
The kth-Order Nonhomomorphiity of S-BoxesYuliang Zheng(Shool of Network ComputingMonash UniversityMMahons Road, Frankston, VIC 3199, Australiayuliang.zheng�infoteh.monash.edu.au)Xian-Mo Zhang(Shool of Information Tehnology & Computer SieneUniversity of WollongongWollongong, NSW 2522, Australiaxianmo�uow.edu.au)Abstrat: Nonhomomorphiity is a new nonlinearity riterion of a mapping or S-boxused in a private key enryption algorithm. An important advantage of nonhomomor-phiity over other nonlinearity riteria is that the value of nonhomomorphiity is easyto estimate by the use of a fast statistial method. Due to the Law of Large Numbers,suh a statistial method is highly reliable. Major ontributions of this paper are (1)to expliitly express the nonhomomorphiity by other nonlinear harateristis, (2) toidentify tight upper and lower bounds on nonhomomorphiity, and (3) to �nd the meanof nonhomomorphiity over all the S-boxes with the same size. It is hoped that theseresults on nonhomomorphiity failitate the analysis and design of S-boxes.Key Words: Boolean Funtions, Cryptanalysis, Cryptography, Nonhomomorphiity,S-boxes.Categories: E31 IntrodutionThe so-alled S-boxes, whih are funtionally idential to mappings or tuples ofBoolean funtions, are of ritial importane to the strength of a blok enryptionalgorithm or ipher. In the past deade, the analysis and design of S-boxes hasattrated a tremendous amount of attention. This paper fouses on new methodsor perspetives for the analysis of S-boxes. More spei�ally, it deals with a newnonlinearity indiator alled nonhomomorphiity.To understand the motivation behind the new onept, let us �rst note thata mapping F from Vn to Vm is aÆne, i.e., F (x) = xB � � where x 2 Vn, B is a�xed n�m matrix, if and only if F satis�es suh a property that for any evennumber k with k � 4, we have F (u1)�� � ��F (uk) = 0 whenever u1�� � ��uk = 0.Now onsider a non-aÆne funtion F on Vn. If F (u1)�� � ��F (uk) = 0, thenF satis�es the aÆne property at the partiular vetor (u1; : : : ; uk). On the otherhand, if F (u1) � � � � � F (uk) 6= 0, then F behaves in a way that is against theaÆne property at (u1; : : : ; uk).



The above disussions indiate that F (u1) � � � � � F (uk) 6= 0 is a usefulharateristi that di�erentiates a non-aÆne funtion from an aÆne one. Thisleads us to onsider the number of vetors (u1; : : : ; uk) in Vn, satisfying u1 �� � � � uk = 0 and F (u1) � � � � � F (uk) 6= 0, as a new nonlinearity riterion. Weall this new riterion the kth-order nonhomomorphiity of F .Nonhomomorphiity has several interesting properties inluding (1) it ex-plores non-aÆnity from a new perspetive; (2) it an be preisely alulated byother indiators; (3) the mean of nonhomomorphiity over all the S-boxes withthe same size an be preisely identi�ed; (4) there exists a fast statistial methodto estimate the nonhomomorphiity of an S-box.The rest of this paper is organized as follows. In Setion 2, we introdue thebasi de�nitions and notations used in this paper. In Setion 3, we survey pre-viously known results on the nonhomomorphiity of S-boxes. In Setion 4, givea formula to alulate the nonhomomorphiity of S-boxes by other indiators.This formula shows a lose relationship between nonhomomorphiity and otherimportant riteria. In Setion 5, we establish tight upper and lower bounds onthe nonhomomorphiity of S-boxes. In Setion 6, we establish the mean of non-homomorphiity over all the S-boxes with the same size. In Setions 7 and 8 weshow that the mean of nonhomomorphiity and the relative nonhomomorphiityare relevant to a statistial method for estimating the nonhomomorphiity ofS-boxes. In Setion 9, we ompare nonhomomorphiity with nonlinearity, high-lighting one again the importane of studying the nonhomomorphiity of S-boxes. In Setion 10, we examine nonhomomorphiity in some speial ases andshow appliations of nonhomomorphiity using a onrete example. Setion 11loses the paper.2 Boolean Funtions and S-boxesDenote by Vn the vetor spae of n tuples of elements from GF (2). The truthtable of a funtion f from Vn to GF (2) (or simply funtions on Vn) is a(0; 1)-sequene de�ned by (f(�0); f(�1); : : : ; f(�2n�1)), and the sequene of fis a (1;�1)-sequene de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)), where�0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). f is said to bebalaned if its truth table ontains an equal number of ones and zeros.De�nition 1. A funtion f on Vn is alled an aÆne funtion if f(x) =  �a1x1�� � ��anxn where and eah aj and  are onstant in GF (2). In partiular,f is alled a linear funtion if  = 0. A mapping from Vn to Vm, F , is an aÆne(linear) if all the omponent funtions of F are aÆne (linear).De�nition 2. The Hamming weight of a (0; 1)-sequene � is the number of onesin the sequene. Given two funtions f and g on Vn, the Hamming distaned(f; g) between them is de�ned as the Hamming weight of the truth table off(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of f , denoted by Nf , isthe minimal Hamming distane between f and all aÆne funtions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the aÆne funtionson Vn.



