researchers. A simple proof together with applications can be found, for instance, in [8]

$$
\begin{equation*}
\left(\Delta\left(\alpha_{0}\right), \Delta\left(\alpha_{1}\right), \ldots, \Delta\left(\alpha_{2^{n}-1}\right)\right) H_{n}=\left(\left\langle\xi, \ell_{0}\right\rangle^{2},\left\langle\xi, \ell_{1}\right\rangle^{2}, \ldots,\left\langle\xi, \ell_{2^{n}-1}\right\rangle^{2}\right) \tag{1}
\end{equation*}
$$

where α_{i} is the binary representation of an integer i and ℓ_{i} is the i th row of H_{n}, $i=0,1, \ldots, 2^{n}-1$.

A function f on V_{n} is called a bent function [7] if $\left\langle\xi, \ell_{i}\right\rangle^{2}=2^{n}$ for every $i=0,1, \ldots, 2^{n}-1$, where ξ is the sequence of f and ℓ_{i} is a row in H_{n}. A bent function on V_{n} exists only when n is a positive even number, and it achieves the highest possible nonlinearity $2^{n-1}-2^{\frac{1}{2} n-1}$.

Definition 4. An $n \times m S$-box or substitution box is a mapping from V_{n} to V_{m}, i.e., $F=\left(f_{1}, \ldots, f_{m}\right)$, where n and m are integers with $n \geq m \geq 1$ and each component function f_{j} is a function on V_{n}. In this paper, we use the terms of mapping and S-box interchangeably. F is an affine mapping if it can be written as $F(x)=x B \oplus \beta$, where $x=\left(x_{1}, \ldots, x_{n}\right), B$ is an $n \times m$ matrix on $G F(2)$, and β a vector in V_{m}. When β is the zero vector, F is said to be linear.

In cryptography we are interested primarily in regular S-boxes. A mapping $F=\left(f_{1}, \ldots, f_{m}\right)$ is said to be regular if $F(x)$ runs through each vector in V_{m} 2^{n-m} times while x runs through V_{n} once. Clearly $n \times m$ S-boxes exist only for $n \geq m$.

A useful conclusion, which appears many times in the literature, for example, in binary case in Corollary 7.39 of [3], can be described as follows:

Lemma 1. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m$ mapping, where n and m are integers with $n \geq m \geq 1$ and each $f_{j}(x)$ is a function on V_{n}. Then F is regular i.e., F runs through all the m-dimensional vectors each 2^{n-m} times while x runs through all the n-dimensional vectors each once if and only if any nonlinear combination of $f_{1}, \ldots, f_{m}, f(x)=\bigoplus_{j=1}^{m} c_{j} f_{j}(x)$, is balanced.

The concept of nonlinearity can be extended to the case of an S-box [6].
Definition 5. The standard definition of the nonlinearity of $F=\left(f_{1}, \ldots, f_{m}\right)$ is

$$
N_{F}=\min _{g}\left\{N_{g} \mid g=\bigoplus_{j=1}^{m} c_{j} f_{j}, c_{j} \in G F(2),\left(c_{1}, \ldots, c_{m}\right) \neq(0, \ldots, 0)\right\}
$$

Notation 1 Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m$ mapping, $\alpha \in V_{n}$, and β_{j} be the vector in V_{m} that corresponds to the binary representation of an integer j. Define $k_{\beta}(\alpha)$ as the number of times $F(x) \oplus F(x \oplus \alpha)$ runs through $\beta \in V_{m}$ while x runs through all the vectors in V_{n} once, The difference distribution table of F is a matrix specified as follows:

$$
K=\left[\begin{array}{cccc}
k_{\beta_{0}}\left(\alpha_{0}\right) & k_{\beta_{1}}\left(\alpha_{0}\right) & \ldots & k_{\beta_{2^{m}-1}}\left(\alpha_{0}\right) \\
k_{\beta_{0}}\left(\alpha_{1}\right) & k_{\beta_{1}}\left(\alpha_{1}\right) & \ldots & k_{\beta_{2^{m}-1}}\left(\alpha_{1}\right) \\
\vdots & & & \\
k_{\beta_{0}}\left(\alpha_{2^{n}-1}\right) & k_{\beta_{1}}\left(\alpha_{2^{n}-1}\right) & \ldots & k_{\beta_{2^{m}-1}}\left(\alpha_{2^{n}-1}\right)
\end{array}\right]
$$

where α_{j} is the vector in V_{n} that corresponds to the binary representation of j.
Let $\beta_{j}=\left(b_{1}, \ldots, b_{m}\right)$ be the vector in V_{m} that corresponds to the binary representation of an integer $j, j=0,1, \ldots, 2^{m}-1$. In addition, set $g_{j}=\bigoplus_{u=1}^{m} b_{u} f_{u}$ be the j th linear combination of the component functions of F. Denote the sequence of g_{j} by η_{j}. Set

$$
P=\left[\begin{array}{cccc}
\left\langle\eta_{0}, \ell_{0}\right\rangle^{2} & \left\langle\eta_{1}, \ell_{0}\right\rangle^{2} & \cdots & \left\langle\eta_{2^{m}-1}, \ell_{0}\right\rangle^{2} \\
\left\langle\eta_{0}, \ell_{1}\right\rangle^{2} & \left\langle\eta_{1}, \ell_{1}\right\rangle^{2} & \cdots & \left\langle\eta_{2^{m}-1}, \ell_{1}\right\rangle^{2} \\
\vdots & \vdots & & \\
\left\langle\eta_{0}, \ell_{2^{n}-1}\right\rangle^{2} & \left\langle\eta_{1}, \ell_{2^{n}-1}\right\rangle^{2} & \cdots & \left\langle\eta_{2^{m}-1}, \ell_{2^{n}-1}\right\rangle^{2}
\end{array}\right]
$$

where ℓ_{i} is the i th row of $H_{n}, i=0,1, \ldots, 2^{n}-1$.
Denote the auto-correlation of g_{j} with shift α by $\Delta_{j}(\alpha)$. Set

$$
D=\left[\begin{array}{cccc}
\Delta_{0}\left(\alpha_{0}\right) & \Delta_{1}\left(\alpha_{0}\right) & \ldots & \Delta_{2^{m}-1}\left(\alpha_{0}\right) \\
\Delta_{0}\left(\alpha_{1}\right) & \Delta_{1}\left(\alpha_{1}\right) & \ldots & \Delta_{2^{m}-1}\left(\alpha_{1}\right) \\
& \vdots \\
& & \\
\Delta_{0}\left(\alpha_{2^{n}-1}\right) & \Delta_{1}\left(\alpha_{2^{n}-1}\right) & \ldots & \Delta_{2^{m}-1}\left(\alpha_{2^{n}-1}\right)
\end{array}\right]
$$

Two interesting properties of the difference distribution table K are

$$
\begin{align*}
& \sum_{j=0}^{2^{m}-1} k_{\beta_{j}}\left(\alpha_{i}\right)=2^{n}, i=0,1, \ldots, 2^{n}-1, \text { and } \tag{2}\\
& \quad k_{\beta_{0}}\left(\alpha_{0}\right)=2^{n}, \quad k_{\beta_{j}}\left(\alpha_{0}\right)=0, \quad j=1, \ldots, 2^{m}-1 \tag{3}
\end{align*}
$$

Since both η_{0} and ℓ_{0} are the all-one sequence of length 2^{n} and ℓ_{j} is $(1,-1)$ balanced for $j>0$, we have

$$
\begin{equation*}
\left\langle\eta_{0}, \ell_{0}\right\rangle=2^{n},\left\langle\eta_{0}, \ell_{j}\right\rangle=0, j=1, \ldots, 2^{n}-1 \tag{4}
\end{equation*}
$$

3 Introduction to Nonhomomorphicity

The following lemmas can be found in [11].
Lemma 2. Let F be an $n \times m$ mapping.

