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(See also Setion 8 for independent e�orts by researhers other than Sarkar andMaitra.)In this work we fous our attention on the ase of m � 0:6n� 0:4. We showthat for suh m and n, the nonlinearity of an mth-order orrelation immunefuntion f with n variables must satisfy the ondition of Nf � 2n�1 � 2m+1,regardless of the balane of the funtion. This represents an improvement on theupper bound of Nf � 2n�1 � 2m.Plateaued funtions are a new lass of funtions reently introdued in [16℄.These funtions have a number of properties that are deemed desirable in ryp-tography. We show that, interestingly, a orrelation immune funtion with themaximum nonlinearity ahievable by suh a funtion an be identi�ed with aplateaued funtion. This provides a new avenue for the analysis and design ofryptographially useful orrelation immune funtions.The remaining part of this paper is organized as follows: Setion 2 introduesbasi de�nitions on Boolean funtions, and Setion 3 summarizes some of theimportant ryptographi riteria for Boolean funtions. This will be followed bySetion 4 where relevant properties of plateaued funtions are disussed. Someuseful results on orrelation immune funtions are introdued in Setion 5. Theseresults will then be used in Setion 6 where our improved upper bound on thenonlinearity of orrelation immune funtions is proved. In the same setion somerelationships between orrelation immune funtions and plateaued funtions arealso examined. In Setion 7, the new upper bound is demonstrated to be tight forbalaned orrelation immune funtions. Finally the paper is losed by Setion 8where possible diretions for future researh are pointed out.2 Boolean FuntionsWe onsider funtions from Vn to GF (2) (or simply funtions on Vn), where Vnis the vetor spae of n tuples of elements from GF (2). The truth table of afuntion f on Vn is a (0; 1)-sequene de�ned by (f(�0); f(�1); : : : ; f(�2n�1)),and the sequene of f is a (1;�1)-sequene de�ned by ((�1)f(�0), (�1)f(�1),: : :, (�1)f(�2n�1)), where �0 = (0; : : : ; 0; 0), �1 = (0; : : : ; 0; 1), : : :, �2n�1 =(1; : : : ; 1; 1). The matrix of f is a (1;�1)-matrix of order 2n de�ned by M =((�1)f(�i��j)) where � denotes the addition in Vn. A funtion f is said to bebalaned if its truth table ontains an equal number of ones and zeros.Given two sequenes ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm), their omponent-wise produt is de�ned by ~a �~b = (a1b1; � � � ; ambm). In partiular, if m = 2n and~a, ~b are the sequenes of funtions f and g on Vn respetively, then ~a � ~b is thesequene of f � g where � denotes the addition in GF (2).Let ~a = (a1; � � � ; am) and ~b = (b1; � � � ; bm) be two sequenes or vetors,the salar produt of ~a and ~b, denoted by h~a;~bi, is de�ned as the sum of theomponent-wise multipliations. In partiular, when ~a and ~b are from Vm, h~a;~bi =a1b1 � � � � � ambm, where the addition and multipliation are over GF (2), andwhen ~a and ~b are (1;�1)-sequenes, h~a;~bi =Pmi=1 aibi, where the addition andmultipliation are over the reals.



