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t: Nonhomomorphi
ity is a new nonlinearity 
riterion of a mapping or S-boxused in a private key en
ryption algorithm. An important advantage of nonhomomor-phi
ity over other nonlinearity 
riteria is that the value of nonhomomorphi
ity is easyto estimate by the use of a fast statisti
al method. Due to the Law of Large Numbers,su
h a statisti
al method is highly reliable. Major 
ontributions of this paper are (1)to expli
itly express the nonhomomorphi
ity by other nonlinear 
hara
teristi
s, (2) toidentify tight upper and lower bounds on nonhomomorphi
ity, and (3) to �nd the meanof nonhomomorphi
ity over all the S-boxes with the same size. It is hoped that theseresults on nonhomomorphi
ity fa
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tionThe so-
alled S-boxes, whi
h are fun
tionally identi
al to mappings or tuples ofBoolean fun
tions, are of 
riti
al importan
e to the strength of a blo
k en
ryptionalgorithm or 
ipher. In the past de
ade, the analysis and design of S-boxes hasattra
ted a tremendous amount of attention. This paper fo
uses on new methodsor perspe
tives for the analysis of S-boxes. More spe
i�
ally, it deals with a newnonlinearity indi
ator 
alled nonhomomorphi
ity.To understand the motivation behind the new 
on
ept, let us �rst note thata mapping F from Vn to Vm is aÆne, i.e., F (x) = xB � � where x 2 Vn, B is a�xed n�m matrix, if and only if F satis�es su
h a property that for any evennumber k with k � 4, we have F (u1)�� � ��F (uk) = 0 whenever u1�� � ��uk = 0.Now 
onsider a non-aÆne fun
tion F on Vn. If F (u1)�� � ��F (uk) = 0, thenF satis�es the aÆne property at the parti
ular ve
tor (u1; : : : ; uk). On the otherhand, if F (u1) � � � � � F (uk) 6= 0, then F behaves in a way that is against theaÆne property at (u1; : : : ; uk).



The above dis
ussions indi
ate that F (u1) � � � � � F (uk) 6= 0 is a useful
hara
teristi
 that di�erentiates a non-aÆne fun
tion from an aÆne one. Thisleads us to 
onsider the number of ve
tors (u1; : : : ; uk) in Vn, satisfying u1 �� � � � uk = 0 and F (u1) � � � � � F (uk) 6= 0, as a new nonlinearity 
riterion. We
all this new 
riterion the kth-order nonhomomorphi
ity of F .Nonhomomorphi
ity has several interesting properties in
luding (1) it ex-plores non-aÆnity from a new perspe
tive; (2) it 
an be pre
isely 
al
ulated byother indi
ators; (3) the mean of nonhomomorphi
ity over all the S-boxes withthe same size 
an be pre
isely identi�ed; (4) there exists a fast statisti
al methodto estimate the nonhomomorphi
ity of an S-box.The rest of this paper is organized as follows. In Se
tion 2, we introdu
e thebasi
 de�nitions and notations used in this paper. In Se
tion 3, we survey pre-viously known results on the nonhomomorphi
ity of S-boxes. In Se
tion 4, givea formula to 
al
ulate the nonhomomorphi
ity of S-boxes by other indi
ators.This formula shows a 
lose relationship between nonhomomorphi
ity and otherimportant 
riteria. In Se
tion 5, we establish tight upper and lower bounds onthe nonhomomorphi
ity of S-boxes. In Se
tion 6, we establish the mean of non-homomorphi
ity over all the S-boxes with the same size. In Se
tions 7 and 8 weshow that the mean of nonhomomorphi
ity and the relative nonhomomorphi
ityare relevant to a statisti
al method for estimating the nonhomomorphi
ity ofS-boxes. In Se
tion 9, we 
ompare nonhomomorphi
ity with nonlinearity, high-lighting on
e again the importan
e of studying the nonhomomorphi
ity of S-boxes. In Se
tion 10, we examine nonhomomorphi
ity in some spe
ial 
ases andshow appli
ations of nonhomomorphi
ity using a 
on
rete example. Se
tion 11
loses the paper.2 Boolean Fun
tions and S-boxesDenote by Vn the ve
tor spa
e of n tuples of elements from GF (2). The truthtable of a fun
tion f from Vn to GF (2) (or simply fun
tions on Vn) is a(0; 1)-sequen
e de�ned by (f(�0); f(�1); : : : ; f(�2n�1)), and the sequen
e of fis a (1;�1)-sequen
e de�ned by ((�1)f(�0); (�1)f(�1); : : : ; (�1)f(�2n�1)), where�0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1�1 = (1; : : : ; 1; 1). f is said to bebalan
ed if its truth table 
ontains an equal number of ones and zeros.De�nition 1. A fun
tion f on Vn is 
alled an aÆne fun
tion if f(x) = 
 �a1x1�� � ��anxn where and ea
h aj and 
 are 
onstant in GF (2). In parti
ular,f is 
alled a linear fun
tion if 
 = 0. A mapping from Vn to Vm, F , is an aÆne(linear) if all the 
omponent fun
tions of F are aÆne (linear).De�nition 2. The Hamming weight of a (0; 1)-sequen
e � is the number of onesin the sequen
e. Given two fun
tions f and g on Vn, the Hamming distan
ed(f; g) between them is de�ned as the Hamming weight of the truth table off(x) � g(x), where x = (x1; : : : ; xn). The nonlinearity of f , denoted by Nf , isthe minimal Hamming distan
e between f and all aÆne fun
tions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f; 'i) where '1, '2, : : :, '2n+1 are all the aÆne fun
tionson Vn.