1. If F is an affine mapping then for any even number k with $k \geq 4$, we have $F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ whenever $u_{1} \oplus u_{2} \oplus \cdots \oplus u_{k}=0$,
2. if there exists an even number k with $k \geq 4$ such that $F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus \cdots \oplus$ $F\left(u_{k}\right)=0$ whenever $u_{1} \oplus u_{2} \oplus \cdots \oplus u_{k}=0$, then F is an affine mapping.

Lemma 2 explores a characterization of affine mappings. From the lemma, if an $n \times m$ mapping satisfies $F\left(u_{1}\right) \oplus F\left(u_{2}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0$ for a large number of k-tuples of vectors $\left(u_{1}, \ldots, u_{k}\right)$ in V_{n} with $u_{1} \oplus u_{2} \oplus \cdots \oplus u_{k}=0$, then F behaves more like an affine mapping. This leads us to introduce a new nonlinearity criterion.

Notation 2 Let F be an $n \times m$ mapping and k an integer (even or odd) with $1 \leq k \leq 2^{n}$. Denote by $\mathcal{H}_{F, \beta}^{(k)}(\alpha)$ the collection of ordered k-tuples $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ of vectors in V_{n} satisfying $\bigoplus_{j=1}^{k} u_{j}=\alpha$ and $\bigoplus_{j=1}^{k} F\left(u_{j}\right)=\beta$ where $\alpha \in V_{n}$ and $\beta \in V_{m}$. Set

$$
\tilde{q}_{F, \beta}^{(k)}(\alpha)= \begin{cases}1 & k=0 \\ \# \mathcal{H}_{F, \beta}^{(k)}(\alpha) & \text { if } k>0\end{cases}
$$

where \# denote the cardinal number of a set.
In particular, from Notation 2, it is easy to see

$$
\tilde{q}_{F, \beta}^{(1)}(\alpha)=\left\{\begin{array}{l}
1 \text { if } F(\alpha)=\beta \tag{5}\\
0 \text { if } F(\alpha) \neq \beta
\end{array}\right.
$$

A formal definition for nonhomomorphicity follows.
Definition 6. Let F be an $n \times m$ mapping, and k be an even number with $k \geq 4$. $\sum_{\beta \neq 0} \tilde{q}_{F, \beta}^{(k)}(0)$ is called the k th-order nonhomomorphicity of F, denoted by \bar{q}_{F}^{k}, i.e., $\tilde{q}_{F}^{(k)}=\sum_{\beta \neq 0} \tilde{q}_{F, \beta}^{(k)}(0)$.

Note that nonhomomorphicity is defined for an even order k only. This is because the characteristic properties shown in Lemma 2 cannot be extended to the case of an odd k.

The concept of k th-order nonhomomorphicity was first introduced in [9]. The emphasis of [9] was placed on Boolean functions, namely $n \times m$ S-boxes with $m=$

1. The work was carried out further in [11] where the k th nonhomomorphicity of general $n \times m$ S-boxes was studied, albeit for the special case of $k=4$. This leaves an unsolved problem in the case of an arbitrary k with $k \geq 4$. In this paper we solve the problem by presenting a set of results on the k th nonhomomorphicity of general $n \times m$ S-boxes for any even k with $k \geq 4$. Techniques employed in obtaining the results are different from those in [9, 11], and represent a non-trivial extension of the previous works.

From Definition 6, it becomes clear that the following property is true.
Lemma 3. Let F be an $n \times m$ mapping. For any fixed integer s with $s \geq 2$ and any fixed vector in V_{n}, the following equation holds:

$$
\sum_{\beta \in V_{m}} \tilde{q}_{F, \beta}^{(k)}(\alpha)=2^{(k-1) n}
$$

Lemma 4. Let F be an $n \times m$ mapping and s be an integer with $s \geq 2$. Then

$$
\tilde{q}_{F, \beta}^{(s)}(\alpha)=\sum_{\beta^{\prime} \in V_{m}} \sum_{\alpha^{\prime} \in V_{n}} \tilde{q}_{F, \beta^{\prime}}^{(s-1)}\left(\alpha^{\prime}\right) \tilde{q}_{F, \beta \oplus \beta^{\prime}}^{(1)}\left(\alpha \oplus \alpha^{\prime}\right)
$$

Proof.

$$
\begin{aligned}
& \tilde{q}_{F, \beta}^{(s)}(\alpha) \\
& =\#\left\{\left(u_{1}, \ldots, u_{s}\right) \mid \bigoplus_{j=1}^{s} u_{j}=\alpha, \bigoplus_{j=1}^{s} F\left(u_{j}\right)=\beta\right\} \\
& =\sum_{\alpha^{\prime} \in V_{n}} \#\left\{\left(u_{1}, \ldots, u_{s-1}\right) \mid \bigoplus_{j=1}^{s-1} u_{j}=\alpha^{\prime}, \bigoplus_{j=1}^{s-1} F\left(u_{j}\right)=F\left(\alpha^{\prime} \oplus \alpha\right) \oplus \beta\right\} \\
& =\sum_{\alpha^{\prime} \in V_{n}} \tilde{q}_{F, F\left(\alpha^{\prime}\right) \oplus \beta}^{(s-1)}\left(\alpha^{\prime}\right) \\
& =\sum_{\beta^{\prime}} \sum_{\alpha^{\prime} \in V_{n}} \tilde{q}_{F,-1)}^{s-1)}\left(\alpha^{\prime}\right) \theta_{F}\left(\alpha \oplus \alpha, \beta^{\prime}\right) \tilde{q}_{F, \beta^{\prime}}^{(1)}\left(\alpha \oplus \alpha^{\prime}\right) \\
& =\sum_{\beta^{\prime}} \sum_{\alpha^{\prime} \in V_{n}} \tilde{q}_{F, \beta^{\prime}}^{(s-1)}\left(\alpha^{\prime}\right) \tilde{q}_{F, \beta \oplus \beta^{\prime}}^{(1)}\left(\alpha \oplus \alpha^{\prime}\right)
\end{aligned}
$$

Notation 3 Define a $2^{m+n} \times 2^{m+n}$ real valued $(0,1)$ matrix \mathbf{Q} whose entry on the cross of the γ th row and the γ^{\prime} th column is $\tilde{q}_{F, \beta \oplus \beta^{\prime}}^{(1)}\left(\alpha \oplus \alpha^{\prime}\right)$, where $\gamma=(\alpha, \beta)$ and $\gamma^{\prime}=\left(\alpha^{\prime}, \beta^{\prime}\right)$.

In addition, define a real-valued (0,1)-sequence of length 2^{m+n}, $\Xi=\left(c_{0}, c_{1}, \ldots, c_{2^{m+n}-1}\right)$, as follows

$$
c_{j}=\left\{\begin{array}{l}
1 \text { if } \tilde{q}_{F, \beta}^{(1)}(\alpha)=1 \\
0 \text { if } \tilde{q}_{F, \beta}^{(1)}(\alpha)=0
\end{array}\right.
$$

where (β, α) is the binary representation of an integer j.
Lemma 5. Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m$ mapping and β_{j} be the vector in V_{m} that is the binary representation of an integer $j, j=0,1, \ldots, 2^{m}-1$. Set $g_{j}=\left\langle\beta_{j}, F\right\rangle$. Denote the sequence of g_{j} by η_{j}. Then $\left\langle\Xi, L_{p}\right\rangle=\left\langle\eta_{t}, \ell_{s}\right\rangle$ where L_{p} is the p th row of H_{m+n}, and $p=t \cdot 2^{n}+s, 0 \leq t \leq 2^{m}-1,0 \leq s \leq 2^{n}-1$.