Given two sequenes a = (a1; : : : ; am) and b = (b1; : : : ; bm), their omponent-wise produt is denoted by a�b, while the salar produt (sum of omponent-wiseproduts) is denoted by ha; bi.The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n,denoted by Hn, is generated by the reursive relationHn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : ; H0 = 1:The ith row (olumn) ofHn, i = 0; 1; : : : ; 2n�1, is the sequene of linear funtion'i on Vn, where 'i = h�i; xi and �i is the binary representation of integer i.De�nition 3. Let f be a funtion on Vn. For a vetor � 2 Vn, denote by �(�)the sequene of f(x � �). Thus �(0) is the sequene of f itself and �(0) � �(�)is the sequene of f(x) � f(x � �). Let �(�) be the salar produt of �(0) and�(�). Namely �(�) = h�(0); �(�)i�(�) is alled the auto-orrelation of f with a shift �.The following formula is well known to the researhers. A simple proof to-gether with appliations an be found, for instane, in [8℄(�(�0); �(�1); : : : ; �(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2) (1)where �i is the binary representation of an integer i and `i is the ith row of Hn,i = 0; 1; : : : ; 2n � 1.A funtion f on Vn is alled a bent funtion [7℄ if h�; `ii2 = 2n for everyi = 0; 1; : : : ; 2n � 1, where � is the sequene of f and `i is a row in Hn. A bentfuntion on Vn exists only when n is a positive even number, and it ahieves thehighest possible nonlinearity 2n�1 � 2 12n�1.De�nition 4. An n�m S-box or substitution box is a mapping from Vn to Vm,i.e., F = (f1; : : : ; fm), where n and m are integers with n � m � 1 and eahomponent funtion fj is a funtion on Vn. In this paper, we use the terms ofmapping and S-box interhangeably. F is an aÆne mapping if it an be writtenas F (x) = xB � �, where x = (x1; : : : ; xn), B is an n �m matrix on GF (2),and � a vetor in Vm. When � is the zero vetor, F is said to be linear.In ryptography we are interested primarily in regular S-boxes. A mappingF = (f1; : : : ; fm) is said to be regular if F (x) runs through eah vetor in Vm2n�m times while x runs through Vn one. Clearly n�m S-boxes exist only forn � m.A useful onlusion, whih appears many times in the literature, for example,in binary ase in Corollary 7.39 of [3℄, an be desribed as follows:



Lemma 1. Let F = (f1; : : : ; fm) be an n � m mapping, where n and m areintegers with n � m � 1 and eah fj(x) is a funtion on Vn. Then F is regulari.e., F runs through all the m-dimensional vetors eah 2n�m times while x runsthrough all the n-dimensional vetors eah one if and only if any nonlinearombination of f1; : : : ; fm, f(x) =Lmj=1 jfj(x); is balaned.The onept of nonlinearity an be extended to the ase of an S-box [6℄.De�nition 5. The standard de�nition of the nonlinearity of F = (f1; : : : ; fm)is NF = mingfNgjg = mMj=1 jfj ; j 2 GF (2); (1; : : : ; m) 6= (0; : : : ; 0)g:Notation 1 Let F = (f1; : : : ; fm) be an n � m mapping, � 2 Vn, and �j bethe vetor in Vm that orresponds to the binary representation of an integer j.De�ne k�(�) as the number of times F (x)�F (x��) runs through � 2 Vm whilex runs through all the vetors in Vn one, The di�erene distribution table of Fis a matrix spei�ed as follows:K = 26664 k�0(�0) k�1(�0) : : : k�2m�1(�0)k�0(�1) k�1(�1) : : : k�2m�1(�1)...k�0(�2n�1) k�1(�2n�1) : : : k�2m�1(�2n�1)37775where �j is the vetor in Vn that orresponds to the binary representation of j.Let �j = (b1; : : : ; bm) be the vetor in Vm that orresponds to the binary repre-sentation of an integer j, j = 0; 1; : : : ; 2m�1. In addition, set gj =Lmu=1 bufu bethe jth linear ombination of the omponent funtions of F . Denote the sequeneof gj by �j . SetP = 26664 h�0; `0i2 h�1; `0i2 � � � h�2m�1; `0i2h�0; `1i2 h�1; `1i2 � � � h�2m�1; `1i2...h�0; `2n�1i2 h�1; `2n�1i2 � � � h�2m�1; `2n�1i237775where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.Denote the auto-orrelation of gj with shift � by �j(�). SetD = 26664 �0(�0) �1(�0) : : : �2m�1(�0)�0(�1) �1(�1) : : : �2m�1(�1)...�0(�2n�1) �1(�2n�1) : : : �2m�1(�2n�1)37775Two interesting properties of the di�erene distribution table K are2m�1Xj=0 k�j (�i) = 2n; i = 0; 1; : : : ; 2n � 1; and (2)k�0(�0) = 2n; k�j (�0) = 0; j = 1; : : : ; 2m � 1 (3)