An aÆne funtion f on Vn is a funtion that takes the form of f(x1; : : : ; xn) =a1x1 � � � � � anxn � , where aj ;  2 GF (2), j = 1; 2; : : : ; n. Furthermore f isalled a linear funtion if  = 0.A (1;�1)-matrix N of order n is alled a Hadamard matrix if NNT = nIn,where NT is the transpose of N and In is the identity matrix of order n. ASylvester-Hadamard matrix of order 2n, denoted by Hn, is generated by thefollowing reursive relationH0 = 1; Hn = �Hn�1 Hn�1Hn�1 �Hn�1 � ; n = 1; 2; : : : :ObviouslyHn is symmetri. Let `i, 0 � i � 2n�1, be the i row of Hn. It is knownthat `i is the sequene of a linear funtion 'i(x) de�ned by the salar produt'i(x) = h�i; xi, where �i is the ith vetor in Vn aording to the asendingalphabetial order.The Hamming weight of a (0; 1)-sequene �, denoted by HW (�), is the num-ber of ones in the sequene. Given two funtions f and g on Vn, the Hammingdistane d(f; g) between them is de�ned as the Hamming weight of the truthtable of f(x)� g(x), where x = (x1; : : : ; xn).3 Cryptographi Criteria of Boolean FuntionsThe following riteria for ryptographi Boolean funtions are often onsidered:balane, nonlinearity, propagation riterion, orrelation immunity, algebrai de-gree and non-zero linear strutures. In this paper we fous mainly on nonlinearityand orrelation immunity.The so alled Parseval's equation (Page 416 [7℄) is a useful tool in this work:Let f be a funtion on Vn and � denote the sequene of f . ThenP2n�1i=0 h�; `ii2 =22n where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.The nonlinearity of a funtion f on Vn, denoted by Nf , is the minimal Ham-ming distane between f and all aÆne funtions on Vn, i.e.,Nf = mini=1;2;:::;2n+1 d(f;  i) where  1,  2, : : :,  2n+1 are all the aÆne funtionson Vn. High nonlinearity an be used to resist a linear attak. The following har-aterization of nonlinearity will be useful (for a proof see for instane [8℄).Lemma 1. The nonlinearity of f on Vn an be expressed byNf = 2n�1 � 12 maxfjh�; `iij; 0 � i � 2n � 1gwhere � is the sequene of f and `0, : : :, `2n�1 are the rows of Hn, namely, thesequenes of linear funtions on Vn.From Lemma 1 and Parseval's equation, it is easy to verify that Nf � 2n�1�2 12n�1 for any funtion f on Vn. If Nf = 2n�1 � 2 12n�1, then f is alled a bentfuntion [9℄. It is known that a bent funtion on Vn exists only when n is even.



Let f be a funtion on Vn. For a vetor � 2 Vn, denote by �(�) the sequeneof f(x� �). Thus �(0) is the sequene of f itself and �(0) � �(�) is the sequeneof f(x)�f(x��). Set �f (�) = h�(0); �(�)i, the salar produt of �(0) and �(�).�(�) is alled the auto-orrelation of f with a shift �. We omit the subsript of�f (�) if no onfusion ours. Obviously, �(�) = 0 if and only if f(x)�f(x��)is balaned, i.e., f satis�es the propagation riterion with respet to �. In thease that f does not satisfy the propagation riterion with respet to a vetor�, it may be desirable for f(x) � f(x � �) to be almost balaned. That is, onemay require j�f (�)j to be a small value.The onept of orrelation immune funtions was introdued by Siegenthaler[12℄. Xiao and Massey gave an equivalent de�nition [2, 5℄: A funtion f on Vn isalled a mth-order orrelation immune funtion ifXx2Vn f(x)(�1)h�;xi = 0for all � 2 Vn with 1 � HW (�) � m, where in the the sum, f(x) and h�; xi areregarded as real-valued funtions. From the �rst equality in Setion 4.2 of [2℄,a orrelation immune funtion an also be equivalently restated as follows: Letf be a funtion on Vn and let � be its sequene. Then f is alled a mth-orderorrelation immune funtion if h�; `i = 0 for every `, where ` is the sequeneof a linear funtion '(x) = h�; xi on Vn onstrained by 1 � HW (�) � m. Infat, h�; `ii = 0, where `i is the ith row of Hn, if and only if f(x) � h�i; xi isbalaned, where �i is the binary representation of an integer i, 0 � i � 2n � 1.Correlation immune funtions are used in the design of running-key generatorsin stream iphers to resist a orrelation attak and the design of hash funtions.Relevant disussions on orrelation immune funtions, more generally on resilientfuntions, an be found in [15℄.Let f be a funtion on Vn and � denote the sequene of f . We introdue twonew notations:1. Set =f = fi j h�; `ii 6= 0; 0 � i � 2n � 1g where `i is the ith row of Hn,2. set =�f = f�i j h�; `�ii 6= 0; 0 � i � 2n � 1g where �i is the binaryrepresentation of an integer i, 0 � i � 2n � 1 and `�i is identi�ed with `i.=�f is essentially the same as =f with the only di�erene being that its ele-ments are represented by a binary vetor in Vn. We will simply write =f as =and =�f as =� when no onfusion arises. It is easy to verify that #=f and #=�fare invariant under any nonsingular linear transformation on the variables of thefuntion f . #=f (#=�f ) together with the distribution of =f (=�f ) determinesthe orrelation immunity and other ryptographi properties of a funtion.4 An Overview of Plateaued FuntionsThe onept of plateaued funtions was introdued in [16℄.