Proof. From the construction of a Sylvester Hadamard matrix, L_{p} can be expressed as $L_{p}=e_{t} \otimes \ell_{s}$, where \otimes denotes Kronecker product, i.e.,

$$
L_{p}=\left(d_{0} \ell_{s}, d_{1} \ell_{s}, \ldots, d_{2^{m}-1} \ell_{s}\right)
$$

where $e_{t}=\left(d_{0}, d_{1}, \ldots, d_{2^{m}-1}\right)$ and $\ell_{s}=\left(c_{0}, c_{1}, \ldots, 2^{n}-1\right)$. Hence e_{t} is the sequence of a linear function ψ on V_{m} and $\psi(y)=\left\langle\beta_{t}, y\right\rangle$, where β_{t} is the binary representation of an integer t.

By a straightforward verification, one can get

$$
\begin{aligned}
\left\langle\Xi, L_{p}\right\rangle & =\sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{m}-1} \tilde{q}_{F, \beta_{j}}^{(1)}\left(\alpha_{i}\right) d_{j} c_{i} \\
& =\sum_{i=0}^{2^{n}-1} c_{i} \sum_{j=0}^{2^{m}-1} \tilde{q}_{F, \beta_{j}}^{(1)}\left(\alpha_{i}\right) d_{j} \\
& =\sum_{i=0}^{2^{n}-1} c_{i} \sum_{j=0}^{2^{m}-1} \tilde{q}_{F, \beta_{j}}^{(1)}\left(\alpha_{i}\right)(-1)^{\psi\left(\beta_{j}\right)}
\end{aligned}
$$

Note that for a fixed α_{i}, from (5), we have $\sum_{j=0}^{2^{m}-1} \tilde{q}_{F, \beta_{j}}^{(1)}\left(\alpha_{i}\right)(-1)^{\psi\left(\beta_{j}\right)}=$ $(-1)^{\psi\left(F\left(\alpha_{i}\right)\right)}=(-1)^{\left\langle\beta_{t}, F\left(\alpha_{i}\right)\right\rangle}$. We also note that $(-1)^{\left\langle\beta_{t}, F\left(\alpha_{0}\right)\right\rangle},(-1)^{\left\langle\beta_{t}, F\left(\alpha_{1}\right)\right\rangle}$, $\ldots,(-1)^{\left\langle\beta_{t}, F\left(\alpha_{2^{n}-1}\right)\right\rangle}$ is identified with the sequence η_{t}, defined in Section 5. Hence we have proved $\left\langle\Xi, L_{p}\right\rangle=\left\langle\eta_{t}, \ell_{s}\right\rangle$.

Lemma 6. Let F be an $n \times m$ mapping and s be an integer (even or odd) with $s \geq 1$. Then the entry on the cross of the γ th row and the γ^{\prime} th column of \mathbf{Q}^{s} is precisely identified with $\tilde{q}_{F, \beta}^{(s)}(\alpha)$.

Proof. By induction on s. From the definition of \mathbf{Q}, the lemma holds when $s=1$. Assume that the lemma holds when $1 \leq s \leq k-1$.

Consider $\tilde{q}_{F, \beta}^{(k)}(\alpha)$. From Lemma 4, we have

$$
\tilde{q}_{F, \beta}^{(k)}(\alpha)=\sum_{\beta^{\prime} \in V_{m}} \sum_{\alpha^{\prime} \in V_{n}} \tilde{q}_{F, \beta^{\prime}}^{(s-1)}\left(\alpha^{\prime}\right) \tilde{q}_{F, \beta \oplus \beta^{\prime}}^{(s)}\left(\alpha \oplus \alpha^{\prime}\right)
$$

Finally recall the assumption that the theorem holds when $2 \leq s \leq k-1$. By using Lemma 4 we have proved the lemma.

Rewrite ΞH_{m+n} as

$$
\Xi H_{m+n}=\left(\left\langle\Xi, L_{0}\right\rangle,\left\langle\Xi, L_{1}\right\rangle, \ldots,\left\langle\Xi, L_{2^{m+n}-1}\right\rangle\right)
$$

where L_{i} denotes the i th row of H_{m+n} and the binary values 0 and 1 are regarded real numbers.

Hence it is easy to verify

$$
Q H_{m+n}=H_{m+n} \operatorname{diag}\left(\left\langle\Xi, L_{0}\right\rangle,\left\langle\Xi, L_{1}\right\rangle, \ldots,\left\langle\Xi, L_{2^{m+n}-1}\right\rangle\right)
$$

and

$$
2^{-m-n} H_{m+n} Q H_{m+n}=\operatorname{diag}\left(\left\langle\Xi, L_{0}\right\rangle,\left\langle\Xi, L_{1}\right\rangle, \ldots,\left\langle\Xi, L_{2^{m+n}-1}\right\rangle\right)
$$

This causes

$$
2^{-m-n} H_{m+n} Q^{s} H_{m+n}=\operatorname{diag}\left(\left\langle\Xi, L_{0}\right\rangle^{s},\left\langle\Xi, L_{1}\right\rangle^{s}, \ldots,\left\langle\Xi, L_{2^{m+n}-1}\right\rangle^{s}\right)
$$

or

$$
\begin{equation*}
Q^{s} H_{m+n}=H_{m+n} \operatorname{diag}\left(\left\langle\Xi, L_{0}\right\rangle^{s},\left\langle\Xi, L_{1}\right\rangle^{s}, \ldots,\left\langle\Xi, L_{2^{m+n}-1}\right\rangle^{s}\right) \tag{6}
\end{equation*}
$$

Comparing the top row on the two sides of the equality (6) and using Lemma 6 , we obtain

$$
\begin{align*}
& \left(\tilde{q}_{F, \beta_{0}}^{(s)}\left(\alpha_{0}\right), \tilde{q}_{F, \beta_{1}}^{(s)}\left(\alpha_{0}\right), \ldots, \tilde{q}_{F, \beta_{2^{m}-2}}^{(s)}\left(\alpha_{2^{n}-1}\right), \tilde{q}_{F, \beta_{2}{ }^{m}-1}^{(s)}\left(\alpha_{2^{n}-1}\right)\right) H_{m+n} \\
& =\left(\left\langle\Xi, L_{0}\right\rangle^{s},\left\langle\Xi, L_{1}\right\rangle^{s}, \ldots,\left\langle\Xi, L_{2^{m+n}-1}\right\rangle^{s}\right) \tag{7}
\end{align*}
$$

where α_{i} is the binary representation of an integer i with $0 \leq i \leq 2^{n}-1$, while β_{j} is the binary representation of an integer j with $0 \leq j \leq 2^{m}-1$.

From (7) and Lemma 5, we conclude
Theorem 1. Let F be an $n \times m$ mapping and s be an integer (even or odd) with $s \geq 1$. Then

$$
\begin{aligned}
& \left(\tilde{q}_{F, \beta_{0}}^{(s)}\left(\alpha_{0}\right), \tilde{q}_{F, \beta_{1}}^{(s)}\left(\alpha_{0}\right), \ldots, \tilde{q}_{F, \beta_{2} m-2}^{(s)}\left(\alpha_{2^{n}-1}\right), \tilde{q}_{F, \beta_{2} m^{m}-1}^{(s)}\left(\alpha_{2^{n}-1}\right)\right) \\
& =2^{-m-n}\left(\left\langle\eta_{0}, \ell_{0}\right\rangle^{s},\left\langle\eta_{1}, \ell_{0}\right\rangle^{s}, \ldots,\left\langle\eta_{2^{m}-2}, \ell_{2^{n}-1}\right\rangle^{s},\left\langle\eta_{2^{m}-1}, \ell_{2^{n}-1}\right\rangle^{s}\right) H_{m+n}
\end{aligned}
$$

where η_{β} is defined in Lemma 5 and ℓ_{α} is the α row of H_{n}, β is the binary representation of an integer j with $j=0,1, \ldots, 2^{m}-1$, and α is the binary representation of an integer i with $i=0,1, \ldots, 2^{n}-1$.