Sine both �0 and `0 are the all-one sequene of length 2n and `j is (1;�1)balaned for j > 0, we haveh�0; `0i = 2n; h�0; `ji = 0; j = 1; : : : ; 2n � 1: (4)3 Introdution to NonhomomorphiityThe following lemmas an be found in [11℄.Lemma 2. Let F be an n�m mapping.1. If F is an aÆne mapping then for any even number k with k � 4, we haveF (u1)� F (u2)� � � � � F (uk) = 0 whenever u1 � u2 � � � � � uk = 0,2. if there exists an even number k with k � 4 suh that F (u1)�F (u2)� � � � �F (uk) = 0 whenever u1 � u2 � � � � � uk = 0, then F is an aÆne mapping.Lemma 2 explores a haraterization of aÆne mappings. From the lemma,if an n � m mapping satis�es F (u1) � F (u2) � � � � � F (uk) = 0 for a largenumber of k-tuples of vetors (u1; : : : ; uk) in Vn with u1 � u2 � � � � � uk = 0,then F behaves more like an aÆne mapping. This leads us to introdue a newnonlinearity riterion.Notation 2 Let F be an n �m mapping and k an integer (even or odd) with1 � k � 2n. Denote by H(k)F;�(�) the olletion of ordered k-tuples (u1; u2; : : : ; uk)of vetors in Vn satisfying Lkj=1 uj = � andLkj=1 F (uj) = � where � 2 Vn and� 2 Vm. Set ~q(k)F;�(�) = (1 k = 0#H(k)F;�(�) if k > 0where # denote the ardinal number of a set.In partiular, from Notation 2, it is easy to see~q(1)F;�(�) = �1 if F (�) = �0 if F (�) 6= � (5)A formal de�nition for nonhomomorphiity follows.De�nition 6. Let F be an n�m mapping, and k be an even number with k � 4.P� 6=0 ~q(k)F;�(0) is alled the kth-order nonhomomorphiity of F , denoted by ~q(k)F ,i.e., ~q(k)F =P� 6=0 ~q(k)F;�(0).Note that nonhomomorphiity is de�ned for an even order k only. This isbeause the harateristi properties shown in Lemma 2 annot be extended tothe ase of an odd k.The onept of kth-order nonhomomorphiity was �rst introdued in [9℄. Theemphasis of [9℄ was plaed on Boolean funtions, namely n�m S-boxes withm =



1. The work was arried out further in [11℄ where the kth nonhomomorphiity ofgeneral n�m S-boxes was studied, albeit for the speial ase of k = 4. This leavesan unsolved problem in the ase of an arbitrary k with k � 4. In this paper wesolve the problem by presenting a set of results on the kth nonhomomorphiityof general n � m S-boxes for any even k with k � 4. Tehniques employed inobtaining the results are di�erent from those in [9, 11℄, and represent a non-trivialextension of the previous works.From De�nition 6, it beomes lear that the following property is true.Lemma 3. Let F be an n�m mapping. For any �xed integer s with s � 2 andany �xed vetor in Vn, the following equation holds:X�2Vm ~q(k)F;�(�) = 2(k�1)nLemma 4. Let F be an n�m mapping and s be an integer with s � 2. Then~q(s)F;�(�) = X�02Vm X�02Vn ~q(s�1)F;�0 (�0)~q(1)F;���0(�� �0)Proof.~q(s)F;�(�)= #f(u1; : : : ; us)jLsj=1 uj = �; Lsj=1 F (uj) = �g=P�02Vn #f(u1; : : : ; us�1)jLs�1j=1 uj = �0; Ls�1j=1 F (uj) = F (�0 � �)� �g=P�02Vn ~q(s�1)F;F (�0)��(�0)=P�0P�02Vn ~q(s�1)F;�0��(�0)�F (�� �; �0)~q(1)F;�0(� � �0)=P�0P�02Vn ~q(s�1)F;�0 (�0)~q(1)F;���0(�� �0)Notation 3 De�ne a 2m+n � 2m+n real valued (0; 1) matrix Q whose entry onthe ross of the th row and the 0th olumn is ~q(1)F;���0(���0), where  = (�; �)and 0 = (�0; �0).In addition, de�ne a real-valued (0; 1)-sequene of length 2m+n,� = (0; 1; : : : ; 2m+n�1), as followsj = (1 if ~q(1)F;�(�) = 10 if ~q(1)F;�(�) = 0where (�; �) is the binary representation of an integer j.Lemma 5. Let F = (f1; : : : ; fm) be an n�m mapping and �j be the vetor inVm that is the binary representation of an integer j, j = 0; 1; : : : ; 2m � 1. Setgj = h�j ; F i. Denote the sequene of gj by �j . Then h�;Lpi = h�t; `si where Lpis the pth row of Hm+n, and p = t � 2n + s, 0 � t � 2m � 1, 0 � s � 2n � 1.