Given two sequen
es a = (a1; : : : ; am) and b = (b1; : : : ; bm), their 
omponent-wise produ
t is denoted by a�b, while the s
alar produ
t (sum of 
omponent-wiseprodu
ts) is denoted by ha; bi.The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of order 2n,denoted by Hn, is generated by the re
ursive relationHn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : ; H0 = 1:The ith row (
olumn) ofHn, i = 0; 1; : : : ; 2n�1, is the sequen
e of linear fun
tion'i on Vn, where 'i = h�i; xi and �i is the binary representation of integer i.De�nition 3. Let f be a fun
tion on Vn. For a ve
tor � 2 Vn, denote by �(�)the sequen
e of f(x � �). Thus �(0) is the sequen
e of f itself and �(0) � �(�)is the sequen
e of f(x) � f(x � �). Let �(�) be the s
alar produ
t of �(0) and�(�). Namely �(�) = h�(0); �(�)i�(�) is 
alled the auto-
orrelation of f with a shift �.The following formula is well known to the resear
hers. A simple proof to-gether with appli
ations 
an be found, for instan
e, in [8℄(�(�0); �(�1); : : : ; �(�2n�1))Hn = (h�; `0i2; h�; `1i2; : : : ; h�; `2n�1i2) (1)where �i is the binary representation of an integer i and `i is the ith row of Hn,i = 0; 1; : : : ; 2n � 1.A fun
tion f on Vn is 
alled a bent fun
tion [7℄ if h�; `ii2 = 2n for everyi = 0; 1; : : : ; 2n � 1, where � is the sequen
e of f and `i is a row in Hn. A bentfun
tion on Vn exists only when n is a positive even number, and it a
hieves thehighest possible nonlinearity 2n�1 � 2 12n�1.De�nition 4. An n�m S-box or substitution box is a mapping from Vn to Vm,i.e., F = (f1; : : : ; fm), where n and m are integers with n � m � 1 and ea
h
omponent fun
tion fj is a fun
tion on Vn. In this paper, we use the terms ofmapping and S-box inter
hangeably. F is an aÆne mapping if it 
an be writtenas F (x) = xB � �, where x = (x1; : : : ; xn), B is an n �m matrix on GF (2),and � a ve
tor in Vm. When � is the zero ve
tor, F is said to be linear.In 
ryptography we are interested primarily in regular S-boxes. A mappingF = (f1; : : : ; fm) is said to be regular if F (x) runs through ea
h ve
tor in Vm2n�m times while x runs through Vn on
e. Clearly n�m S-boxes exist only forn � m.A useful 
on
lusion, whi
h appears many times in the literature, for example,in binary 
ase in Corollary 7.39 of [3℄, 
an be des
ribed as follows:



Lemma 1. Let F = (f1; : : : ; fm) be an n � m mapping, where n and m areintegers with n � m � 1 and ea
h fj(x) is a fun
tion on Vn. Then F is regulari.e., F runs through all the m-dimensional ve
tors ea
h 2n�m times while x runsthrough all the n-dimensional ve
tors ea
h on
e if and only if any nonlinear
ombination of f1; : : : ; fm, f(x) =Lmj=1 
jfj(x); is balan
ed.The 
on
ept of nonlinearity 
an be extended to the 
ase of an S-box [6℄.De�nition 5. The standard de�nition of the nonlinearity of F = (f1; : : : ; fm)is NF = mingfNgjg = mMj=1 
jfj ; 
j 2 GF (2); (
1; : : : ; 
m) 6= (0; : : : ; 0)g:Notation 1 Let F = (f1; : : : ; fm) be an n � m mapping, � 2 Vn, and �j bethe ve
tor in Vm that 
orresponds to the binary representation of an integer j.De�ne k�(�) as the number of times F (x)�F (x��) runs through � 2 Vm whilex runs through all the ve
tors in Vn on
e, The di�eren
e distribution table of Fis a matrix spe
i�ed as follows:K = 26664 k�0(�0) k�1(�0) : : : k�2m�1(�0)k�0(�1) k�1(�1) : : : k�2m�1(�1)...k�0(�2n�1) k�1(�2n�1) : : : k�2m�1(�2n�1)37775where �j is the ve
tor in Vn that 
orresponds to the binary representation of j.Let �j = (b1; : : : ; bm) be the ve
tor in Vm that 
orresponds to the binary repre-sentation of an integer j, j = 0; 1; : : : ; 2m�1. In addition, set gj =Lmu=1 bufu bethe jth linear 
ombination of the 
omponent fun
tions of F . Denote the sequen
eof gj by �j . SetP = 26664 h�0; `0i2 h�1; `0i2 � � � h�2m�1; `0i2h�0; `1i2 h�1; `1i2 � � � h�2m�1; `1i2...h�0; `2n�1i2 h�1; `2n�1i2 � � � h�2m�1; `2n�1i237775where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.Denote the auto-
orrelation of gj with shift � by �j(�). SetD = 26664 �0(�0) �1(�0) : : : �2m�1(�0)�0(�1) �1(�1) : : : �2m�1(�1)...�0(�2n�1) �1(�2n�1) : : : �2m�1(�2n�1)37775Two interesting properties of the di�eren
e distribution table K are2m�1Xj=0 k�j (�i) = 2n; i = 0; 1; : : : ; 2n � 1; and (2)k�0(�0) = 2n; k�j (�0) = 0; j = 1; : : : ; 2m � 1 (3)