4 Calculating $\tilde{\boldsymbol{q}}_{\boldsymbol{F}}^{(s)}$

$\tilde{q}_{F, 0}^{(4)}(0)$ has been studied in [11]. In this section we turn our attention to $\tilde{q}_{F, 0}^{(k)}(0)$ with $k \geq 0$.

Let $\beta=0$ and $\alpha=0$ in Lemma 6. Then each entry on the diagonal of \mathbf{Q}^{s} is precisely identified with $\tilde{q}_{F, 0}^{(s)}(0)$.

Comparing the leftmost entry on the two sides of the equality in Theorem 1, we conclude

Lemma 7. Let F be an $n \times m$ mapping and s be an integer (even or odd). Then

$$
\tilde{q}_{F, 0}^{(s)}(0)=2^{-m-n} \sum_{j=0}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{s}
$$

From Definition 6, we have $\tilde{q}_{F}^{(s)}=\sum_{\beta \neq 0} \tilde{q}_{F, \beta}^{(s)}(0)=2^{(k-1) n}-\tilde{q}_{F, 0}^{(s)}(0)$. Therefore the following theorem holds:

Theorem 2. Let F be an $n \times m$ mapping and s be an even number with $s \geq 4$. Then the nonhomomorphicity of F, denoted by $\tilde{q}_{F}^{(s)}$, satisfies

$$
\tilde{q}_{F}^{(s)}=2^{(s-1) n}-2^{-m-n} \sum_{j=0}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{s}
$$

where $\left\langle\eta_{j}, \ell_{i}\right\rangle$ is defined in Notation 1.
Since both η_{0} and ℓ_{0} are identified with the all-one sequence of length 2^{n}, and ℓ_{i} is $(1,-1)$-balanced for $i=1, \ldots, 2^{n}-1$, Theorem 2 has another expression:

$$
\tilde{q}_{F}^{(s)}=2^{(s-1) n}-2^{(s-1) n-m}-2^{-m-n} \sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{s}
$$

Replacing s in the equality in Theorem 1 by t, where $t \geq 1$ is an integer independent of s, we obtain another equality. Carrying out the inner product between the two equalities, we have proved

$$
\sum_{\beta \in V_{m}} \sum_{\alpha \in V_{n}} \tilde{q}_{F, \beta}^{(s)}(\alpha) \tilde{q}_{F, \beta}^{(t)}(\alpha)=2^{-m-n} \sum_{j=0}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{s+t}
$$

By using Lemma 7, we have proved
Corollary 1. Let F be an $n \times m$ mapping and $s \geq 1$ and $t \geq 1$ be any two integers. Then

$$
\tilde{q}_{F, 0}^{(s+t)}(0)=\sum_{\beta \in V_{m}} \sum_{\alpha \in V_{n}} \tilde{q}_{F, \beta}^{(s)}(\alpha) \tilde{q}_{F, \beta}^{(t)}(\alpha)
$$

5 Bounds on $\tilde{\boldsymbol{q}}_{F}^{(s)}$

We first introduce Hölder's Inequality which can be found in [2].
Lemma 8. Let $c_{j} \geq 0$ and $d_{j} \geq 0$ be real numbers, where $j=1, \ldots, t$, and let p and q satisfy $\frac{1}{p}+\frac{1}{q}=1$ and $p>1$. Then

$$
\left(\sum_{j=1}^{t} c_{j}^{p}\right)^{1 / p}\left(\sum_{j=1}^{t} d_{j}^{q}\right)^{1 / q} \geq \sum_{j=1}^{t} c_{j} d_{j}
$$

where the quality holds if and only if $c_{j}=\nu d_{j}, j=1, \ldots, t$ for a constant $\nu \geq 0$.

When c_{j}, d_{j}, p and q satisfy the condition that $c_{j} \geq 0, d_{j}=\left\{\begin{array}{l}1 \text { if } c_{j}=1 \\ 0 \text { if } c_{j}=0\end{array}\right.$, $p=\frac{s}{2}$ and $q=\frac{s}{s-2}$, Hölder's Inequality gives

$$
\begin{equation*}
\sum_{j=1}^{t} c_{j}^{\frac{s}{2}} \geq t^{1-\frac{s}{2}}\left(\sum_{j=1}^{t} c_{j}\right)^{\frac{s}{2}} \tag{8}
\end{equation*}
$$

where the quality holds if and only if c_{1}, \ldots, c_{t} are all identical.
Lemma 9. Let F be an $n \times m$ mapping and s be even with $s \geq 4$. Then $\tilde{q}_{F, 0}^{(s)}(0)$, satisfies

$$
2^{(s-1) n-m}+\left(2^{m}-1\right) 2^{\frac{n s}{2}-m} \leq \tilde{q}_{F, 0}^{(s)}(0) \leq 2^{(s-1) n}
$$

where the first equality holds if and only if every nonzero linear combination of the component functions of F is bent, and the second equality holds if and only if F is affine.

Proof. Consider the first inequality. From Lemma 7, we have

$$
\tilde{s}_{F, 0}^{(s)}(0)=2^{(s-1) n-m}+2^{-m-n} \sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{s}
$$

By using (8) which is a special case of Lemma 8, we obtain

$$
\tilde{q}_{F, 0}^{(s)}(0) \geq 2^{(s-1) n-m}+2^{-m-n}\left[\left(\left(2^{m}-1\right) 2^{n}\right)^{1-\frac{s}{2}}\left(\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}\right)^{\frac{s}{2}}\right]
$$

According to Parseval's equation (Page 416 of [4]), we have $\sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}=2^{2 n}$ for each $j, 1 \leq j \leq 2^{m}-1$. Hence

$$
\begin{equation*}
\tilde{q}_{F, 0}^{(s)}(0) \geq 2^{(s-1) n-m}+2^{-m-n}\left[\left(\left(2^{m}-1\right) 2^{n}\right)^{1-\frac{s}{2}}\left(\left(2^{m}-1\right) 2^{2 n}\right)^{\frac{s}{2}}\right] \tag{9}
\end{equation*}
$$

This proves the first inequality. Once again by using (8), the equality in (9) holds if and only if $\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}$ are identical for all $j=1, \ldots, 2^{m}-1$ and $i=$ $0,1, \ldots, 2^{n}-1$. Parseval's equation implies that, in this case, $\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}=2^{n}$ for all $j=1, \ldots, 2^{m}-1$ and $i=0,1, \ldots, 2^{n}-1$. Recall the definition of a bent function. Thus we have proved that the equality in (9) holds if and only if each g_{j} is bent, where $1 \leq j \leq 2^{m}-1$.

By the definition of the s th-order nonhomomorphicity of F and Lemma 2, the second inequality is true, and the equality holds if and only if F is affine.

Recalling Definition 6, we conclude
Theorem 3. Let F be an $n \times m$ mapping. Then the sth-order nonhomomorphicity of $F, \tilde{q}_{F}^{(s)}$, satisfies

$$
0 \leq \tilde{h}_{F}^{(s)} \leq 2^{(s-1) n}-2^{(s-1) n-m}-\left(2^{m}-1\right) 2^{\frac{n s}{2}-m}
$$

where the first equality holds if and only if F is affine, and the second equality holds if and only if every nonzero linear combination of the component functions of F is bent.