De�nition 1. Let f be a funtion on Vn and � denote the sequene of f . If thereexists an even number r, 0 � r � n, suh that #= = 2r and eah h�; `ji2 takes thevalue of 22n�r or 0 only, where `j denotes the jth row of Hn, j = 0; 1; : : : ; 2n�1,then f is alled a rth-order plateaued funtion on Vn. f is also simply alled aplateaued funtion on Vn if we ignore the partiular order r.Due to Parseval's equation, the ondition that #= = 2r an be obtainedfrom the ondition that \eah h�; `ji2 takes the value of 22n�r or 0 only, where`j denotes the jth row of Hn, j = 0; 1; : : : ; 2n � 1". For the sake of onveniene,however, we have mentioned both onditions in the de�nition of plateaued fun-tions.Some fats about plateaued funtions follow: (1) if f is a rth-order plateauedfuntion, then r must be even, (2) f is an nth-order plateaued funtion if andonly if f is bent, (3) f is a 0th-order plateaued funtion if and only if f is aÆne.All the following results an be found in [16℄.Theorem 1. Let f be a funtion on Vn and � denote the sequene of f . SetpM = maxfjh�; `jij; j = 0; 1; : : : ; 2n � 1g, where `j is the jth row of Hn. Thenthe following statements are equivalent: (i) f is a plateaued funtion on Vn, (ii)P2n�1j=0 �2(�j) = 23n#= , (iii) the nonlinearity Nf of f satis�es Nf = 2n�1� 2n�1p#= ,(iv) pMp#= = 2n, (v) Nf = 2n�1 � 2�n2�1qP2n�1j=0 �2(�j).Theorem 2. Let f be a funtion on Vn and � denote the sequene of f . Then2n�1Xj=0 �2(�j) � 23n#=where the equality holds if and only if f is a plateaued funtion.Theorem 3. Let f be a funtion on Vn and � denote the sequene of f . Thenthe nonlinearity Nf of f satis�es Nf � 2n�1� 2n�1p#= , where the equality holds ifand only if f is a plateaued funtion.Theorem 4. Let f be a funtion on Vn and � denote the sequene of f . Thenthe nonlinearity Nf of f satis�esNf � 2n�1 � 2�n2�1vuut2n�1Xj=0 �2(�j)where the equality holds if and only if f is a plateaued funtion on Vn.Proposition 1. Let f be a rth-order plateaued funtion on Vn. Then the non-linearity Nf of f satis�es Nf = 2n�1 � 2n� r2�1.



5 Some Useful Results on Correlation Immune FuntionsConsider a funtion f on Vn. Denote by � = (a0; a1; : : : ; a2n�1), where aj = �1,the sequene of f . Obviously(a0; a1; : : : ; a2n�1)Hn = (h�; `0i; h�; `1i; : : : ; h�; `2n�1i) (1)where `i is the ith row of Hn, i = 0; 1; : : : ; 2n � 1.Let p be an integer with 1 � p � n� 1. Rewrite (1) as(a0; a1; : : : ; a2n�1)(Hp �Hn�p) = (h�; `0i; h�; `1i; : : : ; h�; `2n�1i) (2)where � is the Kroneker Produt [14℄.Let ei denote the ith row of Hn�p, i = 0; 1; : : : ; 2n�p�1. For any �xed j with0 � j � 2n�p�1, omparing the jth, the (j+2n�p)th, : : :, the (j+(2p�1)2n�p)thterms in the two sides of (2), we have(a0; a1; : : : ; a2n�1)(Hp � eTj ) = (h�; `ji; h�; `j+2n�pi; : : : ; h�; `j+(2p�1)2n�pi)Write � = (�0; �1; : : : ; �2p�1) where eah �i is of length 2n�p. Then we have(h�0; eji; h�1; eji; : : : ; h�2p�1; eji)Hp = (h�; `ji; h�; `j+2n�pi; : : : ; h�; `j+(2p�1)2n�pi)Hene 2p(h�0; eji; h�1; eji; : : : ; h�2p�1; eji)= (h�; `ji; h�; `j+2n�pi; : : : ; h�; `j+(2p�1)2n�pi)Hp (3)Based on these disussions, we have the following lemma.Lemma 2. Let f be an mth-order orrelation immune funtion