Sin
e both �0 and `0 are the all-one sequen
e of length 2n and `j is (1;�1)balan
ed for j > 0, we haveh�0; `0i = 2n; h�0; `ji = 0; j = 1; : : : ; 2n � 1: (4)3 Introdu
tion to Nonhomomorphi
ityThe following lemmas 
an be found in [11℄.Lemma 2. Let F be an n�m mapping.1. If F is an aÆne mapping then for any even number k with k � 4, we haveF (u1)� F (u2)� � � � � F (uk) = 0 whenever u1 � u2 � � � � � uk = 0,2. if there exists an even number k with k � 4 su
h that F (u1)�F (u2)� � � � �F (uk) = 0 whenever u1 � u2 � � � � � uk = 0, then F is an aÆne mapping.Lemma 2 explores a 
hara
terization of aÆne mappings. From the lemma,if an n � m mapping satis�es F (u1) � F (u2) � � � � � F (uk) = 0 for a largenumber of k-tuples of ve
tors (u1; : : : ; uk) in Vn with u1 � u2 � � � � � uk = 0,then F behaves more like an aÆne mapping. This leads us to introdu
e a newnonlinearity 
riterion.Notation 2 Let F be an n �m mapping and k an integer (even or odd) with1 � k � 2n. Denote by H(k)F;�(�) the 
olle
tion of ordered k-tuples (u1; u2; : : : ; uk)of ve
tors in Vn satisfying Lkj=1 uj = � andLkj=1 F (uj) = � where � 2 Vn and� 2 Vm. Set ~q(k)F;�(�) = (1 k = 0#H(k)F;�(�) if k > 0where # denote the 
ardinal number of a set.In parti
ular, from Notation 2, it is easy to see~q(1)F;�(�) = �1 if F (�) = �0 if F (�) 6= � (5)A formal de�nition for nonhomomorphi
ity follows.De�nition 6. Let F be an n�m mapping, and k be an even number with k � 4.P� 6=0 ~q(k)F;�(0) is 
alled the kth-order nonhomomorphi
ity of F , denoted by ~q(k)F ,i.e., ~q(k)F =P� 6=0 ~q(k)F;�(0).Note that nonhomomorphi
ity is de�ned for an even order k only. This isbe
ause the 
hara
teristi
 properties shown in Lemma 2 
annot be extended tothe 
ase of an odd k.The 
on
ept of kth-order nonhomomorphi
ity was �rst introdu
ed in [9℄. Theemphasis of [9℄ was pla
ed on Boolean fun
tions, namely n�m S-boxes withm =



1. The work was 
arried out further in [11℄ where the kth nonhomomorphi
ity ofgeneral n�m S-boxes was studied, albeit for the spe
ial 
ase of k = 4. This leavesan unsolved problem in the 
ase of an arbitrary k with k � 4. In this paper wesolve the problem by presenting a set of results on the kth nonhomomorphi
ityof general n � m S-boxes for any even k with k � 4. Te
hniques employed inobtaining the results are di�erent from those in [9, 11℄, and represent a non-trivialextension of the previous works.From De�nition 6, it be
omes 
lear that the following property is true.Lemma 3. Let F be an n�m mapping. For any �xed integer s with s � 2 andany �xed ve
tor in Vn, the following equation holds:X�2Vm ~q(k)F;�(�) = 2(k�1)nLemma 4. Let F be an n�m mapping and s be an integer with s � 2. Then~q(s)F;�(�) = X�02Vm X�02Vn ~q(s�1)F;�0 (�0)~q(1)F;���0(�� �0)Proof.~q(s)F;�(�)= #f(u1; : : : ; us)jLsj=1 uj = �; Lsj=1 F (uj) = �g=P�02Vn #f(u1; : : : ; us�1)jLs�1j=1 uj = �0; Ls�1j=1 F (uj) = F (�0 � �)� �g=P�02Vn ~q(s�1)F;F (�0)��(�0)=P�0P�02Vn ~q(s�1)F;�0��(�0)�F (�� �; �0)~q(1)F;�0(� � �0)=P�0P�02Vn ~q(s�1)F;�0 (�0)~q(1)F;���0(�� �0)Notation 3 De�ne a 2m+n � 2m+n real valued (0; 1) matrix Q whose entry onthe 
ross of the 
th row and the 
0th 
olumn is ~q(1)F;���0(���0), where 
 = (�; �)and 
0 = (�0; �0).In addition, de�ne a real-valued (0; 1)-sequen
e of length 2m+n,� = (
0; 
1; : : : ; 
2m+n�1), as follows
j = (1 if ~q(1)F;�(�) = 10 if ~q(1)F;�(�) = 0where (�; �) is the binary representation of an integer j.Lemma 5. Let F = (f1; : : : ; fm) be an n�m mapping and �j be the ve
tor inVm that is the binary representation of an integer j, j = 0; 1; : : : ; 2m � 1. Setgj = h�j ; F i. Denote the sequen
e of gj by �j . Then h�;Lpi = h�t; `si where Lpis the pth row of Hm+n, and p = t � 2n + s, 0 � t � 2m � 1, 0 � s � 2n � 1.