Proof. From the onstrution of a Sylvester Hadamard matrix, Lp an be ex-pressed as Lp = etN `s, whereN denotes Kroneker produt, i.e.,Lp = (d0`s; d1`s; : : : ; d2m�1`s)where et = (d0; d1; : : : ; d2m�1) and `s = (0; 1; : : : ; 2n � 1). Hene et is thesequene of a linear funtion  on Vm and  (y) = h�t; yi, where �t is the binaryrepresentation of an integer t.By a straightforward veri�ation, one an geth�;Lpi = 2n�1Xi=0 2m�1Xj=0 ~q(1)F;�j (�i)dji= 2n�1Xi=0 i 2m�1Xj=0 ~q(1)F;�j (�i)dj= 2n�1Xi=0 i 2m�1Xj=0 ~q(1)F;�j (�i)(�1) (�j)Note that for a �xed �i, from (5), we have P2m�1j=0 ~q(1)F;�j (�i)(�1) (�j) =(�1) (F (�i)) = (�1)h�t;F (�i)i. We also note that (�1)h�t;F (�0)i; (�1)h�t;F (�1)i,: : : , (�1)h�t;F (�2n�1)i is identi�ed with the sequene �t, de�ned in Setion 5.Hene we have proved h�;Lpi = h�t; `si.Lemma 6. Let F be an n�m mapping and s be an integer (even or odd) withs � 1. Then the entry on the ross of the th row and the 0th olumn of Qs ispreisely identi�ed with ~q(s)F;�(�).Proof. By indution on s. From the de�nition ofQ, the lemma holds when s = 1.Assume that the lemma holds when 1 � s � k � 1.Consider ~q(k)F;�(�). From Lemma 4, we have~q(k)F;�(�) = X�02Vm X�02Vn ~q(s�1)F;�0 (�0)~q(s)F;���0(�� �0)Finally reall the assumption that the theorem holds when 2 � s � k � 1. Byusing Lemma 4 we have proved the lemma.Rewrite �Hm+n as�Hm+n = (h�;L0i; h�;L1i; : : : ; h�;L2m+n�1i)where Li denotes the ith row ofHm+n and the binary values 0 and 1 are regardedreal numbers.Hene it is easy to verifyQHm+n = Hm+ndiag(h�;L0i; h�;L1i; : : : ; h�;L2m+n�1i)



and 2�m�nHm+nQHm+n = diag(h�;L0i; h�;L1i; : : : ; h�;L2m+n�1i)This auses2�m�nHm+nQsHm+n = diag(h�;L0is; h�;L1is; : : : ; h�;L2m+n�1is)or QsHm+n = Hm+ndiag(h�;L0is; h�;L1is; : : : ; h�;L2m+n�1is) (6)Comparing the top row on the two sides of the equality (6) and using Lemma6, we obtain(~q(s)F;�0(�0); ~q(s)F;�1(�0); : : : ; ~q(s)F;�2m�2(�2n�1); ~q(s)F;�2m�1(�2n�1))Hm+n= (h�;L0is; h�;L1is; : : : ; h�;L2m+n�1is) (7)where �i is the binary representation of an integer i with 0 � i � 2n � 1, while�j is the binary representation of an integer j with 0 � j � 2m � 1.From (7) and Lemma 5, we onludeTheorem 1. Let F be an n�m mapping and s be an integer (even or odd) withs � 1. Then(~q(s)F;�0(�0); ~q(s)F;�1(�0); : : : ; ~q(s)F;�2m�2(�2n�1); ~q(s)F;�2m�1(�2n�1))= 2�m�n(h�0; `0is; h�1; `0is; : : : ; h�2m�2; `2n�1is; h�2m�1; `2n�1is)Hm+nwhere �� is de�ned in Lemma 5 and `� is the � row of Hn, � is the binaryrepresentation of an integer j with j = 0; 1; : : : ; 2m � 1, and � is the binaryrepresentation of an integer i with i = 0; 1; : : : ; 2n � 1.4 Calulating ~q(s)F~q(4)F;0(0) has been studied in [11℄. In this setion we turn our attention to ~q(k)F;0(0)with k � 0.Let � = 0 and � = 0 in Lemma 6. Then eah entry on the diagonal of Qs ispreisely identi�ed with ~q(s)F;0(0).Comparing the leftmost entry on the two sides of the equality in Theorem 1,we onludeLemma 7. Let F be an n�m mapping and s be an integer (even or odd). Then~q(s)F;0(0) = 2�m�n 2m�1Xj=0 2n�1Xi=0 h�j ; `iis



From De�nition 6, we have ~q(s)F =P� 6=0 ~q(s)F;�(0) = 2(k�1)n�~q(s)F;0(0). Thereforethe following theorem holds:Theorem 2. Let F be an n�m mapping and s be an even number with s � 4.Then the nonhomomorphiity of F , denoted by ~q(s)F , satis�es~q(s)F = 2(s�1)n � 2�m�n 2m�1Xj=0 2n�1Xi=0 h�j ; `iiswhere h�j ; `ii is de�ned in Notation 1.Sine both �0 and `0 are identi�ed with the all-one sequene of length 2n, and`i is (1;�1)-balaned for i = 1; : : : ; 2n � 1, Theorem 2 has another expression:~q(s)F = 2(s�1)n � 2(s�1)n�m � 2�m�n 2m�1Xj=1 2n�1Xi=0 h�j ; `iisReplaing s in the equality in Theorem 1 by t, where t � 1 is an integerindependent of s, we obtain another equality. Carrying out the inner produtbetween the two equalities, we have provedX�2Vm X�2Vn ~q(s)F;�(�)~q(t)F;�(�) = 2�m�n 2m�1Xj=0 2n�1Xi=0 h�j ; `iis+tBy using Lemma 7, we have provedCorollary 1. Let F be an n � m mapping and s � 1 and t � 1 be any twointegers. Then ~q(s+t)F;0 (0) = X�2Vm X�2Vn ~q(s)F;�(�)~q(t)F;�(�)5 Bounds on ~q(s)FWe �rst introdue H�older's Inequality whih an be found in [2℄.Lemma 8. Let j � 0 and dj � 0 be real numbers, where j = 1; : : : ; t, and let pand q satisfy 1p + 1q = 1 and p > 1. Then( tXj=1 pj )1=p( tXj=1 dqj )1=q � tXj=1 jdjwhere the quality holds if and only if j = �dj , j = 1; : : : ; t for a onstant � � 0.