on Vn, wherem � n � 2, and � be the sequene of f . Then h�; `2m+1�1i � 0 (mod 2m+2) ifand only if h�; `0i � 0 (mod 2m+2) where `0 is the top row of Hn.Proof. Set W = f�0; �2n�m�1 ; �2�2n�m�1 ; : : : ; �(2m+1�1)2n�m�1g, where eah �jis the binary representation of an integer j. Note thatW is an (m+1)-dimensionallinear subspae of Vn.Write � = (�0; �1; �2; : : : :�2m+1�1), where eah �i is of length 2n�m�1. Letp = m+ 1 and j = 0 in (3), we have2m+1(h�0; e0i; h�1; e0i; : : : ; h�2m+1�1; e0i)= (h�; `0i; h�; `2n�m�1i; h�; `2�2n�m�1i; : : : ; h�; `(2m+1�1)2n�m�1i)Hm+1 (4)where e0 denotes the 0th row of Hn�m�1, i.e., the all-one sequene of length2n�m�1.AsHW (�j�2n�m�1) � m, we have h�; `j�2n�m�1i = 0, where j = 1; : : : ; 2m+1�2. Therefore (4) an be rewritten as2m+1(h�0; e0i; h�1; e0i; : : : ; h�2m+1�1; e0i)= (h�; `0i; 0; : : : ; 0; h�; `(2m+1�1)2n�m�1i)Hm+1 (5)



Comparing the rightmost term in the two sides of (5), we have2m+1h�2m+1�1; e0i = h�; `0i � h�; `(2m+1�1)2n�m�1i (6)Note that the length of �2m+1�1 and e0 is even. Hene h�2m+1�1; e0i must beeven. From this it follows that 2m+1h�2m+1�1; e0i � 0 (mod 2m+2). Finally, byonsidering (6), we have proved that h�; `(2m+1�1)2n�m�1i � 0 (mod 2m+2) ifand only if h�; `0i � 0 (mod 2m+2). utBy hoosing a di�erentW in the proof of Lemma 2, we an prove the followinglemma in a similar way.Lemma 3. Let f be an mth-order orrelation immune funtion on Vn, wherem � n� 2, and � be the sequene of f . Let j0 be an integer satisfying 0 < j0 �2n�1 and HW (�j0) = m+1, where �j0 is the binary representation of the integerj0. Then h�; `j0i � 0 (mod 2m+2) if and only if h�; `0i � 0 (mod 2m+2).Lemma 3 allows us to laimLemma 4. Let f be an mth-order orrelation immune funtion on Vn, wherem � n� 2, and � be the sequene of f . Let j0 be an integer satisfying 0 < j0 �2n � 1 and HW (�j0) = m + 1. If h�; `j0i � 0 (mod 2m+2) then h�; `ji � 0(mod 2m+2) for any integer j satisfying HW (�j) = m + 1, where �j is thebinary representation of j.The ondition of HW (�j) = m + 1 in the lemma above an be removed, asis shown below.Lemma 5. Let f be an mth-order orrelation immune funtion on Vn, wherem � n� 2, and � be the sequene of f . Let j0 be an integer satisfying 0 < j0 �2n � 1 and HW (�j0) = m + 1, where �j0 is the binary representation of j0. Ifh�; `j0i � 0 (mod 2m+2), then h�; `ii � 0 (mod 2m+2) for any row `i of Hn.Proof. We use indution on HW (�j) to prove that h�; `ji � 0 (mod 2m+2),where �j is the binary representation of the subsript j of `j .For 0 < HW (�j) � m, sine f is an mth-order orrelation immune funtion,we have h�; `ji = 0. On the other hand, from Lemma 4, we have h�; `ji � 0(mod 2m+2), where `j is any row of Hn satisfying HW (�j) = m + 1, and �jis the binary representation of j. Due to Lemma 3, we also have h�; `0i � 0(mod 2m+2). Hene we have proved h�; `ji � 0 (mod 2m+2), when HW (�j) �m+ 1.Now assume that h�; `ji � 0 (mod 2m+2), when m + 1 � HW (�j) � k �n� 1. Consider the ase of HW (�j) = k +1. Obviously, W an be rewritten asW = f�0; �2n�k�1 ; �2�2n�k�1 ; : : : ; �(2k+1�1)2n�k�1g, where eah �j is the binaryrepresentation of an integer j. One an see thatW is a (k+1)-dimensional linearsubspae.