Proof. From the 
onstru
tion of a Sylvester Hadamard matrix, Lp 
an be ex-pressed as Lp = etN `s, whereN denotes Krone
ker produ
t, i.e.,Lp = (d0`s; d1`s; : : : ; d2m�1`s)where et = (d0; d1; : : : ; d2m�1) and `s = (
0; 
1; : : : ; 2n � 1). Hen
e et is thesequen
e of a linear fun
tion  on Vm and  (y) = h�t; yi, where �t is the binaryrepresentation of an integer t.By a straightforward veri�
ation, one 
an geth�;Lpi = 2n�1Xi=0 2m�1Xj=0 ~q(1)F;�j (�i)dj
i= 2n�1Xi=0 
i 2m�1Xj=0 ~q(1)F;�j (�i)dj= 2n�1Xi=0 
i 2m�1Xj=0 ~q(1)F;�j (�i)(�1) (�j)Note that for a �xed �i, from (5), we have P2m�1j=0 ~q(1)F;�j (�i)(�1) (�j) =(�1) (F (�i)) = (�1)h�t;F (�i)i. We also note that (�1)h�t;F (�0)i; (�1)h�t;F (�1)i,: : : , (�1)h�t;F (�2n�1)i is identi�ed with the sequen
e �t, de�ned in Se
tion 5.Hen
e we have proved h�;Lpi = h�t; `si.Lemma 6. Let F be an n�m mapping and s be an integer (even or odd) withs � 1. Then the entry on the 
ross of the 
th row and the 
0th 
olumn of Qs ispre
isely identi�ed with ~q(s)F;�(�).Proof. By indu
tion on s. From the de�nition ofQ, the lemma holds when s = 1.Assume that the lemma holds when 1 � s � k � 1.Consider ~q(k)F;�(�). From Lemma 4, we have~q(k)F;�(�) = X�02Vm X�02Vn ~q(s�1)F;�0 (�0)~q(s)F;���0(�� �0)Finally re
all the assumption that the theorem holds when 2 � s � k � 1. Byusing Lemma 4 we have proved the lemma.Rewrite �Hm+n as�Hm+n = (h�;L0i; h�;L1i; : : : ; h�;L2m+n�1i)where Li denotes the ith row ofHm+n and the binary values 0 and 1 are regardedreal numbers.Hen
e it is easy to verifyQHm+n = Hm+ndiag(h�;L0i; h�;L1i; : : : ; h�;L2m+n�1i)



and 2�m�nHm+nQHm+n = diag(h�;L0i; h�;L1i; : : : ; h�;L2m+n�1i)This 
auses2�m�nHm+nQsHm+n = diag(h�;L0is; h�;L1is; : : : ; h�;L2m+n�1is)or QsHm+n = Hm+ndiag(h�;L0is; h�;L1is; : : : ; h�;L2m+n�1is) (6)Comparing the top row on the two sides of the equality (6) and using Lemma6, we obtain(~q(s)F;�0(�0); ~q(s)F;�1(�0); : : : ; ~q(s)F;�2m�2(�2n�1); ~q(s)F;�2m�1(�2n�1))Hm+n= (h�;L0is; h�;L1is; : : : ; h�;L2m+n�1is) (7)where �i is the binary representation of an integer i with 0 � i � 2n � 1, while�j is the binary representation of an integer j with 0 � j � 2m � 1.From (7) and Lemma 5, we 
on
ludeTheorem 1. Let F be an n�m mapping and s be an integer (even or odd) withs � 1. Then(~q(s)F;�0(�0); ~q(s)F;�1(�0); : : : ; ~q(s)F;�2m�2(�2n�1); ~q(s)F;�2m�1(�2n�1))= 2�m�n(h�0; `0is; h�1; `0is; : : : ; h�2m�2; `2n�1is; h�2m�1; `2n�1is)Hm+nwhere �� is de�ned in Lemma 5 and `� is the � row of Hn, � is the binaryrepresentation of an integer j with j = 0; 1; : : : ; 2m � 1, and � is the binaryrepresentation of an integer i with i = 0; 1; : : : ; 2n � 1.4 Cal
ulating ~q(s)F~q(4)F;0(0) has been studied in [11℄. In this se
tion we turn our attention to ~q(k)F;0(0)with k � 0.Let � = 0 and � = 0 in Lemma 6. Then ea
h entry on the diagonal of Qs ispre
isely identi�ed with ~q(s)F;0(0).Comparing the leftmost entry on the two sides of the equality in Theorem 1,we 
on
ludeLemma 7. Let F be an n�m mapping and s be an integer (even or odd). Then~q(s)F;0(0) = 2�m�n 2m�1Xj=0 2n�1Xi=0 h�j ; `iis



From De�nition 6, we have ~q(s)F =P� 6=0 ~q(s)F;�(0) = 2(k�1)n�~q(s)F;0(0). Thereforethe following theorem holds:Theorem 2. Let F be an n�m mapping and s be an even number with s � 4.Then the nonhomomorphi
ity of F , denoted by ~q(s)F , satis�es~q(s)F = 2(s�1)n � 2�m�n 2m�1Xj=0 2n�1Xi=0 h�j ; `iiswhere h�j ; `ii is de�ned in Notation 1.Sin
e both �0 and `0 are identi�ed with the all-one sequen
e of length 2n, and`i is (1;�1)-balan
ed for i = 1; : : : ; 2n � 1, Theorem 2 has another expression:~q(s)F = 2(s�1)n � 2(s�1)n�m � 2�m�n 2m�1Xj=1 2n�1Xi=0 h�j ; `iisRepla
ing s in the equality in Theorem 1 by t, where t � 1 is an integerindependent of s, we obtain another equality. Carrying out the inner produ
tbetween the two equalities, we have provedX�2Vm X�2Vn ~q(s)F;�(�)~q(t)F;�(�) = 2�m�n 2m�1Xj=0 2n�1Xi=0 h�j ; `iis+tBy using Lemma 7, we have provedCorollary 1. Let F be an n � m mapping and s � 1 and t � 1 be any twointegers. Then ~q(s+t)F;0 (0) = X�2Vm X�2Vn ~q(s)F;�(�)~q(t)F;�(�)5 Bounds on ~q(s)FWe �rst introdu
e H�older's Inequality whi
h 
an be found in [2℄.Lemma 8. Let 
j � 0 and dj � 0 be real numbers, where j = 1; : : : ; t, and let pand q satisfy 1p + 1q = 1 and p > 1. Then( tXj=1 
pj )1=p( tXj=1 dqj )1=q � tXj=1 
jdjwhere the quality holds if and only if 
j = �dj , j = 1; : : : ; t for a 
onstant � � 0.