If an $n \times m$ mapping, F, has the property that every nonzero linear combination of the component functions of F is bent, then F is said to be perfectly nonlinear. In this case, we have $m \leq \frac{1}{2} n$ (see [5]).

6 Mean of $\tilde{\boldsymbol{q}}_{\boldsymbol{F}}^{(k)}$ over all \boldsymbol{F}

Notation 4 Let O_{k} (k even) denote the collection of k-tuples $\left(u_{1}, \ldots, u_{k}\right)$ of vectors in V_{n} satisfying $u_{j_{1}}=u_{j_{2}}, \ldots, u_{j_{k-1}}=u_{j_{k}}$, where $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}=$ $\{1,2, \ldots, k\}$. Let D_{k} denote the collection of k-tuples $\left(u_{1}, \ldots, u_{k}\right)$ of vectors in V_{n} satisfying $u_{1} \oplus \cdots \oplus u_{k}=0$ and $\left(u_{1}, \ldots, u_{k}\right) \notin O_{k}$.

Obviously

$$
\begin{equation*}
\# O_{k}+\# D_{k}=2^{(k-1) n} \tag{10}
\end{equation*}
$$

It is easy to verify
Lemma 10. Let n, m and k be positive integers and $u_{1} \oplus \cdots \oplus u_{k}=0$, where each u_{j} is a fixed vector in V_{n}. Then

$$
F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)=0
$$

holds for every $n \times m$ mapping F if and only if k is even and $\left(u_{1}, \ldots, u_{k}\right) \in O_{k}$.
The following lemma can be found in [9]
Lemma 11. In Notation 4, let k be an even with $2 \leq k \leq 2^{n}$. Then

$$
\# D_{k}=\sum_{t=1}^{k / 2}\binom{2^{n}}{t} \sum_{p_{1}+\cdots+p_{t}=k / 2, p_{j}>0} \frac{(k)!}{\left(2 p_{1}\right)!\cdots\left(2 p_{t}\right)!}
$$

Theorem 4. Let n, m be positive integers and k be an even with $2 \leq k \leq 2^{n}$. Then the mean of $\tilde{q}_{F}^{(k)}$ over all the $n \times m$ mappings, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(k)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{f} \tilde{q}_{F}^{(k)}=2^{-m}\left(2^{(k-1) n}-o_{k}\right)
$$

Proof. Note that for each $\left(u_{1}, \ldots, u_{k}\right) \in D_{k}$, for a random $n \times m$ mapping F, $F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right)$ takes every vector in V_{m} with an equal probability of 2^{-m}. Therefore the mean of $\tilde{q}_{F, \beta}^{(k)}(0)$ over all the $n \times m$ mappings, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F, \beta}^{(k)}(0)$ satisfies

$$
\begin{equation*}
2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F, \beta}^{(k)}(0)=2^{-m \cdot 2^{n}} \sum_{F} \#\left(\mathcal{H}_{F, \beta}^{(k)}(0)\right)=2^{-m} \# D_{k} \tag{11}
\end{equation*}
$$

From Definition 6, we have

$$
\begin{equation*}
2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(k)}=2^{-m \cdot 2^{n}} \sum_{\beta \neq 0} \sum_{F} \tilde{q}_{F, \beta}^{(k)}(0)=\left(1-2^{-m}\right) \# D_{k} \tag{12}
\end{equation*}
$$

Applying (10) to (12), we have proved the theorem.

7 Relative Nonhomomorphicity

The concept of relative nonhomomorphicity introduced in this section is useful for a statistical tool to be introduced later.

Definition 7. Let F be an $n \times m$ mapping and k be an even with $k \geq 4$. Define the k th-order relative nonhomomorphicity of F, denoted by $\rho_{F}^{(k)}$, as $\rho_{F}^{(k)}=\frac{\tilde{q}_{F}^{(k)}}{\# D_{k}}$, i.e., $\rho_{F}^{(k)}=\frac{\tilde{q}_{F}^{(k)}}{2^{(k-1) n}-o_{k}}$.

From Theorem 4, we obtain
Corollary 2. The mean of $\rho_{F}^{(k)}$ over all the functions on V_{n}, i.e., $2^{-m \cdot 2^{n}} \sum_{f} \rho_{F}^{(k)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{F} \rho_{F}^{(k)}=1-2^{-m}
$$

It is interesting to note that $2^{-m \cdot 2^{n}} \sum_{f} \rho_{F}^{(k)}=1-2^{-m}$ is not relevant to k. From Corollary 2, we obtain

$$
\rho_{F}^{(k)}\left\{\begin{array}{l}
\geq 1-2^{-m} \text { then } F \text { is not less nonhomomorphic } \tag{13}\\
\text { than the mean of nonhomomorphicity } \\
<1-2^{-m} \text { then } F \text { is less nonhomomorphic } \\
\text { than the mean of nonhomomorphicity }
\end{array}\right.
$$

If $\rho_{F}^{(k)}$ is much smaller than $1-2^{-m}$, then F should be considered to be cryptographically weak.

8 Estimating Nonhomomorphicity

As shown in Theorem 2, the nonhomomorphicity of an S-boxes can be determined precisely. In this section, however, we introduce a statistical method to estimate nonhomomorphicity. Such a method is useful in the fast analysis of functions.

Denote a real-valued $(0,1)$ function on $D_{k}, t\left(u_{1}, \ldots, u_{k}\right)$, as follows

$$
t\left(u_{1}, \ldots, u_{k}\right)=\left\{\begin{array}{l}
1 \text { if } F\left(u_{1}\right) \oplus \cdots \oplus F\left(u_{k}\right) \neq \beta \\
0 \text { otherwise }
\end{array}\right.
$$

Hence from the definition of nonhomomorphicity, we have

$$
\tilde{q}_{F}^{(k)}=\sum_{\left(u_{1}, \ldots, u_{k}\right) \in D_{k}} t\left(u_{1}, \ldots, u_{k}\right)
$$

Let Ω be a random subset of D_{k}. Write $\omega=\# \Omega$ and

$$
\begin{equation*}
\bar{t}=\frac{1}{\omega} \sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega} t\left(u_{1}, \ldots, u_{k}\right) \tag{14}
\end{equation*}
$$

Note that this is the "sample mean" [1]. In particular, $\Omega=R_{n}^{(k)}-O_{k}, \bar{t}$ is identified with the "true mean" or "population mean" [1], namely, $\rho_{F}^{(k)}$.

Now consider $\sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega}\left(t\left(u_{1}, \ldots, u_{k}\right)-\bar{t}\right)^{2}$. We have

$$
\begin{aligned}
& \sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega}\left(t\left(u_{1}, \ldots, u_{k}\right)-\bar{t}\right)^{2} \\
= & \sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega} t^{2}\left(u_{1}, \ldots, u_{k}\right)-2 \bar{t} \cdot \sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega} t\left(u_{1}, \ldots, u_{k}\right)+\omega \bar{t}^{2}
\end{aligned}
$$

Note that $t^{2}\left(u_{1}, \ldots, u_{k}\right)=t\left(u_{1}, \ldots, u_{k}\right)$. From (14),

$$
\begin{align*}
\sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega}\left(t\left(u_{1}, \ldots, u_{k}\right)-\bar{t}\right)^{2} & =\omega \bar{t}-2 \omega \bar{t}^{2}+\omega \bar{t}^{2} \\
& =\omega \bar{t}-2 \omega \bar{t}^{2}+\omega \bar{t}^{2} \\
& =\omega \bar{t}(1-\bar{t}) \tag{15}
\end{align*}
$$