When j , dj , p and q satisfy the ondition that j � 0, dj = �1 if j = 10 if j = 0 ,p = s2 and q = ss�2 , H�older's Inequality givestXj=1  s2j � t1� s2 ( tXj=1 j) s2 (8)where the quality holds if and only if 1, : : :, t are all idential.Lemma 9. Let F be an n�m mapping and s be even with s � 4. Then ~q(s)F;0(0),satis�es 2(s�1)n�m + (2m � 1)2ns2 �m � ~q(s)F;0(0) � 2(s�1)nwhere the �rst equality holds if and only if every nonzero linear ombination ofthe omponent funtions of F is bent, and the seond equality holds if and onlyif F is aÆne.Proof. Consider the �rst inequality. From Lemma 7, we have~s(s)F;0(0) = 2(s�1)n�m + 2�m�n 2m�1Xj=1 2n�1Xi=0 h�j ; `iisBy using (8) whih is a speial ase of Lemma 8, we obtain~q(s)F;0(0) � 2(s�1)n�m + 2�m�n[((2m � 1)2n)1� s2 (2m�1Xj=1 2n�1Xi=0 h�j ; `ii2) s2 ℄Aording to Parseval's equation (Page 416 of [4℄), we haveP2n�1i=0 h�j ; `ii2 = 22nfor eah j, 1 � j � 2m � 1. Hene~q(s)F;0(0) � 2(s�1)n�m + 2�m�n[((2m � 1)2n)1� s2 ((2m � 1)22n) s2 ℄ (9)This proves the �rst inequality. One again by using (8), the equality in (9)holds if and only if h�j ; `ii2 are idential for all j = 1; : : : ; 2m � 1 and i =0; 1; : : : ; 2n � 1. Parseval's equation implies that, in this ase, h�j ; `ii2 = 2n forall j = 1; : : : ; 2m � 1 and i = 0; 1; : : : ; 2n � 1. Reall the de�nition of a bentfuntion. Thus we have proved that the equality in (9) holds if and only if eahgj is bent, where 1 � j � 2m � 1.By the de�nition of the sth-order nonhomomorphiity of F and Lemma 2,the seond inequality is true, and the equality holds if and only if F is aÆne.Realling De�nition 6, we onludeTheorem 3. Let F be an n � m mapping. Then the sth-order nonhomomor-phiity of F , ~q(s)F , satis�es0 � ~h(s)F � 2(s�1)n � 2(s�1)n�m � (2m � 1)2ns2 �mwhere the �rst equality holds if and only if F is aÆne, and the seond equalityholds if and only if every nonzero linear ombination of the omponent funtionsof F is bent.



If an n�m mapping, F , has the property that every nonzero linear ombi-nation of the omponent funtions of F is bent, then F is said to be perfetlynonlinear. In this ase, we have m � 12n (see [5℄).6 Mean of ~q(k)F over all FNotation 4 Let Ok (k even) denote the olletion of k-tuples (u1; : : : ; uk) ofvetors in Vn satisfying uj1 = uj2 ; : : : ; ujk�1 = ujk , where fj1; j2; : : : ; jkg =f1; 2; : : : ; kg. Let Dk denote the olletion of k-tuples (u1; : : : ; uk) of vetors inVn satisfying u1 � � � � � uk = 0 and (u1; : : : ; uk) 62 Ok.Obviously #Ok +#Dk = 2(k�1)n (10)It is easy to verifyLemma 10. Let n, m and k be positive integers and u1 � � � � � uk = 0, whereeah uj is a �xed vetor in Vn. ThenF (u1)� � � � � F (uk) = 0holds for every n�m mapping F if and only if k is even and (u1; : : : ; uk) 2 Ok.The following lemma an be found in [9℄Lemma 11. In Notation 4, let k be an even with 2 � k � 2n. Then#Dk = k=2Xt=1 �2nt � Xp1+���+pt=k=2; pj>0 (k)!(2p1)! � � � (2pt)!Theorem 4. Let n, m be positive integers and k be an even with 2 � k � 2n.Then the mean of ~q(k)F over all the n�m mappings, i.e., 2�m�2nPF ~q(k)F , satis�es2�m�2nXf ~q(k)F = 2�m(2(k�1)n � ok)Proof. Note that for eah (u1; : : : ; uk) 2 Dk, for a random n �m mapping F ,F (u1)� � � � � F (uk) takes every vetor in Vm with an equal probability of 2�m.Therefore the mean of ~q(k)F;�(0) over all the n�mmappings, i.e., 2�m�2nPF ~q(k)F;�(0)satis�es 2�m�2nXF ~q(k)F;�(0) = 2�m�2nXF #(H(k)F;�(0)) = 2�m#Dk (11)From De�nition 6, we have2�m�2nXF ~q(k)F = 2�m�2nX� 6=0XF ~q(k)F;�(0) = (1� 2�m)#Dk (12)Applying (10) to (12), we have proved the theorem.