When 
j , dj , p and q satisfy the 
ondition that 
j � 0, dj = �1 if 
j = 10 if 
j = 0 ,p = s2 and q = ss�2 , H�older's Inequality givestXj=1 
 s2j � t1� s2 ( tXj=1 
j) s2 (8)where the quality holds if and only if 
1, : : :, 
t are all identi
al.Lemma 9. Let F be an n�m mapping and s be even with s � 4. Then ~q(s)F;0(0),satis�es 2(s�1)n�m + (2m � 1)2ns2 �m � ~q(s)F;0(0) � 2(s�1)nwhere the �rst equality holds if and only if every nonzero linear 
ombination ofthe 
omponent fun
tions of F is bent, and the se
ond equality holds if and onlyif F is aÆne.Proof. Consider the �rst inequality. From Lemma 7, we have~s(s)F;0(0) = 2(s�1)n�m + 2�m�n 2m�1Xj=1 2n�1Xi=0 h�j ; `iisBy using (8) whi
h is a spe
ial 
ase of Lemma 8, we obtain~q(s)F;0(0) � 2(s�1)n�m + 2�m�n[((2m � 1)2n)1� s2 (2m�1Xj=1 2n�1Xi=0 h�j ; `ii2) s2 ℄A

ording to Parseval's equation (Page 416 of [4℄), we haveP2n�1i=0 h�j ; `ii2 = 22nfor ea
h j, 1 � j � 2m � 1. Hen
e~q(s)F;0(0) � 2(s�1)n�m + 2�m�n[((2m � 1)2n)1� s2 ((2m � 1)22n) s2 ℄ (9)This proves the �rst inequality. On
e again by using (8), the equality in (9)holds if and only if h�j ; `ii2 are identi
al for all j = 1; : : : ; 2m � 1 and i =0; 1; : : : ; 2n � 1. Parseval's equation implies that, in this 
ase, h�j ; `ii2 = 2n forall j = 1; : : : ; 2m � 1 and i = 0; 1; : : : ; 2n � 1. Re
all the de�nition of a bentfun
tion. Thus we have proved that the equality in (9) holds if and only if ea
hgj is bent, where 1 � j � 2m � 1.By the de�nition of the sth-order nonhomomorphi
ity of F and Lemma 2,the se
ond inequality is true, and the equality holds if and only if F is aÆne.Re
alling De�nition 6, we 
on
ludeTheorem 3. Let F be an n � m mapping. Then the sth-order nonhomomor-phi
ity of F , ~q(s)F , satis�es0 � ~h(s)F � 2(s�1)n � 2(s�1)n�m � (2m � 1)2ns2 �mwhere the �rst equality holds if and only if F is aÆne, and the se
ond equalityholds if and only if every nonzero linear 
ombination of the 
omponent fun
tionsof F is bent.



If an n�m mapping, F , has the property that every nonzero linear 
ombi-nation of the 
omponent fun
tions of F is bent, then F is said to be perfe
tlynonlinear. In this 
ase, we have m � 12n (see [5℄).6 Mean of ~q(k)F over all FNotation 4 Let Ok (k even) denote the 
olle
tion of k-tuples (u1; : : : ; uk) ofve
tors in Vn satisfying uj1 = uj2 ; : : : ; ujk�1 = ujk , where fj1; j2; : : : ; jkg =f1; 2; : : : ; kg. Let Dk denote the 
olle
tion of k-tuples (u1; : : : ; uk) of ve
tors inVn satisfying u1 � � � � � uk = 0 and (u1; : : : ; uk) 62 Ok.Obviously #Ok +#Dk = 2(k�1)n (10)It is easy to verifyLemma 10. Let n, m and k be positive integers and u1 � � � � � uk = 0, whereea
h uj is a �xed ve
tor in Vn. ThenF (u1)� � � � � F (uk) = 0holds for every n�m mapping F if and only if k is even and (u1; : : : ; uk) 2 Ok.The following lemma 
an be found in [9℄Lemma 11. In Notation 4, let k be an even with 2 � k � 2n. Then#Dk = k=2Xt=1 �2nt � Xp1+���+pt=k=2; pj>0 (k)!(2p1)! � � � (2pt)!Theorem 4. Let n, m be positive integers and k be an even with 2 � k � 2n.Then the mean of ~q(k)F over all the n�m mappings, i.e., 2�m�2nPF ~q(k)F , satis�es2�m�2nXf ~q(k)F = 2�m(2(k�1)n � ok)Proof. Note that for ea
h (u1; : : : ; uk) 2 Dk, for a random n �m mapping F ,F (u1)� � � � � F (uk) takes every ve
tor in Vm with an equal probability of 2�m.Therefore the mean of ~q(k)F;�(0) over all the n�mmappings, i.e., 2�m�2nPF ~q(k)F;�(0)satis�es 2�m�2nXF ~q(k)F;�(0) = 2�m�2nXF #(H(k)F;�(0)) = 2�m#Dk (11)From De�nition 6, we have2�m�2nXF ~q(k)F = 2�m�2nX� 6=0XF ~q(k)F;�(0) = (1� 2�m)#Dk (12)Applying (10) to (12), we have proved the theorem.