Hence the quantity of $\sqrt{\frac{1}{\omega-1} \sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega}\left(t\left(u_{1}, \ldots, u_{k}\right)-\bar{t}\right)^{2}}$, which is called the "sample standard deviation" [1] and is usually denoted by μ, can be expressed as

$$
\begin{equation*}
\mu=\sqrt{\frac{1}{\omega-1} \sum_{\left(u_{1}, \ldots, u_{k}\right) \in \Omega}\left(t\left(u_{1}, \ldots, u_{k}\right)-\bar{t}\right)^{2}}=\sqrt{\frac{\omega \bar{t}(1-\bar{t})}{\omega-1}} \tag{16}
\end{equation*}
$$

By using (4.4) in Section 4.B of [1], the "true mean" or "population mean", $\rho_{f, 1}^{(k)}$, can be bounded by

$$
\begin{equation*}
\bar{t}-Z_{e / 2} \frac{\mu}{\sqrt{\omega}}<\rho_{f, 1}^{(k)}<\bar{t}+Z_{e / 2} \frac{\mu}{\sqrt{\omega}} \tag{17}
\end{equation*}
$$

where $Z_{e / 2}$ denotes the value Z of a "standardized normal distribution". Note that (17) holds with a probability of $(1-e) 100 \%$ (see for example [1]).

For instance,
when $e=0.2, Z_{e / 2}=1.28$, and (17) holds with a probability of 80%,
when $e=0.1, Z_{e / 2}=1.64$, and (17) holds with a probability of 90%,
when $e=0.05, Z_{e / 2}=1.96$, and (17) holds with a probability of 95%,
when $e=0.02, Z_{e / 2}=2.33$, and (17) holds with a probability of 98%,
when $e=0.01, Z_{e / 2}=2.57$, and (17) holds with a probability of 99%,
when $e=0.001, Z_{e / 2}=3.3$, and (17) holds with a probability of 99.9%.
From (14), we have $0 \leq \bar{t}<1$. It is easy to verify that μ in (16) satisfies $0 \leq \mu \leq \frac{1}{2} \sqrt{\frac{\omega}{\omega-1}}$. This implies that (17) can be replaced simply by

$$
\begin{equation*}
\bar{t}-\frac{Z_{e / 2}}{2 \sqrt{\omega-1}}<\rho_{F}^{(k)}<\bar{t}+\frac{Z_{e / 2}}{2 \sqrt{\omega-1}} \tag{18}
\end{equation*}
$$

where (18) holds with a probability of $(1-e) 100 \%$. Hence if ω, i.e., $\# \Omega$, is large, then the lower bound and the upper bound on $\rho_{F}^{(k)}$ in (17) are closer to each other. On the other hand, if we choose $\omega=\# \Omega$ large enough, then $Z_{e / 2} \frac{\mu}{\sqrt{\omega}}$ is sufficiently small, and hence (17) and (18) will provide us with useful information. For instance, viewing (17) and (18) and Corollary 2, set $e=0.001$ and $Z_{e / 2}=3.3$, we can choose $\omega=\# \Omega$ such that $\frac{Z_{e / 2}}{2 \sqrt{\omega-1}}<2^{-(m+2)}$. In this case the estimation of nonhomomorphicity has a reliability of 99.9%. This indicates that $\# \Omega=\omega \geq 5 \cdot 2^{2 m+5}$ is sufficiently large.

In summary, we can analyze the nonhomomorphic characteristics of a mapping from V_{n} to V_{m} in the following steps:

1. we randomly fix a subset of D_{k}, say Ω, where $\omega=\# \Omega$ is large enough (say $\omega \geq 5 \cdot 2^{2 m+5}$),
2. by using (14), we determine \bar{t}, i.e., "the sample mean",
3. by using (17), we determine the range of $\frac{\tilde{q}_{r}^{(k)}}{\# D_{k}}$, with a high reliability,

We note that the statistical analysis is efficient due to the following reasons:
(1) the relative nonhomomorphicity, $\frac{\tilde{q}_{F}^{(k)}}{\# D_{k}}$ is precisely identified by the use of "population mean" or "true mean", a terminology in statistics,
(2) the method is highly reliable,
(3) ω is dependent only on the size m, but not on n. Hence the method does not require a huge amount of computing.

From the Law of Large Numbers [1], as n grows larger and larger, the "sample mean" \bar{t} becomes closer and closer to the "true mean" $\frac{\tilde{q}_{F}^{(k)}}{\# D_{k}}$.

Recall Definition 2. To determine the nonlinearity of an individual function f on V_{n}, we need to calculate $d\left(f, \varphi_{i}\right)$ where $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{2^{n+1}-1}$ are all the affine functions on V_{n}. Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{2^{n}-1}$ be all the linear functions on V_{n}. Then $1 \oplus \varphi_{0}, 1 \oplus \varphi_{1}, \ldots, 1 \oplus \varphi_{2^{n}-1}$ are all the affine, but not linear, functions on V_{n}. Note that $d\left(f, 1 \oplus \varphi_{i}\right)=2^{n}-d\left(f, \varphi_{i}\right)$. Hence we need to calculate each Hamming distance $d\left(f, \varphi_{i}\right)$, for $j=0,1, \ldots, 2^{n}-1$. On the other hand, to calculate each Hamming distance $d\left(f, \varphi_{i}\right)$, we should compare the value $f(\alpha)$ with the value $\varphi_{i}(\alpha)$ for each $\alpha \in V_{n}$.

Now consider Definition 5. To determine the nonlinearity of an $n \times m$ Sbox, we need to compare value $g_{j}(\alpha)$ and the value $\varphi_{i}(\alpha),\left(2^{m}-1\right) 2^{2 n}$ times altogether, where $j=1, \ldots, 2^{m}-1, i=0,1, \ldots, 2^{n}-1, \alpha=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{2^{n}-1}$.

Compared with the determination of nonlinearity of an $n \times m$ S-box, here we can use the statistical method with a reliability of 99.9%. To achieve this we need to choose Ω with $\# \Omega=\omega \geq 5 \cdot 2^{2 m+5}$ which is not relevant to n and much less than $\left(2^{m}-1\right) 2^{2 n}$. Hence the statistical method saves time in computing.

As the estimated value of nonhomomorphicity has a high reliability, it can be used to examine other criteria. This will be seen in Section 9 .

9 Comparing Nonhomomorphicity with Nonlinearity

Let $F=\left(f_{1}, \ldots, f_{m}\right)$ be an $n \times m$ mapping and β_{j} be the vector in V_{m} that is the binary representation of an integer $j, j=0,1, \ldots, 2^{m}-1$. Set $g_{j}=\bigoplus_{u=1}^{m} b_{u} f_{u}$. Denote the sequence of g_{j} by η_{j}.

Similarly, let $F^{*}=\left(f_{1}^{*}, \ldots, f_{m}^{*}\right)$ be an $n \times m$ mapping and β_{j} be the vector in V_{m} that is the binary representation of an integer $j, j=0,1, \ldots, 2^{m}-1$. Set $g_{j}^{*}=\bigoplus_{u=1}^{m} b_{u} f_{u}^{*}$. Denote the sequence of g_{j}^{*} by η_{j}^{*}.