7 Relative NonhomomorphiityThe onept of relative nonhomomorphiity introdued in this setion is usefulfor a statistial tool to be introdued later.De�nition 7. Let F be an n�m mapping and k be an even with k � 4. De�nethe kth-order relative nonhomomorphiity of F , denoted by �(k)F , as �(k)F = ~q(k)F#Dk ,i.e., �(k)F = ~q(k)F2(k�1)n�ok .From Theorem 4, we obtainCorollary 2. The mean of �(k)F over all the funtions on Vn, i.e., 2�m�2nPf �(k)F ,satis�es 2�m�2nXF �(k)F = 1� 2�mIt is interesting to note that 2�m�2nPf �(k)F = 1� 2�m is not relevant to k.From Corollary 2, we obtain�(k)F 8>><>>:� 1� 2�m then F is not less nonhomomorphithan the mean of nonhomomorphiity< 1� 2�m then F is less nonhomomorphithan the mean of nonhomomorphiity (13)If �(k)F is muh smaller than 1� 2�m, then F should be onsidered to be ryp-tographially weak.8 Estimating NonhomomorphiityAs shown in Theorem 2, the nonhomomorphiity of an S-boxes an be deter-mined preisely. In this setion, however, we introdue a statistial method toestimate nonhomomorphiity. Suh a method is useful in the fast analysis offuntions.Denote a real-valued (0; 1) funtion on Dk, t(u1; : : : ; uk), as followst(u1; : : : ; uk) = �1 if F (u1)� � � � � F (uk) 6= �0 otherwiseHene from the de�nition of nonhomomorphiity, we have~q(k)F = X(u1;:::;uk)2Dk t(u1; : : : ; uk)Let 
 be a random subset of Dk. Write ! = #
 andt = 1! X(u1;:::;uk)2
 t(u1; : : : ; uk) (14)



Note that this is the \sample mean" [1℄. In partiular, 
 = R(k)n � Ok, t isidenti�ed with the \true mean" or \population mean" [1℄, namely, �(k)F .Now onsiderP(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2. We haveX(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2= X(u1;:::;uk)2
 t2(u1; : : : ; uk)� 2t � X(u1;:::;uk)2
 t(u1; : : : ; uk) + !t2Note that t2(u1; : : : ; uk) = t(u1; : : : ; uk). From (14),X(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2 = !t� 2!t2 + !t2= !t� 2!t2 + !t2= !t(1� t) (15)Hene the quantity of q 1!�1P(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2, whih is alledthe \sample standard deviation" [1℄ and is usually denoted by �, an be expressedas � =vuut 1! � 1 X(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2 =s!t(1� t)! � 1 (16)By using (4.4) in Setion 4.B of [1℄, the \true mean" or \population mean", �(k)f;1,an be bounded by t� Ze=2 �p! < �(k)f;1 < t+ Ze=2 �p! (17)where Ze=2 denotes the value Z of a \standardized normal distribution". Notethat (17) holds with a probability of (1� e)100% (see for example [1℄).For instane,when e = 0:2, Ze=2 = 1:28, and (17) holds with a probability of 80%;when e = 0:1, Ze=2 = 1:64, and (17) holds with a probability of 90%;when e = 0:05, Ze=2 = 1:96, and (17) holds with a probability of 95%;when e = 0:02, Ze=2 = 2:33, and (17) holds with a probability of 98%;when e = 0:01, Ze=2 = 2:57, and (17) holds with a probability of 99%;when e = 0:001, Ze=2 = 3:3, and (17) holds with a probability of 99:9%:From (14), we have 0 � t < 1. It is easy to verify that � in (16) satis�es0 � � � 12q !!�1 . This implies that (17) an be replaed simply byt� Ze=22p! � 1 < �(k)F < t+ Ze=22p! � 1 ; (18)



where (18) holds with a probability of (1 � e)100%. Hene if !, i.e., #
, islarge, then the lower bound and the upper bound on �(k)F in (17) are loserto eah other. On the other hand, if we hoose ! = #
 large enough, thenZe=2 �p! is suÆiently small, and hene (17) and (18) will provide us with usefulinformation. For instane, viewing (17) and (18) and Corollary 2, set e = 0:001and Ze=2 = 3:3, we an hoose ! = #
 suh that Ze=22p!�1 < 2�(m+2). In this asethe estimation of nonhomomorphiity has a reliability of 99:9%. This indiatesthat #
 = ! � 5 � 22m+5 is suÆiently large.In summary, we an analyze the nonhomomorphi harateristis of a map-ping from Vn to Vm in the following steps:1. we randomly �x a subset of Dk, say 
, where ! = #
 is large enough (say! � 5 � 22m+5),2. by using (14), we determine t, i.e., \the sample mean",3. by using (17), we determine the range of ~q(k)F#Dk , with a high reliability,We note that the statistial analysis is eÆient due to the following reasons:(1) the relative nonhomomorphiity, ~q(k)F#Dk is preisely identi�ed by the use of\population mean" or \true mean", a terminology in statistis,(2) the method is highly reliable,(3) ! is dependent only on the size m,but not on n. Hene the method does notrequire a huge amount of omputing.From the Law of Large Numbers [1℄, as n grows larger and larger, the \samplemean" t beomes loser and loser to the \true mean" ~q(k)F#Dk .Reall De�nition 2. To determine the nonlinearity of an individual funtion fon Vn, we need to alulate d(f; 'i) where '0, '1, : : :, '2n+1�1 are all the aÆnefuntions on Vn. Let '0, '1, : : :, '2n�1 be all the linear funtions on Vn. Then1� '0, 1� '1, : : :, 1� '2n�1 are all the aÆne, but not linear, funtions on Vn.Note that d(f; 1�'i) = 2n�d(f; 'i). Hene we need to alulate eah Hammingdistane d(f; 'i), for j = 0; 1; : : : ; 2n � 1. On the other hand, to alulate eahHamming distane d(f; 'i), we should ompare the value f(�) with the value'i(�) for eah � 2 Vn.Now onsider De�nition 5. To determine the nonlinearity of an n � m S-box, we need to ompare value gj(�) and the value 'i(�), (2m � 1)22n timesaltogether, where j = 1; : : : ; 2m � 1, i = 0; 1; : : : ; 2n � 1, � = �0; �1; : : : ; �2n�1.Compared with the determination of nonlinearity of an n � m S-box, herewe an use the statistial method with a reliability of 99:9%. To ahieve this weneed to hoose 
 with #
 = ! � 5 � 22m+5 whih is not relevant to n and muhless than (2m � 1)22n. Hene the statistial method saves time in omputing.As the estimated value of nonhomomorphiity has a high reliability, it anbe used to examine other riteria. This will be seen in Setion 9.