Let � = (�0; �1; �2; : : : :�2k+1�1), where eah �i is of length 2n�k�1. Further-more, let p = k + 1 and j = 0 in (3). Then we have2k+1(h�0; e0i; h�1; e0i; : : : ; h�2k+1�1; e0i)= (h�; `0i; h�; `2n�k�1i; h�; `2�2n�k�1i; : : : ; h�; `(2k+1�1)2n�k�1i)Hk+1 (7)where e0 denotes the 0th row of Hn�k�1, i.e., the all-one sequene of length2n�k�1.By the assumption, we should have h�; `ji � 0 (mod 2m+2) where j =i � 2n�k�1, i = 0; 1; : : : ; 2k+1 � 2. Note that k � m + 1. From (7), we haveh�; `(2k+1�1)2n�k�1i � 0 (mod 2m+2). Furthermore, note thatHW (�(2k+1�1)2n�k�1) = k + 1. Taking into aount Lemma 4, we an onludethat h�; `ji � 0 (mod 2m+2), for HW (�j) = k + 1, where �j is the binaryrepresentation of j. This ompletes the proof. utIn the following setion, we will use these results to improve the upper bondon the nonlinearity of orrelation immune funtions.6 Improving Upper Bounds on NonlinearityThe following lemma will be used in proving Theorem 5.Lemma 6. Let f be an mth-order orrelation immune funtion on Vn, where12n� 1 < m � n� 2, and � denotes the sequene of f . If � nm+ 1� > 22n�2m�2,then there must be an integer j0, 0 � j0 � 2n � 1, suh that HW (�j0) = m+ 1and h�; `j0i = 0, where �j0 is the binary representation of integer j0.Proof. Sine f is an mth-order orrelation immune funtion on Vn, due to Theo-rem 3 of [10℄, we have h�; `i � 0 (mod 2m+1), where ` is any row of Hn. Heneh�; `i 6= 0 implies that jh�; `ij � 2m+1. Using Parseval's equation (Page 416 [7℄),we have #= � 22n�2m�2.Note that the number of vetors � in Vn, satisfying HW (�) = m + 1, isequal to � nm+ 1� > 22n�2m�2. Hene there must be a vetor �j0 suh thatHW (�j0) = m+ 1 and �j0 62 =�. As a result, we have h�; `j0i = 0, where �j0 isthe binary representation of j0. utTheorem 5. Let f be an mth-order orrelation immune funtion on Vn, where12n� 1 < m � n� 2. If � nm+ 1� > 22n�2m�2, then Nf � 2n�1 � 2m+1, wherethe equality holds if and only if f is is a 2(n�m�2)th-order plateaued funtion.Proof. By Lemma 6, there must be a vetor �j0 suh that HW (�j0) = m + 1and h�; `j0i = 0. Now using Lemma 5, we haveh�; `i � 0 (mod 2m+2) (8)



where ` is any row of Hn. Lemma 1 implies that Nf � 2n�1 � 2m+1.Assume that Nf = 2n�1 � 2m+1. From Lemma 1, we havemaxfjh�; `iij; 0 � i � 2n � 1g = 2m+2 (9)Combining (8) and (9), we an onlude that h�; `i = 2m+2 if h�; `i 6= 0. Thisproves that f is a 2(n�m� 2)th-order plateaued funtion.Conversely, if f is a 2(n�m� 2)th-order plateaued funtion, due to Propo-sition 1, we must have Nf = 2n�1 � 2m+1. utLet n and m be two integers with n > m > 0. We laim that that thefollowing inequality holds:� nm+ 1� > (n+m+ 2n�m )n�m�1 (10)To prove the laim, we set �(i) = (n�i)(m+2+i)(n�m�1�i)(1+i) , where 0 � i � 12 (n�m�2).Sine � nm+ 1� = � nn�m� 1�, it is easy to verify that� nm+ 1� = ��(0)�(1) � � � �( 12 (n�m� 2)� 1)(n+m+2n�m ); if n�m is even�(0)�(1) � � � �( 12 (n�m� 3)); if n�m is odd (11)In addition, one an also verify that � satis�es the ondition of �(i) < �(i�1).Hene� nm+ 1� > ( (�( 12 (n�m� 2)) 12 (n�m�2)(n+m+2n�m ); if n�m is even(�( 12 (n�m� 3)) 12 (n�m�1); if n�m is odd (12)There exist two ases to be onsidered: n�m is even and n�m is odd.In the former ase, we note that �( 12 (n�m� 2)) = (n+m+2n�m )2. Due to (12),we obtain � nm+ 1� > (n+m+2n�m )n�m�1.In the latter ase, as �( 12 (n�m�3)) = (n+m+3)(n+m+1)(n�m+1)(n�m�1) > (n+m+2n�m )2, takinginto aount (12), we have � nm+ 1� > (n+m+2n�m )n�m�1. Thus the inequality in(10) is indeed true.Theorem 6. Let f be an mth-order orrelation immune funtion on Vn. If mand n satisfy the ondition of 0:6n� 0:4 � m � n� 2, then Nf � 2n�1 � 2m+1,where the equality holds if and only if f is also a 2(n�m� 2)th-order plateauedfuntion.Proof. One an verify that n+ �1 + 2n� �1 > n+ �2 + 2n� �2



for n > �1 > �2 > 0, where �1 and �2 are not neessarily integers. Sinem � 0:6n� 0:4, we have(n+m+ 2n�m )n�m�1 � (n+ 0:6n� 0:4 + 2n� (0:6n� 0:4) )n�m�1 = 22n�2m�2:By using (10), we an onlude that � nm+ 1� > 22n�2m�2. Taking into aountTheorem 5, we know that the theorem is indeed true. utPart (i) of Theorem 4 in [10℄ states that the nonlinearity Nf of an mth-orderorrelation immune funtion f on Vn satis�esNf � 2n�1�2m, whenm > 12n�1.Our Theorem 6 represents an improvement on the result in [10℄, espeially forthe ase of m � 0:6n� 0:4.As a onsequene of Theorem 5 or Theorem 6, a orrelation immune funtionthat ahieves the maximum nonlinearity for suh a funtion, also satis�es all theproperties of plateaued funtion, as disussed in Setion 4. As a result, by takinginto aount Theorem 2, we haveCorollary 1. Let f be an mth-order orrelation immune funtion on Vn. If0:6n � 0:4 � m � n � 2, then Nf � 2n�1 � 2m+1, where the equality holds ifand only if f is also a 2(n�m� 2)th-order plateaued funtion or the equality inTheorem 2 holds, i.e., P2n�1j=0 �2(�j) = 2n+2m+4.An (n;m; t)-resilient funtion is an n-input m-output funtion or mapping Fwith the property that it runs through every possible output m-tuple an equalnumber of times when t arbitrary inputs are �xed and the remaining n�t inputsruns through all the 2n�t input tuples one. The onept was introdued by Choret al in [3℄ and independently, by Bennett et al in [1℄. Comparing the de�nitionof resilient funtions with that of orrelation immune funtions, one an seethat an (n; 1; t)-resilient funtion oinides with a balaned tth-order orrelationimmune funtion on Vn. In this ontext, Theorem 1 of [15℄ is of speial interestto pratitioners alike, as it shows that eah non-zero linear ombination of theomponent funtions of an (n;m; t)-resilient funtion is also a balaned tth-orderorrelation immune funtion on Vn, giving rise to 2m � 1 distint, balaned tth-order orrelation immune funtions in total.To lose this setion, we point out a result whih follows from Theorem 2 of[10℄ and Theorem 2 in this paper.Corollary 2. Let f be an (n; 1;m)-resilient funtion, where 12n�2 < m � n�3.Then the nonlinearity Nf of f satis�es Nf � 2n�1 � 2m+1, where the equalityholds if and only if f is also a 2(n �m � 2)th-order plateaued funtion or theequality in Theorem 2 holds, i.e., P2n�1j=0 �2(�j) = 2n+2m+4.7 Tightness of the Upper BoundAs Theorem 6 represents an improved upper bound on the nonlinearity of allthe orrelation immune funtions inluding both balaned and unbalaned ones,