Since both η_{0} and ℓ_{0} are the all-one sequence of length 2^{n} and ℓ_{i} is $(1,-1)$ balanced,

$$
\left\langle\eta_{0}, \ell_{0}\right\rangle=2^{n},\left\langle\eta_{0}, \ell_{i}\right\rangle=0, i=1, \ldots, 2^{n}-1
$$

Similarly

$$
\left\langle\eta_{0}^{*}, \ell_{0}\right\rangle=2^{n},\left\langle\eta_{0}^{*}, \ell_{i}\right\rangle=0, i=1, \ldots, 2^{n}-1
$$

We rewrite each $\left|\left\langle\eta_{j}, \ell_{i}\right\rangle\right|$ as $p_{s}, j=1, \ldots, 2^{m}-1, i=0,1, \ldots, 2^{n}-1$ and list all the p_{s} as follows

$$
p_{1}, p_{2}, \ldots, p_{2^{n}\left(2^{m}-1\right)}
$$

where $p_{j} \geq p_{i}$ if $j>i$.
Similarly, rewrite each $\left|\left\langle\eta_{j}^{*}, \ell_{i}\right\rangle\right|$ as $p_{s}^{*}, j=1, \ldots, 2^{m}-1, i=0,1, \ldots, 2^{n}-1$ and list all the p_{s}^{*} as follows

$$
p_{1}^{*}, p_{2}^{*}, \ldots, p_{2^{n}\left(2^{m}-1\right)}^{*}
$$

where $p_{j}^{*} \geq p_{i}^{*}$ if $j>i$.
We consider the following two cases.
Case 1: $p_{j}=p_{j}^{*}, j=1, \ldots, 2^{n}\left(2^{m}-1\right)$. By using Theorem 2, we have $\tilde{q}_{F}^{(k)}=$ $\tilde{q}_{F^{*}}^{(k)}$, where k is any even number with $k \geq 4$.

Case 2: there exists some j_{0} such that $p_{j}=p_{j}^{*}, j=1, \ldots, j_{0}$ and $p_{j_{0}+1}>$ $P_{j_{0}+1}^{*}$. Then there exists an even number k_{0} such that $p_{j_{0}}^{k} / p_{j_{0}}^{* k}>2^{n}-j_{0}$ for every even k with $k \geq k_{0}$. This implies that $\sum_{j=1}^{2^{n}\left(2^{m}-1\right)} p_{j}^{k}>\sum_{j=1}^{2^{n}\left(2^{m}-1\right)} p_{j}^{* k}$. Hence

$$
\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{k}>\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}^{*}, \ell_{i}\right\rangle^{k}
$$

where k is any even number with $k \geq k_{0}$. By using Theorem 2, we have proved $\tilde{q}_{F}^{(k)}>\tilde{q}_{F^{*}}^{(k)}$.

In summary, we conclude
Theorem 5. Let F and F^{*} be two $n \times m$ mappings. Then $\tilde{q}_{F}^{(k)}=\tilde{q}_{F^{*}}^{(k)}$ where k is any even number with $k \geq 4$. Otherwise there exists some even number k_{0} such that $\tilde{q}_{F}^{(k)}>\tilde{q}_{F^{*}}^{(k)}$ or $\tilde{q}_{F}^{(k)}<\tilde{q}_{F^{*}}^{(k)}$, where k is any even number with $k \geq k_{0}$.

By the same reasoning, we can prove

Theorem 6. Let F and F^{*} be two $n \times m$ mappings. If $N_{f}>(<) N_{f^{*}}$ then there exists some even number k_{0} such that $\tilde{q}_{F}^{(k)}>(<) \tilde{q}_{F^{*}}^{(k)}$ where k is any even number with $k \geq k_{0}$.

We can give Theorem 6 an equivalent statement as follows.
Theorem 7. Let F and F^{*} be two $n \times m$ mappings. If there exists some even number k_{0} such that $\tilde{q}_{F}^{(k)} \geq \tilde{q}_{F^{*}}^{(k)}$ where k is any even number with $k \geq k_{0}$ then $N_{f} \geq N_{f *}$.

Examining Theorem 7, we can see that when k is large, $\tilde{q}_{F}^{(k)}$ guarantees a high nonlinearity. As $\tilde{q}_{F}^{(k)}$ can be statistically estimated, this result can be useful in facilitating the analysis of nonlinear properties of S-boxes.

Lemma 12. There exists some even number k_{0} with $k_{0} \leq 2^{n}$, satisfies the properties in Theorems 6 and 7.

Proof. Recall the proof of Theorem 6. We have $p_{j}=p_{j}^{*}, j=1, \ldots, j_{0}$ and $p_{j_{0}+1}>P_{j_{0}+1}^{*}$. Since each p_{j} is an even number, we have $p_{j_{0}+1} \geq 2+P_{j_{0}+1}^{*}$. Hence $p_{j_{0}}^{k} / p_{j_{0}}^{* k}>2^{n}-j_{0}$ for every even k with $k \geq k_{0}$.

10 Nonhomomorphicity in Special Cases

The nonhomomorphicity is more useful in two special cases: the nonhomomorphicity of Boolean functions and the 4th-order nonhomomorphicity of S-boxes.

10.1 The Nonhomomorphicity of Boolean functions

In fact, a Boolean function f on V_{n} is a degenerated case of $n \times 1$ S-box. In this case (13) is specialized as

$$
\rho_{f}^{(k)}\left\{\begin{array}{l}
\geq \frac{1}{2} \text { then } f \text { is not less nonhomomorphic } \tag{19}\\
\text { than the mean of nonhomomorphicity } \\
<\frac{1}{2} \text { then } f \text { is less nonhomomorphic } \\
\text { than the mean of nonhomomorphicity }
\end{array}\right.
$$

Obviously (19) is simpler than (13) and hence is easer to use in practice. More details about the nonhomomorphicity of Boolean functions can be found in [9].

Since a function on V_{n} is an $n \times 1 \mathrm{~S}$-box, Theorem 4 can be specialized as follows:

Corollary 3. Let n, m be positive integers and k be an even with $2 \leq k \leq 2^{n}$. Then the mean of $\tilde{q}_{F}^{(k)}$ over all the $n \times m$ mappings, i.e., $2^{-m \cdot 2^{n}} \sum_{F} \tilde{q}_{F}^{(k)}$, satisfies

$$
2^{-m \cdot 2^{n}} \sum_{f} \tilde{q}_{F}^{(k)}=2^{-m}\left(2^{(k-1) n}-o_{k}\right)
$$

10.2 The 4th-order nonhomomorphicity of S-boxes

From Lemma 2, we can focus on $\tilde{q}_{F}^{(4)}$ rather than high order nonhomomorphicity. Furthermore it turns out that $\tilde{q}_{F}^{(4)}$ is related to other criteria.

Theorem 8. Let F be an $n \times m$-box. Then
(i) $\tilde{q}_{F}^{(4)}=2^{3 n}-\sum_{\alpha \in V_{n}} \sum_{\beta \in V_{m}} k_{\beta}^{2}(\alpha)$,
(ii) $\tilde{q}_{F}^{(4)}=2^{3 n}-2^{-m-n}\left[2^{4 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}\right]$,
(iii) $\tilde{q}_{F}^{(4)}=2^{3 n}-2^{-m}\left[2^{3 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1} \Delta_{j}^{2}\left(\alpha_{i}\right)\right]$.
where $k_{\beta}(\alpha),\left\langle\eta_{j}, \ell_{i}\right\rangle$ and $\Delta_{j}^{2}\left(\alpha_{i}\right)$ have been defined in Notation 1,
Proof. (i) is specialized from Theorem 1 by setting $s=4$.
(ii) A useful formula can be found in [10]: $P=H_{n} K H_{m}$ where P and K are defined in Notation 1. Hence $P^{T} P=H_{n} K^{T} H_{m} H_{m} K H_{n}=2^{m} H_{n} K^{T} K H_{n}=$ $2^{m+n}\left(2^{-n} H_{n} K^{T} K H_{n}\right)$. Note that $2^{-n} H_{n}$ is the inverse of H_{n}. From linear algebra, similar matrices have the same sum of the elements on the diagonals. Hence $\sum_{j=0}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}=\sum_{\alpha \in V_{n}} \sum_{\beta \in V_{m}} k_{\beta}^{2}(\alpha)$.