9 Comparing Nonhomomorphiity with NonlinearityLet F = (f1; : : : ; fm) be an n�mmapping and �j be the vetor in Vm that is thebinary representation of an integer j, j = 0; 1; : : : ; 2m � 1. Set gj =Lmu=1 bufu.Denote the sequene of gj by �j .Similarly, let F � = (f�1 ; : : : ; f�m) be an n�m mapping and �j be the vetorin Vm that is the binary representation of an integer j, j = 0; 1; : : : ; 2m � 1. Setg�j =Lmu=1 buf�u . Denote the sequene of g�j by ��j .Sine both �0 and `0 are the all-one sequene of length 2n and `i is (1;�1)-balaned, h�0; `0i = 2n; h�0; `ii = 0; i = 1; : : : ; 2n � 1Similarly h��0 ; `0i = 2n; h��0 ; `ii = 0; i = 1; : : : ; 2n � 1We rewrite eah jh�j ; `iij as ps, j = 1; : : : ; 2m� 1, i = 0; 1; : : : ; 2n� 1 and listall the ps as follows p1; p2; : : : ; p2n(2m�1)where pj � pi if j > i.Similarly, rewrite eah jh��j ; `iij as p�s , j = 1; : : : ; 2m � 1, i = 0; 1; : : : ; 2n � 1and list all the p�s as follows p�1; p�2; : : : ; p�2n(2m�1)where p�j � p�i if j > i.We onsider the following two ases.Case 1: pj = p�j , j = 1; : : : ; 2n(2m � 1). By using Theorem 2, we have ~q(k)F =~q(k)F� , where k is any even number with k � 4.Case 2: there exists some j0 suh that pj = p�j , j = 1; : : : ; j0 and pj0+1 >P �j0+1. Then there exists an even number k0 suh that pkj0=p�kj0 > 2n�j0 for everyeven k with k � k0. This implies that P2n(2m�1)j=1 pkj >P2n(2m�1)j=1 p�kj . Hene2m�1Xj=1 2n�1Xi=0 h�j ; `iik > 2m�1Xj=1 2n�1Xi=0 h��j ; `iikwhere k is any even number with k � k0. By using Theorem 2, we have proved~q(k)F > ~q(k)F� .In summary, we onludeTheorem 5. Let F and F � be two n�m mappings. Then ~q(k)F = ~q(k)F� where k isany even number with k � 4. Otherwise there exists some even number k0 suhthat ~q(k)F > ~q(k)F� or ~q(k)F < ~q(k)F� , where k is any even number with k � k0.By the same reasoning, we an prove



Theorem 6. Let F and F � be two n�m mappings. If Nf > (<)Nf� then thereexists some even number k0 suh that ~q(k)F > (<)~q(k)F� where k is any even numberwith k � k0.We an give Theorem 6 an equivalent statement as follows.Theorem 7. Let F and F � be two n �m mappings. If there exists some evennumber k0 suh that ~q(k)F � ~q(k)F� where k is any even number with k � k0 thenNf � Nf� .Examining Theorem 7, we an see that when k is large, ~q(k)F guarantees ahigh nonlinearity. As ~q(k)F an be statistially estimated, this result an be usefulin failitating the analysis of nonlinear properties of S-boxes.Lemma 12. There exists some even number k0 with k0 � 2n, satis�es the prop-erties in Theorems 6 and 7.Proof. Reall the proof of Theorem 6. We have pj = p�j , j = 1; : : : ; j0 andpj0+1 > P �j0+1. Sine eah pj is an even number, we have pj0+1 � 2 + P �j0+1.Hene pkj0=p�kj0 > 2n � j0 for every even k with k � k0.10 Nonhomomorphiity in Speial CasesThe nonhomomorphiity is more useful in two speial ases: the nonhomomor-phiity of Boolean funtions and the 4th-order nonhomomorphiity of S-boxes.10.1 The Nonhomomorphiity of Boolean funtionsIn fat, a Boolean funtion f on Vn is a degenerated ase of n� 1 S-box. In thisase (13) is speialized as�(k)f 8>><>>:� 12 then f is not less nonhomomorphithan the mean of nonhomomorphiity< 12 then f is less nonhomomorphithan the mean of nonhomomorphiity (19)Obviously (19) is simpler than (13) and hene is easer to use in pratie. Moredetails about the nonhomomorphiity of Boolean funtions an be found in [9℄.Sine a funtion on Vn is an n � 1 S-box, Theorem 4 an be speialized asfollows:Corollary 3. Let n, m be positive integers and k be an even with 2 � k � 2n.Then the mean of ~q(k)F over all the n�m mappings, i.e., 2�m�2nPF ~q(k)F , satis�es2�m�2nXf ~q(k)F = 2�m(2(k�1)n � ok)