7 Relative Nonhomomorphi
ityThe 
on
ept of relative nonhomomorphi
ity introdu
ed in this se
tion is usefulfor a statisti
al tool to be introdu
ed later.De�nition 7. Let F be an n�m mapping and k be an even with k � 4. De�nethe kth-order relative nonhomomorphi
ity of F , denoted by �(k)F , as �(k)F = ~q(k)F#Dk ,i.e., �(k)F = ~q(k)F2(k�1)n�ok .From Theorem 4, we obtainCorollary 2. The mean of �(k)F over all the fun
tions on Vn, i.e., 2�m�2nPf �(k)F ,satis�es 2�m�2nXF �(k)F = 1� 2�mIt is interesting to note that 2�m�2nPf �(k)F = 1� 2�m is not relevant to k.From Corollary 2, we obtain�(k)F 8>><>>:� 1� 2�m then F is not less nonhomomorphi
than the mean of nonhomomorphi
ity< 1� 2�m then F is less nonhomomorphi
than the mean of nonhomomorphi
ity (13)If �(k)F is mu
h smaller than 1� 2�m, then F should be 
onsidered to be 
ryp-tographi
ally weak.8 Estimating Nonhomomorphi
ityAs shown in Theorem 2, the nonhomomorphi
ity of an S-boxes 
an be deter-mined pre
isely. In this se
tion, however, we introdu
e a statisti
al method toestimate nonhomomorphi
ity. Su
h a method is useful in the fast analysis offun
tions.Denote a real-valued (0; 1) fun
tion on Dk, t(u1; : : : ; uk), as followst(u1; : : : ; uk) = �1 if F (u1)� � � � � F (uk) 6= �0 otherwiseHen
e from the de�nition of nonhomomorphi
ity, we have~q(k)F = X(u1;:::;uk)2Dk t(u1; : : : ; uk)Let 
 be a random subset of Dk. Write ! = #
 andt = 1! X(u1;:::;uk)2
 t(u1; : : : ; uk) (14)



Note that this is the \sample mean" [1℄. In parti
ular, 
 = R(k)n � Ok, t isidenti�ed with the \true mean" or \population mean" [1℄, namely, �(k)F .Now 
onsiderP(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2. We haveX(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2= X(u1;:::;uk)2
 t2(u1; : : : ; uk)� 2t � X(u1;:::;uk)2
 t(u1; : : : ; uk) + !t2Note that t2(u1; : : : ; uk) = t(u1; : : : ; uk). From (14),X(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2 = !t� 2!t2 + !t2= !t� 2!t2 + !t2= !t(1� t) (15)Hen
e the quantity of q 1!�1P(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2, whi
h is 
alledthe \sample standard deviation" [1℄ and is usually denoted by �, 
an be expressedas � =vuut 1! � 1 X(u1;:::;uk)2
(t(u1; : : : ; uk)� t)2 =s!t(1� t)! � 1 (16)By using (4.4) in Se
tion 4.B of [1℄, the \true mean" or \population mean", �(k)f;1,
an be bounded by t� Ze=2 �p! < �(k)f;1 < t+ Ze=2 �p! (17)where Ze=2 denotes the value Z of a \standardized normal distribution". Notethat (17) holds with a probability of (1� e)100% (see for example [1℄).For instan
e,when e = 0:2, Ze=2 = 1:28, and (17) holds with a probability of 80%;when e = 0:1, Ze=2 = 1:64, and (17) holds with a probability of 90%;when e = 0:05, Ze=2 = 1:96, and (17) holds with a probability of 95%;when e = 0:02, Ze=2 = 2:33, and (17) holds with a probability of 98%;when e = 0:01, Ze=2 = 2:57, and (17) holds with a probability of 99%;when e = 0:001, Ze=2 = 3:3, and (17) holds with a probability of 99:9%:From (14), we have 0 � t < 1. It is easy to verify that � in (16) satis�es0 � � � 12q !!�1 . This implies that (17) 
an be repla
ed simply byt� Ze=22p! � 1 < �(k)F < t+ Ze=22p! � 1 ; (18)



where (18) holds with a probability of (1 � e)100%. Hen
e if !, i.e., #
, islarge, then the lower bound and the upper bound on �(k)F in (17) are 
loserto ea
h other. On the other hand, if we 
hoose ! = #
 large enough, thenZe=2 �p! is suÆ
iently small, and hen
e (17) and (18) will provide us with usefulinformation. For instan
e, viewing (17) and (18) and Corollary 2, set e = 0:001and Ze=2 = 3:3, we 
an 
hoose ! = #
 su
h that Ze=22p!�1 < 2�(m+2). In this 
asethe estimation of nonhomomorphi
ity has a reliability of 99:9%. This indi
atesthat #
 = ! � 5 � 22m+5 is suÆ
iently large.In summary, we 
an analyze the nonhomomorphi
 