Due to (4), $\sum_{\alpha \in V_{n}} \sum_{\beta \in V_{m}} k_{\beta}^{2}(\alpha)=2^{-m-n}\left[2^{4 n}+\sum_{j=1}^{2^{m}-1} \sum_{i=0}^{2^{n}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4}\right]$. We have proved (ii).

By using (1) and (i), we obtain (iii).
Example 1. The Data Encryption Algorithm or DES employs eight 6×4 mappings or S-boxes. Consider the first mapping F. From Definition 6, we directly calculate $\tilde{q}_{F}^{(4)}=231264$. (Also we can use a statistical method to find an approximate value of $\tilde{q}_{F}^{(4)}$).

By using Theorem 8

$$
231264=2^{18}-\sum_{\alpha \in V_{6}} \sum_{\beta \in V_{4}} k_{\beta}^{2}(\alpha)
$$

From the property of the difference distribution table K, we have $k_{0}(0)=2^{n}$ and $k_{\beta}(0)=0, \beta \neq 0$.

$$
\sum_{\alpha \in V_{6}, \alpha \neq 0} \sum_{\beta \in V_{4}} k_{\beta}^{2}(\alpha)=2^{18}-2^{12}-231264
$$

Write $\max \left\{k_{\beta}(\alpha) \mid \alpha \in V_{6} . \alpha \neq 0, \beta \in V_{4}\right\}=k_{M}$. Hence we have

$$
k_{M} \sum_{\alpha \in V_{6}, \alpha \neq 0} \sum_{\beta \in V_{4}} k_{\beta}(\alpha) \geq \sum_{\alpha \in V_{6}} \sum_{\beta \in V_{4}} k_{\beta}^{2}(\alpha)=2^{18}-2^{12}-231264
$$

Once again recalling the property of K, we have $\sum_{\beta \in V_{m}} k_{\beta}(\alpha)=2^{n}$, for any $\alpha \in V_{n}$. Hence

$$
k_{M}\left(2^{6}-1\right) 2^{6} \geq 2^{18}-2^{12}-231264
$$

This implies $k_{M} \geq 6.6$. Since k_{M} is even, $k_{M} \geq 8$. This is larger than the trivial lower bound $k_{M} \geq 2^{n-m}=4$.

Write $\max \left\{\mid\left\langle\eta_{j}, \ell_{i}\right\rangle \| 1 \leq j \leq 2^{4}-1,0 \leq i \leq 2^{6}-1\right\}=p_{M}$. Due to Theorem 8 , we have

$$
\left(2^{18}-\tilde{q}_{F}^{(4)}\right) 2^{6+4}-2^{24}=\sum_{j=1}^{2^{4}-1} \sum_{i=0}^{2^{6}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{4} \leq p_{M}^{2} \sum_{j=1}^{2^{4}-1} \sum_{i=0}^{2^{6}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}
$$

By using Parseval's equation, Page 416 of [4], we have $\sum_{j=0}^{2^{6}-1}\left\langle\eta_{j}, \ell_{i}\right\rangle^{2}=2^{2 \cdot 6}$ for each fixed $j, j=1, \ldots, 2^{4}-1$. Hence $p_{M}^{2} \geq 2^{12}-\frac{231264}{60}>241$. As p_{M}^{2} is square and hence a multiple of 4 , we have $p_{M}^{2} \geq 256$. By using Definition (5), we conclude that $N_{F} \leq 2^{6-1}-\frac{1}{2} p_{M} \leq 24$. Recall that the maximum nonlinearity of functions on V_{6} is $2^{6-1}-2^{3-1}=28$ and it can be achieved only by bent functions.

Write $\max \left\{\left|\Delta_{j}\left(\alpha_{i}\right)\right| 1 \leq j \leq 2^{4}-1,1 \leq i \leq 2^{6}-1\right\}=\Delta_{M}$. Once again, due to Theorem 8,

$$
\left(2^{3 \cdot 6}-\tilde{q}_{F}^{(4)}\right) 2^{4}-2^{3 \cdot 6}=\sum_{j=1}^{2^{4}-1} \sum_{i=0}^{2^{6}-1} \Delta_{j}^{2}\left(\alpha_{i}\right)
$$

Noticing $\Delta_{j}\left(\alpha_{0}\right)=2^{6}, j=0,1, \ldots, 2^{4}-1$, we have

$$
2^{3 \cdot 6+4}-2^{4} \tilde{q}_{F}^{(4)}-2^{3 \cdot 6}=2^{2 \cdot 6+4}+\sum_{j=1}^{2^{4}-1} \sum_{i=1}^{2^{6}-1} \Delta_{j}^{2}\left(\alpha_{i}\right) \leq\left(2^{4}-1\right)\left(2^{6}-1\right) \Delta_{M}^{2}
$$

This proves that

$$
\Delta_{M}^{2} \geq \frac{2^{22}-2^{18}-2^{16}-2^{4} \tilde{q}_{F}^{(4)}}{\left(2^{6}-1\right)\left(2^{4}-1\right)}>176
$$

As Δ_{M}^{2} is square, it must be a multiple of 4 . Hence we have $\Delta_{M}^{2} \geq 196$ and $\Delta_{M} \geq 14$.

11 Conclusions

We have proposed the nonhomomorphicity of S-boxes as a new nonlinearity criteria. We have explicitly expressed the nonhomomorphicity by other nonlinear characteristics, identified tight upper and lower bounds on nonhomomorphicity as well as the mean of nonhomomorphicity over all the S-boxes with the same size, and proposed a statistical method to estimate the nonhomomorphicity of S-boxes. We have also demonstrated applications of nonhomomorphicity in the analysis of S-boxes. It is our belief that more applications of the new criterion will be identified in the future.

References

1. Stephen A. Book. Statistics. McGraw-Hill Book Company, 1977.
2. Friedhelm Erwe. Differential And Integral Calculus. Oliver And Boyd Ltd, Edinburgh And London, 1967.
3. Rudoff Lidl and Harald Niederreiter. Finite Fields, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1983.
4. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, New York, Oxford, 1978.
5. K. Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology - EUROCRYPT'91, volume 547 of Lecture Notes in Computer Science, pages 378-386. Springer-Verlag, Berlin, Heidelberg, New York, 1991.
6. K. Nyberg. On the construction of highly nonlinear permutations. In Advances in Cryptology - EUROCRYPT'92, volume 658 of Lecture Notes in Computer Science, pages 92-98. Springer-Verlag, Berlin, Heidelberg, New York, 1993.
7. O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory, Ser. A, 20:300-305, 1976.
8. X. M. Zhang and Y. Zheng. Characterizing the structures of cryptographic functions satisfying the propagation criterion for almost all vectors. Design, Codes and Cryptography, 7(1/2):111-134, 1996. special issue dedicated to Gus Simmons.
9. X. M. Zhang and Y. Zheng. The k th-order nonhomomorphicity of boolean functions. In Selected Areas in Cryptography, 5th Annual International Workshop, SAC'98, volume 1556 of Lecture Notes in Computer Science, pages 280-295. Springer-Verlag, Berlin, Heidelberg, New York, 1999.
10. X. M. Zhang, Y. Zheng, and Hideki Imai. Relating differential distribution tables to other properties of substitution boxes. Designs, Codes and Cryptography, 19:45-63, 2000.
11. Y. Zheng and X. M. Zhang. The nonhomomorphicity of S-boxes. In Proceedings of the 1-st International Conference on Information Security and Cryptography, pages 131-145. Korea Institute of Information \& Cryptology, 1998.