we are further interested in the question as to whether the upper bound is tightor not. It turns out that the question an be answered in an aÆrmative wayfor balaned orrelation immune funtions. The approah we take is to atuallydemonstrate the existene of mth-order orrelation immune, balaned funtionson Vn, whose nonlinearity Nf satis�es Nf = 2n�1 � 2m+1.We note that [11℄ is the earliest paper to study the nonlinearity of or-relation immune funtions. Of partiular importane are Theorems 9 and 14in [11℄ whih happen to be also relevant to the urrent work. Theorem 9 of[11℄ proved the equivalene of two di�erent methods for onstruting orrelationimmune funtions, while Theorem 4 in the same paper showed how to obtainhighly nonlinear orrelation immune funtions. Let integers n and m satisfym + 2 � 2n�m�2 and n � 16. For suh n and m, there exist 2n�m�2 non-zero vetors in Vm+2, say 0; 1; : : : ; 2n�m�2�1, suh that HW (j) � m + 1,where j = 0; 1; : : : ; 2n�m�2 � 1. De�ne a mapping P from Vn�m�2 to Vm+2suh that P (Vn�m�2) = f0; 1; : : : ; 2n�m�2�1g, where P (Vn�m�2) = fP (Æ)jÆ 2Vn�m�2g. Based on P , we onstrut a funtion f on Vn by f(x) = f(y; z) =P (y)zT where x = (y; z), y 2 Vn�m�2 and z 2 Vm+2. By using Theorems 9 and14 of [11℄, modifying the relevant parameters aordingly, and �xing t to 1, wean onstrut an (n; 1;m)-resilient (balaned) funtion f whose nonlinearity Nfreahes the upper bound of 2n�1 � 2m+1.As a onrete example, let n = 9 and m = 5. Then m + 2 � 2n�m�2.Set 0 = (1; 1; 1; 1; 1; 1; 1), 1 = (1; 1; 1; 1; 1; 1; 0), 2 = (1; 1; 1; 1; 1; 0; 1) and3 = (1; 1; 1; 1; 0; 1; 1). Then eah j 2 V7 and HW (j) � 6. De�ne a mapping Pfrom V2 to V7 suh that P (0; 0) = 0, P (0; 1) = 1 P (1; 0) = 2 and P (1; 1) = 3.Based on P , we onstrut a funtion f on V9 by f(x) = f(y; z) = P (y)zT wherex = (y; z), y 2 V2 and z 2 V7. Theorems 9 and 14 in [11℄ tell us that f is a 5th-order orrelation immune funtion on V9, and the nonlinearity Nf of f ahievesNf = 28 � 26 = 192, the highest possible value for suh a funtion. Sine eahj is non-zero, f is balaned. One an verify that the funtion f takes the formof f(y; z) = y1z6 � y2z7 � y1y2(z5 � z6 � z7)�z1 � z2 � z3 � z4 � z5 � z6 � z7where y = (y1; y2) and z = (z1; z2; z3; z4; z5; z6; z7).The above disussions indiate that the upper bound (2n�1�2m+1) is indeedtight for balaned orrelation immune funtions. While we have not been ableto identify whether the bound is also tight for unbalaned orrelation immunefuntions, its impliation would be marginal, due to the fat that unbalanedorrelation immune funtions have found little use in pratie.To lose this setion, let us note that in [13℄, an unbalaned 3rd-order or-relation immune funtion on V6 whose nonlinearity ahieves 25 � 23 = 24 isonstruted. This partiular funtion does not ontradit Theorem 5 or Theo-rem 6, as the spei� parameters n = 6 and m = 3 satisfy neither � nm+ 1� >22n�2m�2 nor m � 0:6n� 0:4.
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