hara
teristi
s of a map-ping from Vn to Vm in the following steps:1. we randomly �x a subset of Dk, say 
, where ! = #
 is large enough (say! � 5 � 22m+5),2. by using (14), we determine t, i.e., \the sample mean",3. by using (17), we determine the range of ~q(k)F#Dk , with a high reliability,We note that the statisti
al analysis is eÆ
ient due to the following reasons:(1) the relative nonhomomorphi
ity, ~q(k)F#Dk is pre
isely identi�ed by the use of\population mean" or \true mean", a terminology in statisti
s,(2) the method is highly reliable,(3) ! is dependent only on the size m,but not on n. Hen
e the method does notrequire a huge amount of 
omputing.From the Law of Large Numbers [1℄, as n grows larger and larger, the \samplemean" t be
omes 
loser and 
loser to the \true mean" ~q(k)F#Dk .Re
all De�nition 2. To determine the nonlinearity of an individual fun
tion fon Vn, we need to 
al
ulate d(f; 'i) where '0, '1, : : :, '2n+1�1 are all the aÆnefun
tions on Vn. Let '0, '1, : : :, '2n�1 be all the linear fun
tions on Vn. Then1� '0, 1� '1, : : :, 1� '2n�1 are all the aÆne, but not linear, fun
tions on Vn.Note that d(f; 1�'i) = 2n�d(f; 'i). Hen
e we need to 
al
ulate ea
h Hammingdistan
e d(f; 'i), for j = 0; 1; : : : ; 2n � 1. On the other hand, to 
al
ulate ea
hHamming distan
e d(f; 'i), we should 
ompare the value f(�) with the value'i(�) for ea
h � 2 Vn.Now 
onsider De�nition 5. To determine the nonlinearity of an n � m S-box, we need to 
ompare value gj(�) and the value 'i(�), (2m � 1)22n timesaltogether, where j = 1; : : : ; 2m � 1, i = 0; 1; : : : ; 2n � 1, � = �0; �1; : : : ; �2n�1.Compared with the determination of nonlinearity of an n � m S-box, herewe 
an use the statisti
al method with a reliability of 99:9%. To a
hieve this weneed to 
hoose 
 with #
 = ! � 5 � 22m+5 whi
h is not relevant to n and mu
hless than (2m � 1)22n. Hen
e the statisti
al method saves time in 
omputing.As the estimated value of nonhomomorphi
ity has a high reliability, it 
anbe used to examine other 
riteria. This will be seen in Se
tion 9.



9 Comparing Nonhomomorphi
ity with NonlinearityLet F = (f1; : : : ; fm) be an n�mmapping and �j be the ve
tor in Vm that is thebinary representation of an integer j, j = 0; 1; : : : ; 2m � 1. Set gj =Lmu=1 bufu.Denote the sequen
e of gj by �j .Similarly, let F � = (f�1 ; : : : ; f�m) be an n�m mapping and �j be the ve
torin Vm that is the binary representation of an integer j, j = 0; 1; : : : ; 2m � 1. Setg�j =Lmu=1 buf�u . Denote the sequen
e of g�j by ��j .Sin
e both �0 and `0 are the all-one sequen
e of length 2n and `i is (1;�1)-balan
ed, h�0; `0i = 2n; h�0; `ii = 0; i = 1; : : : ; 2n � 1Similarly h��0 ; `0i = 2n; h��0 ; `ii = 0; i = 1; : : : ; 2n � 1We rewrite ea
h jh�j ; `iij as ps, j = 1; : : : ; 2m� 1, i = 0; 1; : : : ; 2n� 1 and listall the ps as follows p1; p2; : : : ; p2n(2m�1)where pj � pi if j > i.Similarly, rewrite ea
h jh��j ; `iij as p�s , j = 1; : : : ; 2m � 1, i = 0; 1; : : : ; 2n � 1and list all the p�s as follows p�1; p�2; : : : ; p�2n(2m�1)where p�j � p�i if j > i.We 
onsider the following two 
ases.Case 1: pj = p�j , j = 1; : : : ; 2n(2m � 1). By using Theorem 2, we have ~q(k)F =~q(k)F� , where k is any even number with k � 4.Case 2: there exists some j0 su
h that pj = p�j , j = 1; : : : ; j0 and pj0+1 >P �j0+1. Then there exists an even number k0 su
h that pkj0=p�kj0 > 2n�j0 for everyeven k with k � k0. This implies that P2n(2m�1)j=1 pkj >P2n(2m�1)j=1 p�kj . Hen
e2m�1Xj=1 2n�1Xi=0 h�j ; `iik > 2m�1Xj=1 2n�1Xi=0 h��j ; `iikwhere k is any even number with k � k0. By using Theorem 2, we have proved~q(k)F > ~q(k)F� .In summary, we 
on
ludeTheorem 5. Let F and F � be two n�m mappings. Then ~q(k)F = ~q(k)F� where k isany even number with k � 4. Otherwise there exists some even number k0 su
hthat ~q(k)F > ~q(k)F� or ~q(k)F < ~q(k)F� , where k is any even number with k � k0.By the same reasoning, we 
an prove



Theorem 6. Let F and F � be two n�m mappings. If Nf > (<)Nf� then thereexists some even number k0 su
h that ~q(k)F > (<)~q(k)F� where k is any even numberwith k � k0.We 
an give Theorem 6 an equivalent statement as follows.Theorem 7. Let F and F � be two n �m mappings. If there exists some evennumber k0 su
h that ~q(k)F � ~q(k)F� where k is any even number with k � k0 thenNf � Nf� .Examining Theorem 7, we 
an see that when k is large, ~q(k)F guarantees ahigh nonlinearity. As ~q(k)F 
an be statisti
ally estimated, this result 
an be usefulin fa
ilitating the analysis of nonlinear properties of S-boxes.Lemma 12. There exists some even number k0 with k0 � 2n, satis�es the prop-erties in Theorems 6 and 7.Proof. Re
all the proof of Theorem 6. We have pj = p�j , j = 1; : : : ; j0 andpj0+1 > P �j0+1. Sin
e ea
h pj is an even number, we have pj0+1 � 2 + P �j0+1.Hen
e pkj0=p�kj0 > 2n � j0 for every even k with k � k0.10 Nonhomomorphi
ity in Spe
ial CasesThe nonhomomorphi
ity is more useful in two spe
ial 
ases: the nonhomomor-phi
ity of Boolean fun
tions and the 4th-order nonhomomorphi
ity of S-boxes.10.1 The Nonhomomorphi
ity of Boolean fun
tionsIn fa
t, a Boolean fun
tion f on Vn is a degenerated 
ase of n� 1 S-box. In this
ase (13) is spe
ialized as�(k)f 8>><>>:� 12 then f is not less nonhomomorphi
than the mean of nonhomomorphi
ity< 12 then f is less nonhomomorphi
than the mean of nonhomomorphi
ity (19)Obviously (19) is simpler than (13) and hen
e is easer to use in pra
ti
e. Moredetails about the nonhomomorphi
ity of Boolean fun
tions 
an be found in [9℄.Sin
e a fun
tion on Vn is an n � 1 S-box, Theorem 4 
an be spe
ialized asfollows:Corollary 3. Let n, m be positive integers and k be an even with 2 � k � 2n.Then the mean of ~q(k)F over all the n�m mappings, i.e., 2�m�2nPF ~q(k)F , satis�es2�m�2nXf ~q(k)F = 2�m(2(k�1)n � ok)