10.2 The 4th-order nonhomomorphiity of S-boxesFrom Lemma 2, we an fous on ~q(4)F rather than high order nonhomomorphiity.Furthermore it turns out that ~q(4)F is related to other riteria.Theorem 8. Let F be an n�m S-box. Then(i) ~q(4)F = 23n �P�2VnP�2Vm k2�(�),(ii) ~q(4)F = 23n � 2�m�n[24n +P2m�1j=1 P2n�1i=0 h�j ; `ii4℄,(iii) ~q(4)F = 23n � 2�m[23n +P2m�1j=1 P2n�1i=0 �2j (�i)℄.where k�(�), h�j ; `ii and �2j (�i) have been de�ned in Notation 1,Proof. (i) is speialized from Theorem 1 by setting s = 4.(ii) A useful formula an be found in [10℄: P = HnKHm where P and K arede�ned in Notation 1. Hene P TP = HnKTHmHmKHn = 2mHnKTKHn =2m+n(2�nHnKTKHn). Note that 2�nHn is the inverse of Hn. From linear alge-bra, similar matries have the same sum of the elements on the diagonals. HeneP2m�1j=0 P2n�1i=0 h�j ; `ii4 =P�2VnP�2Vm k2�(�).Due to (4),P�2VnP�2Vm k2�(�) = 2�m�n[24n+P2m�1j=1 P2n�1i=0 h�j ; `ii4℄. Wehave proved (ii).By using (1) and (i), we obtain (iii).Example 1. The Data Enryption Algorithm or DES employs eight 6� 4 map-pings or S-boxes. Consider the �rst mapping F . From De�nition 6, we diretlyalulate ~q(4)F = 231264. (Also we an use a statistial method to �nd an approx-imate value of ~q(4)F ).By using Theorem 8 231264 = 218 � X�2V6 X�2V4 k2�(�)From the property of the di�erene distribution table K, we have k0(0) = 2nand k�(0) = 0, � 6= 0.X�2V6;� 6=0 X�2V4 k2�(�) = 218 � 212 � 231264Write maxfk�(�)j� 2 V6:� 6= 0; � 2 V4g = kM . Hene we havekM X�2V6;� 6=0 X�2V4 k�(�) � X�2V6 X�2V4 k2�(�) = 218 � 212 � 231264One again realling the property of K, we haveP�2Vm k�(�) = 2n, for any� 2 Vn. Hene kM (26 � 1)26 � 218 � 212 � 231264



This implies kM � 6:6. Sine kM is even, kM � 8. This is larger than the triviallower bound kM � 2n�m = 4.Write maxfjh�j ; `iijj1 � j � 24�1; 0 � i � 26�1g = pM . Due to Theorem 8,we have(218 � ~q(4)F )26+4 � 224 = 24�1Xj=1 26�1Xi=0 h�j ; `ii4 � p2M 24�1Xj=1 26�1Xi=0 h�j ; `ii2By using Parseval's equation, Page 416 of [4℄, we haveP26�1i=0 h�j ; `ii2 = 22�6for eah �xed j, j = 1; : : : ; 24 � 1. Hene p2M � 212 � 23126460 > 241. As p2M issquare and hene a multiple of 4, we have p2M � 256. By using De�nition (5), weonlude that NF � 26�1 � 12pM � 24. Reall that the maximum nonlinearityof funtions on V6 is 26�1 � 23�1 = 28 and it an be ahieved only by bentfuntions.Write maxfj�j(�i)j1 � j � 24 � 1; 1 � i � 26 � 1g = �M . One again, dueto Theorem 8, (23�6 � ~q(4)F )24 � 23�6 = 24�1Xj=1 26�1Xi=0 �2j (�i)Notiing �j(�0) = 26, j = 0; 1; : : : ; 24 � 1, we have23�6+4 � 24~q(4)F � 23�6 = 22�6+4 + 24�1Xj=1 26�1Xi=1 �2j (�i) � (24 � 1)(26 � 1)�2MThis proves that �2M � 222 � 218 � 216 � 24~q(4)F(26 � 1)(24 � 1) > 176As �2M is square, it must be a multiple of 4. Hene we have �2M � 196 and�M � 14.11 ConlusionsWe have proposed the nonhomomorphiity of S-boxes as a new nonlinearityriteria. We have expliitly expressed the nonhomomorphiity by other nonlinearharateristis, identi�ed tight upper and lower bounds on nonhomomorphiityas well as the mean of nonhomomorphiity over all the S-boxes with the samesize, and proposed a statistial method to estimate the nonhomomorphiity ofS-boxes. We have also demonstrated appliations of nonhomomorphiity in theanalysis of S-boxes. It is our belief that more appliations of the new riterionwill be identi�ed in the future.
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