10.2 The 4th-order nonhomomorphi
ity of S-boxesFrom Lemma 2, we 
an fo
us on ~q(4)F rather than high order nonhomomorphi
ity.Furthermore it turns out that ~q(4)F is related to other 
riteria.Theorem 8. Let F be an n�m S-box. Then(i) ~q(4)F = 23n �P�2VnP�2Vm k2�(�),(ii) ~q(4)F = 23n � 2�m�n[24n +P2m�1j=1 P2n�1i=0 h�j ; `ii4℄,(iii) ~q(4)F = 23n � 2�m[23n +P2m�1j=1 P2n�1i=0 �2j (�i)℄.where k�(�), h�j ; `ii and �2j (�i) have been de�ned in Notation 1,Proof. (i) is spe
ialized from Theorem 1 by setting s = 4.(ii) A useful formula 
an be found in [10℄: P = HnKHm where P and K arede�ned in Notation 1. Hen
e P TP = HnKTHmHmKHn = 2mHnKTKHn =2m+n(2�nHnKTKHn). Note that 2�nHn is the inverse of Hn. From linear alge-bra, similar matri
es have the same sum of the elements on the diagonals. Hen
eP2m�1j=0 P2n�1i=0 h�j ; `ii4 =P�2VnP�2Vm k2�(�).Due to (4),P�2VnP�2Vm k2�(�) = 2�m�n[24n+P2m�1j=1 P2n�1i=0 h�j ; `ii4℄. Wehave proved (ii).By using (1) and (i), we obtain (iii).Example 1. The Data En
ryption Algorithm or DES employs eight 6� 4 map-pings or S-boxes. Consider the �rst mapping F . From De�nition 6, we dire
tly
al
ulate ~q(4)F = 231264. (Also we 
an use a statisti
al method to �nd an approx-imate value of ~q(4)F ).By using Theorem 8 231264 = 218 � X�2V6 X�2V4 k2�(�)From the property of the di�eren
e distribution table K, we have k0(0) = 2nand k�(0) = 0, � 6= 0.X�2V6;� 6=0 X�2V4 k2�(�) = 218 � 212 � 231264Write maxfk�(�)j� 2 V6:� 6= 0; � 2 V4g = kM . Hen
e we havekM X�2V6;� 6=0 X�2V4 k�(�) � X�2V6 X�2V4 k2�(�) = 218 � 212 � 231264On
e again re
alling the property of K, we haveP�2Vm k�(�) = 2n, for any� 2 Vn. Hen
e kM (26 � 1)26 � 218 � 212 � 231264



This implies kM � 6:6. Sin
e kM is even, kM � 8. This is larger than the triviallower bound kM � 2n�m = 4.Write maxfjh�j ; `iijj1 � j � 24�1; 0 � i � 26�1g = pM . Due to Theorem 8,we have(218 � ~q(4)F )26+4 � 224 = 24�1Xj=1 26�1Xi=0 h�j ; `ii4 � p2M 24�1Xj=1 26�1Xi=0 h�j ; `ii2By using Parseval's equation, Page 416 of [4℄, we haveP26�1i=0 h�j ; `ii2 = 22�6for ea
h �xed j, j = 1; : : : ; 24 � 1. Hen
e p2M � 212 � 23126460 > 241. As p2M issquare and hen
e a multiple of 4, we have p2M � 256. By using De�nition (5), we
on
lude that NF � 26�1 � 12pM � 24. Re
all that the maximum nonlinearityof fun
tions on V6 is 26�1 � 23�1 = 28 and it 
an be a
hieved only by bentfun
tions.Write maxfj�j(�i)j1 � j � 24 � 1; 1 � i � 26 � 1g = �M . On
e again, dueto Theorem 8, (23�6 � ~q(4)F )24 � 23�6 = 24�1Xj=1 26�1Xi=0 �2j (�i)Noti
ing �j(�0) = 26, j = 0; 1; : : : ; 24 � 1, we have23�6+4 � 24~q(4)F � 23�6 = 22�6+4 + 24�1Xj=1 26�1Xi=1 �2j (�i) � (24 � 1)(26 � 1)�2MThis proves that �2M � 222 � 218 � 216 � 24~q(4)F(26 � 1)(24 � 1) > 176As �2M is square, it must be a multiple of 4. Hen
e we have �2M � 196 and�M � 14.11 Con
lusionsWe have proposed the nonhomomorphi
ity of S-boxes as a new nonlinearity
riteria. We have expli
itly expressed the nonhomomorphi
ity by other nonlinear
hara
teristi
s, identi�ed tight upper and lower bounds on nonhomomorphi
ityas well as the mean of nonhomomorphi
ity over all the S-boxes with the samesize, and proposed a statisti
al method to estimate the nonhomomorphi
ity ofS-boxes. We have also demonstrated appli
ations of nonhomomorphi
ity in theanalysis of S-boxes. It is our belief that more appli
ations of the new 
riterionwill be identi�ed in the future.
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